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Theory of the magnetic-field-induced metal-insulator transition
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We study the properties of electronic systems in the presence of a magnetic field. For the quasi-one-
dimensional chain, the magnetic-field-induced metal-insulator transitions are investigated with uniform and
nonuniform magnetic flux, respectively. For the two-dimensional square lattice, metal-insulator transitions can
be achieved at both zero and nonzero temperatures when staggered magnetic flux is turned on. Moreover, a
pesudogap is opened on the two-dimensional square Fermi surface. When we introduce fluctuations into the
perfect staggered magnetic field and increase its magnitude, a finite region of the Fermi surface around
~p/2,p/2! would be gradually formed with decreasing bandwidth. For both one- and two-dimensional cases, the
temperature and flux dependence of the induced currents are obtained and it is shown that the current state with
staggered flux distribution in two dimensions is stable.
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I. INTRODUCTION

Since the discovery of the quantum Hall effect1,2 and co-
lossal magnetoresistance,3,4 quantum systems under an exte
nal field have attracted much attention recently.5–11 Among
many characteristic properties, the field-induced phase t
sition in these systems is particularly interesting to both th
reticians and experimentists. According to the scaling the
of localization, all states in a two-dimensional system
localized. Some early studies agreed with th
conclusion.12–16 However, in the presence of a magne
field, extended states can appear due to the broken t
reversal symmetry, as shown for the quantum Hall system1,2

Theoretically, a magnetic-field-induced metal-insulator tra
sition due to a random magnetic field in a two-dimensio
noninteracting electronic system has been confirmed by
eral groups.5–8 They have argued that in the presence o
random magnetic field the states in the center of the band
delocalized and the density of states exhibits singularity.
perimentally, metal-insulator transitions have been obser
in two-dimensional electron systems in silicon.9,10 There has
also been a report on the metal-insulator transition in
presence of spin-orbit coupling in two-dimension
systems.11 Furthermore, Ugajin found a sharp electric-fiel
induced metal-insulator transition in a two-dimensional tw
layered system.17 The apparent conflict between these e
periments and the scaling theory of localization has b
resolved recently by formulating the scaling theory in t
presence of electron-electron interactions.18 However, it is
not clear what would happen on the metal-insulator tran
tion when the interaction between electrons and the magn
field are both present. This is the issue we want to reso
More recently, the electronic transmission properties w
inhomogeneous flux in quasi-one-dimensional chains h
been studied numerically and show very interesting transm
sion behavior which might be useful in the application
fabricate special devices.19–21 In fact, it is now experimen-
tally possible to construct and detect the inhomogene
field at the scale of deep sub-mm and thus the properties o
0163-1829/2001/63~17!/174434~9!/$20.00 63 1744
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quantum systems under a magnetic field are also very at
tive and essential to experimentalists.

In this paper, we have investigated from a different vie
the magnetic-field-induced metal-insulator transition
quasi-one- and two-dimensional systems where the lo
formed by the electron hopping paths are threaded by m
netic flux. The systems are somewhat different from tho
studied before. Particularly in the two-dimensional case,
have used the Hubbard model to study the interacting e
tron system with the Hartree-Fock approximation. A fiel
induced pseudogap behavior was found to appear.

These systems we have studied are something like pe
networks of Aharonov-Bohm~AB! rings.22 So we also study
the AB effect and the induced current distributions in the
systems. Under the effect of an external magnetic field
waves describing the currents propagating from left to rig
along two branches of the ring~the AB ring!, suffer a phase
shift. Because of the phase shift there is a constructive
destructive interference, reflected in the conductance a
periodic function with periodf05hc/e.

The paper is organized as follows. In the next secti
quasi-one-dimensional chains are discussed by using
tight-binding model as an illustration, for all the states wou
be localized and so there is no metal-insulator transition
all if any interaction between particles or disorder a
considered.23,24 We will first introduce uniform magnetic
flux and study the one-band and the two-band cases, res
tively. Second, nonuniform magnetic flux is introduced a
the one-band case is considered. In Sec. III, we investig
the two-dimensional square lattice with a staggered magn
flux. In addition we also study effects of electron-electr
correlation by using the Hubbard model. Disorder effects
also studied in this section. We summarize our conclusi
in Sec. IV.

II. QUASI-ONE-DIMENSIONAL CASE

In this section, we study a quasi-one-dimensional sys
with lattice structure as shown in Fig. 1. Each lattice site
©2001 The American Physical Society34-1
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connected to its nearest neighbor by a loop which is threa
by a uniform magnetic fluxf. If f50, the system is jus
described by the usual tight-binding model with the follo
ing Hamiltonian:

H5(
i ,a

eacia
1 cia22 (

iaa8
~ taa8ci 11a8

1 cia1H.c.!, ~1!

wherea denotes the energy level andea represents the site
energy of the system, respectively. Here, we omit spin in
ces for simplicity. Hopping integralstaa8 are real quantities
for f equal to zero. However, iff is nonzero, electrons
propagating along the upper and lower paths of the ch
would acquire a different phase shift and that would indu
an interference between them, due to the Aharonov-Bo
effect.22 This means that the hopping integrals will be mod
lated by the external magnetic field through a fie
dependent phase factor:

2t→teid/21te2 id/252t cosd/2, ~2!

where d52pf/f0 and f05hc/e is the magnetic-flux
quanta.

First, let us investigate the single-band case at half filli
The energy spectrum is then

ek524t cos~d/2!coska, ~3!

and the bandwidth isW58tucosd/2u. It is obvious thatW is
a periodic function off with periodf0 , although the energy
spectrumek is a function with period 2f0 , not f0 , for ek
changes sign whenf5f0 . In fact, the characteristic of pe
riod 2f0 could not be detected in experiments, because
Fermi levels corresponding to the two cases are identi
and the majority of thermodynamic quantities depend mo
only on physical properties of electrons near the Fermi le
In the following discussion, we shall show that the transp
properties~for example, current and conductance! are also
periodic functions off with periodf0 .

With the energy spectrum given by Eq.~3!, let us calcu-
late the current of each channel in the system without ap
ing external electric field. Accordingly, the ‘‘left’’ and
‘‘right’’ symmetry is held so the current could occur only i
the form resembling the persistent current25,26 found in me-
soscopic rings. Let ‘‘1’’ and ‘‘ 2’’ denote the current flow-
ing in the upper and lower channels, respectively, one h

I ~6 !5
e

\
~ te6 id/2^ci 11

1 ci&2H.c.!. ~4!

After simple manipulations, the following expressions f
the current can be obtained:

FIG. 1. A quasi-one-dimensional chain with sites connected
each other by two hopping paths. Each loop is threaded by a
form magnetic fluxf.
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I ~6 !5
2et

N\ (
k

sin~ka6d/2! f F~ek!, ~5!

where f F(ek)51/(11eb(ek
2e)) andN is the total number of

lattice sites. From Eq.~5!, it can be seen thatI (1)52I (2) ,
which is nothing but the condition for a circulating persiste
current in a ring. At zero temperature, one gets

I ~1 !5sgn~p2d!
4et

h
sin~d/2! ~0,d,p!. ~6!

Note that whenf is modulated through the valuef5 1
2 f0 ,

the current changes direction abruptly. This is attributed
the exchange between the top and the bottom of the en
band.

Next we turn on the electric fieldE and discuss its influ-
ence on the conductance. According to the Boltzmann tra
port equation, one obtains the deviation of the moment
distribution of electronsdnk from its equilibrium valuenk

0

5 f F(ek),

dnk52eEt~k!
]nk

0

]~\k!
, ~7!

where t(k) is the relaxation time at momentumk which
should be independent off and can be determined by con
sidering the detailed scattering process.27 Combining Eqs.
~6! and~7!, one can obtain an additional field-dependent p
of the current at zero temperature:

dI ~1 !5
2eat

h
2

eE

\
t~kF!ucosd/2u

5
4e2a

h

Et

\
t~kF!ucosd/2u5dI ~2 ! . ~8!

Then one gets the total induced currentdI 5dI (1)1dI (2)
52dI (1) and the conductance

s5
2e2

h

2t~kF!t

N\
ucosd/2u5

2e2

h

2t~kF!t

N\

W

8t
. ~9!

Again, the conductance is a periodic function off with pe-
riod f0 . Also the conductance is proportional to the ban
width W. SinceW can be modulated continuously from 0
8t, the conductance also changes from zero to a finite va
Thus the system could undergo a metal-insulator transi
continuously.

Second, let us consider the situation with two levels p
site, i.e., the two-band case, described by the follow
model Hamiltonian ink space:

H5(
k

~ekack
1ck1ekbdk

1dk!1(
k

gk~dk
1ck1H.c.!,

~10!

wherea andb refer to the two energy levels,ck anddk are
corresponding annihilation operators, and other parame
are

eka5ea24taa cosd/2coska,

o
i-
4-2
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FIG. 2. Induced current versu
magnetic fluxf/f0 for the two-
band case at half filling~solid
line! and full filling ~dotted line!.
Parameters are:ea2eb51, taa

51, tbb50.3, tab50.1. Inset:
band gap versus the magnetic flu
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ekb5eb24tbb cosd/2 coska,

gk54tab cosd/2 coska, ~11!

with ea andeb being the site energies,taa andtbb intraband
hopping transfers, andtab interband transfers. The energ
spectrum is

ek
65

1

2
$~eka1ekb!6A~eka2ekb!21gk

2%. ~12!

The total current in the absence of external electric field
each channel is the sum of the intraband and interband
rents,

I ~1 !5
e

\
@eid/2~ taa^ci 11

1 ci&1tbb^di 11
1 di&1tab^ci 11

1 di&

1tab^di 11
1 ci&!2H.c.#52I ~2 ! . ~13!

These expectations can be calculated exactly and we
tain the following result for the current:
17443
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I ~1 !5
e

\
sind/2(

k
coska$ f ~ek

1!@ taa~ek
12ebk!

1tbb~ek
12eak!22tabgk#2 f ~ek

2!

3@ taa~ek
22ebk!1tbb~ek

22eak!22tabgk#%.

~14!

The flux dependence of the currents at half filling and f
filling are shown in Fig. 2. It can be seen that at half fillin
the direction of the current changes abruptly atf0/2, similar
to the uniform flux case discussed above. While at full fi
ing, the current oscillates aroundf0/2 and its direction
changes four times in a period off, which is quite unusual.
This oscillation of the current comes from the competiti
between the intraband and interband currents, for they
opposite in directions.

Compared with the one-band case, there exists an en
gap for the two-band case and the band gapD5ek

1(min)
2ek

2(max) is also a periodic function off with period
f0 . What is important is that the band gapD could be modu-
lated by the external magnetic field, by which many prop
ties of the system~for example, electromagnetic absorptio!
could also be modulated by the magnetic field. Note that
expect a metal-insulator transition to occur at full filling b
modulatingf if the parameters are so properly selected t
the system is actually gapless in one region off and has a
band gap in the other region~see the inset in Fig. 2!. This is
another type of magnetic-field-induced transition.

Finally we consider the one-band case with nonunifo
magnetic flux, shown in Fig. 3, where the loops of the ho
ping channels are threaded by magnetic fluxesf1 and f2 ,
alternatively. The energy spectrum is simply
ek
656ugku562tAcos2 d1/21cos2 d2/212 cosd1/2 cosd2/2 cos 2ka, ~15!
4-3
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whered i52pf i /f0 ( i 51,2), and the band gap is

D54tucosd1/22cosd2/2u. ~16!

Equation~16! tells us that by adjusting magnetic fluxsf1
and f2 properly, the band gapD can be changed continu
ously from 0 to 8t. For the half filled case, the lower sub
band is full filled completely while the upper subband
empty, so whetherD is zero or not would affect drasticall
the conducting properties of the system. When the syste
changed from the state ofD50 to DÞ0, the effective lattice
constant is also changed froma to 2a, and a Peierls-like
metal-insulator transition occurs. This type of transition
different from the conventional Peierls transition28,29because
there is no occurrence of lattice distortion. It is actually
magnetic-flux-induced metal-insulator transition.

III. TWO-DIMENSIONAL CASE

For two dimensions, we study the Hubbard Hamiltoni
defined on the square lattice,

H52 (
^ i j &s

t i j cj s
1 cis1U(

i
nisni s̄ , ~17!

where^ij & denotes nearest neighbors,t i j is the hopping inte-
gral, andU is the Coulomb repulsion. We restrict ourselv
to the half filled band case. For this particular case, it is qu
clear that there exists long-range antiferromagnetic orde
for any nonzeroU. Although the Hartree-Fock approxima
tion usually overestimates symmetry breaking, it does g
the correct answer for the half filled band case with smallU,
as validated by early analytical and numerical studies. T
Hartree-Fock decoupling of the Hubbard interaction give

nisni s̄.^nis&ni s̄1nis^ni s̄&2^nis&^ni s̄&. ~18!

Assuming long-range antiferromagnetic order, we have

^nis&5
n

2
1~21! ism, ~19!

where n ~51 for the half filled band studied here! is the
average number of electrons per site andm is the antiferro-
magnetic order parameter defined by:m51/2̂ (n↑2n↓)&.
The mean-field Hamiltonian is given by~omitting the con-
stant term!

HMF5(
is

F S Un

2
1mUD ci

1ci1S Un

2
2mUDdi

1di G
2 (

^ i j &s
~ t i j cj s

1 dis1t i j* dj s
1 cis!, ~20!

FIG. 3. A quasi-one-dimensional chain with sites connected
each other by two hopping paths. Each loop is threaded by
alternating magnetic fluxf1 andf2 .
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where we have divided the lattice into two sublattices withci
anddi the corresponding annihilation operators.

When staggered magnetic fluxes are introduced thro
the plaquette of the square lattice, as shown in Fig. 4,
interesting competing mechanism between the Coulomb
pulsion and the staggered field would appear. The Coulo
repulsionU tends to arrange nearest-neighbor spin pairs
tiparallel, i.e., establishes antiferromagnetic ordering, wh
the staggered magnetic flux in each plaquette tends to
the spins on the corners of the plaquette parallel to the di
tion of the flux, i.e., suppresses the antiferromagnetic ord
Thus in the presence of the staggered magnetic flux, a cri
value of Coulomb repulsionUc is needed in order to hav
the antiferromagnetic order.

As before, the hopping integral of electronst i j should be
modified because electrons hopping from one site to its n
est neighbors would suffer phase shifts according to the
effect.22 Selection of these phase shifts is arbitrary as long
it ensures that electrons circling a plaquette once suffe
phase shiftd ~d52pf/f0 as before!. In the appendixes, we
shall present more discussions on this point. Here, we ad
a symmetric phase configuration, as shown in Fig. 4. El
trons hopping along~against! the arrows suffer a phase shi
of d/4(2d/4). Specifically, one hast i j 5t exp(idij) and

^ i j &5~0,1!, ~0,21!, ~1,0!, ~21,0!,

d i j 52d/4, 2d/4, d/4, d/4. ~21!

Thus the mean-field Hamiltonian ink space is

H5(
ks

F S Un

2
1Ums D cks

1 cks1S Un

2
2Ums Ddks

1 dksG
2(

ks
~gkcks

1 dks1H.c.!, ~22!

o
n

FIG. 4. A two-dimensional square lattice with plaquettes
threaded by alternative fluxf and2f. Electrons hopping along the
arrows in the figure would suffer a phase shiftd/4, where d
52pf/f0 .
4-4
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where

gk52teid/4 coskxa12te2 id/4 coskya, ~23!

and the energy spectrum is

ek
65

Un

2
6Augku21~Um!2

5
Un

2
62t@cos2 kxa1cos2 kya12 coskxa coskya

3cosd/21~Um/2t !2#1/2. ~24!

The antiferromagnetic order parameterm is determined by
the following self-consistent equation:

15
U

N (
k

f ~ek
2!2 f ~ek

1!

Augku21~Um!2
. ~25!

For the half filled case, the lower subband is complet
filled while the upper subband is empty. When the stagge
magnetic flux is zero, the Fermi surface is nested:kx6ky5
6p. However, as one turns on the staggered magnetic fl
the Fermi surface consists of four points:~6p/2, 6p/2!. The
original square Fermi surface has been concave inside, w
is illustrated in Fig. 5 by the shifted peaks of the density
states asp5f/f0 varies. Because of this property, the si
gularity in Eq.~25! is, however, very different from the situ
ation without magnetic flux (f50) and the integral or the
sum of Eq.~25! always converges. Thus there exists a no
zero critical valueUc for the onset of the antiferromagnet
order

Uc5S 1

N (
k

ugku21D 21

, ~26!

and we show its dependence on magnetic fluxf in Fig. 6.
This is similar to the case of introducing next-neare
neighbor hoppings,30,31although their mechanisms are diffe
ent. Here, the nonzeroUc is caused by the magnetic flux an
it can be changed as one tunes the magnetic flux. Thus

FIG. 5. Normalized density of states versus energy for differ
magnetic fluxes, wherep5f/f0 and m50. The curves are sym
metric with respect tof50.5f0 , i.e., the curve forp which is less
than 0.5 is exactly identical to that for 12p.
17443
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have proved the statement that the existence of stagg
magnetic flux suppress the occurrence of antiferromagn
ordering. In fact, in the largeU limit, we have

m5
1

2
24

t2

U2 13~11cos2 d!
t4

U4 , ~27!

and it can be seen that finited decreasesm. Now we can
achieve a magnetic-field-induced metal-insulator transit
by modulatingf if U is less thanUc

max;0.735t. This transi-
tion happens because antiferromagnetic order would dis
pear in a certain region off @where Uc(f).U# and the
system changes from an insulator@whereUc(f),U# into a
metal.

The bandwidthW and the band gapD are

W52tA2~11ucosd/2u!1~Um/2t !22Um, ~28!

D52Um. ~29!

Once more, one sees that bothW andm ~hence the band gap
D! are functions off with periodf0 , while the energy spec
trum ek is with period 2f0 . This should be an intrinsic prop
erty, regardless of dimensionality. From Fig. 5, it can be s
that the bandwidth is a decreasing function off with f
ranging from 0 to 0.5f0 . This means that the effective elec
tron hopping would be suppressed by increasing the s
gered magnetic flux within that region.

When antiferromagnetic order is absent,m50, a ‘‘d-
wave-type’’ pseudogap would be opened on the origi
Fermi surface, coskx1cosky50,

D̃5D̃0ucoskx2coskyu, ~30!

where

D̃052&tA12ucosd/2u. ~31!

The density of states near the Fermi surface is

r~«!5
p

usind/2ut2 u«u when u«u!tusind/2u. ~32!

t FIG. 6. The critical valueUc /t versus magnetic fluxf/f0 . The
curve is symmetric with respect tof50.5f0 , and periodic with
periodf0 .
4-5
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FIG. 7. Induced currents ver
sus magnetic fluxf/f0 for U
54t. The inset shows the flux de
pendence of sublattice magnetiz
tion m.
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As a comparison, we give the density of states for the nor
state withf50

@rN~«!} lnu«u when u«u!tu#. ~33!

The power-law behavior ofr(«) will be reflected in most
thermodynamical properties of the system.

For comparison to the quasi-one-dimensional case,
also investigate the flux dependence of the field-induced
rent of the system. Explicitly, let us consider the current
the x direction. Straightforward evaluation gives

I x5
2et

\
Im~eid/4^ci 1a

1 di&!

5
4et

N\ (
k

Im~eikxa1 id/4^cks
1 dks&!

5
4et

h
sin~d/2!A~d!, ~34!

where

A~d!5
1

2p E
kPBZ

dk cos~kxa!cos~kya!/Augku21~Um!2.

~35!

The flux dependences of the current is shown in Fig. 7.
before, the induced current is a function off with period
f0 . The induced current exhibits no oscillation behavior
we observed for the quasi-one-dimensional case when fluf
is modulated through1

2 f0 . Instead, it changes smooth
through zero. In a similar manner, one obtains the curr
flowing in other directions,

I 2x52I y52I 2y5I x . ~36!

Using the translational invariance, one can get the distri
tion of the induced current of the whole system. The dis
bution is exactly the same as that shown by the arrows
17443
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Fig. 4. The only difference is that in a period off0 , the
direction of the induced current changes twice.

Now let us discuss the stability of the current distributio
With staggered magnetic fluxes introduced, persistent cur
will occur in the system. The total magnetic flux does n
come merely from the external field, for there exists ad
tional magnetic fluxes produced by the induced current. T
distribution of these self-induced magnetic fluxes can dev
from the perfect staggered distribution. In Appendix A, w
have studied this fluctuation effect in detail and have come
the conclusion that the staggered magnetic-flux state or
symmetric current state is stable under fluctuation.

Since the perfect staggered magnetic-flux state is stab
is interesting to know what will happen if by any chan
there is a fluctuation to the flux configuration shown in F
4. Such fluctuation could come from disorder in the hopp
integral, destruction of antiferromagnetic background due
the motion of electrons, etc. To start, we discuss the c
corresponding to the magnetic-flux configuration as shown
Fig. 8~b!:

FIG. 8. A symmetric deviation to the staggered magnetic field
made in the system. A, B, C, and D are the four types of sites in
corresponding sublattices, andd1 and d2 are the phase shifts o
electrons hopping along the arrows.
4-6
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f1
65f6df1 , f2

65f6df2 , ~37!

wheredf1(2) are small fluctuations. For this configuratio
we have calculated energy dispersion and found that z
gaps occur at the following 16 points:

S 6
p

2
6w~2 !, 6

p

2
6w~1 ! D , ~38!

where

w~6 !5
p

2f0
~df16df2!. ~39!

Thus, compared with the case of perfect staggered magn
flux, Eq. ~30!, the number of points on the Fermi surfac
with zero gap is quadrupled. For the configuration shown
Fig. 8~a! which is a special case of Fig. 8~b! with df1
5df2 , the number of points with zero gap is just double
So we expect to have finite density of states with zero gap
the Fermi surface as the fluctuation in magnetic flux becom
strong. To investigate this problem, we introduce rando
ness into the magnetic fluxf such that

f i5~21! i x1 i yf01df* RAND@21, 1#, ~40!

where RAND@21, 1# stands for random numbers uniforml
distributed over21 and 1. For randomf i , an analytical
solution is impossible so we diagonalize the Hamiltoni
matrix numerically for a 40340 site lattice as an illustration
In Fig. 9, we present results of the density of states~DOS!
for f050.2, df/f050.2, 0.4, 0.6, 0.8, 1.0, and 1.2. Som
wiggles appearing in Fig. 9 are just finite-size effects. He
we assume that there is no antiferromagnetic ordering,
D50. We observe that asdf is increased:~i! the system has
more and more states with zero gap, i.e., the Fermi surf
has evolved from several points to a finite region arou
points ~6p/2, 6p/2!, consistent with the conclusion w
draw for Fig. 8~b!. Since the states in the center of the ener

FIG. 9. Density of states for various values of disorder stren
for the same staggered magnetic field withf50.2f0 and ~a! df
50.2f0 ; ~b! df50.4f0 ; ~c! df50.6f0 ; ~d! df50.8f0 ; ~e!
df51.0f0 ; and ~f! df51.2f0 .
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band are delocalized, i.e., extended,6,7 the conductivity
would increase continuously with the fluctuation of the sta
gered magnetic field.~ii ! Whendf is large enough, the DOS
resembles that for the tight-binding model in the absence
the staggered magnetic field because the singularity of
DOS at zero energy was recovered gradually. Similar ca
lations forf50 have also been performed and the singul
ity at zero energy are still present. This feature is in agr
ment with previous results.6,32 ~iii ! The bandwidth is a
decreasing function ofdf. This means that the effective elec
tron hopping can be suppressed by the fluctuation of
staggered magnetic field.

IV. SUMMARY

In summary, we have investigated magnetic-field-induc
metal-insulator transition by studying the tight-binding a
the Hubbard models with hopping integral modulated
magnetic flux in one and two dimensions. In one dimensi
the one-band model with uniform as well as alternating m
netic flux and the two-band model are considered and c
pared with each other. We showed that a magnetic-fie
induced metal-insulator transition can be achieved. T
bandwidth, the energy gap, and the conductance were ca
lated and we showed that they are all periodic functions of
with period f0 . Such periodic behavior is also true in tw
dimensions so it is an intrinsic property, regardless of dim
sionality. For the two-dimensional case, we found that
staggered magnetic flux suppresses antiferromagnetic o
ing. Peaks in the density of states are shifted by the magn
flux. The magnetic-field-induced metal-insulator transitio
can also be realized. The introduction of staggered magn
flux opens an anisotropicd-wave pseudogap at the Ferm
surface. Thus most thermodynamical properties of the h
filled system should follow power laws at low temperature
The distribution of induced current was analyzed. It satisfi
the conservation law and exhibits no anomalies. The stab
of the distribution of induced current was discussed and
found that the symmetric current distribution is stable. W
also studied the effect of different phase configurations
found that they have no effect on the physical properties
the system~see the Appendixes for more details!, as ex-
pected. Finally, we introduced fluctuations into magnetic fl
and studied its effects on the density of states. We sho
that the system developed a finite portion of Fermi surfa
with zero gap around four points~6p/2, 6p/2!, whereas for
the perfect staggered magnetic-flux case, these four po
are the only points on the Fermi surface with zero gap. T
the conductivity of the half filled band would increase wi
the fluctuation. The bandwidth is a decreasing function of
fluctuation.
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APPENDIX A

In this appendix, the stability of the staggered magne
flux state or the symmetric current state is studied. To
dress this question, let us consider other distributions wh
have small deviations from the staggered one shown in
4. We treat these deviations as perturbations and see
will happen. For simplicity, we consider the case of smallU
(U,Uc) so thatm50. For physical consideration, let u
discuss the case shown in Fig. 8~a!, where a symmetric de
viation is made. Withf15f2df andf25f1df, the re-
duced Hamiltonian is given by~we set the lattice constant t
be 1 here!

H52t(
k

~2e2 id1 coskxBk
1Ak1~eid31 iky1eid22 iky!Ck

1Ak

1~e2 id31 iky1e2 id22 iky!Dk
1Bk12eid1 coskxDk

1Ck

1H.c.!, ~A1!

whereAk /Bk /Ck /Dk refer to annihilation operators at site
A/B/C/D and

d15
p

2
f/f0 , d25d12

pdf

f0
5d12y, d35d11y,

~A2!

with y5pdf/f0 being a small quantity. The equation th
determines the energy spectrum is

det5
v 2a 2c* 0

2a* v 0 2b

2c 0 v 2a*

0 2b* 2a v
6 50, ~A3!

where

a52teid1 coskx , b52teid1 cos~ky1y!,

c52teid1 cos~ky2y!. ~A4!

The energy spectrum is

vk56†

1
2 „~2uau21ubu21ucu2!6$~2uau21ubu21ucu2!2

24@ uau41ubu2ucu222 Re~a2bc!#%1/2
…‡

1/2. ~A5!

The ground state of the system is the state with the two lo
subbands filled and the two higher subbands left comple
empty. After tedious calculations, we get the ground-st
energy of the system,

E5E01hy2, ~A6!

whereE0 is the ground-state energy of the unperturbed s
tem and
17443
-
-
h
g.
hat

er
ly
e

-

h5
2t2 sin2 d/2

ucosd/2u (
k

ucoskyu
ucoskxu S 1

Auau21udu222uauuduucosd/2u

2
1

Auau21udu212uauuduucosd/2u
D , ~A7!

with d52teid1 cosky . Obviously, h.0 so E0 is the mini-
mum energy of the ground state, i.e., the distribution of
current discussed is stable.

APPENDIX B

In this appendix, we address the question of whether
distribution of current and other properties depend on
selection of phase configurations or not. The similarity b
tween the distribution of current and the symmetric pha
configuration should be a coincidence, because the selec
of phase configurations can be quite arbitrary and the cur
distribution should be independent of it. In the followin
discussions, we shall consider two other different phase c
figurations and come to the same conclusion: the differ
selection of phase configurations has no effect on the ph
cal properties of the system.

First we choose one kind of phase configuration as sho
in Fig. 10~a!, where electrons hopping along~against! the
arrows suffer a phase shiftd/2 ~2d/2!. Obviously, this dis-
tribution satisfies the requirement that electrons circl
around an ‘‘atom cell’’ once would suffer a phase shiftd.
The system could also be described by the Hamiltonian
~22! with gk substituted bygk8 ,

gk85teid/2 coskxa1t coskya. ~B1!

Becauseugk8u is exactly identical tougku, the energy spectrum
in this case is identical to the former, Eq.~24!. So thermo-
dynamic quantities certainly do not change. Considering
current in thex direction, one has

I x5
2et

\
Im eid/2^ci 1x

1 di&, ~B2!

and it is exactly the same as before. After some manipu
tions, one gets the same result as Eq.~34!. Hence the distri-
bution of the current is still shown by the arrows in Fig. 4

FIG. 10. Another two kinds of distribution of phase shift. Ele
trons hopping along arrows suffer a phase shift:~a! d/2, and~b! d.
These configurations ensure that any electron circling a plaqu
suffers a phase shiftd.
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Now let us consider another kind of phase configurat
shown in Fig. 10~b!, where electrons hopping along~against!
the arrows suffer a phase shiftd. Similar to the above case
the system could also be described the Hamiltonian Eq.~22!
with gk substituted bygk9 ,

gk95t~eikxa1e2 ikxa1 id!12t coskya. ~B3!

The corresponding energy spectrum is

vk5
Un

2
6Augk9u

21~Um!2

5
Un

2
62t@cos2~kxa2d/2!1cos2 kya12 cos~kxa

2d/2!coskya cosd/21~Um/2t !2#1/2. ~B4!

The energy spectrum looks different from Eq.~24!, but the
only difference is that the wave vector of the former has b
uniformly shifted by~d/2, 0!, relative to the latter. The par
tition function Z does not change, becauseZ is a sum over
the whole k space in the Brillouin zone. Thus thermod
namic quantities do not change, either. Similar to the ab
case, the current in thex direction is
s

B

l

.

n

.

.

17443
n

n

e

I x5
2et

\
Im^ci 1x

1 di&. ~B5!

Straightforward calculation gives

I x5
et

N2\
sind/2(

k
cos~kxa

2d/2!coskya
f F~ ugk9u!2 f F~2ugk9u!

ufk9u

5
4et

h
sin~d/2!A~d!. ~B6!

The currentI x is identical to the result of Eq.~34!, so the
current distribution does not change, either.

One can choose any other different phase configura
and then obtain different Hamiltonians and dispersion re
tions but with the same result: all the differences are sup
ficial and have no effect on the physical properties of
system. The different phase configurations just correspon
the different magnetic vector potential for the same magn
field. As a matter of fact, this is nothing but the conseque
of gauge invariance.33
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