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Quantum generalized constant-coupling model for geometrically frustrated antiferromagnets

A. J. Garcı´a-Adeva* and D. L. Huber
Department of Physics, University of Wisconsin–Madison, Madison, Wisconsin 53706

~Received 10 November 2000; published 12 April 2001!

A generalized constant-coupling approximation for quantum geometrically frustrated antiferromagnets is
presented. Starting from a frustrated unit, we introduce the interactions with the surrounding units in terms of
an internal effective field that is fixed by a self-consistency condition. Results for the static magnetic suscep-
tibility and specific heat are compared with previous results in the framework of this same model for the
classical limit. The range of applicability of the model is discussed.
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I. INTRODUCTION

In the last several years, geometrically frustrated anti
romagnets~GFAF! have emerged as a new class of magne
materials with uncommon physical properties and have
ceived a great deal of attention~see Refs. 1–3, and refe
ences therein!. In these materials, the elementary unit of t
magnetic structure is the triangle, which makes it imposs
to satisfy all the antiferromagnetic bonds at the same ti
with the result of a macroscopically degenerate ground st
Examples of GFAF are the pyrochlore and thekagome´ lat-
tices. In the former, the magnetic ions occupy the corner
a three-dimensional arrangement of corner-sharing tetr
dra; in the latter, the magnetic ions occupy the corners o
two-dimensional ~2D! arrangement of corner-sharing tr
angles~see Fig. 1!. In the case of materials that crystallize
the pyrochlore structure, the static magnetic susceptib
follows the Curie-Weiss law down to temperatures well b
low the Curie-Weiss temperature. At this point, usually o
to two orders of magnitude smaller than the Ne´el point pre-
dicted by the standard mean-field~MF! theory, some system
exhibit some kind of long-range order~LRO!, whereas others
show a transition to a spin-glass state~SG!. This is a striking
feature for a system with only a marginal amount of disord
Finally, there are some pyrochlores that do not exhibit a
form of order whatsoever, and these are usually regarde
spin liquids. In the case of thekagome´ lattice, even though
there are very few real systems where this structure is r
ized, the magnetic properties fall in two major categories:
vast majority of the compounds studied show a transition
a LRO state with a noncollinear configuration of spins, an
few systems exhibit no LRO, but a SG-like transition.

For these reasons, it is easy to understand the la
amount of attention these systems have attracted, both
the experimental and the theoretical points of view. From
theoretical point of view, a number of techniques have b
used to try to understand the origin of the puzzling proper
mentioned above. All the theoretical results seem to indic
that the classical Heisenberg model with only neare
neighbor interactions does not display any long-range o
for these geometries, in agreement with Monte Carlo~MC!
results.4–13

There are also relatively few works that have dealt w
the quantum effects in these systems,14–22 even though the
main interest over the last years has been the classical GF
0163-1829/2001/63~17!/174433~7!/$20.00 63 1744
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However, in a recent work,19 the present authors showed th
there are some features of the experimental data for the
ceptibility in pyrochlore compounds that can only be und
stood in a quantum framework, such as, for example,
maxima appearing in this quantity at temperatures well
low the Curie-Weiss temperature.

In another recent work,23 the present authors developed
generalization of the well-known constant-coupling~CC!
method24 that can be applied to frustrated geometries,
so-called generalized constant-coupling~GCC! method. This
technique was applied successfully to the study of the c
sical Heisenberg Hamiltonian with nearest-neighbor~NN!
interactions in both the pyrochlore andkagome´ lattices. In
spite of the mathematical simplicity of this technique, t
results obtained for the susceptibility are essentially ex
when compared with Monte Carlo data in both types of l
tices. Moreover, the calculated specific heat is also in v
good agreement with Monte Carlo data, even though th
are some deviations at very small temperatures that ca
understood in light of the fact that a MF theory cannot pro
erly describe this property~or, equivalently, the internal en
ergy! at T50 K, due to the distinct nature of the excitation

FIG. 1. The magnetic lattices considered in this work.~a! Pyro-
chlore lattice.~b! kagome´ lattice.
©2001 The American Physical Society33-1
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that are important in this limit, namely, the spin waves.
any case, the GCC method provides an excellent star
point for studying the magnetic properties of the frustra
systems in the paramagnetic region.

The first question that arises is which features of th
magnetic properties are different in a quantum formulat
of the GCC method, and that is precisely what we try
answer in this work. However, in contrast with the classi
limit, there are no reliable quantum Monte Carlo calculatio
for these systems, due to well-known difficulties that arise
the quantum version of this technique, which makes it v
difficult to check the accuracy of the present quantum v
sion of the GCC method. It is tempting to compare the
sults of this method with experimental data available in
literature. However, here we are considering the most res
tive approach to the problem by focusing on Heisenb
models with NN interactions only, whereas in real system
as pointed out above, there are always additional effects
we think such a comparison makes no sense at this p
Therefore, the most we can do is to give the results for
quantum version of the GCC method, and study how th
evolve towards the classical results for large values of
individual spin quantum number. If this transition from th
quantum to the classical limit is smooth, we can expect
predictions of the model to be, at least, reasonable in
paramagnetic region.

II. THE MODEL

The Heisenberg model with only NN interactions in t
presence of a magnetic applied fieldH0 is described by the
Hamiltonian25

H5J(
^ i , j &

si•sj2H0(
i

szi
, ~1!

whereJ is the positive antiferromagnetic coupling,si andsj

represent quantum spins of moduluss0 located in a pyro-
chlore or kagome´ lattice, szi

the corresponding componen

along the applied field, and the sum is done over pairs
NN’s.

The idea of our approximate method is based on the
perimental fact that the spin-spin correlations in the GF
lattices are short ranged.4 Therefore, it is a reasonable ap
proximation to start by considering isolated units~tetrahedra
or triangles for the pyrochlore andkagome´ lattices, respec-
tively! and later add the interactions with the surround
units in an approximate way. Thus, it is important to fi
study the properties of the individual units. This task h
been carried out by Garcı´a-Adeva and Huber for the quan
tum case,19 and we will not repeat the derivation here. It w
suffice to say that the susceptibility per spin of an isola
unit with p spins~p54 for the pyrochlore andp53 for the
kagome´! is given by
17443
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xp~T!5
^Sp

2&
3pT

5
1

3pT

(
S

g~S!S~S11!~2S11!e2 jS~S11!/2

(
S

g~S!~2S11!e2 jS~S11!/2

,

~2!

where j 5J/T, ^Sp
2& represents the average value of t

square of the total spin of the unit, andg(S) is the number of
configurations with total spinS ~see Table I!.

For some derivations, it is better to express all the th
modynamic quantities in terms of the function

«p~T!5
^Sp

2&
ps0~s011!

21. ~3!

Therefore, the susceptibility of the isolated unit can be
pressed as

xp~T!5
s0~s011!@11«p~T!#

3T
. ~4!

It is important to notice that the only difference from th
derivation carried out in Ref. 23 is in the definition of^Sp

2&.
The rest of the method is essentially the same.

Next, the interaction with neighboring units is introduce
as an unknown internal effective fieldH1 created by the (p
21) NN ions outside the unit. The CC approximation co
sists of taking this internal field asH15(p21)H8, where
H8 is the average internal field acting on a spin due to e
of its NN’s. By comparison, in the case of the standa
Curie-Weiss~CW! model, the internal effective field is give
by H152(p21)H8 as the ions are considered separate
and each has 2(p21) NN’s in the corner-sharing structure
considered in this work~see Fig. 1!. The internal field is
evaluated by imposing the self-consistent condition of equ
ing the magnetization per spin in the field with that of a u
in the field, which can be mathematically stated as

TABLE I. Values ofg(S) for some representative values ofs0 .
Integer values ofS correspond to the pyrochlore case (p54) for
any value ofs0 and thekagome´ lattice for integer values ofs0 .
Half-integer values ofS correspond to thekagome´ lattice (p53)
for half-integer values ofs0 .

S
1
2

3
2

5
2

7
2

9
2

11
2

13
2

15
2

0 1 2 3 4 5 6 7 8 9 10

p53 s05
1
2 2 1

s051 1 3 2 1
s05

3
2 2 4 3 2 1

s05
5
2 2 4 6 5 4 3 2 1

p54 s05
1
2 2 3 1

s051 3 6 6 3 1
s05

3
2 4 9 11 10 6 3 1

s05
5
2 6 15 21 24 24 21 15 10 6 3 1
3-2
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s0Bs0
„s0@H012~p21!H8#/T…5

mp„H01~p21!H8…

p
,

~5!

where the left side of the equation corresponds to the va
of the magnetization per spin in the Curie-Weiss model, w

Bs0
~x!5

2s011

s0
cothS 2s011

s0
xD2

1

2s0
cothS x

2s0
D ~6!

the so-called Brillouin function.25 The right side correspond
to the magnetization per spin of the isolated unit under
influence of the internal field. In the general case, Eq.~5! can
only be solved numerically. However, in the paramagne
regime, we can put, for small fields, (H01H1)/T!1,

mp„H01~p21!H8…

p
'xp~T!@H01~p21!H8# ~7!

for the magnetization per spin in the cluster, where the s
ceptibility per spin is given by Eq.~4!, and

s0Bs0
„s0@H012~p21!H8#/T…'

s011

3T
@H012~p21!H8#.

~8!

Taking into account Eqs.~7! and~8! we can easily solve Eq
~5! to give

H85
«p~ j !

~p21!@12«p~ j !#
H0 , ~9!

which, upon substitution in Eqs.~7! or ~8!, leads to an ex-
pression for the susceptibility per spin in the paramagn
region23

xp
GCC~T!5

s0~s011!

3T

11«p~T!

12«p~T!
. ~10!

The corresponding expressions for the internal energy26 and
the specific heat per spin are given by

up~T!5Js0~s011!«p~T! ~11!

and

cp~T!5Js0~s011!
]

]T
«p~T!, ~12!

respectively.

III. RESULTS FOR THE SUSCEPTIBILITY AND THE
SPECIFIC HEAT

In this section, we will present the main results of t
model introduced in the previous section. One is tempted
compare them with the available experimental data. Ho
ever, such a comparison makes no sense at this point
cause, as stated in the Introduction, there are several ef
not included in this simplified model such as dipole-dipo
interactions, anisotropies, or further neighbor interactions
cite some examples. Therefore, we will present the result
the present model and study how the quantum case evo
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towards the classical limit for relatively large values of t
individual spins. If the quantum behavior of the physic
quantities of interest~namely, susceptibility and specifi
heat! is not so different from the classical one for relative
large values ofs0 , we can feel confident that the prediction
are essentially correct, at least in the temperature reg
where deviations from the classical behavior are small, as
know that the GCC model gives an accurate description
these quantities in the whole temperature range. It would
desirable also to compare the predictions of this model w
the ones obtained from more sophisticated techniques~quan-
tum Monte Carlo, high-temperature series expansio
density-matrix renormalization group, exact diagonalizati
and so on!. However, that comparison is not possible in ge
eral, due to the geometrical complexity of GFAF that pr
vents one from applying any of these techniques to arbitr
values ofs0 , and these kind of calculations have been on
carried out for the quantums05 1

2 , which, as we will see
below, is the case where we expect to have the worst res

Let us start by considering the results for the suscepti
ity and specific heat in the pyrochlore lattice, which can
seen in Fig. 2 for some values ofs0 . As we can see from the

FIG. 2. Susceptibility and specific heat for the pyrochlore latt
for various values ofs0 : ~long-dashed line! s05

1
2 ~short-dashed

line! s051; ~dotted line! s05
3
2 ; and ~dot dashed line! s05

7
2 . The

solid line is the classical limit of the model. The double dotted li
in the case of the susceptibility represents the Curie-Weiss
QCW52(p21)s0(s011)J/3 is the Curie-Weiss temperature an
CCW5s0(s011)/3 is the Curie constant.~a! Magnetic susceptibil-
ity. ~b! Specific heat.
3-3
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A. J. GARCÍA-ADEVA AND D. L. HUBER PHYSICAL REVIEW B 63 174433
observation of that figure, the classical susceptibility devia
from the Curie-Weiss behavior belowQCW. The quantum
case is qualitatively similar to the classical behavior exc
at very low temperatures, where it passes through a m
mum and then falls to zero. However, we can also see
even for relatively small values ofs0 the quantum behavio
is not so different from the classical one down to the ma
mum. Regarding the predictions for the specific heat, ag
the main difference is that it goes through a maximum, a
later falls to zero, in contrast with the classical situatio
where it goes to a constant value atT50 K. Additional in-
formation can be gained by studying the dependence of
position of the maxima with the value ofs0 in Fig. 3. In that
figure can be seen how nicely both the maxima in the s
ceptibility and specific heat go to the zero classical value

Let us now turn to thekagome´ lattice. In this case, it is
reasonable to expect the model to work less well than in
pyrochlore lattice, as it is well-known that the role of lon
wavelength fluctuations is more important in 2D lattice
which are explicitly neglected in any MF approach. Ho
ever, from the MC results for the classical limit, it turns o
that long-wavelength thermal fluctuations are unimport
for GFAF at finite temperatures, which partially explai
why the classical limit of our model is essentially exact wh

FIG. 3. Position of the maxima appearing in the susceptibi
and specific heat. Solid lines are a guide to the eye.~a! Pyrochlore
lattice. ~d! Maxima in the susceptibility;~s! maxima in the spe-
cific heat.~b! kagome´ lattice.~h! Maxima in the susceptibility,~s!
maxima in the specific heat for half-integers0 and ~3! maxima in
the specific heat for integer values ofs0 .
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compared to MC data for the susceptibility. The quantu
case is a more delicate one, as quantum fluctuations can
an important role. However, these fluctuations will be on
important at low temperatures, a region in which our mo
does not apply for other reasons we will explain below.

In order to proceed further, we will split the discussion f
thekagome´ lattice in two cases, corresponding to integer a
half-integer values of the individual spins.

Let us first analyze the results for integer values ofs0 ,
which can be seen in Fig. 4. There are no remarkable dif
ences with respect to the discussion for the pyrochlore,
cept for the fact that the maximum in the susceptibility
present even in the classical limit. The only qualitative d
ference is the later fall to zero of both the susceptibility a
specific heat. Also, we have computed the evolution of
maxima for both the susceptibility and specific heat. Aga
both quantities go smoothly to their classical values. It
important to stress that the fact that the susceptibility goe
zero is related to the ground-state total spin of the clus
which, for integer values of the individual spins, is always
singlet. This is not the case for half-integer values ofs0 .

For half-integer values ofs0 , there are very importan
differences with respect to the previous cases, as is evide
Fig. 5. The susceptibility goes through a maximum, th
reaches a minimum, and diverges asT→0. This is a conse-

FIG. 4. Susceptibility and specific heat for thekagome´ lattice
with integer values ofs0 : ~long-dashed line! s051; ~short-dashed
line! s052; ~dotted line! s053; and~dot dashed line! s054. The
solid line is the classical limit of the model. The double dotted li
in the case of the susceptibility represents the Curie-Weiss law~a!
Magnetic susceptibility.~b! Specific heat.
3-4
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QUANTUM GENERALIZED CONSTANT-COUPLING MODEL . . . PHYSICAL REVIEW B 63 174433
quence of the fact that the ground state of the triangu
cluster for half-integer values ofs0 is a doublet in our model
However, it is now generally accepted that the real grou
state of thekagome´ lattice is a singlet,20,21,27and may have a
gap in the spectrum so, actually, the susceptibility sho
either be finite or go to zero asT→0. Obviously, the presen
breakdown at very low temperatures is not a particular f
ture of the mean-field approach, but it is shared by ev
model that starts from finite cluster calculations, with an o
number of spins in the elementary cluster. Moreover,
maxima in the specific heat follow a different trend than
the integers0 case, even though the classical limit is corre
~see Fig. 3!. Even more striking is the fact that both th
susceptibility and specific heat fors05 1

2 are qualitatively
different from all the previously presented results. The s
ceptibility does not show a maximum, but diverges as 1/T as
T approaches 0. The maximum in the specific heat does
follow the extrapolated behavior for other half-integer valu
of s0 . These kinds of problems have been already poin
out in the literature for more rigorous methods than ours.20,22

A qualitative argument that can help to understand these
viations is the fact thats05 1

2 is the ‘‘most quantum’’ case, in
which the physical quantities are more sensitive to the
crete structure of the energy levels of the system. Taking

FIG. 5. Susceptibility and specific heat for thekagome´ lattice
with half-integer values ofs0 : ~long-dashed line! s05

1
2 ~short-

dashed line! s05
3
2 , ~dotted line! s05

5
2 , and ~dot-dashed line! s0

5
7
2 . The solid line is the classical limit of the model. The doub

dotted line in the case of the susceptibility represents the Cu
Weiss law.~a! Susceptibility per ion. ~b! Specific heat per ion.
17443
r

d

d

-
y
d
e

t

-

ot
s
d

e-

-
to

account that for half-integer values ofs0 the energy-level
structure of our model is qualitatively incorrect, we shou
not be surprised by this special behavior.

As commented above, if we want to further check t
range of applicability of the model, it would be desirable
compare its predictions with the ones obtained from m
sophisticated methods, such as exact diagonalization of s
clusters or high-temperature series expansions. Unfo
nately, these calculations have been carried out only for
kagome´ with s05 1

2 ~Refs. 20,21! where, as we have argue
above, we can expect the model to be least successful. H
ever, even though we do not expect complete agreement
have carried out such a comparison with results obtai
from the aforementioned methods and the results are
sented in Fig. 6. In that figure we have also plotted
curves corresponding tos051 ands05 3

2 for comparison at a
qualitative level. It is important to stress that the curves
picted there do not contain any fitting parameter nor ha
they been rescaled in any sense. Surprisingly, the susc
bility calculated from our model fors05 1

2 is in very good
agreement down to'0.5QCW with both high-temperature
series expansions and the diagonalization of a cluster with

e-

FIG. 6. Comparison of the GCC predictions with results fro
finite-size clusters calculations and high-temperatures series fo
kagome´ 1

2 lattice ~Ref. 20! ~solid line! GCC model fors05
1
2 ,

~long-dashed line! GCC model fors051, ~dashed line! GCC model
for s05

3
2 , ~s! results from high-temperature series expansions,

~d! results from exact diagonalization of a cluster with 18 spi
The double dotted line in the case of the susceptibility repres
the Curie-Weiss law.~a! Susceptibility. ~b! Specific heat.
3-5
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A. J. GARCÍA-ADEVA AND D. L. HUBER PHYSICAL REVIEW B 63 174433
spins. The corresponding curve for the specific heat is
poor quantitative agreement with the results from hig
temperature series expansions. However, it describes a
rately the position of the maximum. In any case, we c
expect the agreement with the specific heat to be worse,
considers independent units, neglecting the emerging co
lations at low temperatures. Moreover, we can see that
calculated susceptibilities fors051 ands05 3

2 reproduce the
main qualitative features of the high-temperature expans
and finite cluster results. At this point, it is difficult to say
this a fortunate coincidence or an indication of the accur
of our model for higher values ofs0 . Numerical data for
these values of the spins would be necessary to decide
tween the two cases.

In any case, it is important to notice that some of t
qualitative features obtained in this simple model have b
observed in experimental studies.1,28–33Again, it is difficult
to say at this point if those features are due to additio
interactions not accounted for in this model. For examp
the existence of a maximum in the susceptibility for the p
rochlore lattice has been systematically observed in all
experiments at low enough temperatures. Actually, th
maxima were successfully interpreted by the present aut
with an even simpler model in which the interactions w
nearest neighbors and next-nearest neighbors were taken
account.19 Moreover, in the work by Willset al.28 on iron
jarosites, which is one of the few systems where thekagome´
lattice has an experimental realization, the magnetic sus
tibility exhibits the maximum and a later upturn at a tem
perature comparable with that predicted by our model. Ho
ever, in that temperature region, it seems likely that
dilution of the magnetic lattice by nonmagnetic impuriti
plays an important role, giving rise to some kind of sp
glass behavior, for which it is very difficult to extract an
conclusion.

In the light of these results, we think that a prudent e
mate of the breakdown of our model is set by the position
the maximum in the specific heat. As we approach this te
perature, emerging correlations that cannot be describe
the GCC formalism enter into play. For the pyrochlore latt
and thekagome´ with integer values ofs0 , it is very likely
that the present description is qualitatively correct for te
peratures well below the peak temperature of the spe
heat. However, we think that the description below that te
17443
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perature for half integers0 in thekagome´ lattice is incorrect.
Probably, there is a maximum and a minimum in the susc
tibility, but we expect the susceptibility either vanishes
goes to a finite value atT→0, not to diverge. In any case,
is still a significant improvement with respect to the Cur
Weiss theory and other MF theories. However, more rig
ous techniques are needed in order to verify these assert

IV. CONCLUSIONS

In this work we have presented the quantum version
the generalized constant-coupling model that was shown
the authors to be in excellent agreement with Monte Ca
data for the susceptibility and specific heat in the class
limit for both the pyrochlore andkagome´ lattices. There are
some important qualitative differences between the class
and quantum behaviors that are important at low tempe
tures.

The main features of the susceptibility in this model a
the presence of maxima in both the susceptibility and s
cific heat, similar to those found experimentally. The susc
tibility for the kagome´ lattice with half-integer values of the
individual spins is found to pass through a maximum a
then, after a minimum, diverges asT→0. This divergence is
due to a nonzero value of the total spin of the ground stat
the elementary units for these values of the individual sp
There is some experimental evidence for the existence
such an upturn in the susceptibility in the iron jaros
systems.28 However, the divergence of this quantity in ou
model that is due to the finite-size cluster with an odd nu
ber of spins is incorrect.

The results for thekagome´ 1
2 are compared with high-

temperature series expansions and exact diagonalizatio
small clusters. The susceptibility is found to be in go
agreement with those results down toT'0.5QCW, which is
a remarkable fact for so simple a model. Even though
specific heat is not in quantitative agreement at this temp
ture, the position of the maximum is adequately predict
Results from the aforementioned techniques for these latt
for higher values ofs0 would be desirable in order to chec
the accuracy of the GCC model.

In any case, we feel that the present model provides
adequate description of the nearest-neighborkagome´ and py-
rochlore systems down to the temperature of the peak in
specific heat.
ev.
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