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Theory of superconductors with k close to 1ÕA2
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As was first shown by Bogomolnyi, the critical Ginzburg-Landau~GL! parameterk51/A2 at which a
superconductor changes its behavior from type I to type II, is the special highly degenerate point where
Abrikosov vortices do not interact and therefore all vortex states have the same energy. Developing a secular
perturbation theory, we studied how this degeneracy is lifted whenk is slightly different from 1/A2 or when
the GL theory is extended to the higher terms inT2Tc . We constructed a simple secular functional that
depends only on few experimentally measurable phenomenological parameters and therefore is quite efficient
to study the vortex state of superconductor in this transitional region ofk. On this base, we calculated such
vortex state properties as critical fields, energy of the normal-superconductor interface, energy of the vortex
lattice, vortex interaction energy, etc., and compared them with previous results that were based on bulky
solutions of GL equations.
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I. INTRODUCTION

Although the Ginzburg-Landau~GL! theory covers all the
varieties of superconductors, both of the type I with GL p
rameterk,1/A2 and of the type II withk.1/A2, most of
the theoretical studies of the vortex state deal with the c
of k@1/A2 since atk@1/A2 the GL equations are simplifie
substantially and also the grand majority of type II superc
ducting materials including high-Tc superconductors corre
spond to this limit.

Studies of superconductors in the transitional region
small k;1/A2 done mostly in the 1970s were based on
solution of the full system of GL equations and require bu
calculations. Meanwhile, Bogomolnyi proposed in 1976
elegant way to operate with similar problem of the stri
theory1 and showed that at the special pointk51/A2 the
order of the equations can be reduced and all the vo
states with arbitrary located vortices have the same en
when the applied field is equal to the critical fieldHc .

Historically the Bogomolnyi approach was done for t
high-energy physics and the superconducting commu
was not aware of it even when Jacobs and Rebbi2 reformu-
lated the Bogomolnyi equations in terms of superconduc
ity and demonstrated that they can be written in a form
nonlinear electrostatic equation of the Boltzman plasma
we call Bogomolnyi, Jacobs, and Rebbi~BJR! equation.
Only very recently the Bogomolnyi method was used
study vortices in mesoscopic disks3 and to calculate the
structure of multiquanta vortices4 in superconductors with
k51/A2.

In the present paper we derive a regular way to treat
vortex state of superconductors withk close to 1/A2 based
on the BJR approach. Our basic idea is to consider the hig
degenerate Bogomolnyi state atk51/A2 andH5Hc as zero
approximation and then to account for a deviation from t
point via the secular perturbation method that lifts the deg
eracy and selects the most stable vortex configuration
Sec. III we give a brief overview of the Bogomolnyi metho
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and then, in Sec. IV, present the solutions the of BJR eq
tion for the different vortex lattices. In Sec. V we develop t
secular perturbation approach. The following perturbatio
can lift the degeneracy.

~i! Deviation ofk from 1/A2 that is accounted by a sma
parameter.

g5k22
1

2
'A2k21. ~1!

~ii ! Deviation of the applied field fromHc .
~iii ! Next in

t5T/Tc21, ~2!

corrections to the GL functional.
~iv! Thermal fluctuation effects.
~v! Finite size and demagnetization effects.
We consider only the first three contributions and sh

that they can be incorporated in a very simple secular fu
tional that acts on the Bogomolnyi degenerate solutions
looks like a six-order polynomial for the amplitude of th
order parameter. This functional depends only on few p
nomenological parameters that can be found from exp
ments and that completely determine the behavior of su
conductors withk;1/A2 in a magnetic field.

Certain properties of superconductors withk;1/A2 were
calculated either from the GL theory extended to low te
peratures or from the microscopic Gorkov equations. Th
calculations, overviewed in Sec. II, were however deal
either with cumbersome analytical expansions or with n
merical computations that both are difficult to catch on. It
therefore of interest to recalculate these properties in a
tematic perturbation way and compare them with the ol
results.

In Sec. VI we calculate the following parameters of
superconductor withk;1/A2: ~a! critical fields Hc1 , Hc2
andHc , ~b! energy of the normal-superconducting~N-S! in-
terface,~c! energy of the regular vortex lattice as a functio
©2001 The American Physical Society04-1
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I. LUK’ YANCHUK PHYSICAL REVIEW B 63 174504
of the applied field,~d! Energy of theN-quanta vortex,~e!
vortex interaction that can have an unconventional attrac
character.

Based on these calculations we discuss the possible
narios of the normal-superconducting (NS) transition in a
magnetic field for a superconductor withk;1/A2 ~Sec. VII!
that occurs either directly~like in a type-I superconductor! or
via the formation of the intermediate vortex~V! state~like in
a type-II superconductor!. The actual scenario depends o
the relative strength and sign of coefficients in the pertur
tion functional that can be extracted from experiment. W
calculate the location of the triple pointL on theH-T plane
where the directN-S transition splits intoN-V andV-S tran-
sitions and a superconductor changes its behavior from
I to type II. The important feature is that both theN-V and
V-S transitions close to pointL can be either continuous o
discontinuous unlike the traditional type-II superconduc
with k@1/A2 where these transitions are continuous. W
calculated the location of tricritical pointsT2 andT1 where
theN-V andV-S transitions change their character from co
tinuous to discontinuous.

II. PREVIOUS STUDY

A. Theory

Already in his pioneering work5 Abrikosov noted that the
solution of the GL equations atk;1/A2 is a separate an
quite complicated problem. Since then, various related th
retical investigations that are partially reviewed in Refs. 6
were done. The first series of investigations dealt with
expansion of the BCS free energy close toHc2 over a small
parameterH2Hc2. The magnetic and thermodynamic pro
erties of superconductor close toHc2 were calculated for
dirty9,10 and intrinsic11 superconductors. The most comple
calculations of this type are given in Ref. 12. The possibi
to have a discontinuousN-V transition in a superconducto
with k;1/A2 was first indicated in Ref. 9.

On the basis of the BCS theory Tewordt and Neuma
calculated the low-temperature corrections to G
functional13–15 and found the upper16 and lower15 critical
fields with an accuracyt2 at arbitraryk.

Based on this extended GL functional, Jacobs17 consid-
ered a superconductor withk;1/A2 and calculated theN-S
interface energy, the energy of single- and double-quant
vortex. He obtained that at certain conditions the vortices
a type-II superconductor attract each other and predicted
discontinuity of theV-S andN-V transitions. The analogou
result was also obtained by Hubert.18

Großmann and Wissel19 calculated the free energy of
superconductor withk;1/A2 close toHc2 using the ex-
tended~although not complete! functional of Tewordt and
Neumann. They found a discontinuity ofV-S transition in a
limit of the dense vortex lattice. All the above conclusio
were reproduced by Brandt20 who developed a variationa
numerical method to solve the Gorkov’s equation for vor
lattices for all possible values ofH, T, andk.

Recently Ovchinnikov21 carefully derived the coefficient
of the extended GL functional from a microscopic theory
17450
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different types of electron scattering. He considered an
pansion of the free energy nearHc2 up to the order of (H
2Hc2)3 and specified the case when atk;1/A2 the N-V
transition has a discontinuous character.

In the present paper we reproduce the above results
more simple way, based on the Bogomolnyi treatment
superconductors withk51/A2.

B. Experiment

The superconducting metals Ta, Nb, In, and Pb withk
close to 1/A2 were intensively studied in the 1960s an
1970s. The variation ofk was achieved either by dissolvin
of foreign atoms of N, Tl, and Bi or by preparation o
samples with different defect concentration. We refer
magnetic,22 calorimetric,23 and neutron diffraction24,25 ex-
periments in pure Nb (k;0.85– 0.96); to magnetic measur
ments in TaN (k;0.35– 1.53),26 in Nb (k;0.78– 1.03),26

and in InBi (k;0.76– 1.46);27 and to direct observation o
vortices in PbTl (k;0.43– 1.04)~Ref. 28! and in PbIn (k
;0.76– 1.46)~Refs. 29 and 30 by decoration. References
other related experiments can be found in Refs. 6 and 7

The fact that theV-S transition can be of the first order a
k;1/A2 was discovered already in the early magnetic a
thermodynamic experiments.22,23,27 The detailed magnetic
study of a superconductor that changes its behavior fr
type I to type II was done for tantalum samples with som
amount of dissolved nitrogen26. A discontinuity of the vortex
lattice parameter at the V-S transition was observed
neutron-scattering experiments.24,25

The convincing confirmation of discontinuity of theV-S
transition in superconductors withk;1/A2 was done by a
direct observation of the vortex domains inside the Meiss
phase.28–30Such coexistence of different phases is known
be a signature of the first-order transition between them. T
intermediate-mixed domain structure was interpreted in R
28 in terms of a long-range vortex attraction.

The discontinuity of theV-S transition provided by an
attractive interaction between vortices is therefore a w
established fact. Meanwhile, the ground state of the vor
lattice and the configuration of domains of the mixe
intermediate phase are still unclear. Although the decora
experiments6,7,28–30allow to observe the very peculiar mag
netic textures including vortex segregation and cluster
into lamellar and droplike domains, no systematic study
this question that take into account the demagnetization
finite-size effects was done. We believe that our calculati
of the vortex energy in the bulk superconductor withk
;1/A2 can be extended to simulation of magnetic textures
the realistic finite-size samples.

III. GL FUNCTIONAL AT k2Ä1Õ2 AND BJR EQUATION

In this section we describe the Bogomolnyi procedu1

that allows to simplify the GL functional and to reduce th
order of the GL equations atk51/A2. Jacobs and Rebbi2

formulated the Bogomolnyi equations in a simple form of t
nonlinear Poisson equation that we shall call the BJR eq
tion. We discuss the properties of the vortex solutions of
4-2
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THEORY OF SUPERCONDUCTORS WITHk CLOSE TO 1/A2 PHYSICAL REVIEW B 63 174504
BJR equation and their interpretation in terms of electron
Boltzman plasma given in Ref. 4.

We start from the conventional GL functional

F5auCu21
g

2
uCu41KuDCu21

B2

8p
2

BH0

4p
, ~3!

where

a5a1t, D5¹2 i
2e

c\
A, B5rot A

Refer first to the characteristic parameters of a superc
ductor. In the uniform state the superconducting order
rameter takes the equilibrium value

C05S 2
a

g D 1/2

. ~4!

The ratio of the penetration depth and coherence length

d5S 2
c2\2

32pKe2

g

a D 1/2

, j5S 2
K

a D 1/2

~5!

gives the GL parameter

k5
d

j
5

1

~32p!1/2

c\g1/2

ueuK
. ~6!

The thermodynamic critical field and the upper critical fie
are written as

Hc52S 4p

g D 1/2

a, Hc252
c\

2ueuD
a5A2kHc . ~7!

Note that the commonly used expression for the low criti
field

Hc15
F0

4pd2
ln k5Hc

ln k

A2k
~8!

is valid for k@1/A2 and is not applicable in our case. Th
corresponding expression forHc1 at k;1/A2 will be ob-
tained in Sec. VI. We introduce now the dimensionless v
ables that are slightly different from the ones commonly u
in the GL theory.

c5
C

C0
, r 5

R

dA2
,

b5A2k
B

Hc
, h05A2k

H0

Hc
, a5

kA

dHc
,

f 5
F

Hc
2/8p

k21k2. ~9!

The GL functional~3! in this variables takes the form

f 5k2~ ucu221!21u~¹2 ia!cu21S b2

2
2bh0D . ~10!
17450
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It is convenient to use the complex variables

z,z̄5x6 iy , ~11!

],]̄5
1

2
~¹x7 i¹y!,

a,ā5
1

2
~ax7 iay!

in which the GL functional is written as

f 52u~]2 ia !cu212u~ ]̄2 i ā !cu2 ~12!

1k2~ ucu221!21S b2

2
2bh0D ~13!

To catch the special properties of the GL functional atk
51/A2, one can integrate the first term in Eq.~12! by parts.
Using

E f ]̄gdS52E g]̄ f dS1
i

2 R f gdz̄ ~14!

and

b522i ~]ā2 ]̄a! ~15!

one gets the substitution

2u~]2 ia !cu2→2u~ ]̄2 i ā !cu21ucu2b. ~16!

We neglect the contribution of the surface currents that
important for finite-size effects considered in Ref. 3. Final
one comes to the alternative expression forf,

f 54u~ ]̄2 i ā !cu21
1

2
~b1ucu221!2

1g~ ucu221!21~12h0!b, ~17!

whereg5k221/2. Wheng50 andh051 ~i.e., H5Hc) the
functional~17! reduces to the sum of two square terms. T
absolute minimum is achieved when these terms are equ
zero, i.e., when the following equations are satisfied:

~ ]̄2 i ā !c50 ~18!

and

12cc̄522i ~]ā2 ]̄a!5b. ~19!

Substitution ofā from Eq. ~18!,

ā52 i ]̄ ln c ~20!

to Eq. ~19! gives the BJR equation

1

2
¹2 lnucu25ucu22112p( Nid~r2r i !. ~21!

First introduced in Ref. 4, thed-function terms correspond to
the Ni-quanta vortices located atr5r i where c gets the
4-3
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I. LUK’ YANCHUK PHYSICAL REVIEW B 63 174504
phase wind 2pNi and lnucu has a lnrN singularity. As follows
from Eq. ~19!, the distribution of magnetic field inside
sample is uniquely related with the amplitude of the ord
parameter

b~r !512uc~r !u2. ~22!

The BJR equation can be alternatively written as

¹2w5e2w2112p( Nid~r2r i !, ~23!

where w5 lnucu. This form has a simple interpretation.4 It
describes the screening of electrons in a classical Boltz
plasma that consists of the positive ionic background w
potential 1/4p.

The BJR equation~21! defines the amplitude of the supe
conducting order parameteruc(r )u and the magnetic field
b(r )at g50 and ath051 as a function of position of the
vorticesr1 , . . . ,rn . All these vortex solutions correspond
the absolute minimum of the functional~17! and, therefore,
g50 andh051 is a special highly degenerate point whe
all the vortex states have the same energy.

This infinite degeneracy overr1 , . . . ,rn is lifted if one
goes either beyondg50 andh051 or beyond the GL ap-
proximation. Wheng50 andh0.1 the absolute minimum
of Eq. ~17! is the normal state withb5h0 anducu50. When
g50 and h0,1 the absolute minimum of Eq.~17! is the
uniform superconducting state withb50 and ucu51. To
find the vortex states whengÞ0, one should account for th
term g(ucu221)2 as the secular perturbation that lifts th
degeneracy. This will be done in Sec. V together with
account of the low-temperature corrections to the GL fu
tional.

IV. VORTEX STATE AT k2Ä1Õ2

A. General

In this section we discuss the particular class of soluti
of BJR equation~21! whenN2 quanta vortices are packe
into the regular lattice with basis vectorsa1 anda2. We will
need these solutions in Sec. VI as zero approximation of
perturbation theory to find the most stable vortex configu
tion beyond the Bogomolnyi point. The unit cell areaS
5a1a2 sina (a5a1

`a2) carries the flux 2pN and therefore
is related with the average induction as

S52pN/b̄. ~24!

The value ofb̄ and S varies from b̄50, S5` ~almost
nonoverlapping vortices! to b̄51, S52pN ~dense vortex
lattice!. We consider both limits analytically. We use a n
merical procedure to treat the case of an arbitrary lattice

B. One vortex

The axially-symmetric distribution of the order parame
gN(r )5uc(r )u inside theN-quanta vortex is calculated from
the radial version of BJR equation~21!,
17450
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gN9 5
gN8

2

gN
2

gN8

r
1gN

3 2gN ~25!

with the boundary conditionsgN(0)50, gN(`)51 and as-
ymptotes

gN.BNr N, r→0, ~26!

gN.12AN

e2A2r

Ar
, r→`. ~27!

We solved Eq.~25! numerically forN51 and gotB1'0.9
andA1'1.6.

To find the vortex solution atN.1, it is more convenient
to use the new functionvN(r )5gN

1/N(r ) that satisfies the
equation

vN9 5
vN8

2

vN
2

vN8

r
1

1

N
vN

2N112
1

N
vN ~28!

and has a linear behavior;BN
1/Nr at r→0. The analytical

expression forgN(r ) at N@1 was obtained in Ref. 4. In
dimensionless units~9! it is written as

gN5S r

r N
D n

e2(1/4)(r 22r N
2 ), r ,r N . ~29!

The size of the vortex core

r N'A2N ~30!

is estimated from that, the almost uniform magnetic fie
h051, distributed inside the vortex areapr N

2 results to the
flux 2pN.

C. Separated vortices and diluted lattice

The magnetic flux of slightly overlapping vortices can
written as the superposition of fluxes of separate vortices

b~r !5(
i

bN~r2r i !5(
i

$12gN
2 ~ i !%, ~31!

wheregN( i )5gN(ur2r i u) is the solution of Eq.~25!. Then,
the amplitude of the order parameter is written as

uc(r ,r1 , . . . ,rN)u2512b~r !511(
i

$gN
2 ~ i !21%.

~32!

D. Vortex bunch

Consider now the group ofN-vortices located close to th
origin such thatur i u!1. This vortex bunch can be viewed a
the N-quanta vortexgN(r ) with the split core. By direct
substitution, one proves that the corresponding solution
Eq. ~23! within the accuracyO(maxur i u2) is given by
4-4
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THEORY OF SUPERCONDUCTORS WITHk CLOSE TO 1/A2 PHYSICAL REVIEW B 63 174504
w~r ,r1 , . . . ,rN!5
1

N (
i

wN~r2r i !'wN(r )

1
1

2N (
i

~r i¹!2wN~r !, ~33!

where

wN~r !5 lnugN~r !u, w~r ,r1 , . . . ,rN!5 lnuc~r ,r1 , . . . ,rN!u;

the origin being taken in the gravity center such thatS ir i
50.

With the same accuracy the order parameter is written

uc~r ,r1 , . . . ,rN!u5gN~r !1
1

2N
gN~r !(

i
~r i¹!2 ln gN~r !.

~34!

E. Dense lattice

The order parameter of the dense 1-quanta vortex la
is presented by the Abrikosov solution close toHc2

c0~r !5A~ b̄!u~ z̄Ab̄t9/2p,t!e2b̄y2/2, ~35!

wheret5t81 i t95a2eia/a1 is the geometrical parameter o
the lattice cell~for square latticet5 i , for triangular lattice:
t5eip/3) andu is the Jacobi theta function

u~ z̄,t!52(
n50

`

~21!n exp@ ipt~n11/2!2#sin@p~2n11!z̄#.

~36!

The functionc0(r ) satisfies the linear equation

b̄¹2 lnuc0u52112p( d~r2r i ! ~37!

that close toHc2 coincides with the BJR equation in the lim

^ucu2&→0, b̄→1. To find the normalization coefficien
A(b̄);(12b̄)1/2, one should treat the nonlinear part of th
BJR equation as a perturbation.

The N-quanta lattice solution with a unit cell area 2pN
can be written in an analogous way as

c0~r !5AN~ b̄!uN~ z̄Ab̄t9/2pN,t!e2b̄y2/2. ~38!

F. Arbitrary lattice „numerical solution…

We performed the numerical integration of the BJR eq
tion for square and triangular vortex lattices withN51,2 in
the whole interval of 0,b̄,1 and presented it in a mor
suitable form. First we pick the zeros of the order parame
via the special multiplierc0(r ) that was taken as Eq.~35! for
N51 or as Eq.~38! for an arbitraryN and present the orde
parameter in the formc(r5)uc0(r )u•uc8(r )u. The new
equation for functionuc8(r )u has no singulard-function term
and is written as
17450
s
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1

2
¹2 lnuc8u25uc0u2uc8u22~12b̄!. ~39!

Taking w85 lnuc8u we present Eq.~39! in the form

¹2w85uc0u2e2w82~12b̄!. ~40!

This nonlinear Poisson-like equation can have a periodic
lution only if the electroneutrality condition is satisfied,

12b̄5^uc0u2e2w8&. ~41!

Taking into account Eq.~41! and performing the rescaling
r→r•(2pN/b̄)1/2 we map Eq.~40! onto

¹2w85LS uc0~r !u2e2w8

^uc0~r !u2e2w8&
21D , ~42!

which is defined for the parallelogram of fixed areaS51
with periodic boundary conditions. The parameter of t
equation

L52pNS 1

b̄
21D ~43!

varies from 0 atHc2 to ` at Hc1.
The problem was solved for the square and triangular v

tex lattices withN51,2 using the Matlab PDE toolbox b
the finite element method with the adaptive mesh refinem
and with the rapidly converging Gauss-Newton iteratio
that were used to account for the nonlinear right-hand sid
Eq. ~42!. For details of the numerical method, see Ref. 3
The obtained solutions were verified by substituting th
back to Eq.~42!.

G. Normal-superconducting interface

The profile of the NS interface is usually considered in t
two limits k→` or k→0. It appears, however, that the N
profile can be foundexactlyat k51/A2 by integration of Eq.
~23! that in the 1D case looks like

w95e2w21. ~44!

The first integral of Eq.~44!

~w8!25e2w22w21 ~45!

alternatively can be written as

~ ucu8!25ucu42ucu21„11 lnucu2…. ~46!

The integration constants in Eqs.~45! and~46! was chosen to
satisfy the NS interface boundary conditions

ucu50, ducu/dx50 when x→2`, ~47!

ucu51, ducu/dx50 when x→`.

Further integration of Eq.~46! gives the implicit form of
uc(x)u at the NS interface
4-5
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TABLE I. The terms of the extended GL functionalF, their dimensionless counterparts, and the coe
cients in the perturbation functionalf. The last two columns give the microscopic BCS values of coefficie
for clean and dirty superconductors.

F f Coefficient Clean limit Dirty limit

u

3
uCu6 2tyucu6 y52a1k2u/3g2 y52qa/2'20.23

R8uCu2uDCu2 2tr8ucu4(12ucu2) r85a1R8/2gK r852q'20.45 r852p2/21z(3)'20.39
R9(¹uCu2)2 2tr9ucu4(12ucu2) r95a1R9/gK r952q/2'20.23 r952p2/42z(3)'20.20
PuD2Cu2 2tmucu2(12ucu2)2 m5a1P/2k2K2 m529q/5'20.82 m5228z(3)/p4'20.35
LB2uCu2 2tl(ucu22ucu4) l54pa1L/g l529q/5'20.82 l5236T/5ps2→0
Q rot2 B 2ttucu4(12ucu2) t54pa1Q/2k2K t523q/5'20.27 t5212T/5ps2→0

aq531z(5)/49z2(3)'0.454.
nd

n
s
-

s

W
en

t

ven

nt.
-

ing
se
en-
the
the

-

s

be
x5Eucu dy

Ay42y2~11 ln y2!
. ~48!

This result was first obtained by Dorsey32 by integration of
the complete set of GL equations.

V. PERTURBATION THEORY

To find the most stable configuration of vortices beyo
the infinitely degenerate pointg50 andh051 of Bogomol-
nyi functional ~17!, we construct the secular perturbatio
functional that acts on the~zero order! degenerate solution
uc(r ;r1 , . . . ,rn)u of Eq. ~21! and selects the vortex configu
ration r1 , . . . ,rn having the lowest energy.

The perturbation forg and h were given already by the
two last terms in Eq.~17!. To find the perturbation fort one
should extend the GL functional to low temperature
Tewordt13,14,16 and Newman and Tewordt15 were the first
who proposed the complete form of such an extension.
will use the analogous functional given in a more rec
publication:21

F5auCu21
g

2
uCu41KuDCu2

1
B2

8p
2

BH0

4p
1

u

3
uCu61R8uCu2uDCu2

1R9~¹uCu2!21PuD2Cu2

LB2uCu21Q rot2 B. ~49!

The last term rot2 B was written in Ref. 21 in the equivalen

form 2 i rotB(C̄DC2CD̄C̄).
To account for all the perturbations of the order oft, one

should assume that the coefficientsu, R8, R9, P, L, andQ
are temperature independent whereas coefficientsa, g, and
K are expanded int as

a5~a11a2t !t, ~50!

g5g01g1t,

K5K01K1t.
17450
.

e
t

The microscopic BCS values of these coefficients are gi
in the Appendix.

The combinationg1/2/K that enters in Eq.~17! as defined
by Eq.~6! parameterk becomes now temperature depende
We keep a notationk5(11g)/A2 for the temperature inde
pendent part of Eq.~6! and takest/A2 with

s5g1 /g022K1 /K0 ~51!

as a contribution to Eq.~6! that is linear int. Therefore the
third term in Eq.~17! contains both the perturbation ing and
in t and is written as

~g1st !~ ucu221!2. ~52!

Other perturbation terms of Eq.~49! can be substantially
simplified if one takes into account that they are operat
with solutions of the BJR equation. The final form of the
terms in dimensionless variables and corresponding dim
sionless coefficients are given in Table I. We present also
numerical values of these coefficients calculated from
microscopic BCS theory given in the Appendix. We com
ment now on how the perturbation terms were obtained.

~1! The termPuD2Cu2 is rewritten in dimensionless unit
as

2tmu2@~]2 ia !~ ]̄2 i ā !1~ ]̄2 i ā !~]2 ia !#cu2

52tmu4~]2 ia !~ ]̄2 i ā !c12i ~]ā2 ]̄a!cu2.

~53!

Because of Eqs.~18! and ~19!, the first term in brackets
vanishes and the second term is equal to

2tmb2ucu252tmucu2~12ucu2!2. ~54!

~2! The termR8uCu2uDCu2 is rewritten in dimensionless
units as

22tr8ucu2@2u~]2 ia !cu212u~ ]̄2 i ā !cu2#

522tr8@4tucu2u~ ]̄2 i ā !cu22 ia ]̄ucu41 i ā]ucu4#.

~55!

The first term in brackets vanishes and the other two can
integrated by parts. This leads to
4-6
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2tr8ucu4
•2i ~ ]̄a2]ā!52tr8bucu452tr8ucu4~12ucu2!.

~56!

~3! The termQ rot2 B in dimensionless units is rewritte
as

2tt rot2~zb!52tt~¹ucu2!2. ~57!

Multiplying Eq. ~21! by ucu4 and integrating by parts we
find that (¹ucu2)2 can be substituted as

~¹ucu2!2→ucu42ucu6, ~58!

the same substitution was also done for the te
R9(¹uCu2)2.

Collecting all the above contributions together and om
ting the nonessential constant contribution 11g1st2h0,
we come to the resulting perturbation functional

f 85~h02hc2!ucu21~g2c4t !ucu42c6tucu6, ~59!

where parametersci are given in Table II. The instability field

hc25112g1c2t. ~60!

corresponds to theupper critical fieldthat we discuss below
The perturbation functional~59! is the principal result of

the present work. It allows to calculate the properties of
perconductor with lowg and select the most stable vorte
configuration at giveng, h0, andt. Although functional~59!
resembles the extended form of the GL functional, it is d
fined for the restricted set of infinitely degenerate vortex
lutions uc(r ;r1 , . . . ,rn)u of BJR equation~21!. The impor-
tant advantage of the functional~59! is that it depends only
on few parameters,hc2 , c4, andc6 that are the combination
of the coefficients of the extended GL functional~49! as
given in Table II. Moreover, it is not necessary at all to kno
the coefficients in the starting functional~49!. These param-
eters can be considered as phenomenological ones. As
be shown in Sec. VII they can be found from experimen

The occurring vortex state depends on the sign and
relative strength of the coefficientsg2c4t and2c6 that can
be positive or negative sincet,0 and the parameterg
changes sign whenk goes though 1/A2. The realistic values
of c4 andc6 will be discussed in Sec. VII.

~i! When bothg2c4t and2c6t are positive, the magneti
behavior of the superconductor corresponds to the gen
scenario for a superconductor of type II. The dense vor
lattice ~35! appears continuously from the normal stateucu
50 at upper critical fieldhc2 when the quadratic term (h0

TABLE II. Coefficients of the perturbation functionalf that are
collected from the dimensionless terms of Table I, their theoret
BCS values in the clean and dirty superconductors and their ex
mental estimation in TaN.

ci Clean Dirty TaN

c252s1m1l 0.37 -0.35
c452s1r81r91t22m2l 0.50 0.10 0.30
c65y2r82r91m2t -0.09 0.01 -0.15
17450
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2hc2)ucu2 in Eq. ~59! becomes unstable. The amplitudeD2

5^uc(r )u2& of the vortex state and the intervortex distan
increase with decreasing applied field. Below thelow critical
field hc1 that will be calculated in Sec.VI B, all the vortice
continuously leave the superconductor and the unifo
Meissner state withucu51 becomes stable.

~ii ! When bothg2c4t and 2c6t are negative, the func
tional ~59! corresponds to a type-I superconductor. There
only two competing local minima of Eq.~59!: the normal
state withucu50 and energy

f n850, ~61!

and the uniform superconducting Meissner state withucu
51 and energy

f s5h02hc21g2~c41c6!t. ~62!

The discontinuous transition between them occurs at
thermodynamic critical field hc

hc511g1~c21c41c6!t. ~63!

that is found by equating Eqs.~61! and ~62!.
~iii ! We investigate the case when the coefficientsg

2c4t and2c6t have different signs in Sec. VII. It will ap-
pear that, depending on the situation, bothN-V and V-S
transition can be either continuous~as in conventional super
conductors withk@1/A2) or discontinuous. This situation i
accessible experimentally either by variation ofg or by
variation of t.

VI. VORTEX STATE: ENERGY AND CRITICAL FIELDS

A. Energy of the vortex lattices and higher critical field

The energy of the regularN-quanta lattice~59! can be
written in terms of the amplitude of the order parameterD2

5^ucu2& as:

f 85~h02hc2!D21~g2c4t !b4~D!D42c6tb6~D!D6,
~64!

wherebn
(N)(D) are the structural factors

bn
(N)~D!5

^ucun&

^ucu2&n/2
~65!

that depend both on the amplitudeD and on the lattice ge-
ometry.

Minimization of Eq. ~64! over D gives the complete in-
formation about thermodynamic and magnetic properties
the vortex lattice in a superconductor withk;1/A2 provided
the dependenciesbn

(N)(D) are known. We foundbn
(N)(D) in

the whole region ofD(0,D,1) using the numerical solu
tions of Eq.~21! for square and triangular vortex lattices wi
N51,2 outlined in Sec. IV F. The results are shown in Fig
as functions of magnetic induction

b̄512D2. ~66!

The values ofbn
(1,2) at D→0 ~i.e. in vicinity of hc2) are

given in Table III. The parameterb4
(N)(0)corresponds to the

l
ri-
4-7
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parameter b introduced in the original publication o
Abrikosov.5 Close tohc1 ~whereD→1) the factorsbn

(N) tend
to 1. The corresponding asymptotic expression will be giv
in Sec. VI B.

The functional~64! close tohc2 can be interpreted as
Landau expansion of the vortex state energy over the am
tude D. Wheng.c4t the quartic term inD is positive and
the conventional second-order transition occurs athc2. When
g,c4t the transition occurs in a discontinuous way either
the finite-amplitude vortex state or directly to the Meissn
state. The concrete realization of this transition depends
the relative values ofc6 andc4 and will be discussed in Sec
VII.

The condition

FIG. 1. Structural factors b45^ucu4&/^ucu2&2 and b6

5^ucu6&/^ucu2&3 for triangle and squareN-quanta vortex lattices a

functions of the average magnetic inductionb̄.

TABLE III. Structural factorsbn
(N)5^ucun&/^ucu2&n/2 of the N

51,2 quanta square and triangular vortex lattices close toHc2 and
structural factorszn

(N)5^12gn&/2pN of one- and two-quanta vor
tices.

N51 N52
D h D h

b4
(N) 1.16 1.18 1.34 1.43

b6
(N) 1.42 1.50 1.95 2.32

z4
(N) 1.58 1.45

z6
(N) 2.00 1.75

z8
(N) 2.34 1.99
17450
n
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g2c4t50 ~67!

defines the tricritical pointT2 where the discontinuity of the
N-V transition appears. The discontinuity fieldhc2* is larger
than the critical fieldhc2.

The functional~64! can be alternatively written in term
of b̄ as

f 85~2g1c2t !~h021!1~h02hc2!~hc22b̄!

1~g2c4t !b4~ b̄!~hc22b̄!22c6tb6~ b̄!~hc22b̄!3.

~68!

Minimization of f 8 over b̄ gives the inductionb̄(h0) and the
lattice energyf 8(h0). Comparing the energies of square a
triangular lattices withN51,2 at givenh0 (hc1,h0,hc2),
we established that theone-quanta triangular vortex lattice
always possess the lowest energy. However, close tohc1 the
energies of different lattices coincide within the calculati
accuracy and this conclusion becomes less certain.

B. Diluted lattice low critical field and vortex interaction

1. Energy of the diluted vortex lattice

We consider now the diluted lattice of slightly overla
ping N-quanta vortices assuming that the distancel between
them is much larger than the coherence length~i.e. l @1).
Such a limit usually occurs close to the low critical fieldhc1.
In this approximation the energy of the system is written

f 8̄5 f s81
b̄

2pN
«N1

m

2

b̄

2pN
Uint~ l !2h0b̄, ~69!

where the background energy of the uniform Meissner s
f s8 is given by Eq.~62!, «N is the one-vortex energy,b̄/2pN

is the density of vortices, and2h0b̄ is the interaction of the
vortex with an external field. The termUint( l ) represents the
interaction between the nearest-neighbor vortices. The fa
m gives the lattice coordination numberm56 for the trian-
gular lattice andm54 for the square lattice. The inter-vorte
distancel is uniquely related with the vortex concentratio
2pN/b̄ and the geometry of the lattice as

l h5~2pN/b̄!1/2, l D5~4pN/b̄A3!1/2. ~70!

The type of theV-S transition depends on the sign of th
long-range vortex interactionUint( l ) that, as will be shown
below, can be repulsive or attractive.

WhenUint( l ).0 the situation is the same as for a sup
conductor of type II: theV-S transition occurs in a continu
ous way at the low critical fieldhc1 that is calculated from
the vortex energy«N . The latter can be written on the bas
of Eq. ~59! as

«N52pN@~112g1c2t !2z4
(N)~g2c4t !1z6

(N)c6t#.
~71!

The structural factors for theN-quanta vortex
4-8
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zn
(N)5

1

NE0

`

~12gN
n !rdr ~72!

are found from integration of the numerical solutiongN(r ) of
Eq. ~25! and are given in Table III. Note also that

z2
(N)5

b̄

2pN
51. ~73!

The factorszn
(N) for largeN will be calculated in Sec. VI C.

The lattice factorsbn
(N) @Eq. ~65!# can be expressed viazn

(N)

as

bn
(N)5

12zn
(N)b̄

~12b̄!n/2
~ b̄→0!. ~74!

The N-quanta vortices penetrate into the sample when
positive energy«N required for the vortex creation is com
pensated by the negative magnetic contribution2h0b̄, i.e.,
above the critical field

hc1
(N)5

«N

2pN
511~22z4

(N)!g1~c21z4
(N)c41z6

(N)c6!t.

~75!

The low critical field is defined as the lowest field for whic
the penetration of vortices becomes favorable,

hc15min$hc1
(N)%N . ~76!

It appears that only the 1-quanta vortices can appear
continuous way since the condition of formation of 2-qua
vortices written ashc1

(2),hc1
(1) or as

g.~c411.89c6!t ~77!

is weaker than the condition of continuity ofV-S transition:
Uint( l ).0 , derived below@inequality ~79!#.

The vortices penetrate inside a superconductor until
repulsive interaction counterbalances the energy gain.
penetrated flux is determined by minimization of Eq.~69!

over b̄ that alternatively can be written as

f 8̄5 f s81Fhc12h01
m

4pN
Uint$ l ~ b̄!%G b̄, ~78!

where the dependencel (b̄) is given by Eq.~70!.
WhenUint( l ),0, the transition from the Meissner pha

occurs either to the finite-density vortex state or directly
the normal-metal state in a discontinuous way that is ma
fested by the jump of magnetization. The detailed scenari
the transition depends on the energy balance between t
three phases and will be discussed in Sec. VII.

The situation is simplified however near the tricritic
point T1 where the long-range part ofUint( l ) changes its
sign from positive to negative. As will be shown in Se
VI B 2 the short-range vortex interaction in this region is s
repulsive. The minimum ofUint( l ) lies at l @1 and one can
apply the nearest-neighbor approximation~78!. The discon-
tinuity field hc1* is smaller thanhc1.
17450
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2. Vortex interaction

The vortex interaction is known to be repulsive in
type-II superconductor (g@0) and attractive in a type-I su
perconductor (g!0). In this section we calculate the inte
action energyUint( l ) of two N-quanta vortices located a
r1,256 l/2 at the intermediate values ofg. The numerical
part of this problem is based on the solution of the B
equation ~21! with the right-hand term 2pNd(r2r1)
12pNd(r2r2) and on substitution of this solution into th
perturbation functional~59!. We give the analytical treat
ment of this problem in cases of slightly overlapped (l @1)
and of strongly overlapped (l !1) vortices. As a result we
obtain that vortices begin to attract each other at large
tances when

g,~c413c6!t. ~79!

Below this instability the vortex interaction has a long-ran
attractive and short-range repulsive character and vort
form a bounded state. The inequality~79! presents also the
condition of discontinuity ofV-S transition.

With the decrease ofg, the equilibrium distancel 0 varies
from infinity to zero. Below another instability point at

g,S c411.5
z8

(N)2z6
(N)

z6
(N)2z4

(N)
c6D t ~80!

the interaction is purely attractive and vortices are stuck
gether, with the formation of 2N-quanta vortex. The result
about the short-range vortex interaction can not be dire
applied to study the vortex lattice since the nearest-neigh
approximation~78! is not applicable at low vortex separatio
l.

The calculations of the long-range vortex interacti
given below are compatible with calculations of the vort
interaction given in Ref. 17 in a more bulky way. Consid
for simplicity the case of two 1-quanta vortices. When t
distance between the vortices is large (l @1), it is more suit-
able to describe the vortices in terms of slightly overlapp
magnetic fluxes produced by these vortices

b6512g1
2~ ur6 l/2u!, ~81!

as was discussed in Sec. IV C.
The vortex energy is provided by the termsucu2, ucu4,

and ucu6 in the functional~59! that can be evaluated as

ucu2512b12b2 , ~82!

ucu45~12b12b2!25~12b1!21~12b1!22112b1b2 ,
~83!

and

ucu65~12b12b2!35~12b1!31~12b1!3

2116b1b223b2
2 b123b1

2 b2 . ~84!

Only ucu4 and ucu6 terms contain the interaction par
b1b2 , b1

2 b2 , and b1b2
2 . With the help of Eq.~26!, the

overlapping contribution̂b1b2& can be estimated with ex
4-9
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ponential accuracy asu( l )e24l whereu( l ) is a slow function
of l. This term is more important atl @1 than termŝ b1b2

2 &
and ^b1

2 b2& decaying likee26l .
Substitution of̂ b1b2& from Eqs.~83! and ~84! into Eq.

~59! gives the long-range interaction energy per vortex:

Uint~ l !5@g2~c413c6!t#•u~ l !e24l . ~85!

This interaction is attractive when condition~79! is satisfied.
Consider now the short-range part of the vortex inter

tion. When vortices are located close to each other (l !1),
their order parameter is given by Eq.~34!,

uc~r !u5g2~r !1
1

8
g2~r !~ l¹!2 ln g2~r !. ~86!

To calculate the vortex energy one should estimate

E uc~r !und2r'2pE g2
n~r !rdr 1

n

8E g2
n~r !

3~ l¹!2 ln g2~r !d2r . ~87!

Sinceg2(r ) is an axisymmetric function, the operator (l¹)2

can be substituted by (l 2/2)¹2. Finally, taking into account
the BJR equation¹2 ln g25g2

221 one gets

E uc~r !und2r'2pE g2
n~r !rdr 1

pnl2

4
~zn12

(2) 2zn
(2)!.

~88!

The interaction energy is calculated on the basis of
~59! with respect to the state where the vortex cores coinc
With the help of Eq.~88! one gets the short-range interactio
energy

Uint~ l !5@~g2c4t !~z6
(2)2z4

(2)!21.5c6t~z8
(2)2z6

(2)!#p l 2,
~89!

This interaction is attractive when condition~80! is satisfied.

C. Energy of the normal-superconducting interface

The profile of theN-S interface is given by Eq.~48!.
Based on our perturbation approach, we calculate theN-S
interface energy ath05hc as

sns52~g2c4t !a41c6ta6 , ~90!

where the structural factorsan are defined as

an5E
2`

`

~ ucu22ucun!dx. ~91!

With the help of Eq.~45! these factors can be presented
the form of definite integrals

an5E
2`

`

~e2w2enw!dx

52E
w52`

w50 e2w2enw

12e2w
dwx85E

0

` e22h2e2nh

Ae22h12h21
dh ~92!
17450
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and calculated numerically,

a4.0.55, a6.0.85, a8.1.06. ~93!

Jacobs17 has also calculated the expansion ofsns overg and
t but in a numerical way. Similar to Eq.~92!, analytical ex-
pression fora4 was done in Ref. 32.

One can now express the vortex structural factorszn
(N)

@Eq. ~72!# for N@1 via theN-S interface factorsan . TheN
-quanta vortex~29! can be viewed as the cylindrical norma
state domain of radiusr N'A2N surrounded by theN-S in-
terface. The domain energy is written as

«N5pr N
2 hc12pr Nsns , ~94!

wherepr N
2 hc is the energy of the condensate break inside

domain and 2pr Nsns is the domain-wall energy. Compar
son of Eqs.~94! and ~71! gives

zn
(N)511

an

AN
, N@1. ~95!

It is interesting to note that formula~95! can be extrapolated
to smallN with an accuracy 5 – 8 %.

VII. H -T PHASE DIAGRAM

We are now in a stage to discuss the properties ofH-T
diagram of a superconductor withk;1/A2. ~We use again
the dimensional variables.! Partially, this question was con
sidered in Ref. 17 on the basis of Neumann-Tewordt ext
sion of GL equations to the low temperature. The advant
of our approach is that it allows to get the structure ofH-T
diagram in a unified way from a simple perturbation fun
tional ~59!. This functional depends on three driving param
etersh0 , t, andg that are controlled by experimental cond
tions and on three phenomenological parametershc2 , c4, and
c6 that can be found from an experiment based on the r
tions

Hc2

Hc
511g2~c41c6!t, ~96!

S dM

dH D
H5Hc2

5
1

8pb4~g2c4t !
, ~97!

Hc

Hc1
511~z421!g1@~z421!c41~z621!c6#t, ~98!

extracted from Eqs.~60!, ~63!, ~68!, and~75!. The first value
was also called ask1(T), the second one as 4pb4@2k2

2(T)
21#, and the third one as 2k3 /ln k3.

8

We extracted the parametersc4 and c6 from magnetic
measurements in TaN~Ref. 26! and gotc4.0.30 andc6.
20.15. These parameters can be also estimated theoreti
from the microscopic BCS expression for coefficients of t
extended GL functional.21 Calculations presented in the Ap
pendix and in Tables I and II givec450.5 andc6520.09
for clean superconductor andc450.1 andc650.01 for the
dirty superconductor. Although these estimations do not t
4-10
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TABLE IV. Characteristic points inH-T diagram of superconductor withg5k22
1
2 close to zero.

Fourth-order coefficient in Tricritical pointT2 where atc6.0 theHc2(T)
energy expansion, 0 at g,c4t transition becomes discontinuous.
Hc(T)5Hc2(T) at g5(c41c6)t Triple point L2 where atc6.0 theHc(T),

Hc1* (T), andHc2(T) transition lines meet.
Hc1(T)5Hc2(T) at g5(c411.22c6)t Auxiliary point.
Short-range vortex inte- Point where 2-quanta vortex decay onto
raction is repulsive at g.(c411.26c6)t two close lying 1-quanta vortices.
sns,0 at g,(c411.55c6)t NS interface energy becomes negative.
Hc(T)5Hc1(T) at g5(c411.75c6)t Triple point L1 where atc6.0 theHc(T),

Hc1(T), andHc2* (T) transition lines meet.
Hc1

(1)(T),Hc1
(2)(T) at g.(c411.89c6)t Two separate one-quanta vortices are more

stable than one two-quanta vortex.
Long range vortex inte- Tricritical pointT1 where atc6,0 the
raction is attractive at g,(c413c6)t Hc1(T) transition becomes discontinuous.
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into account the anisotropy of TaN and the electron-pho
retardation effects in the BCS theory, they give a correct i
about the magnitude of the coefficientsc4 and c6. We as-
sume further thatc4 varies from 0.1 to 0.5 andc6 from
20.2 to 0.01; the negative value ofc6 being more probable

The H-T diagram of low-g superconductor at givenc4
andc6 can be obtained from comparison of relative locati
of critical fields~60!, ~63!, and~75! and characteristic critica
points that were calculated in Sec. VI and that are resume
Table IV. To avoid the narrowness of the mixed-state reg
and to clearly demonstrate the details of theH-T diagram,
we trace it in the specially normalized coordinatesT/Tc and
H/Hc whereHc depends onT linearly,

Hc5Hc8~Tc2T!, ~99!

with Hc85(4p/g)1/2a1 /Tc @Eq. ~7!#. The topology of the
H-T diagram depends on the relative strength of the coe
cientsc6 andc4 and is provided by the only driving param
eter c6 /c4. This makes our analysis more restrictive th
analysis of Ref. 17 where the six driving paramete
kc1 , . . . ,kc6 were defined to consider the phase diagram

Three possible scenario ofN-S transition can be distin-
guished.

~i! Figure 2 corresponds toc6 ,c4.0 and tog,0. Be-
tween Tc and the triple pointL1 defined by the condition
Hc(T)5Hc1(T) or

g5~c411.75c6!t, ~100!

the superconductor behaves like superconductor of typ
i.e., the discontinuousN-S transition occurs at the critica
field Hc . On the left ofL1 the N-S transition occurs via an
intermediate vortex state. TheV-S transition occurs in a con
tinuous way atH5Hc1 like in type-II superconductor. The
N-V transition has a discontinuous character close toL1. The
discontinuity lineHc2* terminates in the tricritical pointT2

defined by Eq.~67! where the fourth-order term in functiona
~64! becomes positive. On the left ofT2 the N-V transition
occurs in a continuous way atH5Hc2 and the supercon
ductor behaves like conventional type-II superconduc
17450
n
a

in
n

-

s

I

r.

When g decreases, the pointsL1 and T2 are shifted to low
temperatures and the superconductor becomes supe
ductor of type I in the whole temperature region. Wheng
increases, the pointsL1 andT2 are shifted toTc . At positive
g, the superconductor has a type-II behavior.

~ii ! Fig. 3 corresponds toc4.0, 0.c6.2c4/3 and to
g,0. Similar to case~i!, the vortex state appears on the le
of the triple point L2 that is defined by the condition
Hc2(T)5Hc(T) or

g5~c41c6!t. ~101!

The N-V transition has a continuous character and occur
H5Hc2. The type of theV-S transition is provided by the
location of the tricritical pointT1 where the long-range vor
tex interaction changes sign@condition ~79!#. The V-S tran-
sition is discontinuous betweenL2 and T1 at H5Hc1* and
continuous on the left ofT1 at H5Hc1 .Wheng decreases,
the superconductor transforms to superconductor of typ
whereas wheng increases above zero it becomes a superc
ductor of type II.

FIG. 2. H-T phase diagram of a superconductor withc4 ,c6

.0 and with g slightly less than zero. It includes normal (N),
vortex (V), and Meissner superconducting~S! phases. Solid and
dashed lines correspond to the discontinuous and continuous
sitions, and dotted lines present the auxiliary critical fields. Ma
netic field is measured in units of the temperature-dependent cri
field Hc5Hc8(Tc2T).
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~iii ! Figure 4 corresponds toc4.0, 2c4/3.c6. This case
corresponds to the experimental situation in TaN.26 Wheng
is slightly less than zero@Fig. 4~a!#, the H-T diagram is
obtained from the diagram of case~ii ! by shift of the tricriti-
cal pointT1 to the region of negative temperatures. Like
previous cases, the superconductor transforms to a supe
ductor of type I with decreasingg. Wheng increases, point
L2 goes toTc and disappears atg50. When g becomes
positive@Fig. 4~b!# the V-S transition is continuous betwee
Tc and the tricritical pointT1 that appears atTc at g50 and
is moving to the region of low temperatures with increas
g. On the left ofT1 the V-S transition has a discontinuou

FIG. 3. The same as Fig. 2 but forc4.0, 0.c6.2c4/3 when
g is slightly less than zero.

FIG. 4. The same as Figs. 2 and 3 but forc4.0, 2c4/3.c6

wheng is slightly less than zero~a! and wheng is slightly larger
than zero~b!.
17450
on-

character. At largeg, the phase diagram transforms to co
ventionalH-T diagram of superconductor of type II.
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APPENDIX: MICROSCOPIC PARAMETERS

The microscopic BCS parameters of the extended
functional ~49! were calculated in Ref. 21. The first thre
coefficients do not depend on the purity of the superc
ductor,

a5n ln
T

Tc
, ~A1!

g

2
5n

7z~3!

16

1

~pT!2
,

u

3
52

n

2

31z~5!

64

1

~pT!4
.

Heren5mpF/2p2\3 is the density of states.
Other coefficients depend on the quality of the mate

and can be calculated in two limit cases.

a. Clean limit

K5n
7z~3!

48

v2\2

~pT!2
, P52

n

20

31z~5!

64

\4v4

~pT!4
,

~A2!

R852
n

3

31z~5!

64

v2\2

~pT!4
, R952

n

12

31z~5!

64

v2\2

~pT!4
,

Q52
1

35p

31z~5!

64z~3!

\2v2

~pT!2
, L52

n

5

31z~5!

64

e2

c2\2

\4v4

~pT!4
.

b. Dirty limit

K5n
p2

48

v2\2

s1pT
, P52n

7z~3!

12348

\4v4

s1
2~pT!2

, ~A3!

R852n
p4

12348

v2\2

s1~pT!3
, R952n

p4

482

v2\2

s1~pT!3
,

Q52
1

80p

\2v2

s1s2
, L52n

p2

80

e2

c2\2

\4v4

s1
2s2pT

,

where parameterss1 and s2 are functions of the scatterin
timest, t1, andt2 in the s, p, andd channels,
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s15
\

2t tr
5

\

2 S 1

t
2

1

t1
D , s25

\

2 S 1

t
2

1

t2
D . ~A4!

From Eqs.~A1!, ~A2!, and ~A3! we calculate the micro-
scopic expressions for the parameters defined by Eq.~51!,

scl51, sd50, ~A5!
rs

un

17450
and for the GL parameterk

kcl5
3

$7pz~3!n%1/2

pTc

ueu\v2
, kd5

3$7z~3!%1/2

p2~pn!1/2

cs1

ueu\v2

~A6!

in clean and in dirty superconductors.
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