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Exchange-dominated spin waves in simple cubic antiferromagnetic films
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Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada N6A 3K7

~Received 28 June 2000; published 11 April 2001!

A study is made of the role of surface orientation in determining the spectra of surface spin waves in
antiferromagnetic films. The calculations apply to the exchange-dominated regime and are based on a spin-
wave operator and Green-function technique. The method exploits some properties of banded~tridiagonal and
pentadiagonal! matrices in order to find analytical expressions for the spin-wave frequencies. Theoretical
results are presented for films with a simple cubic structure and surfaces corresponding to three different
orientations of the crystal planes, namely,~001!, ~011!, and~111!, for which the surface spin-wave character-
istics are found to be quite distinct. This work generalizes previous calculations for semi-infinite simple cubic
antiferromagnets with~001! surfaces.
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I. INTRODUCTION

It is known that the spin dynamics of a large class
ordered magnetic materials can be well described by mo
that include the short-range exchange coupling betw
magnetic sites but disregard the long-range magnetic dip
dipole interactions. This is often the case for antiferrom
nets in appropriate wave-vector regimes and results from
greater strength of the exchange coupling as compared to
other interactions in the system~see, e.g., Ref. 1!. The dipo-
lar interactions eventually become important for the sp
wave dispersion at very small wave vector. In the exchan
dominated regime the dynamics of the low-lying sp
excitations depends sensitively on the crystal structure, s
that determines the positions of nearest neighbors for e
magnetic site.

For thin films another factor that influences the propert
of the magnetic excitations is the orientation of the crys
planes at the surfaces. This determines the number of m
ing bonds per site at the surfaces and also modifies the s
metry of the interactions between the layers in different
rections on the surfaces.2,3 As a consequence, the spectra
the magnetic modes in a film might display distinct featu
that depend on the orientation of the growth direction. T
should be particularly the case in antiferromagnets wh
there are two sublattices of spin sites.

Usually, in order to obtain the spin wave~SW! spectrum
from a microscopic approach, one constructs the lineari
equations of motion for either the spin operators at each c
tal site or, alternatively, for the spin-dependent Gre
functions.4 Often the spin operators are transformed to a r
resentation in terms of boson creation and anihilation op
tors. The resulting system of coupled equations can then
written as a matrix equation. In these formalisms the cal
lation of the frequencies of the surface SW modes on a
with N atomic layers depends on the inversion of aN3N ~or
larger! matrix which cannot, save in some particular cas
be carried out analytically.

In this paper we describe an analytical procedure for c
culating the frequencies of SW modes in simple cubic a
ferromagnetic thin films in the exchange-dominated regim
We use the fact that, due to the short range of the coup
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between the magnetic sites, the equations of motion can
written in a form that involves banded matrices~e.g., tridi-
agonal, pentadiagonal, etc.! The method consists of rewriting
the equations of motion in such a way that the correspond
matrix equation can be recast into a form with a known a
lytical solution. The approach is different from, and simp
than, that used by Wolfram and Dewames for a semi-infin
simple-cubic antiferromagnet with a~001! surface.2 By con-
trast, it enables us to obtain calculations for finite-thickne
films and for other surface orientations.

We present results showing the effect of finite film thic
ness in coupling the SW modes localized near the two s
faces, leading to a splitting of several of the surface S
mode branches that occur in the semi-infinite limit. Also in
film the bulk SW modes become quantized. The results
obtained for films with surfaces corresponding to three d
ferent crystallographic planes, namely,~001!, ~011!, and
~111!. It is discussed here how each orientation modifies
coupling scheme between the sites in each layer and
equivalence of the sublattices, as well as introducing dir
tional effects in the dispersion relations of the SW mode

In order to introduce the basic method, let us first revi
the case of a ferromagnet in the exchange-dominated reg
The Heisenberg Hamiltonian has the form

H52
1

2 (
i , j

Ji j Si•Sj2gmBH0(
i

Si
z1Hanis, ~1!

whereJi j is the exchange coupling between sitesi andj, and
H0 is an applied magnetic field in thez direction~the direc-
tion of spin ordering!. The termHanis represents uniaxia
single-ion anisotropy, which may be different at a surfa
We consider a film geometry with the magnetic sites oc
pying layers in thexy plane that are labeled by the indexn
~where n51,2, . . . ,N for a film with N layers!. The SW
dispersion relations can be studied by writing down the
erator equation of motion forSi

1 obtained usingH and the
random phase approximation atT!Tc while assuminĝ Si

z&
5S for the ferromagnet. Taking a time dependence such
exp(ivt) wherev is the mode frequency, we have
©2001 The American Physical Society31-1
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Fv2gmB~H01HAi!2S(
j

Ji j GSi
11S(

j
Ji j Sj

150,

~2!

where HAi denotes the effective anisotropy field at sitei.
Next, using the translational symmetry parallel to the laye
we writeSi

15sn(k)exp(2ik•r i
i) wherek5(kx ,ky) is a two-

dimensional ~2D! in-plane wave vector andr i
i5(xi ,yi).

Equation~2! may then be expressed in matrix form as

~A2R!s50, ~3!

wheres is the column matrix withsn in the nth row, A is a
N3N matrix involving only the bulk parameters of the film
and R describes the perturbing effects due to the surfa
~i.e., due to missing exchange bonds, as well as due to m
fied values of the surface exchange and anisotropy par
eters!. DenotingB[A21 and rearranging Eq.~3!, it can be
shown4 that the surface SW modes of the film can be o
tained from the condition

det~ I2BR!50. ~4!

For example, in the application to a simple-cubic~sc! fer-
romagnetic film with ~001! surfaces and nearest-neighb
exchange coupling only,A is a tridiagonal matrix,4

i.e., its nonzero elements can be written as@A# l ,m5Dd l ,m
2d l 21,m2d l 11,m , where D5622@cos(kxa)1cos(kya)#2@v
2gmB(H01HA)#/SJ, with a and HA denoting the lattice pa
rameter and the bulk anisotropy field, respectively. The e
ments of the inverse ofA are given explicitly by4

@A21# l ,m5
xl 1m2xu l 2mu1x2N122 l 2m2x2N122u l 2mu

~12x2N12!~x2x21!
,

~5!

where the complex parameterx is defined byx1x215D and
uxu<1. The matrixR, on the other hand, has elements eq
to zero everywhere except in two small blocks of dimens
n03n0 located at the ends of the leading diagonal. Typica
for a sc ~001! ferromagnetic film,n0 may be 1, 2, or 3,
depending on the missing bonds and on assumptions reg
ing the modified exchange and anisotropy parameters
the surfaces.4 The solution of Eq.~4! then reduces to solving
a 2n032n0 determinantal condition.

This tridiagonal matrix method, either in conjunction wi
the operator equation of motion or the Green function eq
tion of motion, has been applied to a range of proble
involving exchange surface SW~e.g., see Refs. 4–7, an
references therein!. In the following examples we generaliz
the procedure to sc antiferromagnetic thin films, where
presence of two sublattices generates equations with m
complicated banded matrices.

II. SIMPLE CUBIC ANTIFERROMAGNETIC FILMS
WITH „001… SURFACES

Let us consider a two-sublattice antiferromagnetic t
film with N atomic layers~in the xy plane!, sc structure and
~001! surfaces~see Fig. 1!. The Hamiltonian is written as
17443
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H5(
i , j

Ji j Si•Sj2gmB(
i

~H01HAi!Si
z

2gmB(
j

~H02HA j!Sj
z , ~6!

where Ji j is now the nearest-neighbor exchange betwe
sitesi and j on opposite sublattices~labeledu andd for spin
‘‘up’’ and spin ‘‘down,’’ respectively!, andHAi andHA j are
effective anisotropy fields. The magnitudes of the anisotro
field ~equal and opposite on the two sublattices! are taken to
have the bulk valueHA everywhere, except in the surfac
layers where it may take the valuesHAS andHAS8 for n51
andN, respectively. LikewiseJi j has the bulk valueJ, except
when both spins are in the same surface layer and it has
valuesJS andJS8 . Calculations for the surface SW insemi-
infinite sc antiferromagnets were made by Wolfram a
Dewames.2 By contrast the matrix technique, as later em
ployed here, is more straightforward, allowing us to exte
the studies to thin films where the presence of two surfa
provides coupling effects between the modes.

As before, the equations of motion for theS1 operators
are transformed to a representation using the 2D wave ve
k and layer indexn. Additionally, the operators now have
sublattice label (u or d). In this surface orientation, eac
layer contains bothu andd sublattice spins. The spin ampl
tudes are then transformed to symmetric and antisymme
combinations by definingsn[sn

(u)1sn
(d) and s̄n[sn

(u)2sn
(d) .

The equations of motion become

Es15@11e~42gk!1vS# s̄12 s̄2 ,

Esn5~61vA2gk!s̄n2 s̄n212 s̄n11 , 1,n,N,

EsN5@11e8~42gk!1vS8# s̄N2 s̄N21 , ~7!

Es̄15@11e~42gk!1vS#s11s2

Es̄n5~61vA2gk!sn1sn211sn11 , 1,n,N,

Es̄N5@11e8~42gk!1vS8#sN1sN21 , ~8!

FIG. 1. Schematic view of an antiferromagnetic film with
structure and surfaces corresponding to the~001! crystallographic
planes.
1-2
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EXCHANGE-DOMINATED SPIN WAVES IN SIMPLE . . . PHYSICAL REVIEW B 63 174431
where we have definedgk52@cos(kxa)1cos(kya)# as a struc-
ture factor, vA5gmBHA /SJ, and E5(v2gmBH0)/SJ.
The surface parameters arevS5gmBHAS/SJ, vS8

5gmBHAS8 /SJ, e5JS /J, ande85JS8/J. Thes̄ terms can now
be eliminated from these two sets of coupled equations.
result~for thesn) may be expressed in the same form as E
~3!, except thatA becomes a pentadiagonal matrix, i.e.,
nonzero elements occur in a band of five diagonals cent
around the leading diagonal. However, we find that this p
tadiagonal matrix is expressible as the product of two tr
agonal matricesA1 and A2, plus a difference term that i
absorbed in the definition ofR. The two tridiagonal matrices
have elements defined by

@A1,2# l ,m5D1,2d l ,m2~d l 21,m1d l 11,m!, ~9!

with D1,2(kx ,ky ,v)52gk6v0, where v0

[A(vA16)22E2. These matrices obey the relationA1
2A25(D12D2)I and as a consequence, the inverse of th
product satisfies

~A1A2!215
1

~D12D2!
~A2

212A1
21!. ~10!

Thus, using Eq.~5! for the inverse of a tridiagonal matrix
the elements ofB[(A1A2)21 are

@B# l ,m5~2v0!21F yl 1m2yu l 2mu1y2N122 l 2m2y2N122u l 2mu

~12y2N12!~y2y21!

2
xl 1m2xu l 2mu1x2N122 l 2m2x2N122u l 2mu

~12x2N12!~x2x21!
G , ~11!

where x1x215D1 and y1y215D2 ~with uxu<1 and uyu
<1).

The matrixR has only a few nonzero elements, which a
listed in the Appendix. The implicit SW dispersion relatio
becomes detC50, whereC is a 434 matrix with elements
defined in the Appendix. The dispersion relation of the s
face SW modes are now found as the solutions corresp
ing to uxu,1 anduyu,1 ~a localization condition!. There is
some simplification of the analytical result in the case
films with symmetric surfaces (s5s8 ande5e8), when the
determinantal condition yields

R1,1~B1,16B1,N!1~R1,21R2,1!~B1,26B2,N!2R1,2R2,1@~B1,2

6B2,N!22~B1,16B1,N!~B2,26B2,N21!#2150. ~12!

The upper and lower sets of signs in Eq.~12! refer to modes
that are symmetric and antisymmetric, respectively, with
spect to the midpoint of the film. Also, we note that in t
limit of N→` the elementsB1,N , B2,N21, andB2,N vanish,
and the surface SW dispersion relation can be expresse

R1,1~y2x!1~R1,21R2,1!~y22x2!1R1,2R2,1~v0!21

3~y2x!2 ~12xy!2v050. ~13!

By contrast, the frequencies of the quantized bulk mo
of the film are found as the solutions of detC50 with uxu
17443
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5uyu51. The SW modes in this case are all doubly degen
ate whenH050. For the~001! case the resulting dispersio
relation is expressible in the form

E25~vA16!224@cos~kxa!1cos~kya!1cos~aa!#2,
~14!

wherea takes a set of real discrete values (0<a<p/a) that
can be deduced from the determinantal condition. AsN
→` the bulk modes become closer together, forming
effective continuum.

Numerical results are shown in Figs. 2 and 3, where
values of v/SJ for the surface SW branches are plott

FIG. 2. SW dispersion relations for sc antiferromagnetic film
with ~001! surfaces, takingvA51022, s51, e51, andN58. The
bulk modes are those within the shaded region.

FIG. 3. Comparison of surface SW dispersion relations for
antiferromagnetic films with~001! surfaces, takingvA5531022

and s51. The sets of curves correspond toe51 ~solid!, e50.5
~dotted!, and e51.5 ~dashed!. The region containing the bulk
modes is shaded.
1-3
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J. MILTON PEREIRA, JR. AND M. G. COTTAM PHYSICAL REVIEW B63 174431
againstkxa/p, taking k5(kx,0). In fact Fig. 2 shows both
the quantized SW bulk modes~inside the shaded area! and
the surface SW modes~outside the shaded area! for a film
with 8 layers, takingvA51022, s51 ande51. The surface
SW modes are seen to split into two branches for small w
vectors, as expected from Eq.~19!, and they become ap
proximately degenerate at largerkx . Figure 3 displays the
surface SW modes for three different values ofe, again for
symmetric film surfaces, takingvA5531022 and with other
parameters as before. Again the shaded area correspon
the region occupied by the bulk modes, but the individ
modes are not shown since these would be different for e
value of e. For e50.5 and 1, the branches correspond
acoustic surface modes and are situated below the bulk
gion. For e51.5 we obtain two degenerate optical surfa
modes~above the bulk region! that are truncated. For suffi
ciently small values ofe ~whens51), the assumed antifer
romagnetic ground state can become unstable, correspon
to a reorientation of spins near the surfaces. This is an
gous to the type of surface reorientation phase transition
cussed by Mills8 in certain anisotropic ferromagnets. In o
case it only occurs when the surface perturbations~in ex-
change or anisotropy! are large, and it can in principle occu
for other surface orientations.

III. SIMPLE CUBIC ANTIFERROMAGNETIC FILMS
WITH „011… SURFACES

We next consider a sc antiferromagnetic film with~011!
surfaces, described by the same Hamiltonian as in Eq.~6!.
What distinguishes the formalism for this orientation fro
the previous one is that the spins in each layer now form
rectangular 2D net with sides of lengtha ~along thex axis!,
andA2a ~alongy). More important, the terms describing th
interactions of nearest neighbors in adjacent layers are
ferent in thex andy directions~see Fig. 4!. As a result, there
are distinct properties expected for the SW modes propa
ing along each direction. The formalism for obtaining t
SW frequencies is, however, similar to the previous ca
Each layer in the film contains equal numbers of sites fr
both sublattices and the spin amplitudes are transforme
obtain the equations of motion

FIG. 4. Representation of an antiferromagnetic film with
structure and surfaces corresponding to the~011! crystallographic
planes. The distance between each layer isb/2, whereb[a A2. The
neighboring sites in the same layer are directly coupled by
nearest-neighbor exchange only along thex axis.
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Es15@212e1vS2egk
(x)# s̄12gk

(y)s̄2 ,

Esn5@61vA2gk
(x)# s̄n2gk

(y)~ s̄n211 s̄n11!, 1,n,N,

EsN5@212e81vS82e8gk
(x)# s̄N2gk

(y)s̄N21 , ~15!

Es̄15@212e1vS1egk
(x)#s11gk

(y)sn11 ,

Es̄n5@61vA1gk
(x)#sn1gk

(y)~sn211sn11!, 1,n,N,

Es̄N5@212e81vS81e8gk
(x)#sN1gk

(y)sN21 ~16!

with gk
(x)52 cos(kxa), gk

(y)52 cos(kya/A2), and other defi-
nitions as Sec. II. Thes̄n amplitudes are then eliminated a
before and another product of two tridiagonal matrices
obtained by decomposing a pentadiagonal matrix. The tr
agonal matrices are defined as

@A1,2# l ,m5D1,2d l ,m2gk
(y)~d l 21,m1d l 11,m!, ~17!

with D1,252gk
(x)6v0.

The dispersion relation is again obtained from a 434
determinantal condition which is formally the same as
Sec. II, but with the above redefinitions. From the expr
sions for the matrix elements, it can be seen that the direc
of propagation of the SW modes along the surface plays
important role in this case, since thekx andky components of
the wave vector are present in different diagonals. The b
modes are the solutions withuxu51 anduyu51, which leads
to a dispersion relation of the form

E25~vA16!22@2 cos~kxa!

14 cos~kyaA2!cos~aaA2/2!#2, ~18!

wherea takes discrete values.
Numerical results are shown for the surface SW mode

Figs. 5 and 6, where the values ofv/SJ are obtained for the
propagation wave vectork along thex and y axes, respec-
tively. In these examples we have taken a symmetric fi
with N58, vA51022 and s51. Figure 5 displays the re
sults for propagation along thex direction for two values of
e. For e51.0 there are two acoustic surface SW mod
~dashed lines! that become degenerate for larger wave v
tors, while fore52.5 we find two optical, truncated, surfac
SW branches~solid lines!. The shaded region corresponds
the region of quantized bulk modes. Figure 6 shows the s
face SW branches for modes propagating along they direc-
tion for surfaces withe51.0 and 1.5. Fore51.0 ~dashed
lines! the branches show a similar behavior to those in Fig
However, in contrast with the previous figure, there are
optical modes untile.4 ~for s51).

IV. SIMPLE CUBIC ANTIFERROMAGNETIC FILMS
WITH „111… SURFACES

In the ~111! orientation, each layer of the film contain
sites of only one sublattice type, with the ‘‘up’’ and ‘‘down’
layers alternating, while the spins in each layer form a tria
gular 2D net with sides of lengthaA2 ~see Fig. 7!. As a

e
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consequence, the characteristics of the SW modes de
not only on the number of layersN but also on whether this
number is even or odd. In the latter case both surfaces a
the same sublattice type~e.g., bothu), whereas in the forme
case the two surface layers are of different sublattice ty
~oneu, oned). In order to make explicit this difference in th
equations of motion, the layers for each sublattice are in
vidually labeled as in Fig. 7.

Let us consider initially the case of a film with an eve

FIG. 5. Surface SW dispersion relations for sc antiferromagn
films with ~011! surfaces, for propagation along thex axis, taking
N58, vA51022, and s51. The curves correspond toe51.0
~dashed! ande52.5 ~solid!. The region containing the bulk mode
is shaded.

FIG. 6. Surface SW dispersion relations for sc antiferromagn
films with ~011! surfaces, for propagation along they axis, taking
N58, vA51022, ands51. The curves correspond toe51.0 ~dot-
ted! and e51.5 ~solid!. The region containing the bulk modes
shaded.
17443
nd
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number of layers, denotingN52M whereM is an integer.
Thus, using assumptions about the surface perturbation
the exchange and anisotropy field as before, the linear
equations of motion for the spin amplitudes become, in m
trix form

A1s(u)5@Jk2Dk#s(d), A2s(d)52@J†
k2D* k#s(u),

~19!

where the elements of theM3M matrices are defined as

@A1#m,n5v1dm,n1gd1,n1h8dM ,n , ~20!

@A2#m,n5v2dm,n2g8dM ,n2hd1,n , ~21!

@Jk#m,n5jkdm,n1jk* dm21,n , ~22!

@Dk#m,n5jk@~12e!d1,n1~12e8!dM ,n#. ~23!

Due to the triangular geometry within each layer, the d
namic aspect of the exchange interaction is now describe
a complexstructure factor

jk5expS ikyaA6

3D 12 cosS kxaA2

2D expS 2 ikyaA6

6D ,

~24!

and the other terms arev15E2(61vA), v25E1(6
1vA), g5@623e1(12s)vA#, h53(12e), g85@6
23e81(12s8)vA#, andh853(12e8). From Eq.~19! we
can now obtain two matrix equations similar to Eq.~3! one
for s(u) and one fors(d), that yield the SW frequencies. Th
equations can be written in the form

@A2R(a)#s(a)50, ~25!

ic

ic

FIG. 7. Schematic representation of an antiferromagnetic fi
with sc structure and surfaces corresponding to the~111! crystallo-
graphic planes, viewed~a! parallel and~b! perpendicular to the
surface planes. The magnetic sites in each layer are arranged
triangular lattice. The black dots correspond to sites of sublatticu,
and the white and shaded dots are sites of sublatticed. The layer
numbering is shown.
1-5
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where a denotesu or d, A is an asymmetrictridiagonal
matrix

@A#m,n5Ddm,n2~jk!2dm21,n2~jk* !2dm11,n , ~26!

and the diagonal elements are given byD522jkjk* 1v0
2.

Note thatA depends only on the bulk parameters, while
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l

the surface effects are contained inR(u) andR(d), which are
defined in the Appendix. By analogy with the previous cas
the dispersion relation of the SW modes can be dedu
from the determinantal conditions det(I2R(u)B)50 or
det(I2R(d)B)50, with B[A21. Generalizing Eq.~5!, the
elements of theB matrix are
@B# l ,m5
b2lxl 1m2xm2 l1bN1222mxN122 l 2m2bN1222m12lxN122(m2 l )

jk
2@12bN12xN12#@b2x2x21#

, l<m, ~27!

@B# l ,m5
b2lxl 1m2b2(l 2m)xl 2m1bN1222mxN122 l 2m2bN12xN122( l 2m)

jk
2@12bN12xN12#@b2x2x21#

, l .m, ~28!
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whereb[jk* /jk and (jk)
2x1(jk* )2x215D. The determi-

nation of the SW modes then reduces to solving detC(u)

50 or detC(d)50, whereC(u) andC(d) are 333 matrices in
the present case~see the Appendix!.

WhenN is odd~denotingN52M11) the influence of the
Nth layer can be treated as an effective energy-depen
surface perturbation applied to the previous case for an e
number of layers. This comes about by means of the iden

s(u)
M115

e8jk*

E2~3e81vS8!
s(d)

M , ~29!

which follows from the original equations of motion.
The two determinantal conditions are found to give t

same result, due to degeneracy of the SW modes in this c
Some numerical results are shown in Figs. 8 and 9 for
values ofv/SJ of surface SW modes in films with symme
ric surfaces (e5e8,s5s8) having 8 and 9 layers, respec
tively. The propagation is chosen to be along thex direction
with vA51022 and s51. The shaded area corresponds
the region of quantized bulk modes. In Fig. 8, for a film wi
N58, there is just one acoustic surface SW branch foe
51 ~solid line!. However, if the value ofe is decreased ther
are two acoustic surface SW branches, with the higher
quency ones emerging from the bulk region for large wa
vectors, as can be seen fore50.5 ~dotted lines!. On the other
hand, fore.1 the higher-frequency branch may occur as
optical surface SW, as is shown fore51.5 ~dashed lines!.
Figure 9 shows the results for a film withN59, taking other
parameters as before. One can notice that the surface
modes in this case behave in a way that clearly contrasts
the results for evenN in Fig. 8. For example, fore51 ~solid
lines! the two surface modes are approximately degene
for large wave vectors, but are clearly split for small wa
vectors. A similar behavior occurs fore50.5 ~dotted lines!
ande51.5 ~dashed lines!. However, for the parameters use
there are no optical surface SW branches.
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V. CONCLUSIONS

In summary we have investigated the influence of surf
orientation in the spectra of spin waves in antiferromagne
films. This represented a generalization of earlier work
antiferromagnets to incorporate the new effects arising du
finite film thickness and surface orientation. The physi
importance of each was demonstated by the analytic res
and numerical examples.

The calculations were performed by a method that
tends the equation-of-motion formalism involving tridiag
nal matrices to apply to more complicated exchange-coup
systems. Specifically, we obtained results for the exchan
dominated surface SW spectrum in films corresponding to
antiferromagnets with surfaces on the~001!, ~011!, and~111!

FIG. 8. Surface SW dispersion relations for a sc antiferrom
netic film with ~111! surfaces and an even number of layersN
58), takingvA51022, s51 ande50.5 ~dotted!, e51.0 ~solid!,
and e51.5 ~dashed!. The region containing the bulk modes
shaded.
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crystallographic planes. For the~001! and~011! orientations,
the equations of motion were simplified by using symme
and antisymmetric combinations of the spin amplitude ope
tors. In addition, the resulting pentadiagonal matrices w
decomposed into products of tridiagonal matrices, and
allowed us to find analytical expressions for the dispers
relations. In the~111! case a different approach was em
ployed in which the matrix equations of motion were writt
in a tridiagonal form by a suitable labeling of the film layer
We obtained results that show a strong dependence of
surface SW modes on the direction of propagation in
~011! orientation, as well as the effect of the inequivalence
the sublattices in the~111! film case, which is shown to
introduce significant modifications on the propagation pr
erties of the surface modes. The formalism presented he
valid for any number of layers and the semi-infinite limit c
be easily obtained by makingN→`, in contrast with previ-
ous calculations,1 where a semi-infinite medium was a
sumed.

This formalism can be applied to antiferromagnets such
NiO (TN'523 K) or the perovskite-structure KNiF3 (TN
'245 K). In both of these materials the magnetic~Ni! ions
lie on a simple cubic lattice, and the exchange interacti
are very strong making the use of a Heisenberg-type Ha
tonian appropriate. Since the splitting of the acoustic S
surface branches is most apparent for small wave vec
these surface effects in films can in principle be studied
perimentally by light scattering techniques. Bulk samples
the above two materials have already been studied ex
sively by Raman and Brillouin scattering.9,10 A generaliza-
tion of the present theoretical work could involve the inc
sion of further exchange interactions~e.g., between secon
nearest neighbors! and application to antiferromagnetic sy
tems with different layer coupling schemes, by analogy w

FIG. 9. Surface SW dispersion relations for sc antiferromagn
films with ~111! surfaces and an odd number of layers (N59),
taking vA51022, s51 ande50.5 ~dotted!, e51.0 ~solid!, ande
51.5 ~dashed!. The region containing the bulk modes is shaded
17443
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our recent work for ferromagnetic Ni films with~111!
surfaces.11
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APPENDIX

For the ~001! case, the matrixR has only six nonzero
elements, namely,

R1,15l1l22~l11l2!~vA16!12~12e!gk
2 ,

R1,252l2 , R2,15l1 ,

RN21,N5l18 , RN,N2152l28 ,

RN,N5l18 l28 22~l18 1l28 !~vA16!12~12e8!gk
2 ,

~A1!

wherel6511(12e)(46gk)1(12s)vA andl68 511(1
2e8)(46gk)1(12s8)vA , with s5HAS/HA and s8
5HAS8 /HA . Also C is a 434 matrix with elements defined
by

C115R1,1B1,11R1,2B2,121, C125R1,1B1,21R1,2B2,2,

C135R1,1B2,N1R1,2B2,N21 , C145R1,1B1,N1R1,2B2,N ,

C215R2,1B1,1, C225R2,1B1,221,

C235R2,1B2,N , C245R2,1B1,N ,

C315RN21,NB1,N , C325RN21,NB2,N ,

C335RN21,NB1,221, C345RN21,NB1,1,

C415RN,NB1,N1RN,N21B2,N ,

C425RN,NB2,N1RN,N21B2,N21 ,

C435RN,NB1,21RN,N21B2,2,

C445RN,NB1,11RN,N21B1,221. ~A2!

For the~011! case we have the redefinitions

R1,15~vA16!~u11u2!1u1u21~u12u2!gk
(x),

R1,25u1gk
(y), R2,152u2gk

(y),

RN21,N52u28 gk
(y), RN,N215u18 gk

(y),

RN,N5~vA16!~u18 1u28 !1u18 u28 1~u18 2u28 !gk
(x),

~A3!

where u652e241(12s)vA6(12e)gk
(x) and u68 52e8

241(12s8)vA6(12e8)gk
(x). For the ~111! orientation,

the nonzero elements ofR(u) are

ic
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R1,1
(u)5gv22hv12gh1~e21!2jk* jk2~322e!jk* jk ,

R1,2
(u)5~e21!jk

2 , R2,1
(u)5F ~e21!v21h

v22h G~jk* !2,

R2,2
(u)5S h

v22hD jk* jk , RM ,M21
(u) 52

g8

v2
~jk* !2,

RM ,M
(u) 52g8v11h8v22g8h81~e821!2jk* jk

2F g8

v2
22~e821!Gjk* jk , ~A4!

and the elements ofC(u) are

C11
(u)5R1,1

(u)B1,11R1,2
(u)B2,121,

C12
(u)5R1,1

(u)B1,21R1,2
(u)B2,2,

C13
(u)5R1,1

(u)B1,M1R1,2
(u)B2,M ,

C21
(u)5R2,1

(u)B1,11R2,2
(u)B2,1,
er
,

17443
C22
(u)5R2,1

(u)B1,21R2,2
(u)B2,221,

C23
(u)5R2,1

(u)B1,M1R2,2
(u)B2,M ,

C31
(u)5RM ,M

(u) BM ,11RM ,M21
(u) BM21,1,

C32
(u)5RM ,M

(u) BM ,21RM ,M21
(u) BM21,2,

C33
(u)5RM ,M

(u) BM ,M1RM ,M21
(u) BM ,M2121. ~A5!

R(d) andC(d) are given by similar expressions. The forma
ism for a~111! film with an odd number of layers is simila
to the even case. For example, in the odd case the elem
of theR(u) matrices are obtained by making the replaceme
h8→0 andg8→ f 8, where

f 85323e81~12s8!vA2
~e8!2jkjk*

E2~3 e81vS8!
~A6!

and substitutingRM ,M
(u) 52 f 8v12( f 8/v2)jk* jk .
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