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As was first shown by Bogomolnyi, the critical Ginzburg-Land&L) parameterx=1/y2 at which a
superconductor changes its behavior from type | to type Il, is the special highly degenerate point where
Abrikosov vortices do not interact and therefore all vortex states have the same energy. Developing a secular
perturbation theory, we studied how this degeneracy is lifted whanslightly different from 142 or when
the GL theory is extended to the higher termsTir T.. We constructed a simple secular functional that
depends only on few experimentally measurable phenomenological parameters and therefore is quite efficient
to study the vortex state of superconductor in this transitional region @n this base, we calculated such
vortex state properties as critical fields, energy of the normal-superconductor interface, energy of the vortex
lattice, vortex interaction energy, etc., and compared them with previous results that were based on bulky
solutions of GL equations.
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[. INTRODUCTION and then, in Sec. IV, present the solutions the of BJR equa-
tion for the different vortex lattices. In Sec. V we develop the

Although the Ginzburg-Landa(GL) theory covers all the secular perturbation approach. The following perturbations
varieties of superconductors, both of the type | with GL pa-can lift the degeneracy.
rameterx<1/y2 and of the type Il with«>1/\/2, most of (i) Deviation ofx from 1/\/2 that is accounted by a small
the theoretical studies of the vortex state deal with the casearameter.
of k>1/\/2 since atk>1/\/2 the GL equations are simplified
substantially and also the grand majority of type Il supercon- y=K2— Em V2Kk—1. (1)
ducting materials including highi. superconductors corre- 2
spond to this limit.

Studies of superconductors in the transitional region of
small k~1/y/2 done mostly in the 1970s were based on the
solution of the full system of GL equations and require bulky
calculations. Meanwhile, Bogomolnyi proposed in 1976 an
elegant way to operate with similar problem of the stringcorrections to the GL functional.
theory’ and showed that at the special poiat1/\/2 the (iv) Thermal fluctuation effects.
order of the equations can be reduced and all the vortex (v) Finite size and demagnetization effects.
states with arbitrary located vortices have the same energy We consider only the first three contributions and show
when the applied field is equal to the critical fig#y . that they can be incorporated in a very simple secular func-

Historically the Bogomolnyi approach was done for thetional that acts on the Bogomolnyi degenerate solutions and
high-energy physics and the superconducting communityooks like a six-order polynomial for the amplitude of the
was not aware of it even when Jacobs and Reft#formu-  order parameter. This functional depends only on few phe-
lated the Bogomolnyi equations in terms of superconductivhomenological parameters that can be found from experi-
ity and demonstrated that they can be written in a form ofments and that completely determine the behavior of super-
nonlinear electrostatic equation of the Boltzman plasma thatonductors withk~1/y/2 in a magnetic field.
we call Bogomolnyi, Jacobs, and Reb{BJR) equation. Certain properties of superconductors with 1/1/2 were
Only very recently the Bogomolnyi method was used tocalculated either from the GL theory extended to low tem-
study vortices in mesoscopic diskand to calculate the peratures or from the microscopic Gorkov equations. These
structure of multiquanta vorticésn superconductors with calculations, overviewed in Sec. Il, were however dealing
k=112. either with cumbersome analytical expansions or with nu-

In the present paper we derive a regular way to treat thenerical computations that both are difficult to catch on. It is
vortex state of superconductors withclose to 1{2 based therefore of interest to recalculate these properties in a sys-
on the BJR approach. Our basic idea is to consider the highltematic perturbation way and compare them with the older
degenerate Bogomolnyi statest 1/y2 andH=H, as zero  results.
approximation and then to account for a deviation from this In Sec. VI we calculate the following parameters of a
point via the secular perturbation method that lifts the degensuperconductor withc~1/y/2: (a) critical fields Hg;, Hep
eracy and selects the most stable vortex configuration. landH., (b) energy of the normal-superconductifg-S) in-

Sec. Il we give a brief overview of the Bogomolnyi method terface,(c) energy of the regular vortex lattice as a function

(i) Deviation of the applied field fronki...
(iii) Next in

t=T/T.—1, )
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of the applied field(d) Energy of theN-quanta vortex(e)  different types of electron scattering. He considered an ex-
vortex interaction that can have an unconventional attractivpansion of the free energy neHlr,, up to the order of Id

character. —H,,)® and specified the case when at-1/y2 the N-V
Based on these calculations we discuss the possible scgansition has a discontinuous character.
narios of the normal-superconductinyl$) transition in a In the present paper we reproduce the above results in a

magnetic field for a superconductor wikh-1/1/2 (Sec. VI)) more simple way, based on the Bogomolnyi treatment of
that occurs either directlflike in a type-I superconductpor  superconductors witl = 1/y/2.
via the formation of the intermediate vorté€¥) state(like in
a type-Il superconductpr The actual scenario depends on
the relative strength and sign of coefficients in the perturba- ] .
tion functional that can be extracted from experiment. We The superconducting metals Ta, Nb, In, and Pb with
calculate the location of the triple poibton theH-T plane  close to 142 were intensively studied in the 1960s and
where the direcN-S transition splits intd\-V andV-Stran- ~ 1970s. The variation ok was achieved either by dissolving
sitions and a superconductor changes its behavior from typef foreign atoms of N, TI, and Bi or by preparation of
| to type Il. The important feature is that both theV and ~ samples with different defect concentration. We refer to
V-S transitions close to poirtt can be either continuous or Magnetic;? calorimetric?® and neutron  diffractioff*> ex-
discontinuous unlike the traditional type-Il superconductorPeriments in pure Nbf(~0-85—g-_96); to magnetic measure-
with x>1/\2 where these transitions are continuous. Wements in TaN 6”0-35—1-52:73)2, in Nb (x~0.78-1.03,
calculated the location of tricritical points, and T, where ~ and in InBi (x~0.76—1.46);" and to direct observation of
theN-V andV-S transitions change their character from con-Vortices in PbTl ~0.43—1.04)(Ref. 28 and in Pbin (
tinuous to discontinuous. ~0.76—1.46)(Refs. 29 and 30 by decoration. References to
other related experiments can be found in Refs. 6 and 7.
The fact that thé/-S transition can be of the first order at
Il. PREVIOUS STUDY k~1/\/2 was discovered already in the early magnetic and
A Theor thermodynamic experiment$?>?’ The detailed magnetic
i y study of a superconductor that changes its behavior from
Already in his pioneering workAbrikosov noted that the type | to type Il was done for tantalum samples with some
solution of the GL equations at~1/y2 is a separate and amount of dissolved nitrogéh A discontinuity of the vortex
quite complicated problem. Since then, various related thedattice parameter at the V-S transition was observed in
retical investigations that are partially reviewed in Refs. 6—8neutron-scattering experimerits?®
were done. The first series of investigations dealt with an The convincing confirmation of discontinuity of the-S
expansion of the BCS free energy closeHg, over a small  transition in superconductors witk~1/y2 was done by a
parameteiH —H,. The magnetic and thermodynamic prop- direct observation of the vortex domains inside the Meissner
erties of superconductor close tb., were calculated for phase?®3°Such coexistence of different phases is known to
dirty®*° and intrinsic* superconductors. The most complete e a signature of the first-order transition between them. This
calculations of this type are given in Ref. 12. The possibilityintermediate-mixed domain structure was interpreted in Ref.
to have a discontinuoul-V transition in a superconductor 28 in terms of a long-range vortex attraction.
with k~1/,/2 was first indicated in Ref. 9. The discontinuity of theV-S transition provided by an
On the basis of the BCS theory Tewordt and Neumanrattractive interaction between vortices is therefore a well-
calculated the low-temperature corrections to GLestablished fact. Meanwhile, the ground state of the vortex
functional*~*° and found the uppét and lowet® critical  lattice and the configuration of domains of the mixed-
fields with an accuracy? at arbitraryx. intermediate phase are still unclear. Although the decoration
Based on this extended GL functional, Jacdlmnsid-  experiments”2~*Callow to observe the very peculiar mag-
ered a superconductor with~1/y2 and calculated th8-S  netic textures including vortex segregation and clustering
interface energy, the energy of single- and double-quantizethto lamellar and droplike domains, no systematic study of
vortex. He obtained that at certain conditions the vortices irthis question that take into account the demagnetization and
a type-Il superconductor attract each other and predicted thinite-size effects was done. We believe that our calculations
discontinuity of theV-S andN-V transitions. The analogous of the vortex energy in the bulk superconductor with
result was also obtained by Hubéft. ~1/{/2 can be extended to simulation of magnetic textures in
GroRmann and Wiss€l calculated the free energy of a the realistic finite-size samples.
superconductor withk~1/\/2 close toH., using the ex-
tended(although not complejefunctional of Tewordt and
Neumann. They found a discontinuity WS transition in a
limit of the dense vortex lattice. All the above conclusions In this section we describe the Bogomolnyi procedure
were reproduced by Brarfdtwho developed a variational that allows to simplify the GL functional and to reduce the
numerical method to solve the Gorkov’s equation for vortexorder of the GL equations at=1/y/2. Jacobs and Rebbi
lattices for all possible values &f, T, and . formulated the Bogomolnyi equations in a simple form of the
Recently Ovchinniko%* carefully derived the coefficients nonlinear Poisson equation that we shall call the BJR equa-
of the extended GL functional from a microscopic theory fortion. We discuss the properties of the vortex solutions of the

B. Experiment

lll. GL FUNCTIONAL AT  «?=1/2 AND BJR EQUATION
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BJR equation and their interpretation in terms of electrons irit is convenient to use the complex variables
Boltzman plasma given in Ref. 4.

We start from the conventional GL functional é,z=xiiy, (11
g B2 BH, 1

. 2, 2 4 2, — .

F=a W[5+ S[WI+ KDY+ o= =, (3) 2,0= 5 (V,FiVy),
where

-1

26 a,azz(ax+|ay)
a=a1t, D:V_iEA, B=rot A

in which the GL functional is written as
Refer first to the characteristic parameters of a supercon-

_ N 120 ol (a2
ductor. In the uniform state the superconducting order pa- f=2|(d—ia)y|*+2[(9—ia)y| (12
rameter takes the equilibrium value b2
o\ 12 +K2(|l//|2—1)2+(?—bh0) (13)
‘I’o=< ] 4

To catch the special properties of the GL functionalxat
The ratio of the penetration depth and coherence length  =1/y/2, one can integrate the first term in E@2) by parts.

( c%h? g 12 K\ /2 Using
=| - =1 §=(——) (5) _ o _
327Ke? a @ j fagdS=—f gﬂde'i-E % fgd? (14
gives the GL parameter
and
) 1 chg'? P
:E:(3ZW)1/2 ek " (6) b=—2i(9da—da) (15

. . . » . one gets the substitution
The thermodynamic critical field and the upper critical field

are written as 2l(a-ia)yl*—2|(o-ia)yl?+|yl®.  (16)
o= 47|12 o= ch J2xH 7 We neglect the contribution of the surface currents that are
T \Tg ] 2T Tl Ve e @) important for finite-size effects considered in Ref. 3. Finally,
) _._one comes to the alternative expressionffor
Note that the commonly used expression for the low critical
field — = 1 2452
f=4|(g—ia)y|*+ 5 (b+|yl*~1)
Hoym 20 ooy 06 8
I N ® + (| 92=1)%+ (1-ho)b, (17)

- : - - : wherey=k?—1/2. Wheny=0 andh,=1 (i.e.,H=H,) the

> . . c
fo;/ri“sd (];(r)]:j:; 1;)\(/5 r:snscilolr? ?da(:t al;lf;“ifibb? \E 3vLij|: %isibThe functional (17) reduces to the sum of two square terms. The
tainedFi)n SechI E/Ve introducfalnow the dimensionless Vari_absolute minimum is achieved when these terms are equal to
ables that are slightly different from the ones commonly used®® € when the following equations are satisfied:

in the GL theory.

(9—ia)y=0 (18)
e v R and
Tw, ’ _ _
0 5\2 1— = —2i(da—ga)=b. (19)
b=\/§KE h :\/EKE am KA Substitution ofa from Eq. (18),
He' ° He' SH. L
a=—idlny (20
= iKZJr K2 (99  to Eq.(19 gives the BJR equation
H2/8
1
The GL functional(3) in this variables takes the form EVZ In|y|2=|y|2—1+27>, N;&(r—r;). (21)

b2 bh ) 10 First introduced in Ref. 4, thé-function terms correspond to
> ~bho|. (10

the N;-quanta vortices located at=r; where ¢ gets the

f=w?(|¢]?—1)2+|(V—ia)y|>+
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phase wind ZN; and Irj¢{ has a It singularity. As follows [ [
from Eq. (19), the distribution of magnetic field inside a gNza_T"'gN—gN (25
sample is uniquely related with the amplitude of the order
parameter with the boundary conditiongy(0)=0, gy()=1 and as-
ymptotes
b(r)=1—[¢(r)|?. (22
—~ N
The BJR equation can be alternatively written as On=Bnr, r—0, (26)
ef\s‘ir
V2p=e2e—1+2m, N;8(r—r,), (23) gNzl—ANT, r—o0. (27)
r

where o= Inly|. This form has a simple interpretatibrit o sojveq Eq.(25) numerically forN=1 and gotB;~0.9
describes the screening of electrons in a classical BoItzmagndA ~16
l"\‘ . .

plasma that consists of the positive ionic background with
potential 1/4r.
The BJR equatiofi21) defines the amplitude of the super-

To find the vortex solution afl>1, it is more convenient

to use the new functiom(r)=grV(r) that satisfies the

conducting order parametérs(r)| and the magnetic field equation

b(r)at y=0 and athy=1 as a function of position of the )2 ,

vorticesrq, ... ,r,. All these vortex solutions correspond to ! _UN U_NJr EUZN+1_ lv (29)

the absolute minimum of the functionél?) and, therefore, N“oy  r NON N-N

y=0 andhy=1 is a special highly degenerate point where

all the vortex states have the same energy. and has a linear behavior BﬂNr at r—0. The analytical
This infinite degeneracy over,, ... r, is lifted if one  expression forgy(r) at N>1 was obtained in Ref. 4. In

goes either beyong=0 andh,=1 or beyond the GL ap- dimensionless unite9) it is written as

proximation. Wheny=0 andhy>1 the absolute minimum

of Eq. (17) is the normal state witb=hg and|y|=0. When . :(L) ne,(1/4)(r2*rﬁ) fr (29

vy=0 andhy<1 the absolute minimum of Eq17) is the Ny ' N-

uniform superconducting state with=0 and|4|=1. To

find the vortex states whep+ 0, one should account for the The size of the vortex core

term y(||?—1)? as the secular perturbation that lifts the

degeneracy. This will be done in Sec. V together with an rN~@ (30)

account of the low-temperature corrections to the GL func-

tional. is estimated from that, the almost uniform magnetic field
ho=1, distributed inside the vortex area? results to the

IV. VORTEX STATE AT «?=1/2 flux 27N.

A. General ) ) )
C. Separated vortices and diluted lattice

In this section we discuss the particular class of solutions
of BJR equation21) whenN— quanta vortices are packed
into the regular lattice with basis vectaag anda,. We will
need these solutions in Sec. VI as zero approximation of the
perturbation theory to find the most stable vortex configura- _ Ce— 2
tion beyond the Bogomolnyi point. The unit cell ar& b(r) Z bn(r=ri) Z {10 31
=a,a,sina (a=a,"\a,) carries the flux 2N and therefore

is related with the average induction as wheregy(i) =gn(|r—ri|) is the solution of Eq(25). Then,
the amplitude of the order parameter is written as

The magnetic flux of slightly overlapping vortices can be
written as the superposition of fluxes of separate vortices,

S=2#N/b. (24)

2 .

The value ofb and S varies fromb=0, S=o (almost lrrs, - ,rN)|2:1—b(r):1+2i {on(H =1}
nonoverlapping vorticgsto b=1, S=2=#N (dense vortex (32
lattice). We consider both limits analytically. We use a nu-
merical procedure to treat the case of an arbitrary lattice. D. Vortex bunch

Consider now the group df-vortices located close to the
origin such thatr;|<1. This vortex bunch can be viewed as

The axially-symmetric distribution of the order parameterthe N-quanta vortexgy(r) with the split core. By direct
an(r)=|(r)| inside theN-quanta vortex is calculated from substitution, one proves that the corresponding solution of
the radial version of BJR equatid@1l), Eq. (23) within the accuracyD(maxr;|?) is given by

B. One vortex

174504-4
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1
e(rry, ... ry= N EI en(r—ri)=~e@N(r)
+i2 (riV)2en(r) (33)
PN
where

= Infg(rrg, o)l

the origin being taken in the gravity center such that;
=0.

en(r)=Inlgn(H)], o(r,ry, ..

With the same accuracy the order parameter is written as

1
[9Arra = 0n(N) + 5 N 2 (V)2 Ingy(r).
(34

E. Dense lattice

PHYSICAL REVIEW B 63 174504

1 _
§V2In|¢’|2:|¢0|2|¢//|2—(1—b)_ (39
Taking ¢’ = In|y//| we present Eq(39) in the form

V2¢' =|io|%€?* —(1-b). (40)

This nonlinear Poisson-like equation can have a periodic so-
lution only if the electroneutrality condition is satisfied,

1—b={(|yo|%*"). (41)

Taking into -account Eq(41) and performing the rescaling
r—r-(2aN/b)*? we map Eq(40) onto

2 1

(42

| ro(r)| 262’ _1)
(lpor)2e?¢’y )"

which is defined for the parallelogram of fixed arSa 1
with periodic boundary conditions. The parameter of the

The order parameter of the dense 1-quanta vortex latticequation

is presented by the Abrikosov solution closeHg,

bo(r)=A(b) 6(z\b 7" 127, r)e PV, (35)

A=2xN

} - 1) (43
b

wherer= 7' +i7"=a,e'*/a, is the geometrical parameter of varies from 0 aH, to © atH.;.

the lattice cell(for square latticer=i, for triangular lattice:

r=¢e'"3) and ¢ is the Jacobi theta function

0(27)=2§_)0 (—1)"exfimr(n+1/2)2]sif #(2n+1)z].
(36)

The functionyy(r) satisfies the linear equation

bV2In|io|=—1+27>, 8(r—r;) (37)

that close tdH ., coincides with the BJR equation in the limit

The problem was solved for the square and triangular vor-
tex lattices withN=1,2 using the Matlab PDE toolbox by
the finite element method with the adaptive mesh refinement
and with the rapidly converging Gauss-Newton iterations
that were used to account for the nonlinear right-hand side of
EqQ. (42). For details of the numerical method, see Ref. 31.
The obtained solutions were verified by substituting them
back to Eq.(42).

G. Normal-superconducting interface

The profile of the NS interface is usually considered in the
two limits k— or k—0. It appears, however, that the NS
profile can be founexactlyat k= 1/y2 by integration of Eq.

<|¢i2>*>0, b—1. To find the normalization coefficient (23) that in the 1D case looks like

A(b)~(1-b)*2 one should treat the nonlinear part of the

BJR equation as a perturbation.
The N-quanta lattice solution with a unit cell arearR
can be written in an analogous way as

bo(r)=Any(D) N(ZVb 127N, r)e" 2. (38

F. Arbitrary lattice (numerical solution)

We performed the numerical integration of the BJR equa

tion for square and triangular vortex lattices wkh=1,2 in

the whole interval of 82b<1 and presented it in a more
suitable form. First we pick the zeros of the order parameter

via the special multipliegyy(r) that was taken as E35) for

N=1 or as Eq(398) for an arbitraryN and present the order
parameter in the formy(r=)|yo(r)|-|4'(r)|. The new

equation for functiony’ (r)| has no singulas-function term
and is written as

@'=e?"—1. (44)
The first integral of Eq(44)
(¢')?=e*—2¢-1 (45)

alternatively can be written as

(2= 19l* = ¢]?+ @+ In|y]?). (46)

The integration constants in Eq45) and(46) was chosen to

satisfy the NS interface boundary conditions
||=0, d|y|/dx=0 when x— —oo, 47

|4|=1, d|y|/dx=0 when x—oo,

Further integration of Eq(46) gives the implicit form of
|#(x)| at the NS interface

174504-5
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TABLE I. The terms of the extended GL functiong) their dimensionless counterparts, and the coeffi-
cients in the perturbation functionlThe last two columns give the microscopic BCS values of coefficients

for clean and dirty superconductors.

F f Coefficient Clean limit Dirty limit

u (o —to|¢]® v=_2a,k°ul3g? v=—19%2~-0.23

3

R|W|2D¥|?2 —tp'|y]*(1—|¥>) p'=a;R/2gK  p'=—0~-045 p'=—7%21;(3)~—0.39
R(V|¥|?2  —tp"|y*(1—|¥]?)  p"=ayR"IgK "=—9[2~—0.23 p"=—m?142{(3)~—0.20
P|D?W¥|2 —tu|y?(1—|y?)?  w=a,P2k?K?  pu=-99/5~-0.82 u=—28/(3)/7*~—-0.35
LB?|Ww|? ) N=4mallg A=-99/5~-0.82  \=-36T/57s,—0
Qrot’ B —tr Y| (1—|Y|?) 1=47a,QI2k’K 7=—38/5~—0.27 =—12T/57s,—0

39 =31{(5)/49?(3)~0.454.

dy
\/4_2 2\
y*=y“(1+ Iny?)

This result was first obtained by Dors&yy integration of
the complete set of GL equations.

Ll

X= (48

V. PERTURBATION THEORY

The microscopic BCS values of these coefficients are given
in the Appendix.

The combinatiorg¥%K that enters in Eq(17) as defined
by Eq.(6) parameteik becomes now temperature dependent.
We keep a notatior=(1+ y)/+/2 for the temperature inde-
pendent part of Eq(6) and takeot/\2 with

0=01/g0— 2K /Ky (51)

To find the most stable configuration of vortices beyondas a contribution to Eq6) that is linear int. Therefore the

the infinitely degenerate point=0 andhy=1 of Bogomol-

third term in Eq.(17) contains both the perturbation nand

nyi functional (17), we construct the secular perturbation in t and is written as

functional that acts on thezero ordey degenerate solutions
ly(rirg, ...
rationrq, ... I, having the lowest energy.

The perturbation fory and h were given already by the
two last terms in Eq(17). To find the perturbation for one

should extend the GL functional to low temperatures

il3,14,16

Teword and Newman and Tewordtwere the first

who proposed the complete form of such an extension. W
will use the analogous functional given in a more recen

publication?*

F=alW[2+ 2w |*+K|DV[?

B2 BH, u
Y4 6 ’ 2 2
+87r yp +3|\P| +R'|¥|“| DV

+R(V|¥[3)?+P|D?¥|?

LB?|¥|2+Qrot? B. (49

The last term rétB was written in Ref. 21 in the equivalent
form —i rotB(¥ DV —¥DW).

To account for all the perturbations of the ordertobne
should assume that the coefficienisR’, R”, P, L, andQ

are temperature independent whereas coefficientg, and
K are expanded ihas

a= (a1t ayt)t, (50)
g=0ot91t,

K=Kg+Kjt.

)| of Eg. (21) and selects the vortex configu-

(y+ot)(|¢|*—1)2

Other perturbation terms of E€49) can be substantially
simplified if one takes into account that they are operating
with solutions of the BJR equation. The final form of these

(52)

‘terms in dimensionless variables and corresponding dimen-

8ionless coefficients are given in Table I. We present also the

lnumerical values of these coefficients calculated from the

microscopic BCS theory given in the Appendix. We com-
ment now on how the perturbation terms were obtained.

(1) The termP|D?¥|? is rewritten in dimensionless units
as

—tul2[(9—ia)(d—ia)+(d—ia)(a—ia) ]y’
= —tuld(a—ia)(a—ia)y+2i(da—da)y|%
(53
Because of Eqs(18) and (19), the first term in brackets
vanishes and the second term is equal to
—tub? )= —tulyl?(1-|¥?)>.

(2) The termR’|W|?|DW|? is rewritten in dimensionless
units as

(54)

—2tp'[y|2[2](d—ia)y|?+2|(s—ia)y|?]
= —2tp'[4t|y|?(d—ia)y|®—iad|y|*+iad|y|*].
(55)

The first term in brackets vanishes and the other two can be
integrated by parts. This leads to

174504-6
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TABLE II. Coefficients of the perturbation functionithat are  —h.,)|¢{2 in Eq. (59) becomes unstable. The amplitudé
collected from the dimensionless terms of Table I, their theoretical:<|¢(r)|2> of the vortex state and the intervortex distance
BCS values in the clean and dirty superconductors and their experincrease with decreasing applied field. Below lihw critical
mental estimation in TaN. field h.; that will be calculated in Sec.VI B, all the vortices
continuously leave the superconductor and the uniform

Ci Clean  Diny  TaN Meissner state withy/|=1 becomes stable.

Cr=20+ pu+\ 0.37 .0.35 _ (i) When bothy—cy4t and —cgt are negative, the func-
Ca=—a+p +p"+7—2u—\ 0.50 0.10 0.30 tional (59) corresponds to a type-I superconductor. There are
Co=v—p' —p'+u—1 -0.09 0.01 0.15 only two competing local minima of Eq59): the normal

state with|¢|=0 and energy

’ P — ' , f’=0, (61)
—tp'|yl*-2i(a—da) = ~tp'blyl*=—tp’ |y *(1~ |yl | A .
(56) and the uniform superconducting Meissner state With

o ) o ) =1 and energy
(3) The termQ rof? B in dimensionless units is rewritten

as fS: ho_ hC2+ 'y_(C4+ CG)t (62)
—trrotz(zb)=—t7-(V|¢|2)2. (57) The discontinuous transition between them occurs at the
thermodynamic critical field h
Multiplying Eq. (21) by |4|* and integrating by parts we

find that (V|]?)? can be substituted as he=1+y+(CoFCatcot. (63
that is found by equating Eq$61) and (62).
2\2 4 6
(VIg%)* =l =[], (58) (i) We investigate the case when the coefficients
the same substitution was also done for the term Cat and—cgt have different signs in Sec. VII. It will ap-
R"(V|¥|?)2. pear that, depending on the situation, b&thv and V-S

Collecting all the above contributions together and omit-transition can be either continuo(es in conventional super-
ting the nonessential constant contributior 4+ ot— hy, conductors withk> 1/\/5) or discontinuous. This situation is
we come to the resulting perturbation functional accessible experimentally either by variation pfor by

variation oft.
f'=(ho—heo) |2+ (y—cat)| | *—cet| 4%, (59)

where parametecsare given in Table Il. The instability field VI. VORTEX STATE: ENERGY AND CRITICAL FIELDS

A. Energy of the vortex lattices and higher critical field
The energy of the regulaN-quanta lattice(59) can be

corresponds to thepper critical fieldthat we discuss below. written in terms of the amplitude of the order parameXér
The perturbation functiongb9) is the principal result of — =(|y|?) as:

the present work. It allows to calculate the properties of su-

perconductor with lowy and select the most stable vortex  f'=(hg—hg) A%+ (y—cat) Ba(A)A%—cet Bs(A)A®,

configuration at givery, hg, andt. Although functional59) (64)

resembles the extended form of the GL functional, it is des,

. . 1 Ot here 8N (A) are the structural factors
fined for the restricted set of infinitely degenerate vortex so- An(4)

lutions |¢(r;rq, ... r,)| of BIR equation21). The impor- " (™
tant advantage of the functioné9) is that it depends only BN (A)= TN (65
on few parameters).,, C4, andcg that are the combinations (1%

of the coefficients of the extended GL function@d9) as  that depend both on the amplitudeand on the lattice ge-

given in Table Il. Moreover, it is not necessary at all to know gmetry.

the coefficients in the starting function@9). These param-  Minimization of Eq.(64) over A gives the complete in-

eters can be considered as phenomenological ones. As Withrmation about thermodynamic and magnetic properties of

be shown in Sec. VIl they can be found from experiment. the yortex lattice in a superconductor with-1/v2 provided
The occurring vortex state depends on the sign and thg,o dependenciq@ﬁN)(A) are known. We foundagN)(A) in

relative strength of the coefficients-c4t and—cg that can 14 \whole region ofA(0<A<1) using the numerical solu-

be positive or negative since<0 and the parametey  (ions of Eq.(21) for square and triangular vortex lattices with
changes sign wher goes though 3/2. The realistic values = 1,2 outlined in Sec. IV F. The results are shown in Fig. 1

of ¢, andcg will be discussed in Sec. VII. as functions of magnetic induction
(i) When bothy—c,t and—cgt are positive, the magnetic
behavior of the superconductor corresponds to the generic b=1-A2 (66)

scenario for a superconductor of type Il. The dense vortex L S
lattice (35) appears continuously from the normal staté  The values ofg{"® at A—0 (i.e. in vicinity of he,) are
=0 at upper critical fielch., when the quadratic termhg  given in Table Ill. The parametgs{V)(0)corresponds to the

174504-7
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B,
11.4 defines the tricritical poinT, where the discontinuity of the
O,N=2 N-V transition appears. The discontinuity fieid, is larger
11-8 than the critical fielch,,.
The functional(64) can be alternatively written in terms
O,N=1 412 T
of b as
N=1 111 —
A f'=(2y+cat)(hg— 1)+ (hg—hep) (hep— b)
: . : : 1.0 — — — —
00 02 04 06 08 10 +(y—Cat) Ba(b) (hez—b)*—cgt Bo(b) (heo — b)*.
b (68)
B lo4 Minimization of f' ovengives the inductiorﬁ(ho) and the
6 lattice energyf’(hy). Comparing the energies of square and
O Ne2 122 triangular lattices withN=1,2 at givenhy (h.;<hg<<h.,),
T {2.0 we established that thene-quanta triangular vortex lattice
{18 always possess the lowest energy. However, clo$etthe
116 energies of different lattices coincide within the calculation
O,N=1 1" accuracy and this conclusion becomes less certain.
11.4
A,N=1 442 B. Diluted lattice low critical field and vortex interaction
0.0 0.2 0.4 ~ 06 08 1'8'0 1. Energy of the diluted vortex lattice
b We consider now the diluted lattice of slightly overlap-

ping N-quanta vortices assuming that the distahbetween
them is much larger than the coherence lengta [>1).
Such a limit usually occurs close to the low critical fidig .

In this approximation the energy of the system is written as

FIG. 1. Structural factors B,={|y|"/{|#|?? and B
=(|9|®)/{|y|?)® for triangle and squarB-quanta vortex lattices as

functions of the average magnetic induction

parameter 8 introduced in the original publication of — —

. S b _
Abrikosov® Close tohc; (whereA—1) the fact_orseﬂ_\') tend =1t 5ent 5 5 <Un(l)=hob,  (69)
to 1. The corresponding asymptotic expression will be given ™ ™
in Sec. VI B.

i . where the background energy of the uniform Meissner state
The functional(64) close toh., can be interpreted as a ¢ is g d . ghy —
Landau expansion of the vortex state energy over the ampli-s is given by Eq.(62), ey is the one-vortex energp/2mN

tude A. When y>c,t the quartic term imA is positive and IS the density of vortices, and hOHis the interaction of the
the conventional second-order transition occurs.at When  vortex with an external field. The terb,(I) represents the
y<cyt the transition occurs in a discontinuous way either tointeraction between the nearest-neighbor vortices. The factor
the finite-amplitude vortex state or directly to the Meissnerm gives the lattice coordination number=6 for the trian-
state. The concrete realization of this transition depends ogular lattice andn=4 for the square lattice. The inter-vortex
the relative values ofg andc, and will be discussed in Sec. distancel is uniquely related with the vortex concentration
VIL. 27N/b and the geometry of the lattice as
The condition
lg=(27N/D)Y¥2 | =(47N/b/3)Y2 (70)
TABLE III. Structural factors{Y=(||"/{|y|?)"? of the N - _
=1,2 quanta square and triangular vortex lattices clodéfoand ~ The type of theV-S transition depends on the sign of the
structural factorg™=(1—g"}/2wN of one- and two-quanta vor- long-range vortex interactiob;,(I) that, as will be shown
tices. below, can be repulsive or attractive.
WhenU,,(l)>0 the situation is the same as for a super-
N=1 N=2 conductor of type IlI: thé/-S transition occurs in a continu-
A dJ A O ous way at the low critical fieldh.; that is calculated from
the vortex energyy . The latter can be written on the basis

(N)
. 1.16 1.18 1.34 1.43 of Eq. (59) as
8 1.42 1.50 1.95 2.32
N
& 158 145 en=27N[(1+2y+cst) = {0 (y—cat) + {cqt].
(N 2.00 1.75 (72)
P 2.34 1.99

The structural factors for thB-quanta vortex
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2. Vortex interaction

Q) — —_q"

& NJO (1=gn)rdr (72) The vortex interaction is known to be repulsive in a
) ) ) _ type-1l superconductory>0) and attractive in a type-l su-

are found from integration of the numerical solutigy(r) of  perconductor ¢<0). In this section we calculate the inter-

Eq. (25 and are given in Table Ill. Note also that action energyU;(I) of two N-quanta vortices located at
— r,,=*1/2 at the intermediate values of. The numerical
g(N)_ b -1 (73) part of this problem is based on the solution of the BJR
27N ' equation (21) with the right-hand term 2&N&(r—r;)

+27NS(r—r,) and on substitution of this solution into the
perturbation functional59). We give the analytical treat-
ment of this problem in cases of slightly overlappé#g-()

and of strongly overlapped €1) vortices. As a result we
obtain that vortices begin to attract each other at large dis-
BE}N): 1-4b (b—0). (74 tances when

The factorsz{™) for large N will be calculated in Sec. VI C.
The lattice factorss) [Eq. (65)] can be expressed vig")
as

v<(c4+3cg)t. (79
The N-quanta vortices penetrate into the sample when the
positive energys,, required for the vortex creation is com- Below this instability the vortex interaction has a long-range
ensated by the negative maanetic contributien-b. i.e attractive and short-range repulsive character and vortices
P vl €9 9 0 == form a bounded state. The inequalif§9) presents also the
above the critical field

condition of discontinuity ol/-S transition.
With the decrease of, the equilibrium distanck, varies

h(N)— =1+(2—§2N))y+(c2+ (N, + (MNegt. from infinity to zero. Below another instability point at
(79 £ —
The low critical field is defined as the lowest field for which y<| Cat1l. 5§—§N) 6 (80)

the penetration of vortices becomes favorable,
N the interaction is purely attractive and vortices are stuck to-
hey=min{he; by (76) gether, with the formation of R-quanta vortex. The results

about the short-range vortex interaction can not be directly

It appears that only the 1-quanta vortices can appear in g, i tg study the vortex lattice since the nearest-neighbor

continuous way sm(%? th?lgzondmon of formation of 2'qlJ""r‘taralpprOX|matlor(78) is not applicable at low vortex separation
vortices written ad3’<<hgy’ or as I

The calculations of the long-range vortex interaction
7> (Cat1.8%e)t 77 given below are compatible witr? calc%lations of the vortex
is weaker than the condition of continuity WtS transition:  interaction given in Ref. 17 in a more bulky way. Consider
Uin(1)>0 , derived belowinequality (79)]. for simplicity the case of two 1-quanta vortices. When the
The vortices penetrate inside a superconductor until thélistance between the vortices is large-(L), it is more suit-
repulsive interaction counterbalances the energy gain. Thable to describe the vortices in terms of slightly overlapping
penetrated flux is determined by minimization of E§9  magnetic fluxes produced by these vortices

overb that alternatively can be written as b.=1—g2(|r=1/2)), 81)
FTEY m e as was discussed in Sec. IV C.
= —+ + —U.
F=tst heahot 275 Uind1(B)} |b, (78) The vortex energy is provided by the tertg|?, |4|*,

. and|y|® in the functional(59) that can be evaluated as

where the dependentéb) is given by Eq.(70).
WhenU,,;(1)<0, the transition from the Meissner phase |y]?=1-b,—Db_, (82

occurs either to the finite-density vortex state or directly to

the normal-metal state in a discontinuous way that is mani{y|*=(1—b, —b_)?=(1-b,)?+(1-b,)?—1+2b,b_,

fested by the jump of magnetization. The detailed scenario of (83

the transition depends on the energy balance between these

three phases and will be discussed in Sec. VII. and

The situation is simplified however near the tricritical 6_(1—-h —h \3—(1—h )3 —h )3
point T; where the long-range part &f;,(I) changes its [4°=(1=b, =b)*=(1=b,)*+(1=b.)
sign from positive to negative. As will be shown in Sec. -1+ 6b+b,—3b2_b+—3bib,. (84
VI B 2 the short-range vortex interaction in this region is still
repulsive. The minimum ob);,,(1) lies atl>1 and one can Only |4|* and ||® terms contain the interaction parts
apply the nearest-neighbor approximati@®). The discon- b,b_, b2b_, andb,b? . With the help of Eq.(26), the
tinuity field h¥, is smaller tharh;. overlapping contributiogb,b_) can be estimated with ex-

174504-9
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ponential accuracy as(l)e~* whereu(l) is a slow function
of I. This term is more important &1 than termgb_ b?)
and(b2b_) decaying likee '

Substitution of{(b, b_) from Egs.(83) and(84) into Eq.
(59) gives the long-range interaction energy per vortex:

Uine(1)=[7—(ca+3ce)t]-u(l)e ™. (89

This interaction is attractive when conditién9) is satisfied.

PHYSICAL REVIEW B 63 174504

and calculated numerically,

@4~0.55, a5=0.85, ag=1.06. (93)

Jacob’ has also calculated the expansiorugf, over y and
t but in a numerical way. Similar to E¢92), analytical ex-
pression fora, was done in Ref. 32.

One can now express the vortex structural factf$
[Eq. (72)] for N>1 via theN-S interface factorsy,. TheN

Consider now the short-range part of the vortex interac-quanta vortex29) can be viewed as the cylindrical normal-

tion. When vortices are located close to each othetl(),
their order parameter is given by E@®@4),

1
lp(r)|=ga(r)+ ggz(r)(lv)zlngz(r). (86)

To calculate the vortex energy one should estimate

| 1wtnirde =2z [ gorar+ 2 [ olr)

X (1V)2Ing,(r)d>r. (87)

Sinceg,(r) is an axisymmetric function, the operatd¥y?
can be substituted byl 3/2)V2. Finally, taking into account
the BJR equatioiV?In g,=g5—1 one gets

mn

|2
f|‘//(r)|nd2rm27rf g3(r)rdr+ — - ({@,— ).
(89

state domain of radiusy~ 2N surrounded by th&\-S in-
terface. The domain energy is written as

sN=7rr,2\‘hC+ 27T O s (94)

whereqrrﬁ,hC is the energy of the condensate break inside the
domain and 2Zrryo,s is the domain-wall energy. Compari-
son of Eqs.(94) and(71) gives

N_14 20 N> 95
&y N (95)
It is interesting to note that formul®5) can be extrapolated
to smallN with an accuracy 5-8 %.

VIl. H-T PHASE DIAGRAM

We are now in a stage to discuss the propertiesl oF
diagram of a superconductor with~1/\2. (We use again
the dimensional variablesPartially, this question was con-
sidered in Ref. 17 on the basis of Neumann-Tewordt exten-

The interaction energy is calculated on the basis of Edgjop of GL equations to the low temperature. The advantage
(59) with respect to the state where the vortex cores coincideys o approach is that it allows to get the structureHof

With the help of Eq(88) one gets the short-range interaction diagram in a unified way from a simple perturbation func-

energy
Uine(=[(y—cat) ({2~ ) — L5cet ()~ () 112,

(89

This interaction is attractive when conditié®0) is satisfied.

C. Energy of the normal-superconducting interface

The profile of theN-S interface is given by Eq(48).
Based on our perturbation approach, we calculateNHg
interface energy aty=h,; as

ons= — (Y= Cat) ayt Cetas, (90
where the structural factors, are defined as
ao= | (wP=luiax o

tional (59). This functional depends on three driving param-
etershg, t, andy that are controlled by experimental condi-
tions and on three phenomenological paraméigysc,, and

Cg that can be found from an experiment based on the rela-
tions

| T

H°2:1+y—(c4+c6)t, (96)
E
dH H:ch_ 87Tﬁ4('}/_C4t),
H¢
T =14+ (L= 1) y+[({s—1)cs+({s—1)Celt, (98)

Her

extracted from Eqg60), (63), (68), and(75). The first value
was also called ag4(T), the second one as#B4[2K§(T)

With the help of Eq.(45) these factors can be presented in — 11, and the third one asi2/In «;.°

the form of definite integrals

an= J (e??—e"?)dx

dy (92

f¢=o e2¢—gn® fw e 21— M

0 e ?1+2p-1

g=—» 1—e?®

We extracted the parametecg and cg from magnetic
measurements in TakRef. 26 and gotc,~0.30 andcg=
—0.15. These parameters can be also estimated theoretically
from the microscopic BCS expression for coefficients of the
extended GL functionat: Calculations presented in the Ap-
pendix and in Tables | and Il give,=0.5 andcg=—0.09
for clean superconductor argy=0.1 andcg=0.01 for the
dirty superconductor. Although these estimations do not take
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TABLE IV. Characteristic points irH-T diagram of superconductor with= KZ—% close to zero.

Fourth-order coefficient in Tricritical point, where atcg>0 theH,(T)
energy expansior< 0 at y<Cyt transition becomes discontinuous.
H(T)=H(T) at v=(C4+Cg)t Triple pointL, where atcg>>0 theH.(T),
H%,(T), andH,(T) transition lines meet.
He1(T)=Hc(T) at y=(Cy+1.2Z)t Auxiliary point.
Short-range vortex inte- Point where 2-quanta vortex decay onto
raction is repulsive at v>(C,+1.26c4)t two close lying 1-quanta vortices.
0rs<0 at y<(Cq+1.55¢)t NS interface energy becomes negative.
H(T)=H.(T) at y=(Cy+1.75c6)t Triple pointL, where atcg>>0 theH.(T),
H.1(T), andHZ,(T) transition lines meet.
HOM<HE(T) at y>(Cqt+1.8%4)t Two separate one-quanta vortices are more
stable than one two-quanta vortex.
Long range vortex inte- Tricritical point,; where atcg<0 the
raction is attractive at y<(C4s+3cg)t H.1(T) transition becomes discontinuous.

into account the anisotropy of TaN and the electron-phonoWhen vy decreases, the points; and T, are shifted to low
retardation effects in the BCS theory, they give a correct idegdemperatures and the superconductor becomes supercon-
about the magnitude of the coefficierdg and cg. We as-  ductor of type | in the whole temperature region. Whgn

sume further that, varies from 0.1 to 0.5 andg from increases, the points; andT, are shifted toT;. At positive
—0.2 to 0.01; the negative value of being more probable. v, the superconductor has a type-Il behavior.
The H-T diagram of lows superconductor at giveo, (i) Fig. 3 corresponds ta,>0, 0>cg>—c,/3 and to

andcg can be obtained from comparison of relative locationy<<0. Similar to caséi), the vortex state appears on the left
of critical fields(60), (63), and(75) and characteristic critical of the triple pointL, that is defined by the condition
points that were calculated in Sec. VI and that are resumed iHl .,(T) =H(T) or

Table IV. To avoid the narrowness of the mixed-state region

and to clearly demonstrate the details of tHeT diagram, y=(Cst+cCo)t. (101)
we trace it in the specially normalized coordinaléd . and  The N-V transition has a continuous character and occurs at
H/H¢ whereH depends of linearly, H=H,,. The type of theV-S transition is provided by the
, location of the tricritical poinfl; where the long-range vor-
He=Hc(Tc—T), (99 tex interaction changes sigoondition (79)]. The V-S tran-

- " 12 sition is discontinuous betwedn, and T, at H=H}; and
with He=(4m/g)"*a,/Te [Eq. (7)]. The topology of the continuous on the left of; atH=H_; .Wheny decreases,

H-T diagram depends on the relative strength of the coeffi-

. . . . the superconductor transforms to superconductor of type |
cientscg andc, and is provided by the only driving param- whereas whery increases above zero it becomes a supercon-
eter cg/c,. This makes our analysis more restrictive then y P

analysis of Ref. 17 where the six driving parametersducmr of type II.

Kers - - - sk Were defined to consider the phase diagram.

Three possible scenario ®-S transition can be distin- 1044 . v=-0.05, ¢,=0.1, ¢;=0.01
guished. . He

(i) Figure 2 corresponds tog,c,>0 and toy<O0. Be- 1.02- N .
tween T, and the triple point_; defined by the condition T o HS o H
Ho(T)=Heu(T) or T Ve e

e 1-.
y=(C4+1.75cH)t, (100 0.98 H:

the superconductor behaves like superconductor of type | 0.961 S
i.e., the discontinuou$\-S transition occurs at the critical , ‘ , ,
field H,. On the left ofL, the N-S transition occurs via an 02 04 06 08 1.0
intermediate vortex state. Th&S transition occurs in a con- TrTe

tinuous way alH=Hcl_ like in type-Il superconductor. The FIG. 2. H-T phase diagram of a superconductor with,cq

N-V transition has a discontinuous character close;toThe  — 4 a0 with y slightly less than zero. It includes normal),
discontinuity lineHZ, terminates in the tricritical poinT,  yortex (v), and Meissner superconductiri§ phases. Solid and
defined by Eq(67) where the fourth-order term in functional dashed lines correspond to the discontinuous and continuous tran-
(64) becomes positive. On the left %, the N-V transition  sitions, and dotted lines present the auxiliary critical fields. Mag-
occurs in a continuous way a&l=H., and the supercon- netic field is measured in units of the temperature-dependent critical
ductor behaves like conventional type-ll superconductorfield H.=H(T.—T).
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1.2
., ¥=-0.15,¢,=05¢=-0.1
1.1 . H: N
Io \\\ )
E 1.0 V \"5,.- e He
- ~H L2
-------- T
[‘[c
0.9- ! S
02 04 06 08 1.0
T/Tc

FIG. 3. The same as Fig. 2 but foy>0, 0>cg> —c,/3 when
v is slightly less than zero.

(i) Figure 4 corresponds @,>0, —c,/3>cg. This case
corresponds to the experimental situation in FANVhen y
is slightly less than zer¢Fig. 4(a)], the H-T diagram is
obtained from the diagram of ca&ée) by shift of the tricriti-
cal pointT; to the region of negative temperatures. Like in

PHYSICAL REVIEW B 63 174504

character. At largey, the phase diagram transforms to con-
ventionalH-T diagram of superconductor of type II.
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APPENDIX: MICROSCOPIC PARAMETERS

The microscopic BCS parameters of the extended GL
functional (49) were calculated in Ref. 21. The first three
coefficients do not depend on the purity of the supercon-
ductor,

previous cases, the superconductor transforms to a supercon-

ductor of type | with decreasing. When vy increases, point
L, goes toT. and disappears ag=0. When y becomes
positive[Fig. 4(b)] the V-S transition is continuous between
T. and the tricritical poinfl'; that appears &k at y=0 and

T
a=v|n_|_—c, (A1)

g 743 1 u v 31(5) 1

E_”T(W—T)z’ 3 2 64 (4T)*

Here v=mpg/27%42 is the density of states.

is moving to the region of low temperatures with increasing  Other coefficients depend on the quality of the material

v. On the left of T, the V-S transition has a discontinuous

and can be calculated in two limit cases.

a. Clean limit
_TUB) vPh? v 31(5) h**
_”Tsm’ 20 64 W—T)w
(A2)

v 31(5) v?h? 131§(5) v2h?

a) 1.34 y=-01,¢=17,¢=-12
124 He N
T R
T 114 v Moo Her e
Ny c .
1.0 Sl
Hc’; S )
0.9 T : . -
0.2 04 0.6 0.8 1.0
T/Tc
1.6
b) Y=0.1,¢,=1.7,¢=-1.2
141 )
. N
T 924 AV ~. He
x e
Hcl S HL-]
0.8 : ; . .
0.2 04 0.6 0.8 1.0
T/Mc

FIG. 4. The same as Figs. 2 and 3 but &pE>0, —c4/3>cq
when vy is slightly less than zer¢a) and wheny is slightly larger

than zero(b).

3 64 (7T)* 12 64 (4T)*
0= 1 31(5) h%v? ~ v3L((5) & %
357 64((3) (#T)2' 5 64 2 (aT)4
b. Dirty limit
K w2 v2h? 7L’ hM? A3
TVagsaT T 'xag gz MY
* v2h2 ot vh?
R’:_V——, ”:_V——,
12X48 g, (#T)3 48 s (7T)3
B 1 A%? B e K%t
Q= 807 s;5," 80 22 sis,m T’

where parameters; ands, are functions of the scattering

timesr, 7, andr, in thes, p
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11
—_ —). (Ad)
T T

2

52—2

A A1 1 f
S72r, 2 '

T T1

From Egs.(Al), (A2), and(A3) we calculate the micro-

scopic expressions for the parametedefined by Eq(51),
(A5)

O'C|:1, 0'd=0,
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and for the GL parametet

3 7TcC

B 37U cs,
T w(3) Y2 |e|fiv?

- w2 ()2 |elhv?
(AB)

Kcl

in clean and in dirty superconductors.
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