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Theory of the magnetic-field-induced metal-insulator transition
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We study the properties of electronic systems in the presence of a magnetic field. For the quasi-one-
dimensional chain, the magnetic-field-induced metal-insulator transitions are investigated with uniform and
nonuniform magnetic flux, respectively. For the two-dimensional square lattice, metal-insulator transitions can
be achieved at both zero and nonzero temperatures when staggered magnetic flux is turned on. Moreover, a
pesudogap is opened on the two-dimensional square Fermi surface. When we introduce fluctuations into the
perfect staggered magnetic field and increase its magnitude, a finite region of the Fermi surface around
(7/2,712) would be gradually formed with decreasing bandwidth. For both one- and two-dimensional cases, the
temperature and flux dependence of the induced currents are obtained and it is shown that the current state with
staggered flux distribution in two dimensions is stable.
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[. INTRODUCTION quantum systems under a magnetic field are also very attrac-
tive and essential to experimentalists.
Since the discovery of the quantum Hall effecand co- In this paper, we have investigated from a different view

lossal magnetoresistan%équantum systems under an exter- the magnetic-field-induced metal-insulator transition in
nal field have attracted much attention receft:. Among  quasi-one- and two-dimensional systems where the loops
many characteristic properties, the field-induced phase traformed by the electron hopping paths are threaded by mag-
sition in these systems is particularly interesting to both theonetic flux. The systems are somewhat different from those
reticians and experimentists. According to the scaling theoritUO”eOI before. Particularly in the two-dimensional case, we
of localization, all states in a two-dimensional system arehave used the Hubbard model to study the interacting elec-
localized. Some early studies agreed with thistron system with the Hartree-Fock approximation. A field-
conclusiont?~*® However, in the presence of a magnetic induced pseudogap behavior was found to appear.

field, extended states can appear due to the broken time- These systems we have studied are something like perfect
reversal symmetry, as shown for the quantum Hall sygtdm. networks of Aharonov-BohriAB) rings?? So we also study
Theoretically, a magnetic-field-induced metal-insulator tranthe AB effect and the induced current distributions in these
sition due to a random magnetic field in a two-dimensionalystems. Under the effect of an external magnetic field the
noninteracting electronic system has been confirmed by seyaves describing the currents propagating from left to right,
eral groups® They have argued that in the presence of adlong two branches of the ringhe AB ring), suffer a phase
random magnetic field the states in the center of the band aghift. Because of the phase shift there is a constructive or
delocalized and the density of states exhibits singularity. Exdestructive interference, reflected in the conductance as a
perimentally, metal-insulator transitions have been observegeriodic function with periodpo=hc/e.

in two-dimensional electron systems in silicotf. There has The paper is organized as follows. In the next section,
also been a report on the metal-insulator transition in théluasi-one-dimensional chains are discussed by using the
presence of spin-orbit coupling in two-dimensional tight-binding model as an illustration, for all the states would
systems! Furthermore, Ugajin found a sharp electric-field- be localized and so there is no metal-insulator transition at
induced metal-insulator transition in a two-dimensional two-all if any interaction between particles or disorder are
|ayered Systerﬁ? The apparent conflict between these e)(.COﬂSidel’e&.&Z4 We will first introduce uniform magnetic
periments and the scaling theory of localization has beeflux and study the one-band and the two-band cases, respec-
resolved recently by formulating the scaling theory in thetively. Second, nonuniform magnetic flux is introduced and
presence of electron-electron interactidhddowever, it is the one-band case is considered. In Sec. lll, we investigate
not clear what would happen on the metal-insulator transithe two-dimensional square lattice with a staggered magnetic
tion when the interaction between electrons and the magnetféix. In addition we also study effects of electron-electron
field are both present. This is the issue we want to resolvecorrelation by using the Hubbard model. Disorder effects are
More recently, the electronic transmission properties withalso studied in this section. We summarize our conclusions
inhomogeneous flux in quasi-one-dimensional chains havé Sec. IV.

been studied numerically and show very interesting transmis-

sion_ behavior _Which _migbt be usefL_JI _in the applic_ation to II. QUASI-ONE-DIMENSIONAL CASE

fabricate special devicés 2! In fact, it is now experimen-

tally possible to construct and detect the inhomogeneous In this section, we study a quasi-one-dimensional system
field at the scale of deep subm and thus the properties of with lattice structure as shown in Fig. 1. Each lattice site is
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“a“n»a I(i)zi_ehtEk sin(kax 6/2)fe(ey), (5)

FIG. 1. A quasi-one-dimensional chain with sites connected tovherefq(e,)=1/(1+ef(¢ ) andN is the total number of
each other by two hopping paths. Each loop is threaded by a uniattice sites. From Eq(5), it can be seen tha‘iﬂ: _|(_),
form magnetic fluxe. which is nothing but the condition for a circulating persistent

current in a ring. At zero temperature, one gets
connected to its nearest neighbor by a loop which is threaded

by a uniform magnetic fluxp. If $=0, the system is just
described by the usual tight-binding model with the follow-
ing Hamiltonian:

4et
I(H:sgr(rr—é)Tsin(ﬁ/Z) (0< o< ). (6)

Note that wheng is modulated through the valug=3 ¢,
the current changes direction abruptly. This is attributed to
H =2 €,C5 Cia—2 > (t,m/citla,chr H.c), (1) the exchange between the top and the bottom of the energy
he iaa’ band.

Next we turn on the electric fiel&# and discuss its influ-
ence on the conductance. According to the Boltzmann trans-
port equation, one obtains the deviation of the momentum
distribution of electronssn, from its equilibrium valuenﬁ

where « denotes the energy level arg represents the site
energy of the system, respectively. Here, we omit spin indi
ces for simplicity. Hopping integrals,,. are real quantities
for ¢ equal to zero. However, ity is nonzero, electrons
propagating along the upper and lower paths of the chain fr(€),

would acquire a different phase shift and that would induce an°

an interference between them, due to the Aharonov-Bohm 5nk=—eEr(k)—k, 7)
effect?? This means that the hopping integrals will be modu- a(fk)

lated by the external magnetic field through a field-\yhere £(k) is the relaxation time at momentuta which
dependent phase factor: should be independent ef and can be determined by con-
sidering the detailed scattering procés<Combining Egs.
(6) and(7), one can obtain an additional field-dependent part
of the current at zero temperature:

2t—te' 2+ te'92=2t cosl2, 2

where §=2w¢/¢py, and ¢ppo=hcle is the magnetic-flux

quanta. 2¢cat eE
First, let us investigate the single-band case at half filling. ol (“:TZT 7(Kg)|cosdl2)
The energy spectrum is then
4e’a Et
€,= — 4t coq 8/2) coska, ©) = 7(kg)|cosél2|=6l ). )

and the bandwidth i8V= 8t|COS(S/2| It is obvious thatWV is Then one gets the total induced currefit= 3l (+)+ Sl )

a periodic function ofp with period ¢, although the energy =26 (+) and the conductance

spectrume, is a function with period 2y, not ¢, for e

changes sign whewh= ¢,. In fact, the characteristic of pe- 2e? 27(kgp)t 2e? 27(kg)t W

riod 2¢, could not be detected in experiments, because the o= Np|e0sd2l= - — ar 9

Fermi levels corresponding to the two cases are identical, ) o . .

and the majority of thermodynamic quantities depend mostlyrgain, the conductance is a periodic functiongbfvith pe-

only on physical properties of electrons near the Fermi levelliod ¢o. Also the conductance is proportional to the band-

In the following discussion, we shall show that the transportidth W. SinceW can be modulated continuously from 0 to

properties(for example, current and conductanheee also 8t the conductance also changes from zero to a finite value.

periodic functions ofg with period ¢, . Thus_ the system could undergo a metal-insulator transition
With the energy spectrum given by E@®), let us calcu-  continuously _ o _

late the current of each channel in the system without apply- Second, let us consider the situation with two levels per

ing external electric field. Accordingly, the “left” and Site, i.e., the two-band case, described by the following

“right” symmetry is held so the current could occur only in model Hamiltonian irk space:

the form resembling the persistent curf@af found in me-

soscopic rings. Let " and “ —" denote the current flow- H= > (€xaCe Ckt Ek[;d;dk)JrE Y(dy e+ H.c),

ing in the upper and lower channels, respectively, one has K k

(10)
€ herea and g refer to the two energy levels, andd, are
| o)=o (te*19%(c, jc)—H.c). gy W : ot gy R k
(=) h( {CivaCi) ) @ corresponding annihilation operators, and other parameters
are
After simple manipulations, the following expressions for
the current can be obtained: €o= €,— 4t,, COSS/2C0SKA,
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FIG. 2. Induced current versus
magnetic flux¢/ ¢y for the two-
band case at half filling(solid
line) and full filling (dotted ling.
Parameters aree,—e€z=1, t,,
=1, tﬁﬁ=0.3, taB=0.1. Inset:
band gap versus the magnetic flux.

Current

0.0 02 04 06 0.8 1.0
(9/9,)

€xp= €5~ Mg COSSI2 coska, _&

l(+) hsinélzzk: coska{f (e )[taalex — €1

+1tg5( €k — €ak) 2t vl —f(e)
Yk= 41,5 C0SS/2 coska, (11

X [taa( Ek_ - eﬁk) + tﬁﬁ( Ek_ - Eak) - Ztaﬁ’)’k]}'

(14)
with €, ande being the site energies,, andtgg intraband  The flux dependence of the currents at half filling and full
hopping transfers, ant,z interband transfers. The energy filling are shown in Fig. 2. It can be seen that at half filling,
spectrum is the direction of the current changes abruptlygt2, similar

to the uniform flux case discussed above. While at full fill-
ing, the current oscillates aroundy/2 and its direction
1 changes four times in a period @ which is quite unusual.
x_= + \/ﬁ ' This oscnlatlo'n of the current comes from the competition
& 2{(Ek“+6kﬁ) (€a™ €p)+ %d (12 between the intraband and interband currents, for they are
opposite in directions.
Compared with the one-band case, there exists an energy
The total current in the absence of external electric field fo9ap for the two-band case and the band gape, (min)
each channel is the sum of the intraband and interband cur- €& (Max) is also a periodic function of with period
rents, ¢o. What is important is that the band gapcould be modu-
lated by the external magnetic field, by which many proper-
ties of the systentfor example, electromagnetic absorption
could also be modulated by the magnetic field. Note that we
expect a metal-insulator transition to occur at full filling by
modulating¢ if the parameters are so properly selected that
the system is actually gapless in one regiongoind has a
Htap(dic))—Hel=—1.,. (13)  band gap in the other regigsee the inset in Fig.)2This is
another type of magnetic-field-induced transition.
Finally we consider the one-band case with nonuniform
magnetic flux, shown in Fig. 3, where the loops of the hop-
These expectations can be calculated exactly and we olping channels are threaded by magnetic fludgsand ¢,
tain the following result for the current: alternatively. The energy spectrum is simply

e .
I(+):g[elglz(taa<ci++lci>+tﬁﬁ<di++1di>+taﬁ<ci++ldi>

€ = * |yl = = 2tcog 6,12+ cog 6,12+ 2 c0ss,/2 coss,/2 cos Xa, (15
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FIG. 3. A quasi-one-dimensional chain with sites connected to
each other by two hopping paths. Each loop is threaded by an
alternating magnetic fluxp; and ¢, .

where 6,=2m¢;/ ¢y (i=1,2), and the band gap is

A =4t|cosé,/2—c0s6,/2)|. (16)

Equation(16) tells us that by adjusting magnetic fluxs,

and ¢, properly, the band gap can be changed continu-
ously from 0 to & For the half filled case, the lower sub-
band is full filled completely while the upper subband is
empty, so whetheA is zero or not would affect drastically
the conducting properties of the system. When the system is
changed from the state &f=0 to A #0, the effective lattice
constant is also changed fromto 2a, and a Peierls-like

PHYSICAL REVIEW B63 174434
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metal-insulator transition occurs. This type of transition is

different from the conventional Peierls transitttA’because

there is no occurrence of lattice distortion. It is actually a

magnetic-flux-induced metal-insulator transition.

Ill. TWO-DIMENSIONAL CASE

For two dimensions, we study the Hubbard Hamiltonian

defined on the square lattice,

H=—> tij €/ Cio T U ni Ny,
(ij)o i

where(ij) denotes nearest neighbotg,is the hopping inte-

17

FIG. 4. A two-dimensional square lattice with plaquettes is
threaded by alternative flug and — ¢. Electrons hopping along the
arrows in the figure would suffer a phase shi4, where §

=27l .

where we have divided the lattice into two sublattices wjth
andd; the corresponding annihilation operators.

When staggered magnetic fluxes are introduced through
the plaquette of the square lattice, as shown in Fig. 4, an
interesting competing mechanism between the Coulomb re-
pulsion and the staggered field would appear. The Coulomb
repulsionU tends to arrange nearest-neighbor spin pairs an-
tiparallel, i.e., establishes antiferromagnetic ordering, while
the staggered magnetic flux in each plaquette tends to turn

gral, andU is the Coulomb repulsion. We restrict ourselvesthe spins on the corners of the plaquette parallel to the direc-
to the half filled band case. For this particular case, it is quitdion of the flux, i.e., suppresses the antiferromagnetic order.
clear that there exists long-range antiferromagnetic orderinghus in the presence of the staggered magnetic flux, a critical
for any nonzeroJ. Although the Hartree-Fock approxima- value of Coulomb repulsiotd. is needed in order to have
tion usually overestimates symmetry breaking, it does givéhe antiferromagnetic order.

the correct answer for the half filled band case with sroall

As before, the hopping integral of electrofsshould be

as validated by early analytical and numerical studies. Thenodified because electrons hopping from one site to its near-

Hartree-Fock decoupling of the Hubbard interaction gives

NioNig=(Ni)Niz+ Ni{Niz) = (Nie)(Ni7)- (18

Assuming long-range antiferromagnetic order, we have

(M= 5 +(~Diom, 9
wheren (=1 for the half filled band studied herés the
average number of electrons per site amds the antiferro-
magnetic order parameter defined by=1/2((n;—n))).

The mean-field Hamiltonian is given Hpmitting the con-
stant term

Hue= 2 [

io

un

T‘qu

Un
CiJrCi‘f‘(T_mU)drdi

-> (tjci i, +tidf ci,),

g g (20)
ine o

est neighbors would suffer phase shifts according to the AB
effect?” Selection of these phase shifts is arbitrary as long as
it ensures that electrons circling a plaquette once suffer a
phase shiftd (6=2w ¢/ ¢y as beforg In the appendixes, we
shall present more discussions on this point. Here, we adopt
a symmetric phase configuration, as shown in Fig. 4. Elec-
trons hopping alongagainst the arrows suffer a phase shift
of 6/4(— 5/4). Specifically, one hat; =t exp(d;) and

<|]>:(011)1 (01_1)! (110)! (_110)1

8 =—0l4, —ol4, 84, 5l4. (21)

Thus the mean-field Hamiltonian kspace is

HeS) { un

—+Umo
ko

+
2 Ckacka+

Un N
7— Umo dko'dko'

— ; (yCyy iy + H.C), (22)
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FIG. 5. Normalized density of states versus energy for different
magnetic fluxes, wherp= ¢/¢$, and m=0. The curves are sym-
metric with respect tab=0.5¢,, i.e., the curve fop which is less
than 0.5 is exactly identical to that for-1p.

FIG. 6. The critical valuéJ ./t versus magnetic flux/¢,. The
curve is symmetric with respect t¢=0.5¢,, and periodic with
period ¢ .

have proved the statement that the existence of staggered

where magnetic flux suppress the occurrence of antiferromagnetic
y=2te 5"‘coskxa+2te‘i5’4coskya, (23) ordering. In fact, in the larg® limit, we have
and the energy spectrum is 1 t? t
m=-—4—+3(1+cog 8) —, (27
Un 2 U u
*+_ [ 2 2
€k _Ti |y “+ (Um) and it can be seen that finit@ decreasesn. Now we can

achieve a magnetic-field-induced metal-insulator transition
by modulatingg if U is less tharU{'®*~0.738. This transi-
tion happens because antiferromagnetic order would disap-
pear in a certain region of [where U.(¢)>U] and the

Un
= 2t[cos k,a+ cos kya+ 2 cosk,a cosk,a

21172
X €osd/2+ (Um/2t) "], (24 system changes from an insulaferhereU (#)<U] into a
The antiferromagnetic order parametaris determined by ~metal. _
the following self-consistent equation: The bandwidthW and the band gap are
U fle)—f(el) W=2t\2(1+]|cosé/2])+(Um/2t)2—Um, (28
== ———. (25
N nd?+(Um)? A=2Um. (29

For the half filled case, the lower subband is completely,
filled while the upper subband is empty. When the staggere

magnetic flux is zero, the Fermi surface is nested- k= trum €, is with period 2. This should be an intrinsic prop-

+m. However, as one turns on the staggered magnetic flux, 1, ' regardiess of dimensionality. From Fig. 5, it can be seen
the Fermi surface consists of four points:7/2, = /2). The q&g A Y. g: >,

. . . . that the bandwidth is a decreasing function @fwith ¢
original square Fermi surface has been concave inside, whi nging from O to 0.B,. This means that the effective elec-
is illustrated in Fig. 5_ by the shifted pea_lks of the density_ oftron hopping would be suppressed by increasing the stag-
states ap= ¢/ ¢ varies. Because of this property, the sin- gered magnetic flux within that region.
gularity in Eq.(25) is, however, very different from the situ- When antiferromagnetic order is absem=0, a “d-
ation without magnetic flux ¢=0) and the integral or the wave-type” pseudogap would be opened (,)n :[he original
sum of Eq.(25) always converges. Thus there exists a NONEarmi surface cols+Cosk, =0
zero critical valueU for the onset of the antiferromagnetic ' ’

nce more, one sees that bathandm (hence the band gap
) are functions ofp with period ¢, while the energy spec-

order A=RK|cosk,—cosk,|, (30)
e . where
Uc= NEK |7k| , (26)
Ag=2v2t\1-][cosé/2|. (31)

and we show its dependence on magnetic #uin Fig. 6.
This is similar to the case of introducing next-nearest-The density of states near the Fermi surface is
neighbor hopping2?>*although their mechanisms are differ-

ent. Here, the nonzeld, is caused by the magnetic flux and _ ™ tlai

it can be changed as one tunes the magnetic flux. Thus we p(e) |sin8/2]t? [l when [e]<t|sina/2]. (32
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FIG. 7. Induced currents ver-
sus magnetic flux¢/¢, for U
=4t. The inset shows the flux de-
pendence of sublattice magnetiza-
tion m.
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As a comparison, we give the density of states for the normaFig. 4. The only difference is that in a period af,, the
state with¢=0 direction of the induced current changes twice.

Now let us discuss the stability of the current distribution.
With staggered magnetic fluxes introduced, persistent current
The power-law behavior op(e) will be reflected in most  Will occur in the system. The total magnetic flux does not
thermodynamical properties of the system. come merely from the external field, for there exists addi-

For comparison to the quasi-one-dimensional case, wdonal magnetic fluxes produced by the induced current. The
also investigate the flux dependence of the field-induced cumdistribution of these self-induced magnetic fluxes can deviate
rent of the system. Explicitly, let us consider the current infrom the perfect staggered distribution. In Appendix A, we

[pn(e)xIn|e| when |g|<t|]. (33

the x direction. Straightforward evaluation gives have studied this fluctuation effect in detail and have come to
the conclusion that the staggered magnetic-flux state or the
|X:2_et|m(ei et di)) symmetric current state is stable under fluctuation.
h Since the perfect staggered magnetic-flux state is stable, it
det A A is interesting to know what will happen if by any chance
= WEK Im(eoa@t 194k dy )) there is a fluctuation to the flux configuration shown in Fig.

4. Such fluctuation could come from disorder in the hopping
integral, destruction of antiferromagnetic background due to

et
= —sin(8/2)A(6), (34) the motion of electrons, etc. To start, we discuss the case
h corresponding to the magnetic-flux configuration as shown in
where Fig. 8(b):
1
A(5)=—f dk cogkea)cogkya)/ | v+ (Um)2. A s Bs
27 JkeBz Y .
+ + + +
(35) g_fDq)l -9, 0, Oy 0,0, |0,
The flux dependences of the current is shown in Fig. 7. As 5 173, S Y
before, the induced current is a function ¢fwith period 50,5 =0, 0, -0, Po[ @y [0l 0 i
¢o. The induced current exhibits no oscillation behavior as | h s +
we observed for the quasi-one-dimensional case whengflux =0, 9, -0, 9, O, 70,0, |0 2
is modulated throughs ¢,. Instead, it changes smoothly e Y
through zero. In a similar manner, one obtains the current ¢2 —¢2 ¢2 —¢2 ¢ 2|0 1 -0 2| 0 1
flowing in other directions,
(a) b)
I_=—ly=—1_y=I. (36

FIG. 8. A symmetric deviation to the staggered magnetic field is
Using the translational invariance, one can get the distribumade in the system. A, B, C, and D are the four types of sites in the
tion of the induced current of the whole system. The distri-corresponding sublattices, ant] and &, are the phase shifts of
bution is exactly the same as that shown by the arrows irlectrons hopping along the arrows.
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o band are delocalized, i.e., extendgdthe conductivity
o @ 70 would increase continuously with the fluctuation of the stag-
0a 04 gered magnetic fieldii) When é¢ is large enough, the DOS
02 02 /M%\ resembles that for the tight-binding model in the absence of
R e T I e e the staggered magnetic field because the singularity of the
10 10 @ DOS at zero energy was recovered gradually. Similar calcu-
o © o lations for =0 have also been performed and the singular-
04 04 ity at zero energy are still present. This feature is in agree-
02 M 02 ment with previous resul&®? (i) The bandwidth is a
e S B R I e T R decreasing function af¢. This means that the effective elec-
10 10 ' tron hopping can be suppressed by the fluctuation of the
08 (e) 08 ® C e
o5 o5 staggered magnetic field.
0.4 0.4 //\AL'\
0.2 0.2
R B R R R L IV. SUMMARY

FIG. 9. Density of states for various values of disorder strength [N summary, we have investigated magnetic-field-induced
for the same staggered magnetic field withe 0.2¢, and (8) ¢  metal-insulator transition by studying the tight-binding and
=0.2¢; (0) 6¢p=0.4¢,; (c) 5¢p=0.6¢,; (d) 5¢=0.8¢4,; (¢  the Hubbard models with hopping integral modulated by
8p=1.0¢y; and(f) S¢p=1.2¢,. magnetic flux in one and two dimensions. In one dimension,

the one-band model with uniform as well as alternating mag-
bi=¢d* 8¢y, by =d* by, (37)  netic qu>§ and the two-band model are considered an_d com-
pared with each other. We showed that a magnetic-field-
where 5¢, ;) are small fluctuations. For this configuration, induced metal-insulator transition can be achieved. The
we have calculated energy dispersion and found that zerbandwidth, the energy gap, and the conductance were calcu-
gaps occur at the following 16 points: lated and we showed that they are all periodic functiong of
with period ¢¢. Such periodic behavior is also true in two
dimensions so it is an intrinsic property, regardless of dimen-
sionality. For the two-dimensional case, we found that the
staggered magnetic flux suppresses antiferromagnetic order-
ing. Peaks in the density of states are shifted by the magnetic
flux. The magnetic-field-induced metal-insulator transitions
™ can also be realized. The introduction of staggered magnetic
2750 flux opens an anisotropid-wave pseudogap at the Fermi
surface. Thus most thermodynamical properties of the half
Thus, compared with the case of perfect staggered magnetiiled system should follow power laws at low temperatures.
flux, Eq. (30), the number of points on the Fermi surface The distribution of induced current was analyzed. It satisfies
with zero gap is quadrupled. For the configuration shown irthe conservation law and exhibits no anomalies. The stability
Fig. 8@ which is a special case of Fig.(t8 with 8¢, of the distribution of induced current was discussed and we
= 6¢,, the number of points with zero gap is just doubled.found that the symmetric current distribution is stable. We
So we expect to have finite density of states with zero gap oalso studied the effect of different phase configurations and
the Fermi surface as the fluctuation in magnetic flux becomefpund that they have no effect on the physical properties of
strong. To investigate this problem, we introduce randomihe system(see the Appendixes for more detiilss ex-
ness into the magnetic flwk such that pected. Finally, we introduced fluctuations into magnetic flux
and studied its effects on the density of states. We showed
that the system developed a finite portion of Fermi surface
. with zero gap around four point{s: #/2, *+7/2), whereas for
W.hefe RAND—1, 1] stands for random numbers uqurmly the perfect staggered magnetic-flux case, these four points
d'Str'.bUIe.d Qver—l_ and 1. For _random_bi » an analy.t|call are the only points on the Fermi surface with zero gap. Thus
solution is impossible so we diagonalize the Hamiltoniang,e conqyctivity of the half filled band would increase with

matrix numerically for a 48 40 site lattice as an illustration. the fluctuation. The bandwidth is a decreasing function of the
In Fig. 9, we present results of the density of std@®©S  g,ctuation.

for ¢9=0.2, ¢/ p9=0.2, 0.4, 0.6, 0.8, 1.0, and 1.2. Some
wiggles appearing in Fig. 9 are just finite-size effects. Here
we assume that there is no antiferromagnetic ordering, i.e.,
A=0. We observe that a8 is increased(i) the system has
more and more states with zero gap, i.e., the Fermi surface We wish to acknowledge financial support from the Re-
has evolved from several points to a finite region aroundsearch Grants CoundiRGC) of the Hong Kong Special Ad-
points (£#/2, =m/2), consistent with the conclusion we ministrative Region under project CUHK 4190/97P and the
draw for Fig. 8b). Since the states in the center of the energyChinese Nature Science Foundation.

(39)

where

W(+)=5——(6¢1% 6¢y). (39

di=(—1)x"ypo+ 5p*RAND[ — 1, 1], (40)
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APPENDIX A
In this appendix, the stability of the staggered magnetic- 0] 0|00 0| ¢ 0| ¢
flux state or the symmetric current state is studied. To ad- Ol-0! 0 |-0 O —=0| ¢ -0
dress this question, let us consider other distributions which
have small deviations from the staggered one shown in Fig. -0 0 |-0| ¢ -0 ¢ | -0
4. We treat these deviations as perturbations and see what
will happen. For simplicity, we consider the case of small o -0 ¢ -0 O |-0| 0 [0

(U<U.) so thatm=0. For physical consideration, let us
discuss the case shown in FigaB where a symmetric de-
viation is made. Withp,= ¢ — ¢ and p,= ¢+ 5¢, the re-
duced Hamiltonian is given bfge set the lattice constant to
be 1 herg

FIG. 10. Another two kinds of distribution of phase shift. Elec-
trons hopping along arrows suffer a phase slét: 82, and(b) 6.
These configurations ensure that any electron circling a plaquette
suffers a phase shiff.

H=—t; (26791 cosk By A+ (€' %37 Ky + el 27Ky C A
. o . _ 2t?sin? 5/22 |cosk,| 1
+(e"1%*iky 4 @=1%27iky) D FB, + 2/ %1 cosk,D, Cy 7~ TJcosai2] 4 cosk,] Vla?+|d[?—2[a||d||coss/2|
+H.c), (A1) .

whereA, /B, /C, /D, refer to annihilation operators at sites
A/B/C/D and

moh

=061—Y, 63=0.1YV,
b0 1—Y, o3=o1tYy

(A2)

o
5125 bl g, 6,=01—

with y= 8¢/ pg being a small quantity. The equation that

determines the energy spectrum is

where
a=2te'1cosk,, b=2te"’rcogk,+y),
c=2te"1cogk,— ). (A4)
The energy spectrum is
o= *[3((2la]*+[b[*+[c[*) ={(2|a]*+[b[*+|c[*)?

—4[|al*+|b|?c|?—2 Rgabc) ]} 212 (A5)

The ground state of the system is the state with the two low

subbands filled and the two higher subbands left completel
empty. After tedious calculations, we get the ground-stat

energy of the system,

E= EO+ 77y21 (A6)

(A7)

~ J[a]%+|d?+ 2[a]|d|[cos/2)

with d=2te'’1 cosk,. Obviously, >0 soE, is the mini-
mum energy of the ground state, i.e., the distribution of the
current discussed is stable.

APPENDIX B

In this appendix, we address the question of whether the
distribution of current and other properties depend on the
selection of phase configurations or not. The similarity be-
tween the distribution of current and the symmetric phase
configuration should be a coincidence, because the selection
of phase configurations can be quite arbitrary and the current
distribution should be independent of it. In the following
discussions, we shall consider two other different phase con-
figurations and come to the same conclusion: the different
selection of phase configurations has no effect on the physi-
cal properties of the system.

First we choose one kind of phase configuration as shown
in Fig. 10, where electrons hopping alori@gainst the
arrows suffer a phase shifi2 (—&/2). Obviously, this dis-
tribution satisfies the requirement that electrons circling
around an “atom cell” once would suffer a phase shift
The system could also be described by the Hamiltonian Eq.
(22) with vy, substituted byy,,

i6/2

vk =te'”“cosk,a+t coska. (B1)

Becausey,| is exactly identical tdy,|, the energy spectrum

in this case is identical to the former, E@4). So thermo-
er ; o . T
dynamic quantities certainly do not change. Considering the

eXurrent in thex direction, one has

2et .
—— Ime?Xcl,dy),

(B2)

Ix

and it is exactly the same as before. After some manipula-

whereE, is the ground-state energy of the unperturbed systions, one gets the same result as &4). Hence the distri-

tem and

bution of the current is still shown by the arrows in Fig. 4.

174434-8
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Now let us consider another kind of phase configuration et N
|m<ci+xdi>'

shown in Fig. 10b), where electrons hopping aloifagainst |x=7 (BS)
the arrows suffer a phase shét Similar to the above case,
the system could also be described the Hamiltonian(#2).  Straightforward calculation gives
with 7y, substituted byyy,
LI 2> k
Yi=t(e™@+ e at1%) 4 2t cosk,a. (B3) =Nz Sino T cogk.a@
The corresponding energy spectrum is fe(| v —fe(=1 )
— 6/2)coskya m
un v 5 | bk
o=—= V|7l +(Um)
2 det
= Tsm( SI2)A(6). (B6)

on, 2t[cos(ka— 8/2) + cos k,a+ 2 cogk,a o
2 The currentl, is identical to the result of Eq.34), so the
22172 current distribution does not change, either.

~ dl2)coskya cosaf2-+ (Um/2t) 7] (B4) One can choose any other different phase configuration
The energy spectrum looks different from Eg4), but the  and then obtain different Hamiltonians and dispersion rela-
only difference is that the wave vector of the former has beeitions but with the same result: all the differences are super-
uniformly shifted by(&/2, 0), relative to the latter. The par- ficial and have no effect on the physical properties of the
tition function Z does not change, becau&as a sum over system. The different phase configurations just correspond to
the wholek space in the Brillouin zone. Thus thermody- the different magnetic vector potential for the same magnetic
namic quantities do not change, either. Similar to the abovéield. As a matter of fact, this is nothing but the consequence

case, the current in thedirection is

of gauge invariancé?
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