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Quantum generalized constant-coupling model for geometrically frustrated antiferromagnets
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A generalized constant-coupling approximation for quantum geometrically frustrated antiferromagnets is
presented. Starting from a frustrated unit, we introduce the interactions with the surrounding units in terms of
an internal effective field that is fixed by a self-consistency condition. Results for the static magnetic suscep-
tibility and specific heat are compared with previous results in the framework of this same model for the
classical limit. The range of applicability of the model is discussed.
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[. INTRODUCTION However, in a recent work’ the present authors showed that
there are some features of the experimental data for the sus-
In the last several years, geometrically frustrated antiferceptibility in pyrochlore compounds that can only be under-
romagnet$GFAF) have emerged as a new class of magnetictood in a quantum framework, such as, for example, the
materials with uncommon physical properties and have remaxima appearing in this quantity at temperatures well be-
ceived a great deal of attentidsee Refs. 1-3, and refer- low the Curie-Weiss temperature.
ences therejn In these materials, the elementary unit of the I another recent work; the present authors developed a
magnetic structure is the triangle, which makes it impossiblgeneralization of the well-known constant-couplitgC)
to satisfy all the antiferromagnetic bonds at the same timelethod” that can be applied to frustrated geometries, the
with the result of a macroscopically degenerate ground stat&0-called generalized constant-coupli@CC) method. This
Examples of GFAF are the pyrochlore and ttegomelat-  technique was applied successfully to the study of the clas-
tices. In the former, the magnetic ions occupy the corners ofical Heisenberg Hamiltonian with nearest-neighliN)
a three-dimensional arrangement of corner-sharing tetrahddteractions in both the pyrochlore atk@gomelattices. In
dra; in the latter, the magnetic ions occupy the corners of &Pite of the mathematical simplicity of this technique, the
two-dimensional (ZD) arrangement of Corner-sharing tri- results obtained for the Susceptlblllty afe essentia”y exact
angles(see Fig. 1 In the case of materials that crystallize in When compared with Monte Carlo data in both types of lat-
the pyrochlore structure, the static magnetic susceptibilityices. Moreover, the calculated specific heat is also in very
follows the Curie-Weiss law down to temperatures well be-good agreement with Monte Carlo data, even though there
low the Curie-Weiss temperature. At this point, usually onedre some deviations at very small temperatures that can be
to two orders of magnitude smaller than théeNpoint pre- ~ understood in light of the fact that a MF theory cannot prop-
dicted by the standard mean-figMF) theory, some systems erly describe this propertfor, equivalently, the internal en-
exhibit some kind of long-range orddrRO), whereas others  €rgy) at T=0K, due to the distinct nature of the excitations
show a transition to a spin-glass sté®5). This is a striking
feature for a system with only a marginal amount of disorder.
Finally, there are some pyrochlores that do not exhibit any
form of order whatsoever, and these are usually regarded as
spin liquids. In the case of theagomelattice, even though ¢
there are very few real systems where this structure is real-
ized, the magnetic properties fall in two major categories: the
vast majority of the compounds studied show a transition to
a LRO state with a noncollinear configuration of spins, and a ¢
few systems exhibit no LRO, but a SG-like transition. (a) ¢
For these reasons, it is easy to understand the large
amount of attention these systems have attracted, both from
the experimental and the theoretical points of view. From the
theoretical point of view, a number of techniques have been
used to try to understand the origin of the puzzling properties
mentioned above. All the theoretical results seem to indicate
that the classical Heisenberg model with only nearest-

neighbor interactions does not display any long-range order (o
for these geometries, in agreement with Monte C&liC)
results?13 (b)
There are also relatively few works that have dealt with
the quantum effects in these systelfi€? even though the FIG. 1. The magnetic lattices considered in this wdek.Pyro-

main interest over the last years has been the classical GFAEhlore lattice.(b) kagomelattice.
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that are important in this limit, namely, the spin waves. In  TABLE I. Values ofg(S) for some representative valuessf

any case, the GCC method provides an excellent startintjiteger values ofS correspond to the pyrochlore case=<(4) for

point for studying the magnetic properties of the frustratec®nY value ofs, and thekagomelattice for integer values of,.

systems in the paramagnetic region. Half-lntgger values ofS correspond to th&agomelattice (p=3)
The first question that arises is which features of thesd?" half-integer values of,.

magnetic properties are different in a quantum formulation

of the GCC method, and that is precisely what we try to 1 3 5 7 9 1_§ 13 15

answer in this work. However, in contrast with the classical 8 i 22 ?3 24 25 26 27 8 9 10
limit, there are no reliable quantum Monte Carlo calculations

for these systems, due to well-known difficulties that arise inp=3 sy=3 2 1

the quantum version of this technique, which makes it very =11 3 2 1

difficult to check the accuracy of the present quantum ver- So=2 2 4 3 2

sion of the GCC method. It is tempting to compare the re- Ss=2 2 4 6 5 4 3 2 1

sults of this method with experimental data available in the 1

literature. However, here we are considering the most restric? =4 %=2 2 3 1

tive approach to the problem by focusing on Heisenberg Sozg s 6 6 3 1

models with NN interactions only, whereas in real systems, SO:g 4 9 11106 3 1

as pointed out above, there are always additional effects, so =z 6 15 21 24 24 21 15 10 6 3 1
we think such a comparison makes no sense at this point.

Therefore, the most we can do is to give the results for the

guantum version of the (_BCC method, and study how they , z 9(S)S(S+1)(25+1)e IS(s+1)72
evolve towards the classical results for large values of the (Sp) 1 5

individual spin quantum number. If this transition from the Xp(T)= 3pT_ 3pT , '
quantum to the classical limit is smooth, we can expect the > g(S)(2S+1)e issrr
predictions of the model to be, at least, reasonable in the S 2

paramagnetic region.

where j=J/T, <S§> represents the average value of the
square of the total spin of the unit, ag€lS) is the number of

Il. THE MODEL configurations with total spi® (see Table)l

For some derivations, it is better to express all the ther-

The Heisenberg model with only NN interactions in the modynamic quantities in terms of the function

presence of a magnetic applied figg is described by the

taniard
Hamiltoniar? . () » 5
P psy(sotl)
H=JY s-s—HoX s,, (1)  Therefore, the susceptibility of the isolated unit can be ex-
(i) o pressed as
: " . . . . So(Sot D)[1+ep(T)]
whereJ is the positive antiferromagnetic coupling,ands; Xp(T)= a7 p _ @)

represent quantum spins of modulss located in a pyro-
chlore orkagomelattice, s, the corresponding component

. . . . t
along the applied field, and the sum is done over pairs Otierivation carried out in Ref. 23 is in the definition(cSﬁ).

NNTSh' id ¢ imat thod is based th The rest of the method is essentially the same.
€ 10€a of our approximaté method IS based on the ex- eyt the interaction with neighboring units is introduced

perimental fact that the spin-spin correlations in the GFAF,5 an unknown internal effective fiel, created by thef
lattices are short rangédTherefore, it is a reasonable ap- —1) NN ions outside the unit. The CC approximation con-
proxﬁmation to start by considering isola}ted yr{iﬂtrahedra sists of taking this internal field ald,=(p—1)H’, where

or triangles for the pyrochlore adchgomglattlcesy reSpec- - is the average internal field acting on a spin due to each
units in an approximate way. Thus, it is important to first cyrie-weisgCW) model, the internal effective field is given
study the properties of the individual units. This task hasby H,=2(p—1)H’ as the ions are considered separately,
been carried out by GamiAdeva and Huber for the quan- and each has D 1) NN'’s in the corner-sharing structures
tum cas€,? and we will not repeat the derivation here. It will considered in this worksee Fig. 1 The internal field is
suffice to say that the susceptibility per spin of an isolatecevaluated by imposing the self-consistent condition of equat-
unit with p spins(p=4 for the pyrochlore angp=3 for the  ing the magnetization per spin in the field with that of a unit
kagome is given by in the field, which can be mathematically stated as

is important to notice that the only difference from the
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Mp(Ho+(p—1)H')
0 :

SoBs,(So[Ho+2(p—1)H"])/T)=
©)

where the left side of the equation corresponds to the value
of the magnetization per spin in the Curie-Weiss model, with

25+ 1 t250+1 1 ) X 5
. CO 2_SOCO 2—30 ()

So
the so-called Brillouin functio® The right side corresponds
to the magnetization per spin of the isolated unit under the ; / . . .
influence of the internal field. In the general case, Bycan 0 05 1 15 2
only be solved numerically. However, in the paramagnetic (a) T/Ocw
regime, we can put, for small fieldsHg+H,)/T<1,

X

BSO(X) =

Mp(Ho+(p—1)H')

~xp(M[Ho+(p—DH']T  (7)

p
for the magnetization per spin in the cluster, where the sus-
ceptibility per spin is given by Eq4), and @

G
, Sot+1 ,
tS) P
Taking into account Eqg7) and(8) we can easily solve Eq. 'o b/ . ‘ .
(5) to give 0 02 04 06 08 1
. (b) T/0cw
, 8p(] )
H Ho, 9

- (p—D[1-ep(j)] FIG. 2. Susceptibility and specific heat for the pyrochlore lattice
] o for various values of,: (long-dashed lingsy=3 (short-dashed
which, upon substltutlon_lr)_Eq$7) or _(8)_, leads to an eX- jing) s,=1; (dotted ling sy=2; and(dot dashed linps,=2. The
pression for the susceptibility per spin in the paramagnetigoiid line is the classical limit of the model. The double dotted line

regio in the case of the susceptibility represents the Curie-Weiss law.
Ocw=2(p—1)se(se+1)J/3 is the Curie-Weiss temperature and
XGCC(T): So(Sot+1) 1+£,(T) (10) Ccow=So(Spt+1)/3 is the Curie constanta) Magnetic susceptibil-
P 3T 1—gn(T)’ ity. (b) Specific heat.
The corresponding expressions for the internal erférgyd _ o )
the specific heat per spin are given by _tovx{ards the _classmal limit for relatively !arge values of .the
individual spins. If the quantum behavior of the physical
Up(T)=Jsp(Sp+1),(T) (1) quantities of interesttnamely, susceptibility and specific
heaj is not so different from the classical one for relatively
and large values 08y, we can feel confident that the predictions
P are essentially correct, at least in the temperature region
Cp(T)=Jso(So+1) == &,(T), (120  where deviations from the classical behavior are small, as we
aT know that the GCC model gives an accurate description of
respectively. these quantities in the whole temperature range. It would be

desirable also to compare the predictions of this model with
the ones obtained from more sophisticated techniggesan-
tum Monte Carlo, high-temperature series expansions,
density-matrix renormalization group, exact diagonalization,
In this section, we will present the main results of theand so oin However, that comparison is not possible in gen-
model introduced in the previous section. One is tempted teral, due to the geometrical complexity of GFAF that pre-
compare them with the available experimental data. Howvents one from applying any of these techniques to arbitrary
ever, such a comparison makes no sense at this point bealues ofsy, and these kind of calculations have been only
cause, as stated in the Introduction, there are several effeatarried out for the quanturs,=3, which, as we will see
not included in this simplified model such as dipole-dipolebelow, is the case where we expect to have the worst results.
interactions, anisotropies, or further neighbor interactions, to Let us start by considering the results for the susceptibil-
cite some examples. Therefore, we will present the results dfy and specific heat in the pyrochlore lattice, which can be
the present model and study how the quantum case evolvagen in Fig. 2 for some values gf. As we can see from the

IlI. RESULTS FOR THE SUSCEPTIBILITY AND THE
SPECIFIC HEAT
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FIG. 4. Susceptibility and specific heat for tkagomelattice
with integer values o§,: (long-dashed linesy,=1; (short-dashed
line) sp=2; (dotted ling sy=3; and(dot dashed lines,=4. The
solid line is the classical limit of the model. The double dotted line
in the case of the susceptibility represents the Curie-Weiss(&Bw.
Magnetic susceptibility(b) Specific heat.

FIG. 3. Position of the maxima appearing in the susceptibility
and specific heat. Solid lines are a guide to the égePyrochlore
lattice. (@) Maxima in the susceptibility(O) maxima in the spe-
cific heat.(b) kagomdattice. ((J) Maxima in the susceptibility(O)
maxima in the specific heat for half-integgy and (X) maxima in
the specific heat for integer values .

compared to MC data for the susceptibility. The quantum

observation of that figure, the classical susceptibility deviatesase is a more delicate one, as quantum fluctuations can play
from the Curie-Weiss behavior belo®,,. The quantum an important role. However, these fluctuations will be only
case is qualitatively similar to the classical behavior exceptmportant at low temperatures, a region in which our model
at very low temperatures, where it passes through a maxidoes not apply for other reasons we will explain below.
mum and then falls to zero. However, we can also see that In order to proceed further, we will split the discussion for
even for relatively small values &, the quantum behavior thekagoméattice in two cases, corresponding to integer and
is not so different from the classical one down to the maxi-half-integer values of the individual spins.
mum. Regarding the predictions for the specific heat, again, Let us first analyze the results for integer valuessgf
the main difference is that it goes through a maximum, andvhich can be seen in Fig. 4. There are no remarkable differ-
later falls to zero, in contrast with the classical situation,ences with respect to the discussion for the pyrochlore, ex-
where it goes to a constant valueTat 0 K. Additional in-  cept for the fact that the maximum in the susceptibility is
formation can be gained by studying the dependence of thpresent even in the classical limit. The only qualitative dif-
position of the maxima with the value e in Fig. 3. Inthat ference is the later fall to zero of both the susceptibility and
figure can be seen how nicely both the maxima in the susspecific heat. Also, we have computed the evolution of the
ceptibility and specific heat go to the zero classical value. maxima for both the susceptibility and specific heat. Again,

Let us now turn to thekagomelattice. In this case, it is both quantities go smoothly to their classical values. It is
reasonable to expect the model to work less well than in thémportant to stress that the fact that the susceptibility goes to
pyrochlore lattice, as it is well-known that the role of long- zero is related to the ground-state total spin of the cluster,
wavelength fluctuations is more important in 2D lattices,which, for integer values of the individual spins, is always a
which are explicitly neglected in any MF approach. How- singlet. This is not the case for half-integer valuesgf
ever, from the MC results for the classical limit, it turns out  For half-integer values o§,, there are very important
that long-wavelength thermal fluctuations are unimportantifferences with respect to the previous cases, as is evident in
for GFAF at finite temperatures, which partially explains Fig. 5. The susceptibility goes through a maximum, then
why the classical limit of our model is essentially exact whenreaches a minimum, and divergesTas-0. This is a conse-
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FIG. 6. Comparison of the GCC predictions with results from

FIG. 5. Susceptibility and specific heat for thagomelattice _ I :
finite-size clusters calculations and high-temperatures series for the

with half-integer values of,: (long-dashed Iin)es(,:% (short- Y - A S
dashed ling so=2, (dotted lin® so= 2, and (dot-dashed lines, ~ agonie; lattice (Ref. 20 (solid line GCC model forsy=73,

. The solid line is the classical limit of the model. The double (0N9- dashed lineGCC model fors, =1, (dashed lineGCC model
dotted line in the case of the susceptibility represents the Curiefor So=2 3, (O) results from high-temperature series expansions, and

Weiss law.(a) Susceptibility per ion. (b) Specific heat per ion. (@) results from exact diagonalization of a cluster with 18 spins.
The double dotted line in the case of the susceptibility represents

quence of the fact that the ground state of the triangulaf® Curie-Weiss lawa Susceptibility. (b) Specific heat.

cluster for half-integer values &f, is a doublet in our model.

However, it is now generally accepted that the real groundaccount that for half-integer values 8§ the energy-level
state of thekagomidattice is a singlef’?!’and may have a structure of our model is qualitatively incorrect, we should
gap in the spectrum so, actually, the susceptibility shoulchot be surprised by this special behavior.

either be finite or go to zero a— 0. Obviously, the present As commented above, if we want to further check the
breakdown at very low temperatures is not a particular fearange of applicability of the model, it would be desirable to
ture of the mean-field approach, but it is shared by evergompare its predictions with the ones obtained from more
model that starts from finite cluster calculations, with an oddsophisticated methods, such as exact diagonalization of small
number of spins in the elementary cluster. Moreover, theclusters or high-temperature series expansions. Unfortu-
maxima in the specific heat follow a different trend than innately, these calculations have been carried out only for the
the integers, case, even though the classical limit is correctkagomewith s,=3 (Refs. 20,21 where, as we have argued
(see Fig. 3 Even more striking is the fact that both the above, we can expect the model to be least successful. How-
susceptibility and specific heat fay=3 are qualitatively ever, even though we do not expect complete agreement, we
different from all the previously presented results. The sushave carried out such a comparison with results obtained
ceptibility does not show a maximum, but diverges &sd¢  from the aforementioned methods and the results are pre-
T approaches 0. The maximum in the specific heat does naented in Fig. 6. In that figure we have also plotted the
follow the extrapolated behavior for other half-integer valuescurves corresponding =1 ands,= 2 for comparison at a

of s5. These kinds of problems have been already pointedjualitative level. It is important to stress that the curves de-
out in the literature for more rigorous methods than 68f2.  picted there do not contain any fitting parameter nor have
A qualitative argument that can help to understand these dehey been rescaled in any sense. Surprisingly, the suscepti-
viations is the fact thag,= % is the “most quantum” case, in bility calculated from our model fos,= 3 is in very good
which the physical quantities are more sensitive to the disagreement down te=0.50 o with both high-temperature
crete structure of the energy levels of the system. Taking intgeries expansions and the diagonalization of a cluster with 18
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spins. The corresponding curve for the specific heat is irperature for half integes, in the kagoméattice is incorrect.
poor quantitative agreement with the results from high-propably, there is a maximum and a minimum in the suscep-
temperature series expansions. However, it describes acciibility, but we expect the susceptibility either vanishes or
rately the position of the maximum. In any case, we cangoes to a finite value & — 0, not to diverge. In any case, it
expect the agreement with the specific heat to be worse, asi# still a significant improvement with respect to the Curie-
considers independent units, neglecting the emerging corréieiss theory and other MF theories. However, more rigor-
lations at low temperatures. Moreover, we can see that theus techniques are needed in order to verify these assertions.
calculated susceptibilities fap=1 andsy,=3 reproduce the

main qualitative features of the high-temperature expansion IV. CONCLUSIONS

aqd finite cluster rgsqlts. At this po_int,. it i_s difficult to say if In this work we have presented the quantum version of
this a fortunate conjmdence or an indication 'of the accuracype generalized constant-coupling model that was shown by
of our model for higher values of,. Numerical data for the authors to be in excellent agreement with Monte Carlo
these values of the spins would be necessary to decide bgata for the susceptibility and specific heat in the classical
tween the two cases. limit for both the pyrochlore antagomelattices. There are

In any case, it is important to notice that some of thesome important qualitative differences between the classical
qualitative features obtained in this simple model have beeand quantum behaviors that are important at low tempera-
observed in experimental studie€-33Again, it is difficult  tures.
to say at this point if those features are due to additional The main features of the susceptibility in this model are
interactions not accounted for in this model. For examplethe presence of maxima in both the susceptibility and spe-
the existence of a maximum in the susceptibility for the py-cific heat, similar to those found experimentally. The suscep-
rochlore lattice has been systematically observed in all thébility for the kagomelattice with half-integer values of the
experiments at low enough temperatures. Actually, thesedividual spins is found to pass through a maximum and
maxima were successfully interpreted by the present authotien, after a minimum, diverges @s-0. This divergence is
with an even simpler model in which the interactions with due to a nonzero value of the total spin of the ground state of
nearest neighbors and next-nearest neighbors were taken irttee elementary units for these values of the individual spins.
account'® Moreover, in the work by Willset al?® on iron  There is some experimental evidence for the existence of
jarosites, which is one of the few systems wherekhgome such an upturn in the susceptibility in the iron jarosite
lattice has an experimental realization, the magnetic suscegystems? However, the divergence of this quantity in our
tibility exhibits the maximum and a later upturn at a tem- model that is due to the finite-size cluster with an odd num-
perature comparable with that predicted by our model. Howber of spins is incorrect.
ever, in that temperature region, it seems likely that the The results for thekagomes are compared with high-
dilution of the magnetic lattice by nonmagnetic impurities temperature series expansions and exact diagonalization of
plays an important role, giving rise to some kind of spin-small clusters. The susceptibility is found to be in good
glass behavior, for which it is very difficult to extract any agreement with those results downTe-0.50 ¢\, which is
conclusion. a remarkable fact for so simple a model. Even though the

In the light of these results, we think that a prudent esti-specific heat is not in quantitative agreement at this tempera-
mate of the breakdown of our model is set by the position oture, the position of the maximum is adequately predicted.
the maximum in the specific heat. As we approach this temResults from the aforementioned techniques for these lattices
perature, emerging correlations that cannot be described ifor higher values of, would be desirable in order to check
the GCC formalism enter into play. For the pyrochlore latticethe accuracy of the GCC model.
and thekagomewith integer values o0&, it is very likely In any case, we feel that the present model provides an
that the present description is qualitatively correct for tem-adequate description of the nearest-neigtamomeand py-
peratures well below the peak temperature of the specificochlore systems down to the temperature of the peak in the
heat. However, we think that the description below that temspecific heat.
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