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Superconducting fluctuations at low temperature
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The effect of fluctuations on the transport and thermodynamic properties of two-dimensional superconduct-
ors in a perpendicular magnetic field is studied at low temperafsgd .,. The fluctuation conductivity is
calculated in the framework of perturbation theory with the help of the usual diagram technique. It is shown
that in the dirty case the Aslamazov-Larkin, Maki-Thompson, and density of states contributions are of the
same order. At extremely low temperattrérl .o<<[H —H,(0)]/H.,(0) the total fluctuation correction to the
normal conductivity is negative in the dirty limit and depends on the external magnetic field logarithmically
SoxIn[H—H,(0)]. In the nonlocal clean limit, the Aslamazov-Larkin contribution to conductivity is evaluated
with the aid of Helfand-Werthamer theory. The longitudinal and Hall conductivities are found. The fluctuating
magnetization is calculated in the one-loop and two-loop approximations.
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[. INTRODUCTION dimensional superconducting sample. Ami and Matan-
sidered a dirty three-dimensional superconductor put in an
Over the last decade there has been continuing interest mrbitrarily strong magnetic field having calculated the dia-
quantum phase transitions. Particular attention has been fgrams numerically. However, some technical simplifications
cused on two-dimensional systems which possess some uiat had been made in the pageamely, the dynamic fluc-
usual properties at low temperature.is remarkable that a tuations had been neglecledake the results inapplicable at
phase transition at zero temperature is possible in the framaery low temperature. Moreover, the three-dimensional case
work of the usual BCS theory of superconductivity. Theis very different from the two-dimensional one, as shown in
transition temperature can be suppressed either by magnetfee present paper. Let us mention some relatively recent re-
impurities or by a magnetic field. It is interesting to find the sults in this field. A few years ago, Aron@t al® developed
fluctuation conductivity as a function of the closeness to thed theory of transport phenomena in the fluctuation region in
transition in these cases. The impurity-driven quantum phaste dirty, clean, and supercleam{r~1) limits. Their con-
transition has been considered by Ramazashvili angideration was based on the Ginzburg-Landau equations and,
Colemar? Their consideration was based on the renormalthus, is applicable for relatively small fieldd <H,(0)
ization group analysis of the Aslamazov-Larkin correction toonly. Beloborodovet al® have calculated the fluctuating
the conductivity. Fluctuations in an external magnetic fieldconductivity of a three-dimensional granular superconductor
have been considered in different systems and various limith the region close téi,(0).
ing cases—® However, up until now, there has been no con-  Our paper is structured as follows. In Sec. Il A, we con-
sistent microscopic theory of superconducting fluctuationssider a two-dimensional dirty sample,,7<1 (where 7 is
nearH,(0). Thepurpose of the present paper is to developthe scattering time We calculate the total fluctuation correc-
such a theory for two-dimensional superconductors in thdion to the conductivity which is described by the standard
dirty and clean limits. set of diagramgsee Fig. 1. We derive an analytical expres-
We begin with a brief review of the studies of fluctuations sion for the fluctuation conductivity in the region close to the
in superconductors. The subject was initiated in the work ofransition line at low temperatures, i.e.,tatT/T,,<1 and
Aslamazov and Larkif. The conductivity of fluctuating h=[H—H¢(T)]/Hc(0)<1. It is shown that in the case
Cooper pairs was calculated in zero magnetic field. Klaki>h the total correction is positive and has the usual form
and Thomsonhave included the effects of electron scatter- 5o To[ T—T.(H)] %, while at extremely low temperature
ing off the fluctuations. It was found that there is anothert<h (at zero temperature, in particulahe total correction
badly divergent contribution known as the anomalous Maki-becomes negative and logarithmically divergént=Inh.
Thomson correction. Physically, this correction is connected In Sec. Il B, we address the issue of fluctuations in the
with the coherent scattering of the electrons by the impuritieglean superconductors. This problem is more complex, since
and analogous to the weak localization correction. The diverthe elements upon which the diagrams are Huiltrent ver-
gence can be removed by introducing a pair-breaking ratdices, cooperons, ejcare nonlocal in the clean limit. We
Note that experimental results Bt- T, can be described by argue that the corresponding operators can be found on the
the Aslamazov-Larkin term only. This suggests that the pairbasis of Helfand-Werthamer theotyWe apply this theory
breaking rate is relatively large in real superconductorsto our problem and calculate all the necessary values in the
Later, Thomson and Maki returned to the issue and evaluatellowing limiting cases: w.<T or w.7<1 [where w.
the fluctuation correction to the normal conductivity in finite =eH.,(0)/m~T.(Te/eg) is the cyclotron frequendy
fields. Thomsoh evaluated paraconductivity for small per- This allows us to treat the magnetic field effects semiclassi-
pendicular fieldsT~T., and large fields parallel to a two- cally. The curving of the classical trajectories is taken into
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1 one is the Aslamazov-LarkifAL) term (see Fig. 1, diagram

1) which is connected with the direct conductivity of the
fluctuating Cooper pairs. The AL contribution to conductiv-
ity is positive. Since some fluctuating pairs appear above the
transition, the number of normal electrons decreases. Ac-
cording to the Drude formula this leads to some decrease in
the conductivity of the normal electrons. This contribution is
known as the density of statéBOS) term (see Fig. 1, dia-
gram 5 and B It is clear that this correction must be nega-
tive. The third term is the Maki-ThomsdiMT) contribution
(see Fig. 1, diagram)2vhich is connected with the coherent
scattering of the normal electrons. The sign of the MT term
is not prescribed.

In the presence of impurities, all these contributions must
be averaged out over the impurities positions. This can be
done in the framework of a diagram technique developed
long ago*! There is a standard set of diagrams to be consid-
ered in our problensee Fig. L

These diagrams are built of the following elements: A
solid line represents the one-electron Green function which
in zero field has the fornin the momentum representatjon

FIG. 1. Impurity averaging diagrams contributing to conductiv- G.(p)=
ity in the first (one-loop approximation.

@
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account by comparison with the Drude conductivity. The

longitudinal and Hall conductivities are found. It is shown Wheree=(2n+1)=T is the fermion Matsubara frequency

that the fluctuation correction to the conductivity in the cleanand §,=¢(p) —&f is the one-particle excitation spectrum.

limit is similar to the one in the dirty limit, except for an Here, we consider the quadratic spectrum.

additional cyclotron-resonance-like pole of the second order In the presence of magnetic fieh(r), the Green func-

which appears in the clean case. At the end of Sec. Il B, wéions change and contain the effects of orbital quantization.

qualitatively discuss the effects of orbital quantization on theHowever, in the presence of strong disordeyr<1 or at

fluctuation conductivity, i.e., Shubnikov—de Haas oscilla-relatively high temperaturéB> ., the discrete Landau lev-

tions which become essential at low temperatiresw, . els are smeared out and the effects of the magnetic field can
In Secs. Il A and Ill B, we calculate the thermodynamic be treated semiclassically. This means that the Green func-

properties of a superconductor. We find that the magnetizaion in the coordinate representation can be written as

tion is logarithmically divergent in the first approximation

and exceeds Landau diamagnetism. It is found that in the ) "2

clean case de Haas—van Alphen oscillations can become ob-  9e(f1, 12) =G (r1—ry)exg — 'efr A(s)ds

servable at high enough temperature. Under certain circum- !

stances, the oscillating part of the fluctuating magnetizatio

represents the dominant effect.

. @

"Whereg (°)(r) is the Green function in zero field and the path

In s v lculate the f d i of integration in Eq.(2) is a straight line. Let us note here
n Sec. IV, we cajcuiate the Iree energy and magnetizag, . o system of units=c=kg=1 is used throughout the

tion in the two-loop approximation for a dirty supercon- e . ) .

ductor. We find that the divergence becomes more severe %ZﬂegAT:h(eO nial_?)r:)etm fielél is considered in the Landau

the higher orders in perturbation theory. We discuss the ared Ag h ,I - he fl : .

of applicability of the results obtained. We find that the fluc- .. r_10t er element Is the uctua}tmn pr_opaga_ltor or Interac-
) tion in the Cooper channélavy line). It is a diagonal op-

tgaztlon)_rlegflgplo\l; tedrﬁtegglt:?gs <br¥1ti ![\Ii?k,)eg:l)kr]r?éz vl\:gier erator in the Landau representation. The corresponding ma-
eET) P trix element has the forf

h=./Ng;t for relatively large temperatures-h.

1
— + 1+ —n 2
NOL " T, T\ 2 4T

The fluctuation correction to the conductivity beyond the 1
Ginzburg region can be found in perturbation theory. There
are terms of three different types describing the fluctuation —y 1 &)
conductivity in the first(one-loop approximation. The first '

|+ Qy

II. FLUCTUATING CONDUCTIVITY

A. Dirty superconductors Ln(Q)=
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where n corresponds to thath Landau levelN(0O) is the  sponding expression for the longitudinal component of the
density of states per spin at the Fermi surfdées277mTis  electromagnetic response tensor has the following form:
the bosonic Matsubara frequency, corresponding to the total .

energy in the Cooper channél,,=4eDH, andD= }vZris B 2 2 2

the diffusion coefficient. Note that EG3) is obtained from ~ Qi(@)=—4€°c VZ’o Th n+1T%: [Ln(2)Ln1(Q~w)

the expression for the fluctuation propagator in zero field by

the interchange oDg? by Qy(n+1/2), with g being the +Ly(Q—w)Ly1(Q)]
total momentum in the Cooper channel. 9

The shaded vertices in the diagrams are Cooperons, which X[ T Ch(e,Q—2)Chirle—w,Q—2)|, (5
describe the coherent scattering of two particles off the im- e

purities. The expression for this quantity has the following

form:12 where the factor of 4 is due to the spin, the constant

=47N(0)D7? appears as a result of integration ovein
the local current vertejsee Eq(A9)], v=eH/ 7 is the num-
0(—e1€2) ber of states per unit area of a full Landau level, and

: (4)

Cnler, £2) =7 1 Tane1= (N[ =1V +2eAM) n+1)=(n+1)eH are ma-
les—e2|+Qu n+ 5 trix elements of the kinetic momentun. is the Matsubara

frequency corresponding to the frequency of the external

wheree, ande, are fermion Matsubara frequencies, Corre_electnc field, and) ande are the internal bosonic and fer-

sponding to the electron energies. mionic Matsubara frequencies, respectively.

To calculate the total fluctuation correction to the dc con- AS we have already mentioned, the main singularity

ductivity we have to evaluate all the diagrams 1—10 as funccOMes from the fluctuation propagator corresponding to the

tions of the external Matsubara frequeney=2mvT, per- lowest Landau level. Close to the transition it can be written
form an analytical continuation to the real frequency axis 35

take the limitw—0, and sum up all the contributions. The 1 1
singular term, corresponding t0=0, is canceled out in the Lo(Q)= , (6)
final result for the electromagnetic response tensor. N(0) h+2[Q]/Qy

In the vicinity of T, (transition temperature in zero figld |\ here h=[H—H(T)]/He(0). Let us note that Q
onl_y the AL and anomalous MT terms are important. The=4eDHC2(O)=(277/y)TC0 and the bosonic frequendy is
typical arguments are as follows. The point of the SUPercong the order of temperature. Thus, we conclude that at very
ducting transition is determined by the pole of the fluctuation,,, temperatures<h we can replace the sum ov@rin Eq.
propagator(wavy line). The AL@lagram contains two such (5) by an integral. At relatively high temperaturesh we
lines. Thus, close to the transition the corresponding contriz., keep the first term in the sum only.t h, we have to
bution is the most singular one. Another singularity is due t0y,, 41 ate the sum. This also means that we have to consider

the diffusionlike pole Ciw+Dg?) ! which appears in the e effects of quantum fluctuations as well.
MT tern? (recall that the MT process is connected with the Let us discuss some simplifications that can be made in

coherent scattering of electrgn#\t smallq andw—0 this  ,r case {<1). First of all, we can consider only the first

yields a smgylar .c'ont'r|but|or?. , term n=0 in the sum over Landau levels in E¢). Only
Another simplification which can be made &t-Teo IS his term gives a singular contribution coming frof.

the possibility to neglect the dynarmc fluctuations in t_he MTNext, we see that the sum over the internal frequency in Eq.

and DOS terms. This means that instead of evaluating sur&) is determined byQ~T<Q,,. This allows us to make

over the internal boson frequen€lywe can just take the first expansions with respect (O/Q:~t everywhere except,.

term =0, which gives the most singular contribution. In With the same accuracy, we can replace the sum over the
the AL term the() dependence is considered in the fluctua-to - ion energys in Eq. (5) by an integral.

tion propagators only and neglected in the current vertices. Evaluating the integral ove, we obtain from Eqs(4)
The situation changes if a magnetic field is applidd. and (5)

this case, instead of integrating ovgrwe have to trace the

corresponding operators over the Landau levels. The AL dia-

gram contains only one singular fluctuation propagatgr T Cole,Q—¢)Ci(e—w,Q—¢)

corresponding to the lowest Landau level, since the current ©

vertex is not a diagonal operator i2n the Landau representa- 1 1 ( 304/2+|Q— o) )

tion. Moreover, the small term®qg“, which exist in zero = 7 —1In —

field, have to be replaced B (n+ 1/2)~T,. Obviously, Amm Q= o T Q2+ [Q - o] o]

the anomalous MT term does not possess any additional sin- 1 30412+ |0+ ]| w]

gularity in this case. Thus, we conclude that different dia- 0T n( 0,,21]9] (7)
grams should give contributions of the same order if a large H H

magnetic field is applied. Now, we have to perform analytical continuation in the ex-

Let us now perform a representative calculation on thepression for the current response operd®r In doing this,
example of the AL term(see Fig 1, diagram)1The corre- we can present the sum over the Matsubara frequency as an
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integral over the real frequency with the function cé{T)
which is chosen to generate poles at the pointsr2T.™
Making use of Eqs(4)—(7) we obtain the following expres-
sion for the conductivitywithin the logarithmic accuragy

- Qio—io)
Sop= lim ———
)

io—0

deQ 1 02
+Bloﬁ_hznﬂz a,h2|
Sin ﬁ + 2

8

wherea,=4/3 andB,=2 are just numbers. One can see that

the first integral in Eq(8) is logarithmically divergent. This
divergence appears as a result of our expansionsTinus, it
has to be cut off af) .~ T¢o. The integrals in Eq(8) can
be easily calculated. The result is

2

502%[a|a(h,t)+ﬂlﬂ(h,t)], 9
with
o1
lo(h,)=Ine—= 5= () (10)
and
1
Lp(h,)=ry'(r)—5-—1, (11)

wherer =(1/2y) h/t and y=1.781 is Euler’'s constant.

The other diagrams can be calculated analogously. The
corresponding contributions to the conductivity can be writ-

ten in the same form as Eq&)—(11). Below we give the
results in terms of the constanisand 3:

4

1=z, B1=2, (12

PHYSICAL REVIEW B 63 174506

ty =02

t1=0

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
Magnetic field h(0) = (H — H.2(0)) /H2(0)

FIG. 2. Fluctuating conductivityl3) as a function of magnetic
field is plotted for four different temperatures.

2 8
Qtot= — 3 Btotzgv

where indexes correspond to a diagram number in Fig. 1 and
aor and By describe the total correction to the conductivity,
which can be written as

e 2e? I r 3 o L
o=3 2 ~Ing 5 He()+Alr g (r)—1] ).
(13
Let us consider some limiting cases. If the temperature is

relatively larget>h, we obtain the following formula for the
fluctuation conductivity:

2ye? t

If H<H_,(0), we canintroduceT.(H) and rewrite Eq(14)
in the usual way:

3e? Teo

00 S T-To(H)"

(15

If H>H,(0), in thelow-temperature limit<h we have

2 1

5U:—m|nﬁ.

(16)

One can see that even at zero temperature a logarithmic sin-
gularity remains and the corresponding correction is nega-
tive.

Let us note that the fluctuating conductivity depends on
the magnetic field and temperature via their rdtid. The
behavior of the conductivity in the vicinity of the critical
pointH=H_,(0), T=0, depends on the way one approaches
this point. If the transition is driven by the magnetic field and
the temperature is zero, then the fluctuating correction is
negative and logarithmically divergent. If the magnetic field
is fixed andH=<H_,(0), then the correction is positive and
diverges afT—T.(H)] *. In the other cases, there is a
crossover between these two regimes.

The magnetic field dependence of the fluctuating conduc-
tivity is presented on Fig. 2. One can see that if the magnetic

174506-4
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s I° ) — 001 Werthamer theory developed long ago. In a seminal pHber,
© 125 ) =0\ Helfand and Werthamer evaluated the matrix elen@ntor
= . the Cooperon in a magnetic field, which determines the up-

. hy(0) = 0.01 per critical fieldH.,(T). They proved the following math-
.*E 0.75 ha(0) — 0,02 ematical statement which we will refer to as the Helfand-
‘2 0.5 Werthamer(HW) theorem throughout the paper.

_% 0.25 hs(0) = 0.05 Let us consider an operat@. Suppose that its kernel in

g . coordinate representation has the following form:
© -0.25 ~ '

O(r, r’)=O(r—r’)exp( —2iej A(s)ds). (18
r

0.1 0.2 0.3 0.4 0.5 0.6

Temperature ¢ =T/Ty )
Then, the operator can be written as

FIG. 3. Fluctuating conductivityl3) as a function of tempera-
ture is plotted for five different magnetic fields. . ~ .
o=f O(r) e " 7dPr, (19

field is relatively large, then the total correction is negative.

For any finite temperature, Fhere is a region closeltg(0) where 7=[p—2ieA(f)] is the kinetic momentum, which
where the correction is positive. , _can be expressed in terms of the creation and annihilation
_ The temperature dependence of the fluctuating conductisnerators in the Landau representation, &nis the dimen-

ity is shown in Fig. 3. It is interesting that the conductivity is sionality of the system@ =2 in our cas

a nonmonotonous function of temperature if the magnetic One can see that all the operators involved in our calcu-

field exceeds c;(0). lations satisfy the HW theorem. Namely, the particle-particle
bubbleﬁa(Q), current vertexy,(Q,w), and the four Green
) ) ) ) ) ) function blocksB,, 5(Q,w) in coordinate representation can

In this section, we investigate the fluctuation correction tope written as a product of a function of the coordinate dif-
the conductivity in the limitT.7>1. In this case, the usual ference and the gauge factor. In the temperature range under
expressions for the particle-particle bubble, fluctuationconsideration, we can treat the magnetic field effects semi-

propagator, and current vertices are inapplicable. To Calcuc'lassically which means that the first faciin Eq. (18) can
late the diagrams we have to find these quantities in th%e considered in zero field

presence of the magnetic field while taking into account their To calculate the matrix elements of interest we will do the
nonlocal str.uctlure. There are several effects associated .W'%Ilowing. First, we calculate an operator in zero field in the
the magnetic field applied. First of all, the superconducting ~ .
transition itself is governed by the magnetic field at low tem-rnomentum representatiéd(q). We apply the Four|~er trans-
peratures. Another effect is Shubnikov—de Haas oscillation§rmation to this function and put the value obtair@(t) in

in the conductivity due to the quantization of the energyEd. (19). Then, we evaluate the matrix elements for this op-
levels. However, ifu,7<1 or T>w,, the oscillating terms ~erator and perform the integration over Finally, we per-
are exponentially small and can be neglected. Note that ~ form the frequency summation lefover the fermion energy

B. Clean limit

€).
eH.,(0) Teo Let us start with the calculation of the nonlocal fluctuation
we=—— " Teo| = | <Tco- (17)  propagator which has the form
In our formal derivation, we assume that eithegr<1 or ) 1
w.<T<Tg. This allows us to consider low temperatures LOQ)=——F— (20)

without dealing with de Haas oscillations in the Green func- g '-1(Q)
tions. The effect of the orbital quantization on the fluctuation
conductivity will be briefly discussed at the end of this sec-
tion. Moreover, there is a purely classical effect due to the

Lorentz force acting on the electrons forming fluctuating ~ _ =

pairs. Namely, the magnetic field results in a curving of the H(q’Q)_TE;‘ (a9, 21
classical trajectories. This curving leads to the cyclotron

resonance and Hall effect in the fluctuation conductivity.,ith the particle-particle bubblél (9,Q) defined by Eq.
First, we consider fluctuations neglecting the curving, which(All)_ Note that in the clean limit Evve can neglect the impu-

is eligible if <1. Using th It obtained, ill be A . .
'S SIGIIE ! wer sing " Tesullt 0ained, We Wit be rity dependence il .({2) and in the fluctuation propagator.

able to derive the formula valid in the superclean case i A
~1 as well. The matrix elements can be calculated by expressimng

We now proceed to calculate different blocks in the dia-terms of the creation and annihilation opera@fsanda and
grams. Our calculation is based on the well-known Helfand-expanding the exponentidi$One obtains

whereg is the interaction constant and
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. o T (—ip)t culation is more cumbersontsee the Appendjx In the mo-
exp—irm=e*"2> T(a*)ka'e*'“'*k), mentum representation the vertex has the form
k,1=0 L
(22 a _2@N(0) q i 0 o
where p=r/2r, andry=2eH is the magnetic length. NG Q,0.8)= _2 = (e,0,0)f(e;.0)
Due to the integration ovep, only the diagonal matrix ele- (28)

ments survive and we have the following expression: , ) , )
The corresponding functions and constants are defined in the

© - Appendix by formulas(A2)—(A8). Equation(28) is large
M(Q)=(-1)"rZT> f dq?Il(0,0)e” % THL(20%r7),  mostly due to thed functions. However, its-dependent part
¢ 70 23) has a simple formd/g?)f(q), wheref(0)=0 andf(x) is
finite.
wherel, is the Laguerre polynomial of theth order. Making use of the Helfand-Werthamer theorem, we ob-
At low temperature, we can replace the sum avdry an  tain the following expression for the operatgr
integral and we have

4

. . ’Q, )

N 0,6)=27IN(0) S, uj dq (e ,q)
i=1 (O] 0

I1,(Q)=N(0)|In(2A) - (-=1)"

°° 2ndep r A
XJO drrJl(qr)fO EFexp(—ww).
(29)

Evaluating matrix elements and performing integration over
¢ andr, one can see that the current vertex possesses only
near-diagonal nonzero matrix elements and they have the
form

><fmdxln()wr\/)\7+x)e*XLn(2x), (24
0

where we have introduced=|Q|r/ve being the lower
limit of integration overe and A =2rwp /v, which is the
BCS high-energy cutoff. Obviouslyh~T/T,<1 and A
>1.

Let us realize that to find the most singular contribution to
the conductivity we need to knoW () andIl{(€2) only.

o x
Making expansions with respect xoin Eq. (24), one obtains (n[7(Q,0,)[n+1)

2 4 )
Io(Q)=N(0)[In(2/yA) = 7] (25) _1/n+ N0 (—1) 2 (e @)
and
M (Q)=NO[1+IN2VyA) A7 (29 X fodqu(ei,q>e—r3q2L<n”<2raq2>. (30

Thus, the fluctuation propagator corresponding to the low- | order to calculate the most singular contribution to the
est Landau level can be written in the vicinity of the transi-conductivity we have to knowy,, only. Taking the corre-

tion as follows: sponding integral by parts one obtains
2 1 4 (6,Q,0)
Lo(Q)= (27) Yol ,0,8)= ZAN(O)1 3, T
=

N(0) y '
h+ \/—|Q|/Te
'

whereTq is the transition temperature in zero field=[H
Heo(T)1/Hc2(0), and

= df(e,0) _ 2
X dg———e "HY", 31
fo q aq (31

To evaluate the remaining integrals we have to use explicit

272 [T\ 2 expressions for the functiori§e,q) and 7;(¢,Q,w) (see the
eHq(0)= —(—) AppendiX. Using formula(A2), one obtains after elementary
Y \UF integration overq
is the upper critical field at zero temperature. Let us note that 4
the corresponding relation in the three-dimensional case is 7i(€,4,0)
ponding You( Q,0,8) = V2aN(0)ry >,
0 T e2< )
2(0=Z |5 ) x[1- |5 eferfc|s]l, (32

with e=2.718. As one can see, it differs by a constant fromwhere we have introduceél = ¢;r/ve. Now, we have to
the two-dimensional one. perform the summation over the fermion frequencyFor

The current vertex can be evaluated in the same fashion &<T_.y we can replace this sum by an integral odetaken
the fluctuation propagator. However, the corresponding calin the appropriate limits well defined by th#functions in

174506-6
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Egs.(A3)—(A8). The corresponding indefinite integral can be where the functions,(h,t) andl z(h,t) are defined by Egs.
easily evaluated and we finally obtain (10) and(11) with parameter = (/7#/4y) h/t, which differs
by a constant from the one in the dirty case.

1 Equation(36) is valid for «<T. Recall that the Drude
Yo, 0) = om de 701(, ,¢) conductivity has the following form:
. _
V27N & 7 oy _néfr 1
ZTE ;'sgn&ie"izerfc|5i| , =T e m 1sior (37)
limits
(33) Thus, the total longitudinal resistivity reads

where the limits of integration are determined by th&inc- _m E—iw _do 38)
tions in #; . Let us note that af=o the expression written P\ 7 Pl
above vanishes, while the other limits of integration are such i ) o
that 5~ T/To<1. We see that the fluctuation correction to the resistivity does

There are four terms in EGA3). The last two contain the Nt depend on the external frequen@nlessw~Teo) and
factor w ™~ sgne, while the first two are proportional to the €an be considered as a correction to the collision integral 1/
following factor: Physically, this means that the ac electric field acts on the

normal electrons, rather than superconducting fluctuations.
In the superclean case,7<1, we have to take into ac-
) count the curving of the classical trajectories. This curving
results in the Hall term in conductivity and cyclotron-
resonance-like effects. The Hall term can be written as

1
1+ w7sgne

T sgne
1+wrsgne o

Using Eq.(33), one can see that the singular ! terms are
canceled out exactly. Thus, the current vertex can be written

d . m
((:\;\ées) keep only the linear terms with respect to the frequen- pXYIWwC-i- Spxy s
where the second term is due to superconducting fluctua-
N(O)ry 1 tions. The reasonings described above suggest that this term,
Yo Q,w)=— Tm which describes the curving of fluctuating pairs, is of the
2 order ofw. /T, and can be neglected. Hence, calculating the
N 'y inverse matrixp ! we find the following formula for the
X|1=-= ;(|Q|ﬂL |Q—o|+]w])+o(1)|. fluctuation conductivity:
(34)

00 = S0y Fidoy,= B (39

. , —i(a)iwc)r]zéo-'
We see that the current vertex is proportional to (1 . .
+|w|7)"! and its frequency dependence is determined bywhere do is defined by Eq(36). Let us note thado repre-

the two pairs ofé functions in Eq.(Al). These terms exist sents the longitudinal conductivity with no respect to the
when the poless and —w) are located in the opposite curving. The corresponding Hall terd,, can only appear
half-planes of the complex plarée Let us note that a similar in the presence of a particle-hole asymmetry. It does not
situation takes place when calculating the Drude conductivexist in the framework of our approximation. In the paper of
ity of the normal metal. Getting Eq$25), (26), and (34)  Aronov et al® this additional Hall term was controlled by the
together and using the following formula for the current re-phenomenological paramet€gd In T./def .

sponse operator, Let us now discuss the contributions coming from the MT
and DOS diagrams. The electromagnetic response tensor can
be written in the following form:

Q(w>=8ve2T§ Yor( Q) Lo(Q) Ly, (35)

apg(@ =2e7T2 Tr Ba g,w,0) L(Q , 40
we can calculate the AL contribution to the conductivity. Quapl) QE,:s [Bal L] 40

Note that in the framework of our approximation, we can N )

treat £, as a constant, since it does not have any lirear WhereB., represents a four-Green-function block. Let us
dependencgsee Eq(26)]. Analytical continuation yields the consider this quantity on the example of the MT term. In
following expression for the conductivitalid within the COO!‘dII’]-ate representation within the semiclassical approxi-
logarithmic accurady mation it has the form

Baﬁ(svwlﬂ;r;r,)zﬁaﬁ(s,w,ﬂ;r_r,)

So= =
7 (1-iwr)? 7 (1

So e? 1
2 _in)ZL a(hlt)+|ﬁ(hit)]!

a9 ><exp( —2iejr A(s)ds), (41
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where tains an oscillating part. This oscillating part can be found by
comparison with the Drude conductivity and can be written
~ rofg (»dpdk as Y= Yo+ Yose» Where yos/ vo~ 0oscl 09 With oo being
Bag(e, 0,;r)=— 2 Jo W‘Jl(pr)‘]l(kr) the oscillating part of the normal conductivitisee, e.g.,
Ando et al8). However, there are other “sources” of quan-
XGe(P)Go—o(P)Ga-e(K) G+ w—s(K). tum oscillations. The transition temperaturg(B) oscillates

as well®?° and affects the fluctuation conductivity. Let us
(42) also realize that the oscillations of magnetizatide Haas—
Putting this expression into the HW theoréh®), evaluating  van Alphen oscillationscan influence Shubnikov—de Haas
the diagonal matrix element for=0, and performing inte- oscillations. Under certain conditions, this effect may be
gration overr we obtain the following expression: dominant. Moreover, magnetization fluctuates as well and in
the vicinity of the transition the fluctuations can exceed Lan-

A B =dp dk - dau diamagnetisnisee Sec. 3 and Ref. RIWe see that the

(0[Byx(&,,2)[0) =~ o 2w k oscillating part of the fluctuating conductivity has a compli-
cated structure and can differ significantly from the usual

XGe(P)Ge—0w(P)Fa-e(K)Gatw_s Shubnikov—de Haas oscillations.

X (K)loop.K), (43 . THERMODYNAMICS: FLUCTUATING
where MAGNETIZATION

1 A. Dirty case

loo(P.K) =15 exr{—rﬁ(p“kz)]ll[zrﬁpk (44) Considering the thermodynamic properties of a film, we

can calculate the free energy directly. In the one-loop ap-
andl, is a modified Bessel function of the first order. Sinceproximation, the free energy can be writtertas

p~k~pg, we see thatZpk~er/w>1; we can take the
asymtpotical form of the Bessel function and then approxi- E=—TS Trinf1—a O 4
mate the resulting exponent prﬁ(p—k)z] by the 6 func- ! % rinf1-g CleL)], 47

tion. Thus, we have A )
whereC((}) is the Cooperon.

1 Using Egs.(3), (4), and (47), one can easily obtain the
loo(P,K)~ o (p—k). (45 magnetization
Performing integration with respect foand introducing the M= 1oF, v Qy | (ht) 48)
density of states at the Fermi surfab€0) we obtain the 1 V gH 27d Hg(0) “ 7

usual expression for the four-Green-function block: whered is the thickness of the film or the interlayer distance,

1 v=eH/ is the number of states of a Landau level, and the
(0|Byx(&,0,0)|0)= — EU,%N(O) functionl ,(h,t) is defined in Eq(10). Thus, at low tempera-
turet<<h the susceptibility takes the form

+
Xf dfpgs(p)g87w(p)gﬂfs _ aMl_ e2 U|2:T 1

- XZT TR T e d 49
X (P)Ga+o-s(P)- (49 One can see that the fluctuation susceptibi#) is large

One can see that the derivation of this expression does né@mpared to the magnetic susceptibility of the normal metal
depend on the purity of a superconductor. It is valid for thex. even far from the transition:

dirty and clean limits and any magnetic fields applied, unless 1

W~ EE. ~—_—

Let us note that Eq46) for the MT diagram and similar X Ngih AL %0
expressions for the DOS diagrams are identical to the ones
the vicinity of T,y and do not involve a magnetic field at all.
It is known that DOS and MT terms are strongly compen-
sated in the clean linit and this compensation takes place at
the level of the Green function@.e., before integrals over The calculation of magnetization in the clean limit can be
g). This suggests that in the clean limit the only remainingdone in the same fashion as in the dirty limit. However, there
diagram is the AL term even in the case of a strong magnetiare some features specific for the clean case. As we have
field. already mentioned, de Haas oscillations become essential at

Let us now discuss quantum oscillations in the fluctuationow temperature in pure samples. These quantum oscillations
conductivity. At very low temperature these oscillations be-appear in all quantities including Green functions, transition
come important®!’ In this case, each current vertex con- temperatureT (H), fluctuating conductivity etc. The oscil-

R/r\}hereNGi=(sFr)‘1 is the Ginzburg parameter.

B. Clean case

174506-8
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lating terms are proportional to the factors expf/ w.7) and
exp(—27°Tlwy). Hence, the oscillations are strongly sup-
pressed, unlese&.7~1 and T/w,~1. Let us note that de
Haas—van Alphen oscillations in the magnetization can re-
veal themselves much earlier than the quantum oscillations
in the other quantities. This is because magnetization is a
derivative of the free energy with respect to the magnetic
field. Even though the oscillating terms in the Green func-
tions are small, they contain fast-oscillating functions
cos(2reg/w;) which may lead to observable effects in the
oscillating magnetization. It is easy to calculate the fluctuat-
ing magnetization with respect to these effects.

We can use Eq47),

F1=—T§ Trin[1—gII(Q)], (51)

where IT1=1I,+11I . is the particle-particle bubble which
contains an oscillating part. The matrix element for the mo-
notonous part of the particle-particle bubble corresponding to
the lowest Landau level was found in Sec. ll[Bee Eg.
(25)]. The oscillating part has been considered in a number F|G. 4. Diagrams contributing to the free energy in the two-loop
of papers and has the fotff? approximation. Similar diagrams appear in the derivation of the
Ginzburg-Landau equations from the microscopic theory.

e€F
Mose= —87¥N(0) N COS( 27rw—) sition temperature. It is worth mentioning that the fluctuation
effects exceed Landau diamagnetism in the clean limit as
meH A well [formula (50) is valid with Gi=T.y/eg]. Thus, under
XCOS( 67— )exp{ - w_) (52 certain circumstances\(~ 1) the oscillating part of the fluc-
¢ ¢ tuating magnetization may be more important than the mo-
where A=67(7T+1/27) and u. is the magnetic moment notonous part of magnetization and the oscillating part in the
of an electron. For the sake of simplicity, we keep the first andau term.
oscillating term only.
In the vicinity of the transition we can present the mag-
netization in the following way:

IV. TWO-LOOP APPROXIMATION: APPLICABILITY
OF THE RESULTS

Ty 1 d 1 In the previous sections we found the fluctuation correc-

M1= H¢o(0) % Lo(Q) 1-T1 %[50(9) ~Hosd, tion to the transport and therr_nodynamic .properties of a su-
0s¢ (53) perconductor in a magnetic field in the firgine-loop ap-

proximation. The purpose of the given section is to find the

where forLy({}) see Eq(27). order of the subleading corrections. This will determine the
From Egs.(27), (47), and (52), we obtain the following area of applicability of the results obtained. We shall calcu-
expression for the fluctuating magnetization: late the magnetization in the two-loop approximation for a

dirty superconductor. This correction can be easily found in

1 Tev 1 1 h t view of the simplifications described above.
M= Jry Hea(0) |”f_ ¥ Jamy T VT In the two-loop approximation, we have to deal with dia-
Y Y grams presented in Fig. 4. The corresponding contribution
TVer e H can be written in the coordinate representation in the follow-
x| 1432752 3/2F sin(2w—F) cos( . ) ing way:
wg We We

F,=T3 d?r,d?r,d?rd?r
(54 2 g,ga' 1dr2dr3dery

XKe(ry,rair3,ra)La(ri,ra)Loi(ra,ry), (59

Let us note that iff~ ., thenTVer/w?~er/To>1 and

the numerical factor in the oscillating term in E§4) is very  whereK, is the operator corresponding to the square blocks
large. Thus, we conclude that de Haas—van Alphen oscillain the diagrams presented in Fig. 4. This operator is familiar
tions in magnetization may exist even in the absence of thérom the usual BCS theory. It has been calculated by Kfaki
Shubnikov—de Haas oscillations and oscillations of the tranand Caroliet al?* and has the form

174506-9
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7N(0)
Ks(rl.rz:rs,r4)=T O(ry—rp)o(ri—r3)o(ry—ry)

1
x| |e|+ gD([a(l)_ d(3)]?

: (56)

+[ 2y~ d(a)]?)
where we make use of the Maki’s notation:

0(k)= _iV_ZE(_l)kA(r).

PHYSICAL REVIEW B 63 174506

This indicates that at large enough temperatures the fluctua-
tion region becomes wider.

These results stand for the kinetic coefficients as well. In
the clean case the formulg§2) and (63) are valid with
Ngi~Teo/er. However, the explicit calculations are more
complicated due to the nonlocal structure of K@perator.

Let us note that at an exponentially low temperature some
other effects may reveal themselves. In the dirty case, the
mesoscopic fluctuations may be importaht® Really, the
upper critical field depends on disorder. The distribution of
impurities is random. There are some regions where the con-
centration of the impurities is such that the upper critical
field is smaller than the bulk value. These regions may form
superconducting islands weakly coupled one with another.
At extremely low temperature the proximity effect and the
Josephson coupling can make these mesoscopic fluctuations
observable. The effects due to the mesoscopic fluctuations

In the coordinate representation, the fluctuation propagagii e considered elsewhere.
tor can be expanded on the basis of the eigenfunctions in the

magnetic field and has the form

+o( *
Lot = [ 52 3 L) (g (1), (87

V. CONCLUSION

The central result of the paper is the existence of the
logarithmic correction to the conductivity which persists

where £,,(Q) are matrix elements of the fluctuation propa- down to zero temperature. This correction is shown to be

gator in the magnetic fielgsee Eq(3)], z//npy(r) is the eigen-

function for an electron in a magnetic field in the Landau
gauge, ang, is they component of the momentum, which
determines the orbit's center. Again, in the vicinity of the
transition line we keep the=0 term only in Eq(57). From
Egs.(55—(57), we obtain the free energy per unit volume:

Fo 7N(0) ,_, 2 1
V= TR ) 2 e
(58)
Thus, the magnetization takes the form
Voo 2 1 dl%(h,t) o
2= 722dN(0) Hep(0)  oh 9
At low temperatures<h we have
212 1 1
M,=— (60)

72dN(0) Hy(0) h "R

We see that the second order correction is negative.
From Egs.(48) and(59) we obtain the ratio

M, Ng;

My 7

Vp—%i/f 21| (61

t1<1h

negative in the dirty case. The minus sign comes from the
DOS diagrams as well as from the MT term. The AL contri-

bution is positive but numerically smaller. Let us note that
similar resultgnegative fluctuation correction to the conduc-

tivity) exist for the granular and layered superconductéfs.

In these cases, the AL and MT contributions are parametri-
cally small compared to the DOS term.

The fluctuating magnetization exceeds conventional Lan-
dau diamagnetism for a very large range of fields. It is shown
to be logarithmically divergent as well at—0.

Let us note that the singular behavior of the transport and
thermodynamic quantities at low temperature is due to the
low dimensionality of the system. In the three-dimensional
case the leading correction to the conductivity is not singular
60 3p* Vh.

The results obtained in the present paper can be checked
experimentally by measuring the fluctuation conductivity in
two-dimensional and quasi-two-dimensional systems. The
results obtained in the dirty limit can be checked by measur-
ing the magnetoresistance in the dirty superconducting films
at low temperatures. In this case, there could be some experi-
mental difficulties connected with thid.; effects that can
screen the bulk properties of a film. The edge effects can be
excluded, for example, by putting a sufficient amount of
magnetic impurities on the edge of the film.

Let us mention some recent experiments of Gantmakher

whereNg; is the Ginzburg parameter. The one-loop approxi-et 5/282° |n these experiments the magnetic-field-tuned

mation is valid unless this ratio becomes of the order ofyyantum phase transition has been studied in dirty In-O films
unity. At low temperatures<h, Eq. (61) yields the follow- gt jow temperatures. It was found that in the vicinity of the

ing condition: transition, the magnetoresistance reaches a maximum. It is
h Noo 62) possible that the theory developed in the present paper can
Gi- give an explanation for the observed effects.
If t>h, we have The clean case may be relevant to high-
superconductof and, probably, to the recently discovered
h> {/Ng;t. (63  two-dimensional organic superconductdtd.et us note that

174506-10
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our results assume pairing and an isotropic Fermi surface

which is not true for highF. superconductors. However, it 71(e,Q,w)= m[ﬁ(S)a((v—S)ﬁ(s—Q)
can be shown that the logarithmic singularity remains for any
pairing type(with a coefficient different from our casdt is +60(—¢)f(e—w)0(Q—¢e)], (A4)

worth mentioning that in the overdoped high-supercon-

ductors the Ginzburg parametl; is small and, thus, the oT

fluctuations are negligible. In the underdoped superconduct- ~ 72(€., @)= m[a(s)a(‘”_s)e(ﬂ_s)
ors the fluctuations are extremely large and they lead to a

large pseudogap which makes the conventional Fermi-liquid +6(—¢&)b(e—w)O(es—Q)], (A5)
theory inapplicable. Hence, optimally doped superconductors
should be used to check the results obtained. 73(e,Q,0)=—14(e,Q,0)=[6(e) 6(e —w) O(e =)
—0(— - Q- A
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APPENDIX: CURRENT VERTEX e,=€e3=2e— O —w+7 lsgne. (A8)

In this appendix we derive the formula for the current This presentation is convenient when we calculate the cur-
vertex depending on two frequenci@sand w in the nonlo-  rent vertex in the magnetic fiel®ec. Il B).
cal clean limit. The corresponding result is used when calcu- In the dirty limit, Eq.(A3) reduces to the local equation,
lating the Aslamazov-Larkin contribution to the conductivity since in the limit7—0
(see Sec. II B 5

The current vertex is the triangle block in the AL diagram f(e,q)~Dq°r
(see Fig. 1 diagram)11t consis_ts o_f three Gree_n functions. gnd thus the current vertex reads
In the momentum representation, it can be written as

2 Y q)=cq=—47N(0)D7q. (A9)
dp
%:(4Q,0)= f @m2V Ge(P)Ge-w(P)Ga--(a—p) Here we keep only the terms which do not contradict éhe
functions in the Cooperons, i.e., the third and fourth terms in
1 1 Eg. (A3). We see that in the coordinate representation the
= —N(O)f dé——= - vertex has the form
é—ie é—i(e—w)
Y(r)=—-cVé(r).
Vv
X < —> , (Al)  This s-functional behavior implies the locality of the current
E-vg-i(@—e¢) vertex in the dirty case.

wheres =& + (i/27) sgne and the angular brackets imply av- L€t us also note that if the external frequenayis zero,
eraging over the Fermi line. To perform this averaging ondhe current vertex is easily connected with the particle-

can use the following identity: particle bubble for anyr:
. dll,(q; Q)
< V_ >:i 1_L Eﬂf(é Q. (A2) lim '}’s(CKQ,w):Ty (A10)
Vq_|6 q2 €2+szq2 q2 w—0
where

There are six possible configurations of the poles which
give nonzero contributions to the integral ovein Eq. (Al).
Straightforward calculation yields the following expression Hs(q;Q)=N(0)<f d§gg(p)gg_s(q—p)>
for the current vertex:
0(c(e—Q))
27N(0) q < —27N(0)
V(4,0 0)= ———— 2 7i(2,Q,0)f(€,q), 1
@ gi=t 2e— 0+ —sgne
(A3) T

where (A11)

2
+v,2:q2
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