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Superconducting fluctuations at low temperature
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The effect of fluctuations on the transport and thermodynamic properties of two-dimensional superconduct-
ors in a perpendicular magnetic field is studied at low temperatureT!Tc0. The fluctuation conductivity is
calculated in the framework of perturbation theory with the help of the usual diagram technique. It is shown
that in the dirty case the Aslamazov-Larkin, Maki-Thompson, and density of states contributions are of the
same order. At extremely low temperatureT/Tc0!@H2Hc2(0)#/Hc2(0) the total fluctuation correction to the
normal conductivity is negative in the dirty limit and depends on the external magnetic field logarithmically
ds} ln@H2Hc2(0)#. In the nonlocal clean limit, the Aslamazov-Larkin contribution to conductivity is evaluated
with the aid of Helfand-Werthamer theory. The longitudinal and Hall conductivities are found. The fluctuating
magnetization is calculated in the one-loop and two-loop approximations.
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I. INTRODUCTION

Over the last decade there has been continuing intere
quantum phase transitions. Particular attention has been
cused on two-dimensional systems which possess some
usual properties at low temperatures.1 It is remarkable that a
phase transition at zero temperature is possible in the fra
work of the usual BCS theory of superconductivity. T
transition temperature can be suppressed either by mag
impurities or by a magnetic field. It is interesting to find th
fluctuation conductivity as a function of the closeness to
transition in these cases. The impurity-driven quantum ph
transition has been considered by Ramazashvili
Coleman.2 Their consideration was based on the renorm
ization group analysis of the Aslamazov-Larkin correction
the conductivity. Fluctuations in an external magnetic fie
have been considered in different systems and various li
ing cases.3–9 However, up until now, there has been no co
sistent microscopic theory of superconducting fluctuatio
nearHc2(0). Thepurpose of the present paper is to deve
such a theory for two-dimensional superconductors in
dirty and clean limits.

We begin with a brief review of the studies of fluctuatio
in superconductors. The subject was initiated in the work
Aslamazov and Larkin.3 The conductivity of fluctuating
Cooper pairs was calculated in zero magnetic field. Ma4

and Thomson5 have included the effects of electron scatt
ing off the fluctuations. It was found that there is anoth
badly divergent contribution known as the anomalous Ma
Thomson correction. Physically, this correction is connec
with the coherent scattering of the electrons by the impuri
and analogous to the weak localization correction. The div
gence can be removed by introducing a pair-breaking r
Note that experimental results atT;Tc0 can be described by
the Aslamazov-Larkin term only. This suggests that the p
breaking rate is relatively large in real superconducto
Later, Thomson and Maki returned to the issue and evalu
the fluctuation correction to the normal conductivity in fini
fields. Thomson6 evaluated paraconductivity for small pe
pendicular fieldsT;Tc0 and large fields parallel to a two
0163-1829/2001/63~17!/174506~12!/$20.00 63 1745
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dimensional superconducting sample. Ami and Maki7 con-
sidered a dirty three-dimensional superconductor put in
arbitrarily strong magnetic field having calculated the d
grams numerically. However, some technical simplificatio
that had been made in the paper~namely, the dynamic fluc-
tuations had been neglected! make the results inapplicable a
very low temperature. Moreover, the three-dimensional c
is very different from the two-dimensional one, as shown
the present paper. Let us mention some relatively recen
sults in this field. A few years ago, Aronovet al.8 developed
a theory of transport phenomena in the fluctuation region
the dirty, clean, and superclean (vct;1) limits. Their con-
sideration was based on the Ginzburg-Landau equations
thus, is applicable for relatively small fieldsH!Hc2(0)
only. Beloborodovet al.9 have calculated the fluctuatin
conductivity of a three-dimensional granular superconduc
in the region close toHc2(0).

Our paper is structured as follows. In Sec. II A, we co
sider a two-dimensional dirty sampleTc0t!1 ~where t is
the scattering time!. We calculate the total fluctuation correc
tion to the conductivity which is described by the standa
set of diagrams~see Fig. 1!. We derive an analytical expres
sion for the fluctuation conductivity in the region close to t
transition line at low temperatures, i.e., att5T/Tc0!1 and
h5@H2Hc2(T)#/Hc2(0)!1. It is shown that in the caset
@h the total correction is positive and has the usual fo
ds}Tc0@T2Tc(H)#21, while at extremely low temperatur
t!h ~at zero temperature, in particular! the total correction
becomes negative and logarithmically divergentds} ln h.

In Sec. II B, we address the issue of fluctuations in
clean superconductors. This problem is more complex, s
the elements upon which the diagrams are built~current ver-
tices, cooperons, etc.! are nonlocal in the clean limit. We
argue that the corresponding operators can be found on
basis of Helfand-Werthamer theory.10 We apply this theory
to our problem and calculate all the necessary values in
following limiting cases: vc!T or vct!1 @where vc
5eHc2(0)/m;Tc0(Tc0 /«F) is the cyclotron frequency#.
This allows us to treat the magnetic field effects semicla
cally. The curving of the classical trajectories is taken in
©2001 The American Physical Society06-1
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V. M. GALITSKI AND A. I. LARKIN PHYSICAL REVIEW B 63 174506
account by comparison with the Drude conductivity. T
longitudinal and Hall conductivities are found. It is show
that the fluctuation correction to the conductivity in the cle
limit is similar to the one in the dirty limit, except for a
additional cyclotron-resonance-like pole of the second or
which appears in the clean case. At the end of Sec. II B,
qualitatively discuss the effects of orbital quantization on
fluctuation conductivity, i.e., Shubnikov–de Haas oscil
tions which become essential at low temperaturesT;vc .

In Secs. III A and III B, we calculate the thermodynam
properties of a superconductor. We find that the magnet
tion is logarithmically divergent in the first approximatio
and exceeds Landau diamagnetism. It is found that in
clean case de Haas–van Alphen oscillations can become
servable at high enough temperature. Under certain circ
stances, the oscillating part of the fluctuating magnetiza
represents the dominant effect.

In Sec. IV, we calculate the free energy and magnet
tion in the two-loop approximation for a dirty superco
ductor. We find that the divergence becomes more seve
the higher orders in perturbation theory. We discuss the a
of applicability of the results obtained. We find that the flu
tuation region is determined byh&NGi , where NGi
;(«Ft)21, for low temperaturest!h but it becomes wider
h&ANGi t for relatively large temperaturest@h.

II. FLUCTUATING CONDUCTIVITY

A. Dirty superconductors

The fluctuation correction to the conductivity beyond t
Ginzburg region can be found in perturbation theory. Th
are terms of three different types describing the fluctuat
conductivity in the first~one-loop! approximation. The first

FIG. 1. Impurity averaging diagrams contributing to conduct
ity in the first ~one-loop! approximation.
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one is the Aslamazov-Larkin~AL ! term ~see Fig. 1, diagram
1! which is connected with the direct conductivity of th
fluctuating Cooper pairs. The AL contribution to conducti
ity is positive. Since some fluctuating pairs appear above
transition, the number of normal electrons decreases.
cording to the Drude formula this leads to some decreas
the conductivity of the normal electrons. This contribution
known as the density of states~DOS! term ~see Fig. 1, dia-
gram 5 and 8!. It is clear that this correction must be neg
tive. The third term is the Maki-Thomson~MT! contribution
~see Fig. 1, diagram 2! which is connected with the coheren
scattering of the normal electrons. The sign of the MT te
is not prescribed.

In the presence of impurities, all these contributions m
be averaged out over the impurities positions. This can
done in the framework of a diagram technique develop
long ago.11 There is a standard set of diagrams to be cons
ered in our problem~see Fig. 1!.

These diagrams are built of the following elements:
solid line represents the one-electron Green function wh
in zero field has the form~in the momentum representation!

G«~p!5
1

i«2jp1
i sgn «

2t

, ~1!

where «5(2n11)pT is the fermion Matsubara frequenc
and jp5«(p)2«F is the one-particle excitation spectrum
Here, we consider the quadratic spectrum.

In the presence of magnetic fieldA(r ), the Green func-
tions change and contain the effects of orbital quantizati
However, in the presence of strong disordervct!1 or at
relatively high temperaturesT@vc , the discrete Landau lev
els are smeared out and the effects of the magnetic field
be treated semiclassically. This means that the Green fu
tion in the coordinate representation can be written as

G«~r 1, r 2!5G «
(0)~r 12r 2!expS 2 ieE

r1

r2
A~s!dsD , ~2!

whereG «
(0)(r ) is the Green function in zero field and the pa

of integration in Eq.~2! is a straight line. Let us note her
that the system of units\5c5kB51 is used throughout the
paper. The magnetic fieldH is considered in the Landa
gaugeA5(0,2Hx).

Another element is the fluctuation propagator or inter
tion in the Cooper channel~wavy line!. It is a diagonal op-
erator in the Landau representation. The corresponding
trix element has the form12

Ln~V!5
1

N~0!
F ln

T

Tc0
1cS 1

2
1

uVu1VHS n1
1

2D
4pT

D
2cS 1

2D G21

, ~3!
6-2
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SUPERCONDUCTING FLUCTUATIONS AT LOW TEMPERATURE PHYSICAL REVIEW B63 174506
where n corresponds to thenth Landau level,N(0) is the
density of states per spin at the Fermi surface,V52pmT is
the bosonic Matsubara frequency, corresponding to the t
energy in the Cooper channel,VH54eDH, andD5 1

2 vF
2t is

the diffusion coefficient. Note that Eq.~3! is obtained from
the expression for the fluctuation propagator in zero field
the interchange ofDq2 by VH(n11/2), with q being the
total momentum in the Cooper channel.

The shaded vertices in the diagrams are Cooperons, w
describe the coherent scattering of two particles off the
purities. The expression for this quantity has the followi
form:12

Cn~«1 , «2!5
1

t

u~2«1«2!

u«12«2u1VHS n1
1

2D , ~4!

where«1 and«2 are fermion Matsubara frequencies, corr
sponding to the electron energies.

To calculate the total fluctuation correction to the dc co
ductivity we have to evaluate all the diagrams 1–10 as fu
tions of the external Matsubara frequencyv52pnT, per-
form an analytical continuation to the real frequency ax
take the limitv→0, and sum up all the contributions. Th
singular term, corresponding tov50, is canceled out in the
final result for the electromagnetic response tensor.

In the vicinity of Tc0 ~transition temperature in zero field!
only the AL and anomalous MT terms are important. T
typical arguments are as follows. The point of the superc
ducting transition is determined by the pole of the fluctuat
propagator~wavy line!. The AL diagram contains two suc
lines. Thus, close to the transition the corresponding con
bution is the most singular one. Another singularity is due
the diffusionlike pole (2 iv1Dq2)21 which appears in the
MT term5 ~recall that the MT process is connected with t
coherent scattering of electrons!. At small q andv→0 this
yields a singular contribution.

Another simplification which can be made atT;Tc0 is
the possibility to neglect the dynamic fluctuations in the M
and DOS terms. This means that instead of evaluating
over the internal boson frequencyV we can just take the firs
term V50, which gives the most singular contribution.
the AL term theV dependence is considered in the fluctu
tion propagators only and neglected in the current vertic

The situation changes if a magnetic field is applied.7 In
this case, instead of integrating overq, we have to trace the
corresponding operators over the Landau levels. The AL
gram contains only one singular fluctuation propagatorL0
corresponding to the lowest Landau level, since the cur
vertex is not a diagonal operator in the Landau represe
tion. Moreover, the small termsDq2, which exist in zero
field, have to be replaced byVH(n11/2);Tc0. Obviously,
the anomalous MT term does not possess any additional
gularity in this case. Thus, we conclude that different d
grams should give contributions of the same order if a la
magnetic field is applied.

Let us now perform a representative calculation on
example of the AL term~see Fig 1, diagram 1!. The corre-
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sponding expression for the longitudinal component of
electromagnetic response tensor has the following form:

Q1~v!524e2c2n (
n50

`

pn n11
2 T (

V
@Ln~V!Ln11~V2v!

1Ln~V2v!Ln11~V!#

3FT(
«

Cn~«,V2«!Cn11~«2v,V2«!G2

, ~5!

where the factor of 4 is due to the spin, the constanc
54pN(0)Dt2 appears as a result of integration overj in
the local current vertex@see Eq.~A9!#, n5eH/p is the num-
ber of states per unit area of a full Landau level, a
pn n115^nu@2 i¹12eA„r )#xun11&5A(n11)eH are ma-
trix elements of the kinetic momentum.v is the Matsubara
frequency corresponding to the frequency of the exter
electric field, andV and« are the internal bosonic and fe
mionic Matsubara frequencies, respectively.

As we have already mentioned, the main singular
comes from the fluctuation propagator corresponding to
lowest Landau level. Close to the transition it can be writt
as

L0~V!5
1

N~0!

1

h12uVu/VH
, ~6!

where h5@H2Hc2(T)#/Hc2(0). Let us note that VH
54eDHc2(0)5(2p/g)Tc0 and the bosonic frequencyV is
of the order of temperature. Thus, we conclude that at v
low temperaturest!h we can replace the sum overV in Eq.
~5! by an integral. At relatively high temperaturest@h we
can keep the first term in the sum only. Ift;h, we have to
evaluate the sum. This also means that we have to cons
the effects of quantum fluctuations as well.

Let us discuss some simplifications that can be made
our case (t!1). First of all, we can consider only the firs
term n50 in the sum over Landau levels in Eq.~5!. Only
this term gives a singular contribution coming fromL0.
Next, we see that the sum over the internal frequency in
~5! is determined byV;T!VH . This allows us to make
expansions with respect toV/VH;t everywhere exceptL0.
With the same accuracy, we can replace the sum over
fermion energy« in Eq. ~5! by an integral.

Evaluating the integral over«, we obtain from Eqs.~4!
and ~5!

T(
«

C0~«,V2«!C1~«2v,V2«!

5
1

4pt2 F 1

VH2v
lnS 3VH /21uV2vu

VH /21uV2vu1uvu D
1

1

VH1v
lnS 3VH /21uVu1uvu

VH /21uVu D G . ~7!

Now, we have to perform analytical continuation in the e
pression for the current response operator~5!. In doing this,
we can present the sum over the Matsubara frequency a
6-3
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V. M. GALITSKI AND A. I. LARKIN PHYSICAL REVIEW B 63 174506
integral over the real frequency with the function coth(V/2T)
which is chosen to generate poles at the points 2p imT.13

Making use of Eqs.~4!–~7! we obtain the following expres
sion for the conductivity~within the logarithmic accuracy!:

ds15 lim
iv→0

Q1~v→ iv!

2 iv

5
e2

p2 F a1E
0

Vmax
dV coth

V

2T

V

V21S VHh

2 D 2

1b1E
0

`dV

2T

1

sinh2
V

2T

V2

V21S VHh

2 D 2G , ~8!

wherea154/3 andb152 are just numbers. One can see th
the first integral in Eq.~8! is logarithmically divergent. This
divergence appears as a result of our expansions int. Thus, it
has to be cut off atVmax;Tc0. The integrals in Eq.~8! can
be easily calculated. The result is

ds5
e2

p2@aI a~h,t !1bI b~h,t !#, ~9!

with

I a~h,t !5 ln
r

h
2

1

2r
2c~r ! ~10!

and

I b~h,t !5rc8~r !2
1

2r
21, ~11!

wherer 5(1/2g) h/t andg51.781 is Euler’s constant.
The other diagrams can be calculated analogously.

corresponding contributions to the conductivity can be w
ten in the same form as Eqs.~8!–~11!. Below we give the
results in terms of the constantsa andb:

a15
4

3
, b152, ~12!

a2522, b252,

a35a452
2

3
, b35b450,

a55a852
3

2
, b55b852

3

2
,

a65a95
5

3
, b65b95

1

3
,

a75a105
1

2
, b75b105

1

2
,

17450
t
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a tot52
2

3
, b tot5

8

3
,

where indexes correspond to a diagram number in Fig. 1
a tot andb tot describe the total correction to the conductivit
which can be written as

ds5
2e2

3p2\F2 ln
r

h
2

3

2r
1c~r !14@r c8~r !21#G .

~13!

Let us consider some limiting cases. If the temperatur
relatively larget@h, we obtain the following formula for the
fluctuation conductivity:

ds5
2ge2

p2\

t

h
. ~14!

If H,Hc2(0), we canintroduceTc(H) and rewrite Eq.~14!
in the usual way:

ds5
3e2

2gp2\

Tc0

T2Tc~H !
. ~15!

If H.Hc2(0), in thelow-temperature limitt!h we have

ds52
2e2

3p2\
ln

1

h
. ~16!

One can see that even at zero temperature a logarithmic
gularity remains and the corresponding correction is ne
tive.

Let us note that the fluctuating conductivity depends
the magnetic field and temperature via their ratioh/t. The
behavior of the conductivity in the vicinity of the critica
point H5Hc2(0), T50, depends on the way one approach
this point. If the transition is driven by the magnetic field a
the temperature is zero, then the fluctuating correction
negative and logarithmically divergent. If the magnetic fie
is fixed andH<Hc2(0), then the correction is positive an
diverges as@T2Tc(H)#21. In the other cases, there is
crossover between these two regimes.

The magnetic field dependence of the fluctuating cond
tivity is presented on Fig. 2. One can see that if the magn

FIG. 2. Fluctuating conductivity~13! as a function of magnetic
field is plotted for four different temperatures.
6-4
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SUPERCONDUCTING FLUCTUATIONS AT LOW TEMPERATURE PHYSICAL REVIEW B63 174506
field is relatively large, then the total correction is negati
For any finite temperature, there is a region close toHc2(0)
where the correction is positive.

The temperature dependence of the fluctuating conduc
ity is shown in Fig. 3. It is interesting that the conductivity
a nonmonotonous function of temperature if the magn
field exceedsHc2(0).

B. Clean limit

In this section, we investigate the fluctuation correction
the conductivity in the limitTct@1. In this case, the usua
expressions for the particle-particle bubble, fluctuat
propagator, and current vertices are inapplicable. To ca
late the diagrams we have to find these quantities in
presence of the magnetic field while taking into account th
nonlocal structure. There are several effects associated
the magnetic field applied. First of all, the superconduct
transition itself is governed by the magnetic field at low te
peratures. Another effect is Shubnikov–de Haas oscillati
in the conductivity due to the quantization of the ener
levels. However, ifvct!1 or T@vc , the oscillating terms
are exponentially small and can be neglected. Note that

vc5
eHc2~0!

m
;Tc0S Tc0

«F
D!Tc0 . ~17!

In our formal derivation, we assume that eithervct!1 or
vc!T!Tc0. This allows us to consider low temperatur
without dealing with de Haas oscillations in the Green fun
tions. The effect of the orbital quantization on the fluctuati
conductivity will be briefly discussed at the end of this se
tion. Moreover, there is a purely classical effect due to
Lorentz force acting on the electrons forming fluctuati
pairs. Namely, the magnetic field results in a curving of
classical trajectories. This curving leads to the cyclotr
resonance and Hall effect in the fluctuation conductivi
First, we consider fluctuations neglecting the curving, wh
is eligible if vct!1. Using the result obtained, we will b
able to derive the formula valid in the superclean casevct
;1 as well.

We now proceed to calculate different blocks in the d
grams. Our calculation is based on the well-known Helfa

FIG. 3. Fluctuating conductivity~13! as a function of tempera
ture is plotted for five different magnetic fields.
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Werthamer theory developed long ago. In a seminal pape10

Helfand and Werthamer evaluated the matrix elementC0 for
the Cooperon in a magnetic field, which determines the
per critical fieldHc2(T). They proved the following math-
ematical statement which we will refer to as the Helfan
Werthamer~HW! theorem throughout the paper.

Let us consider an operatorÔ. Suppose that its kernel in
coordinate representation has the following form:

O~r , r 8!5Õ~rÀr 8!expS 22ieE
r

r8
A~s!dsD . ~18!

Then, the operator can be written as

Ô5E Õ~r ! e2 i r•p̂dDr , ~19!

where p̂5@ p̂22ieA( r̂ )# is the kinetic momentum, which
can be expressed in terms of the creation and annihila
operators in the Landau representation, andD is the dimen-
sionality of the system (D52 in our case!.

One can see that all the operators involved in our cal
lations satisfy the HW theorem. Namely, the particle-parti

bubbleP̂«(V), current vertexĝa(V,v), and the four Green
function blocksB̂a b(V,v) in coordinate representation ca
be written as a product of a function of the coordinate d
ference and the gauge factor. In the temperature range u
consideration, we can treat the magnetic field effects se
classically which means that the first factorÕ in Eq. ~18! can
be considered in zero field.

To calculate the matrix elements of interest we will do t
following. First, we calculate an operator in zero field in t
momentum representationÕ(q). We apply the Fourier trans
formation to this function and put the value obtainedÕ(r ) in
Eq. ~19!. Then, we evaluate the matrix elements for this o
erator and perform the integration overr . Finally, we per-
form the frequency summation left~over the fermion energy
«).

Let us start with the calculation of the nonlocal fluctuati
propagator which has the form

L̂~V!5
1

g212P̂~V!
, ~20!

whereg is the interaction constant and

P̃~q,V!5T(
«

P̃«~q,V!, ~21!

with the particle-particle bubbleP̃«(q,V) defined by Eq.
~A11!. Note that in the clean limit we can neglect the imp

rity dependence inP̂«(V) and in the fluctuation propagato
The matrix elements can be calculated by expressingp̂ in

terms of the creation and annihilation operatorsâ† andâ and
expanding the exponentials.14 One obtains
6-5
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V. M. GALITSKI AND A. I. LARKIN PHYSICAL REVIEW B 63 174506
exp~2 i r p̂!5e2r2/2 (
k, l 50

1`
~2 ir!k1 l

k! l !
~ â†!kâle2 if( l 2k),

~22!

where r5r /A2r H and r H5A2eH is the magnetic length
Due to the integration overf, only the diagonal matrix ele
ments survive and we have the following expression:

Pn~V!5~21!nr H
2 T(

«
E

0

`

dq2P̃«~q,V!e2q2r H
2
Ln~2q2r H

2 !,

~23!

whereLn is the Laguerre polynomial of thenth order.
At low temperature, we can replace the sum over« by an

integral and we have

Pn~V!5N~0!F ln~2L!2~21!n

3E
0

`

dx ln~l1Al21x!e2xLn~2x!G , ~24!

where we have introducedl5uVur H /vF being the lower
limit of integration over« andL52r HvD /vF, which is the
BCS high-energy cutoff. Obviously,l;T/Tc0!1 and L
@1.

Let us realize that to find the most singular contribution
the conductivity we need to knowP0(V) andP1(V) only.
Making expansions with respect tol in Eq. ~24!, one obtains

P0~V!5N~0!@ ln~2AgL!2Apl# ~25!

and

P1~V!5N~0!@11 ln~2AgL!1l2#. ~26!

Thus, the fluctuation propagator corresponding to the lo
est Landau level can be written in the vicinity of the tran
tion as follows:

L0~V!5
2

N~0!

1

h1Ag

p
uVu/Tc0

, ~27!

whereTc0 is the transition temperature in zero field,h5@H
2Hc2(T)#/Hc2(0), and

eHc2~0!5
2p2

g S Tc0

vF
D 2

is the upper critical field at zero temperature. Let us note
the corresponding relation in the three-dimensional case

eHc2
3D~0!5

p2e2

2g S Tc0

vF
D 2

,

with e52.718. As one can see, it differs by a constant fro
the two-dimensional one.

The current vertex can be evaluated in the same fashio
the fluctuation propagator. However, the corresponding
17450
-
-
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culation is more cumbersome~see the Appendix!. In the mo-
mentum representation the vertex has the form

g~q;V,v,«!5
2pN~0!

v

q

q2 (
i 51

4

h i~«,V,v! f ~e i ,q! .

~28!

The corresponding functions and constants are defined in
Appendix by formulas~A2!–~A8!. Equation ~28! is large
mostly due to theu functions. However, itsq-dependent part
has a simple form (q/q2) f (q), where f (0)50 and f (`) is
finite.

Making use of the Helfand-Werthamer theorem, we o
tain the following expression for the operatorg:

ĝ~V,v,«!52p iN~0!(
i 51

4
h i~«,V,v!

v E
0

`

dq f~e i ,q!

3E
0

`

dr rJ1~qr !E
0

2pdf

2p

r

r
exp~2 i r p̂!.

~29!

Evaluating matrix elements and performing integration o
f and r, one can see that the current vertex possesses
near-diagonal nonzero matrix elements and they have
form

^n uĝx~V,v,«!u n11&

5A 2

n11
pN~0!r H

3 ~21!n (
i 51

4
h i~«,V,v!

v

3E
0

`

dq2f ~e i ,q!e2r H
2 q2

Ln
(1)~2r H

2 q2!. ~30!

In order to calculate the most singular contribution to t
conductivity we have to knowg01 only. Taking the corre-
sponding integral by parts one obtains

g01~V,v,«!5A2pN~0!r H(
i 51

4
h i~e,V,v!

v

3E
0

`

dq
] f ~e i ,q!

]q
e2r H

2 q2
. ~31!

To evaluate the remaining integrals we have to use exp
expressions for the functionsf (e,q) andh i(«,V,v) ~see the
Appendix!. Using formula~A2!, one obtains after elementar
integration overq

g01~V,v,«!5A2pN~0!r H(
i 51

4
h i~e,V,v!

v

3@12Ap ud i u ed i
2
erfcud i u#, ~32!

where we have introducedd i5e i r H /vF . Now, we have to
perform the summation over the fermion frequency«. For
T!Tc0 we can replace this sum by an integral overd taken
in the appropriate limits well defined by theu functions in
6-6
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Eqs.~A3!–~A8!. The corresponding indefinite integral can
easily evaluated and we finally obtain

g01~V,v!5
1

2pE d« g01~V,v,«!

5
A2pN~0!vF

8 (
i 50

4
h i

v
sgnd i ed i

2
erfcud i uU

limits

,

~33!

where the limits of integration are determined by theu func-
tions in h i . Let us note that atd5` the expression written
above vanishes, while the other limits of integration are s
that d;T/Tc0!1.

There are four terms in Eq.~A3!. The last two contain the
factor v21sgn«, while the first two are proportional to th
following factor:

t

11vt sgn«
5

sgn«

v F12
1

11vt sgn«G .
Using Eq.~33!, one can see that the singularv21 terms are
canceled out exactly. Thus, the current vertex can be wri
~we keep only the linear terms with respect to the frequ
cies!

g01~V,v!52
N~0!r H

A2

1

11uvut

3F12
Ap

2

r H

vF
~ uVu1uV2vu1uvu!1o~ t !G .

~34!

We see that the current vertex is proportional to
1uvut)21 and its frequency dependence is determined
the two pairs ofu functions in Eq.~A1!. These terms exis
when the poles« and («2v) are located in the opposit
half-planes of the complex planej. Let us note that a simila
situation takes place when calculating the Drude conduc
ity of the normal metal. Getting Eqs.~25!, ~26!, and ~34!
together and using the following formula for the current
sponse operator,

Q~v!58ne2T(
V

g01
2 ~V,v!L0~V!L1 , ~35!

we can calculate the AL contribution to the conductivit
Note that in the framework of our approximation, we c
treat L1 as a constant, since it does not have any lineaV
dependence@see Eq.~26!#. Analytical continuation yields the
following expression for the conductivity~valid within the
logarithmic accuracy!:

ds5
ds

~12 ivt!2
5

e2

p2

1

~12 ivt!2@ I a~h,t !1I b~h,t !#,

~36!
17450
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where the functionsI a(h,t) and I b(h,t) are defined by Eqs
~10! and~11! with parameterr 5(Ap/4g) h/t, which differs
by a constant from the one in the dirty case.

Equation~36! is valid for v!Tc0. Recall that the Drude
conductivity has the following form:

s05
s0

12 ivt
5

ne2t

m

1

12 ivt
. ~37!

Thus, the total longitudinal resistivity reads

rxx5
m

ne2 S 1

t
2 iv D2

ds

s0
2

. ~38!

We see that the fluctuation correction to the resistivity do
not depend on the external frequency~unlessv;Tc0) and
can be considered as a correction to the collision integralt.
Physically, this means that the ac electric field acts on
normal electrons, rather than superconducting fluctuation

In the superclean casevct&1, we have to take into ac
count the curving of the classical trajectories. This curvi
results in the Hall term in conductivity and cyclotron
resonance-like effects. The Hall term can be written as

rxy5
m

ne2 vc1drxy ,

where the second term is due to superconducting fluc
tions. The reasonings described above suggest that this t
which describes the curving of fluctuating pairs, is of t
order ofvc /Tc0 and can be neglected. Hence, calculating
inverse matrixr̂21 we find the following formula for the
fluctuation conductivity:

ds65dsxx6 idsxy5
1

@12 i ~v6vc!t#2ds, ~39!

whereds is defined by Eq.~36!. Let us note thatds repre-
sents the longitudinal conductivity with no respect to t
curving. The corresponding Hall termdsxy can only appear
in the presence of a particle-hole asymmetry. It does
exist in the framework of our approximation. In the paper
Aronov et al.8 this additional Hall term was controlled by th
phenomenological parameterTc] ln Tc /]«F .

Let us now discuss the contributions coming from the M
and DOS diagrams. The electromagnetic response tenso
be written in the following form:

Qab~v!52e2T2(
V, «

Tr @B̂ab~«,v,V!L̂~V!#, ~40!

where B̂ab represents a four-Green-function block. Let
consider this quantity on the example of the MT term.
coordinate representation within the semiclassical appr
mation it has the form

Bab~«,v,V;r ,r 8!5B̃ab~«,v,V;r2r 8!

3expS 22ieE
r

r8
A~s!dsD , ~41!
6-7
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where

B̃ab~«,v,V;r !52
r ar b

r 2 E
0

` dp dk

~2p!2J1~pr !J1~kr !

3G«~p!G«2v~p!GV2«~k!GV1v2«~k!.

~42!

Putting this expression into the HW theorem~19!, evaluating
the diagonal matrix element forn50, and performing inte-
gration overr we obtain the following expression:

^0uB̂xx~«,v,V!u0&52E
0

`dp dk

2p
p2k2

3G«~p!G«2v~p!GV2«~k!GV1v2«

3~k!I 00~p,k!, ~43!

where

I 00~p,k!5r H
2 exp@2r H

2 ~p21k2!#I 1F1

2
r H

2 pkG ~44!

and I 1 is a modified Bessel function of the first order. Sin
p;k;pF , we see thatr H

2 pk;«F /vc@1; we can take the
asymtpotical form of the Bessel function and then appro
mate the resulting exponent exp@2rH

2 (p2k)2# by thed func-
tion. Thus, we have

I 00~p,k!'
1

p
d~p2k!. ~45!

Performing integration with respect tok and introducing the
density of states at the Fermi surfaceN(0) we obtain the
usual expression for the four-Green-function block:

^0uBxx~«,v,V!u0&52
1

2
vF

2N~0!

3E
2`

1`

djp G«~p!G«2v~p!GV2«

3~p!GV1v2«~p!. ~46!

One can see that the derivation of this expression does
depend on the purity of a superconductor. It is valid for t
dirty and clean limits and any magnetic fields applied, unl
vc;«F .

Let us note that Eq.~46! for the MT diagram and similar
expressions for the DOS diagrams are identical to the one
the vicinity of Tc0 and do not involve a magnetic field at a
It is known that DOS and MT terms are strongly compe
sated in the clean limit15 and this compensation takes place
the level of the Green functions~i.e., before integrals ove
q). This suggests that in the clean limit the only remaini
diagram is the AL term even in the case of a strong magn
field.

Let us now discuss quantum oscillations in the fluctuat
conductivity. At very low temperature these oscillations b
come important.16,17 In this case, each current vertex co
17450
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tains an oscillating part. This oscillating part can be found
comparison with the Drude conductivity and can be writt
as g5g01gosc, where gosc/g0;sosc/s0 with sosc being
the oscillating part of the normal conductivity~see, e.g.,
Ando et al.18!. However, there are other ‘‘sources’’ of quan
tum oscillations. The transition temperatureTc(B) oscillates
as well19,20 and affects the fluctuation conductivity. Let u
also realize that the oscillations of magnetization~de Haas–
van Alphen oscillations! can influence Shubnikov–de Haa
oscillations. Under certain conditions, this effect may
dominant. Moreover, magnetization fluctuates as well and
the vicinity of the transition the fluctuations can exceed La
dau diamagnetism~see Sec. 3 and Ref. 21!. We see that the
oscillating part of the fluctuating conductivity has a comp
cated structure and can differ significantly from the us
Shubnikov–de Haas oscillations.

III. THERMODYNAMICS: FLUCTUATING
MAGNETIZATION

A. Dirty case

Considering the thermodynamic properties of a film, w
can calculate the free energy directly. In the one-loop
proximation, the free energy can be written as14

F152T(
V

Tr ln@12g Ĉ~V!#, ~47!

whereĈ(V) is the Cooperon.
Using Eqs.~3!, ~4!, and ~47!, one can easily obtain the

magnetization

M152
1

V

]F1

]H
5

n

2pd

VH

Hc2~0!
I a~h,t !, ~48!

whered is the thickness of the film or the interlayer distanc
n5eH/p is the number of states of a Landau level, and
function I a(h,t) is defined in Eq.~10!. Thus, at low tempera-
ture t!h the susceptibility takes the form

x152
]M1

]H
5

e2

p2\c2

vF
2t

d
h21. ~49!

One can see that the fluctuation susceptibility~49! is large
compared to the magnetic susceptibility of the normal me
xL even far from the transition:

x1;
1

NGi h
xL , ~50!

whereNGi5(«Ft)21 is the Ginzburg parameter.

B. Clean case

The calculation of magnetization in the clean limit can
done in the same fashion as in the dirty limit. However, th
are some features specific for the clean case. As we h
already mentioned, de Haas oscillations become essenti
low temperature in pure samples. These quantum oscillat
appear in all quantities including Green functions, transit
temperatureTc(H), fluctuating conductivity etc. The oscil
6-8
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lating terms are proportional to the factors exp(2p/vct) and
exp(22p2T/vc). Hence, the oscillations are strongly su
pressed, unlessvct;1 and T/vc;1. Let us note that de
Haas–van Alphen oscillations in the magnetization can
veal themselves much earlier than the quantum oscillat
in the other quantities. This is because magnetization
derivative of the free energy with respect to the magne
field. Even though the oscillating terms in the Green fun
tions are small, they contain fast-oscillating functio
cos(2p«F /vc) which may lead to observable effects in th
oscillating magnetization. It is easy to calculate the fluctu
ing magnetization with respect to these effects.

We can use Eq.~47!,

F152T(
V

Tr ln@12g P̂~V!#, ~51!

where P̂5P̂01P̂osc is the particle-particle bubble whic
contains an oscillating part. The matrix element for the m
notonous part of the particle-particle bubble correspondin
the lowest Landau level was found in Sec. II B@see Eq.
~25!#. The oscillating part has been considered in a num
of papers and has the form19,22

Posc528p3/2N~0!
T

A«Fvc

cosS 2p
«F

vc
D

3cosS 6p
meH

vc
DexpS 2

D

vc
D , ~52!

whereD56p(pT11/2t) and me is the magnetic momen
of an electron. For the sake of simplicity, we keep the fi
oscillating term only.

In the vicinity of the transition we can present the ma
netization in the following way:

M15
Tn

Hc2~0! (V
1

L0~V!212Posc

]

]h
@L0~V!212Posc#,

~53!

where forL0(V) see Eq.~27!.
From Eqs.~27!, ~47!, and ~52!, we obtain the following

expression for the fluctuating magnetization:

M15
1

Apg

Tc0n

Hc2~0! F ln
1

t
2cS 1

A4pg

h

t D 2Apg
t

hG
3F1132p5/2

TA«F

vc
3/2

sinS 2p
«F

vc
D cosS 6p

meH

vc
D

3expS 2
D

vc
D G . ~54!

Let us note that ifT;vc , thenTA«F/vc
3/2;«F /Tc0@1 and

the numerical factor in the oscillating term in Eq.~54! is very
large. Thus, we conclude that de Haas–van Alphen osc
tions in magnetization may exist even in the absence of
Shubnikov–de Haas oscillations and oscillations of the tr
17450
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sition temperature. It is worth mentioning that the fluctuati
effects exceed Landau diamagnetism in the clean limit
well @formula ~50! is valid with Gi5Tc0 /«F]. Thus, under
certain circumstances (D;1) the oscillating part of the fluc-
tuating magnetization may be more important than the m
notonous part of magnetization and the oscillating part in
Landau term.

IV. TWO-LOOP APPROXIMATION: APPLICABILITY
OF THE RESULTS

In the previous sections we found the fluctuation corr
tion to the transport and thermodynamic properties of a
perconductor in a magnetic field in the first~one-loop! ap-
proximation. The purpose of the given section is to find t
order of the subleading corrections. This will determine t
area of applicability of the results obtained. We shall calc
late the magnetization in the two-loop approximation for
dirty superconductor. This correction can be easily found
view of the simplifications described above.

In the two-loop approximation, we have to deal with di
grams presented in Fig. 4. The corresponding contribu
can be written in the coordinate representation in the follo
ing way:

F25T3 (
«,V,V8

E d2r 1 d2r 2 d2r 3 d2r 4

3K«~r1 ,r2 ;r3 ,r4!LV~r1 ,r2!LV8~r3 ,r4!, ~55!

whereK« is the operator corresponding to the square blo
in the diagrams presented in Fig. 4. This operator is fami
from the usual BCS theory. It has been calculated by Ma23

and Caroliet al.24 and has the form

FIG. 4. Diagrams contributing to the free energy in the two-lo
approximation. Similar diagrams appear in the derivation of
Ginzburg-Landau equations from the microscopic theory.
6-9
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K«~r1 ,r2 ;r3 ,r4!5
pN~0!

2
d~r12r2!d~r12r3!d~r12r4!

3H )
k51

4
1

u«u1
1

2
D] (k)

2 J
3F u«u1

1

8
D~@] (1)2] (3)#

2

1@] (2)2] (4)#
2!G , ~56!

where we make use of the Maki’s notation:

] (k)52 i¹22e~21!kA~r !.

In the coordinate representation, the fluctuation propa
tor can be expanded on the basis of the eigenfunctions in
magnetic field and has the form

LV~r ,r 8!5E
2`

1`dpy

2p (
n50

`

Ln~V!cnpy
* ~r !cnpy

~r 8!, ~57!

whereLn(V) are matrix elements of the fluctuation prop
gator in the magnetic field@see Eq.~3!#, cnpy

(r ) is the eigen-
function for an electron in a magnetic field in the Land
gauge, andpy is they component of the momentum, whic
determines the orbit’s center. Again, in the vicinity of th
transition line we keep then50 term only in Eq.~57!. From
Eqs.~55!–~57!, we obtain the free energy per unit volume

F2

V
5

pN~0!

2d
n2T3S (

V
L0~V! D 2

(
«

1

~ u«u1VH /4!3 .

~58!

Thus, the magnetization takes the form

M25
n2

p2dN~0!

1

Hc2~0!

]I a
2~h,t !

]h
. ~59!

At low temperaturest!h we have

M252
2n2

p2dN~0!

1

Hc2~0!

1

h
ln

1

h
. ~60!

We see that the second order correction is negative.
From Eqs.~48! and ~59! we obtain the ratio

M2

M1
5

NGi

p F2g
t

h2 2
1

gt
c8S 1

2g

h

t D G , ~61!

whereNGi is the Ginzburg parameter. The one-loop appro
mation is valid unless this ratio becomes of the order
unity. At low temperaturest!h, Eq. ~61! yields the follow-
ing condition:

h@NGi . ~62!

If t@h, we have

h@ANGi t. ~63!
17450
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This indicates that at large enough temperatures the fluc
tion region becomes wider.

These results stand for the kinetic coefficients as well.
the clean case the formulas~62! and ~63! are valid with
NGi;Tc0 /«F . However, the explicit calculations are mo
complicated due to the nonlocal structure of theK operator.

Let us note that at an exponentially low temperature so
other effects may reveal themselves. In the dirty case,
mesoscopic fluctuations may be important.25,26 Really, the
upper critical field depends on disorder. The distribution
impurities is random. There are some regions where the c
centration of the impurities is such that the upper critic
field is smaller than the bulk value. These regions may fo
superconducting islands weakly coupled one with anoth
At extremely low temperature the proximity effect and t
Josephson coupling can make these mesoscopic fluctua
observable. The effects due to the mesoscopic fluctuat
will be considered elsewhere.

V. CONCLUSION

The central result of the paper is the existence of
logarithmic correction to the conductivity which persis
down to zero temperature. This correction is shown to
negative in the dirty case. The minus sign comes from
DOS diagrams as well as from the MT term. The AL cont
bution is positive but numerically smaller. Let us note th
similar results~negative fluctuation correction to the condu
tivity ! exist for the granular and layered superconductors9,27

In these cases, the AL and MT contributions are parame
cally small compared to the DOS term.

The fluctuating magnetization exceeds conventional L
dau diamagnetism for a very large range of fields. It is sho
to be logarithmically divergent as well atT→0.

Let us note that the singular behavior of the transport a
thermodynamic quantities at low temperature is due to
low dimensionality of the system. In the three-dimension
case the leading correction to the conductivity is not singu
ds3D}Ah.

The results obtained in the present paper can be che
experimentally by measuring the fluctuation conductivity
two-dimensional and quasi-two-dimensional systems. T
results obtained in the dirty limit can be checked by meas
ing the magnetoresistance in the dirty superconducting fi
at low temperatures. In this case, there could be some ex
mental difficulties connected with theHc3 effects that can
screen the bulk properties of a film. The edge effects can
excluded, for example, by putting a sufficient amount
magnetic impurities on the edge of the film.

Let us mention some recent experiments of Gantmak
et al.28,29 In these experiments the magnetic-field-tun
quantum phase transition has been studied in dirty In-O fi
at low temperatures. It was found that in the vicinity of th
transition, the magnetoresistance reaches a maximum.
possible that the theory developed in the present paper
give an explanation for the observed effects.

The clean case may be relevant to high-Tc
superconductors30 and, probably, to the recently discovere
two-dimensional organic superconductors.31 Let us note that
6-10
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our results assumes pairing and an isotropic Fermi surfac
which is not true for high-Tc superconductors. However,
can be shown that the logarithmic singularity remains for a
pairing type~with a coefficient different from our case!. It is
worth mentioning that in the overdoped high-Tc supercon-
ductors the Ginzburg parameterNGi is small and, thus, the
fluctuations are negligible. In the underdoped supercond
ors the fluctuations are extremely large and they lead t
large pseudogap which makes the conventional Fermi-liq
theory inapplicable. Hence, optimally doped superconduc
should be used to check the results obtained.
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APPENDIX: CURRENT VERTEX

In this appendix we derive the formula for the curre
vertex depending on two frequenciesV andv in the nonlo-
cal clean limit. The corresponding result is used when ca
lating the Aslamazov-Larkin contribution to the conductivi
~see Sec. II B!.

The current vertex is the triangle block in the AL diagra
~see Fig. 1 diagram 1!. It consists of three Green function
In the momentum representation, it can be written as

g«~q;V,v!5E d2p

~2p!2 v G«~p!G«2v~p!GV2«~q2p!

52N~0!E dj
1

j2 i «̃

1

j2 i ~«2v!

3K v

j2vq2 i ~V2«!
L , ~A1!

where«̃5«1( i /2t) sgn« and the angular brackets imply av
eraging over the Fermi line. To perform this averaging o
can use the following identity:

K v

vq2 i e L 5
q

q2 S 12
ueu

Ae21vF
2q2D [

q

q2
f ~e,q!. ~A2!

There are six possible configurations of the poles wh
give nonzero contributions to the integral overj in Eq. ~A1!.
Straightforward calculation yields the following expressi
for the current vertex:

g«~q;V,v!5
2pN~0!

v

q

q2 (
i 51

4

h i~«,V,v! f ~e i ,q!,

~A3!

where
17450
y

t-
a

id
rs

.

t

-

e

h

h1~«,V,v!5
vt

11vt sgn «
@u~«!u~v2«!u~«2V!

1u~2«!u~«2v!u~V2«!#, ~A4!

h2~«,V,v!5
vt

11vt sgn «
@u~«!u~v2«!u~V2«!

1u~2«!u~«2v!u~«2V!#, ~A5!

h3~«,V,v!52h4~«,V,v!5@u~«!u~«2v!u~«2V!

2u~2«!u~v2«!u~V2«!#, ~A6!

and

e15e452«2V1t21 sgn «, ~A7!

e25e352«2V2v1t21 sgn «. ~A8!

This presentation is convenient when we calculate the c
rent vertex in the magnetic field~Sec. II B!.

In the dirty limit, Eq. ~A3! reduces to the local equation
since in the limitt→0

f ~e,q!'Dq2t

and thus the current vertex reads

g~q!5c q[24pN~0!Dt2q. ~A9!

Here we keep only the terms which do not contradict theu
functions in the Cooperons, i.e., the third and fourth terms
Eq. ~A3!. We see that in the coordinate representation
vertex has the form

g~r !52c¹d~r !.

This d-functional behavior implies the locality of the curre
vertex in the dirty case.

Let us also note that if the external frequencyv is zero,
the current vertex is easily connected with the partic
particle bubble for anyt:

lim
v→0

g«~q;V,v!5
]P«~q;V!

]q
, ~A10!

where

P«~q;V!5N~0!K E dj G«~p!GV2«~q2p!L
52pN~0!

u„«~«2V!…

AS 2«2V1
1

t
sgn« D 2

1vF
2q2

.

~A11!
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