
pan

PHYSICAL REVIEW B, VOLUME 63, 174430
Ground-state phase diagrams of frustrated spin-S XXZ chains: Chiral ordered phases
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The ground-state phase diagram of the frustrated spin-S XXZchain with the competing nearest- and next-
nearest-neighbor antiferromagnetic couplings is studied numerically by using the density-matrix
renormalization-group method for the cases ofS51/2, 3/2, and 2. We are particularly interested in the possible
gapless and gapped chiral phases, in which the chiralityk l5Sl

xSl 11
y 2Sl

ySl 11
x exhibits a finite long-range order

whereas the spin correlation decays either algebraically or exponentially. We show that the gapless chiral phase
appears in a broad region of the phase diagram for generalS. By contrast, the gapped chiral phase is found for
integerS in a narrow region of the phase diagram, while it has not been identified for half-odd integerSwithin
our numerical accuracy. By combining the results with our previous result forS51, we discuss theS depen-
dence of the phase diagram. The prediction from a bosonization analysis on the decay exponent of the spin
correlation is verified.
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I. INTRODUCTION

The study of frustrated quantum spin chains has been
subject of much interest for many years. This is mainly b
cause these systems exhibit a wide variety of exotic pha
accompanied with various types of spontaneous symm
breaking due to the interplay between frustration and qu
tum fluctuations. Among them, one of the simplest mo
may be the quantum spin chain with the antiferromagn
~AF! nearest-neighbor couplingJ1 and the frustrating AF
next-nearest-neighbor couplingJ2. The model Hamiltonian
has the form

H5 (
r51

2 H Jr(
l

~Sl
xSl 1r

x 1Sl
ySl 1r

y 1DSl
zSl 1r

z !J , ~1!

whereSW l is the spin-S operator at sitel andD is the exchange
anisotropy. Throughout this paper, we consider the cas
0<D<1 and j [J2 /J1.0.

In the classical limitS→`, the spin chain~1! exhibits a
magnetic long-range order~LRO! in the ground state char
acterized by a certain wave numberq. The order parameter i
defined by

mW ~q!5
1

LS (
l

SW le
iql , ~2!

whereL is the total number of spins. The LRO is of the Ne`el
type (q5p) when the frustration is smaller than a critic
value, j <1/4, whereas it becomes of helical-type forj
.1/4 with a wave numberq5cos21(21/4j ). Both the time-
reversal and parity symmetries are broken in this helic
ordered phase. In theXY-like case (0<D,1), the helical-
ordered state possesses a twofold discrete chiral degen
characterized by the right- and left-handed chirality, in ad
tion to a continuous degeneracy associated with the orig
U(1) symmetry of theXY spin. The chiral order paramete
is defined by1
0163-1829/2001/63~17!/174430~11!/$20.00 63 1744
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k l5Sl
xSl 11

y 2Sl
ySl 11

x 5@SW l3SW l 11#z .

Note that this vector chiralityk l is distinct from the scalar
chirality often discussed in the literature2 defined by x l

5SW l 21•SW l3SW l 11: The chirality Ok changes its sign unde
the parity operation but is invariant under the time-rever
operation, while the scalar chirality changes its sign un
the both operations.

In the quantum caseS,`, it seems well established tha
no magnetic LRO emerges at least for 0<D<1 in contrast
to the classical limit. The magnetic LRO~2! is destroyed by
quantum fluctuations. We note that the absence of magn
LRO in the quantum spin chain~1! is proved rigorously for
the XY (D50) and the Heisenberg (D51) cases.3 By con-
trast, no theorem prohibiting the spontaneous breaking of
parity symmetry has been known. Accordingly, there
mains a possibility of the appearance of a ‘‘ chiral’’ order
phase in which only the chirality~3! exhibits a LRO without
the magnetic helical LRO~2!. This phase breaks only th
parity symmetry spontaneously with preserving both
time-reversal and translational symmetries.

For theS51/2 chain, Nersesyanet al.predicted, using the
bosonization technique combined with a mean-field analy
that in theXY case (D50) the system might exhibit a chiral
ordered phase with gapless excitations for largej.4 This gap-
less chiral phase, however, has not been identified in
previous numerical work in which the Binder parameter
the chirality was calculated numerically for theS51/2 XY
chain with up toL520 sites using the exact-diagonalizatio
~ED! method.5 Although Aligia et al.6 pointed out that the
system sizeL520 might be insufficient to deal with the
chirality in the large-j region where the gapless chiral pha
was expected, the question whether the chiral phase is
ized in theS51/2 case has not been clarified so far.
©2001 The American Physical Society30-1
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Meanwhile, the situation seems less controversial in
S51 case. In the previous works, we determined the grou
state phase diagram of theS51 XXZ chain by means of
both the ED and the density-matrix renormalization-gro
~DMRG! calculations, and showed that the gapless ch
phase appeared in a broad region of thej -D plane.5,7 This
observation was supported by the recent field-theoret
analysis by Kolezhuk,8 in which he obtained the gapless ch
ral phase not only forS51 but also for general integerS.
Lecheminantet al. extended the bosonization analysis
Nersesyanet al. to generalS and concluded the appearan
of the gapless chiral phase.9

An interesting observation that was first revealed by
numerical study of theS51 chain is that there exist two
different types of chiral phases.5,7 In one of them, the gaples
chiral phase, the chiral LRO exists while the string and s
correlations decay algebraically suggesting gapless ex
tions. In the other, called the gapped chiral phase or
‘‘chiral Haldane’’ phase, the chiral and string LRO’s coex
and the spin correlation decays exponentially suggestin
finite energy gap. The chiral Haldane phase exists in a v
narrow but finite region between the Haldane and the gap
chiral phases. For example, in the pure-XY case (D50), the
system undergoes two successive transitions with increa
j, first at j 5 j c1

(1).0.473 from the Haldane phase to the chi
Haldane phase, and then atj 5 j c2

(1).0.490 from the chiral
Haldane phase to the gapless chiral phase. The next que
that arises naturally is whether the gapped chiral phas
even realized for generalSÞ1, or it is specific toS51. In
Ref. 8, Kolezhuk suggested that the gapped chiral phase
isted also for general integerS, although the method use
was not applicable to half-odd integerS. Lecheminantet al.
showed within the bosonization analysis that the gapless
ral phase realized at largerj might undergo a transition into
the gapped chiral phase with decreasingj for anyS including
both integer and half-odd integerS.9 However, both of these
analyses were based on some approximations, and the q
tion whether the gapped chiral phase exists for generaS
Þ1 still remains open.

The aim of this paper is to examine whether the gapl
and gapped chiral phases exist in the frustratedXXZ chain
~1! for generalS. Furthermore, we wish to clarify how th
chiral-ordered phases change their character as the
quantum numberS increases, to be connected to the helic
ordered phase realized in the classical limitS→`. For these
purposes, we numerically determine the ground-state ph
diagrams of the spin chain~1! in the cases ofS51/2, 3/2,
and 2. The method used is the same as that in our prev
work.7 Using the DMRG method, we calculate appropria
correlation functions associated with the order parame
characterizing each phase, and analyze their long-dista
behaviors. A preliminary account of our result for theS
51/2 chain has been given in Ref. 10. By combining t
obtained results with those of theS51 chain determined
previously,7 we find that the gapless chiral phase appear
the cases of generalS>1/2. By contrast, the gapped chir
phase has been identified only in the cases of integerS (S
51 and 2): It has not been identified within our prese
17443
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numerical accuracy in the cases of half-odd integerS (S
51/2 and 3/2). It also turns out that the region of the gapl
chiral phase becomes broader asSbecomes larger, smoothl
converging to the region of the helical-ordered phase in
S→` limit realized atj >1/4.

The plan of this paper is as follows. In Sec. II, we expla
the method used in this paper. Various correlation functio
associated with each order parameter are introduced.
show the results of our DMRG calculation in Sec. III. Th
phase diagrams obtained forS51/2, 3/2, and 2 are presente
in Secs. III A, III B, and III C, respectively. By combining
the results with theS51 phase diagram determine
previously,7 we discuss theS dependence of the phase di
gram in Sec. IV. We also compare our result on the de
exponent of the spin correlation with the prediction from t
bosonization studies.4,9 Finally, our results are summarize
in Sec. V.

II. CORRELATION FUNCTIONS AND
NUMERICAL METHOD

In this section, we introduce various correlation functio
and explain our numerical method.

For half-odd integerS, it has been known via previou
studies that there exist two distinct phases, the spin fluid~SF!
and the dimer phases.11 The SF phase is characterized b
gapless excitations above the singlet ground state and
algebraic decay of spin correlations. By contrast, the dim
phase is characterized by a finite energy gap above the
bly degenerate ground states and an exponential deca
spin correlations. In the dimer phase, both the parity a
translational symmetries are broken spontaneously. The
der parameter characterizing the dimer phase is given a

Odim
a 5

1

LS2 (
l

t l
a ~a5x,z! ~4!

t l
a5~21! lSl

aSl 11
a .

For the S51/2 and S53/2 open chains, we calculate th
chiral-, dimer-, and spin-correlation functions defined by

Ck~r !5
1

S4
^k l 02r /2k l 01r /2&, ~5!

Cdim
x ~r !5

1

S4
^Sl 02r /2

x Sl 02r /211
x

3~Sl 01r /2
x Sl 01r /211

x 2Sl 01r /211
x Sl 01r /212

x !&,

~6!

Cs
a~r !5

1

S2
^Sl 02r /2

a Sl 01r /2
a & ~a5x,z!, ~7!

which are associated with the order parameters~3!, ~4!, and
~2!, respectively. The site numberl 0 represents the cente
position of the open chains, i.e.,l 05L/2 for evenr and l 0
5(L11)/2 for oddr. We note that the number of siteL is
0-2
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set to be even. The notation^•••& represents the expectatio
value at the lowest energy state in the subspace ofStotal

z

50.
For integerS, on the other hand, it has been known th

there generally exist the SF and the Haldane phases,12 except
for the S51 case where only the Haldane phase appears
D>0.7,9 The Haldane phase, in which the spin correlati
decays exponentially with a finite energy gap above the
glet ground state, is characterized by the generalized st
order parameter13,14

Ostr5
1

LS (
l

expS (
k51

l 21

i
p

S
Sk

zDSl
z . ~8!

In the S51 case, it has also been found that there exists
‘‘double-Haldane’’ phase in the region of largerj,7,15 al-
though its existence has not been clear in the cases ofS>2.16

In order to identify these possible Haldane and doub
Haldane phases in theS52 open chain, we calculate th
generalized-string-correlation function,

Cstr~r !5
1

S2 K Sl 02r /2
z expS (

k5 l 02r /2

l 01r /221

i
p

2
Sk

zDSl 01r /2
z L , ~9!

in addition to the chiral-correlation functionCk(r ) and the
spin-correlation functionCs

a(r ) introduced above.
We calculate those correlation functions for various fix

values ofD ( j ) with varying j (D), and estimate the trans
tion point j c (Dc) by examining ther dependence of the
correlation functions at long distances. We employ
infinite-system DMRG algorithm proposed by White.17 In
the calculation of theS52 chain, in particular, the accele
ated algorithm proposed by Nishino and Okunishi is use18

The number of kept statesm is up tom5450, m5260, and
m5260 for theS51/2, 3/2, and 2 cases, respectively. Co
vergence of the data with respect tom is checked by con-
secutively increasingm. The truncation error of the DMRG
calculation increases dramatically asj becomes larger. Ac-
cordingly, in the calculation of largerj, we need to keep
more and more states in order to achieve them convergence
of the data. Due to this difficulty, our calculation is limited
rather smallj, i.e., j <1.6 forS51/2 andj <1 for S53/2 and
2. In the infinite-system DMRG algorithm, the system size
increased by two at each DMRG step and the calculatio
continued until theL convergence of the data has been
tained. We have performed the calculation of typically 10
DMRG steps~corresponding to the system withL52000
sites! by confirming theL convergence. We can thereb
safely avoid the finite-size effect arising from the incomme
surate character of the spin correlation as pointed out
Aligia et al.6

III. NUMERICAL RESULTS

A. Spin-1Õ2 case

We begin with theS51/2 case. The frustratedXXZ spin
chain~1! for S51/2 has been studied extensively so far. W
first review the known properties of the ground-state ph
diagram. With increasingj, the system undergoes
17443
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Kosterlitz-Thouless~KT! phase transition from the SF phas
to the dimer phase atj 5 j d

(1/2) .19,20 The critical valuej d
(1/2)

has been estimated accurately for 0<D<1: It runs from
j d
(1/2)(D50).0.33 in theXY case toj d

(1/2)(D51).0.2411
in the Heisenberg case asD increases.20 Furthermore, the
phase diagram is divided into two regions according to
nature of the short-range spin correlation. The structure
tor S(q) has a maximum atq5p for j , j L

(1/2) whereas the
maximum ofS(q) occurs at an incommensurate positionq
,p for j . j L

(1/2) . The Lifshitz point j L
(1/2) in the Heisenberg

case (D51) has been estimated to bej L
(1/2).0.52.21 Mean-

while, the phase diagram in the large-j region remains
largely unclear. In particular, as already mentioned in Sec
the question whether the chiral phase ever exists for largj
still remains controversial.

Now, we show our numerical results on the dimer-chi
transition. Our results for the pure-XY case (D50) have
been presented in Ref. 10. Here, we consider the general
of D.0. As an example, the calculated chiral-, dimer-, a
spin-correlation functions are shown in Figs. 1~a!–1~c! on
log-log plots for j 51.4 and for several typical values ofD.
As can clearly be seen from Fig. 1~a!, the chiral-correlation
function Ck(r ) for D,Dc1

(1/2).0.06 is bent upward at large
r suggesting a finite chiral LRO, whileCk(r ) for D.Dc1

(1/2)

is bent downward suggesting an exponential decay of ch
correlations. Although the data around the transition po
suffer from the truncation error inherent to the DMRG ca
culation, we can estimate the transition point asDc1

(1/2)

50.0620.01
10.03 by taking account of them dependence of the

data shown in the figure. Thus, we conclude that the chi
ordered phase appears in theS51/2 chain with theXY-like
anisotropy. The result is consistent with our finding in t
pure-XY chain (D50),10 and with the prediction of the
bosonization study.4

Meanwhile, as shown in Fig. 1~b!, the dimer-correlation
function Cdim

x (r ) for D.Dc2
(1/2).0.06 is bent upward for

larger r suggesting a finite dimer LRO, whereas it is be
downward forD,Dc2

(1/2) . We estimate the dimer-transitio
point Dc2

(1/2) to beDc2
(1/2)50.0660.01. We note that, contrary

to the chiral-correlation function, them convergence of
Cdim

x (r ) has almost been attained atm5450. Figure 1~c!
shows the spin-correlation functionCs

x(r ) divided by the
leading oscillating factor cos(Qr), whereQ is the wave num-
ber characterizing the incommensurability ofCs

x(r ) in real
space. Here, them convergence of the data has also alm
been attained. Although the plots are largely scattered, wh
might be attributed to the possible influence of correct
terms characterized by wave numbersQ8ÞQ, it is still
clearly visible in the figure that the spin correlation is be
downward forD.Dc2

(1/2) suggesting an exponential deca
while it exhibits a linear behavior forD,Dc2

(1/2) suggesting a
power-law decay. From these behaviors of the dimer a
spin correlations, we conclude that, asD decreases, the sys
tem exhibits a transition from the gapped phase with
dimer LRO (D.Dc2

(1/2)) to the gapless phase without th
dimer LRO (D,Dc2

(1/2)). The behaviors of the chiral, dimer
and spin correlations mentioned above are essentially
same as those forD50.10
0-3
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FIG. 1. Various correlation functions of theS51/2 chain for j
51.4 and for several typical values ofD around the dimer-chira
transition: ~a! chiral-correlation function Ck(r ); ~b! dimer-
correlation function (21)rCdim

x (r ); ~c! spin-correlation function
Cs

x(r ) divided by the oscillating factor cos(Qr). The number of kept
states ism5450. To illustrate them dependence, we also indica
by crosses the data withm5400 and 350 forD50.04, 0.06, and
0.08 in ~a! where them dependence is relatively large. In oth
cases, the truncation errors are smaller than the symbols.
17443
The remaining problem is the relation betweenDc1
(1/2) and

Dc2
(1/2) . Two possibilities seem to be allowed from our da

i.e., ~i! Dc1
(1/2)5Dc2

(1/2) or ~ii ! Dc1
(1/2).Dc2

(1/2) . If the case~i! is
realized, the system undergoes only one phase transitio
D5Dc1

(1/2)5Dc2
(1/2) between the dimer phase and the gapl

chiral phase with no dimer order. If the case~ii ! is realized,
on the other hand, the system undergoes two successive
sitions on decreasingD, first at D5Dc1

(1/2) from the dimer
phase to the gapped chiral phase~or the ‘‘chiral dimer’’
phase! where both the dimer and chiral LRO’s coexist wi
gapfull excitations, and then atD5Dc2

(1/2) from the chiral
dimer phase to the gapless chiral phase. Unfortunately, ra
large error bars ofDc1

(1/2) and Dc2
(1/2) prevent us from deter-

mining which of the cases is realized although our res
suggests that the chiral dimer phase, if it ever exists, app
only in a rather narrow region between the dimer and gap
chiral phases. The situation here is very much similar to
one encountered in the pure-XY case (D50) with varying
j.10 Further work will be necessary to settle the quest
whether the chiral dimer phase exists in theS51/2 case.

Performing the calculations for several fixed values oj
with varying D and combining the result of Ref. 10, w
determine the phase boundary between the dimer and
gapless chiral phases. The obtained transition pointsj c1

(1/2)

(Dc1
(1/2)) are plotted in Fig. 2 together with the SF-dimer tra

sition points j d
(1/2) determined by Nomura and Okamoto.20

The transition linej c1
(1/2) rises asj increases from the point in

the XY case,j c1
(1/2)(D50).1.26.10 As can be seen from the

phase diagram, the gapless chiral phase does exist in
large j region. At least within our present numerical prec
sion, on the other hand, we did not find any evidence of
gapped chiral~chiral dimer! phase at all estimated point
between the dimer and the gapless chiral phases.

Finally, we mention the reason why the ED analysis
Ref. 5 on the chain up toL520 sites failed to detect the
chiral ordering in theS51/2 XY chain. We now consider
that this failure can be ascribed to the finite-size effect d
cussed in Ref. 6. The wave numberQ characterizing the
incommensurability decreases rapidly fromQ5p at j 5 j L to
Q5p/2 at j→` as j increases. In theS51/2 XY chain, the
shift of Q from p/2 turns out to be smaller than 0.03p for

FIG. 2. The ground-state phase diagram of theS51/2 chain,
wherej andD denote the ratioJ2 /J1 and the exchange anisotropy
respectively, defined in Eq.~1!. The diamonds and circles represe
the transition pointsj d

(1/2) and j c1
(1/2) .
0-4
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j * j c1
(1/2).1.26. Meanwhile, in a finite open chain withL

sites, the incommensurability smaller than 2p/L cannot be
taken into account because of the condition that the w
function should vanish on both ends of the chain. As a c
sequence, the system size must be larger thanL;70 if one
wishes to detect the shift ofQ of order 0.03p. Thus, the ED
calculation on chains up toL520 might fail to extract the
true asymptotic properties of the chiral Binder parameter
j * j c1

(1/2) .

B. Spin-3Õ2 case

In this subsection, we present the results for theS53/2
case. The frustratedS53/2 chain ~1! was studied for the
Heisenberg case (D51).16,22 It was shown there that th
system was in the SF phase forj , j d

(3/2) while it was in the
dimer phase forj . j d

(3/2) . The phase transition of the KT
type occurs atj 5 j d

(3/2).0.33. The Lifshitz point was esti
mated to be atj 5 j L

(3/2)(D51)50.388.16 Besides, the ap-
pearance of the gapped and gapless chiral phases was
gested recently for theXY case (D50) by the bosonization
study.9

In Fig. 3, we show the DMRG data of the spin-correlati
functionCs

x(r ) for D50.6 and for several typical values ofj.
As can be seen from the figure, the spin correlation chan
its behavior asj increases from a power-law decayj
, j d

(3/2).0.335) to an exponential decay (j . j d
(3/2)). We es-

timate the transition point between the gapless SF phase
the gapped dimer phase asj d

(3/2)(D50.6)50.33560.015. By
interpolating the transition points estimated in this way
various D, we determine the SF-dimer transition line. T
line runs fromj d

(3/2)(D50)50.33460.004 in theXY case to
j d
(3/2)(D51)50.33560.015 in the Heisenberg case, the lat

being consistent with the estimate by Ziman and Sch
j d
(3/2)(D51).0.33.22

Let us next consider the dimer-chiral transition. Figu
4~a! shows the chiral-correlation functionCk(r ) for D50.6

FIG. 3. The spin-correlation function (21)rCs
x(r ) of the S

53/2 chain forD50.6 and for several typical values ofj around the
SF-dimer transition. The number of kept states ism5220 for all j.
The truncation errors are smaller than the symbols.
17443
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and for several typical values ofj. As shown in the figure,
Ck(r ) is bent upward forj . j c1

(3/2).0.404 suggesting a finite
LRO, while it is bent downward forj , j c1

(3/2) suggesting an
exponential decay. Hence, the chiral-ordered phase is r
ized also in theS53/2 case. The transition point at which th
chiral LRO sets in is estimated to bej c1

(3/2)50.40420.006
10.002. The

spin-correlation functionCs
x(r ) for D50.6 is shown in Fig. 4

~b! where the data are divided by the oscillating fac
cos(Qr). As in theS51/2 case, the plots are largely scatter
suggesting the existence of non-negligible correction ter
Nevertheless, it can be seen that the behavior ofCs

x(r )
changes asj increases from an exponential decay to an al
braic decay at aroundj 5 j c2

(3/2)50.41060.010. We thus con-
clude that the system forj . j c2

(3/2) is in the gapless chira
phase. Unfortunately, the error of our estimate ofj c2

(3/2) is
quite large. This large error is ascribed to the poorm con-

FIG. 4. Various correlation functions of theS53/2 chain for
D50.6 and for several typical values ofj around the dimer-chiral
transition:~a! chiral-correlation functionCk(r ); ~b! spin-correlation
function Cs

x(r ) divided by the oscillating factor cos(Qr). The num-
ber of kept states ism5260. We also indicate by crosses the da
with m5220 and 180 forj 50.400 and 0.404 in~a!, and the data
with m5220 for j 50.400, 0.404, 0.406, and 0.410 in~b!. In other
cases, the truncation errors are smaller than the symbols.
0-5
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vergence of the data ofCs
x(r ) shown in Fig. 4~b! and of the

data of the dimer-correlation functionCdim
x (r ) to be men-

tioned below.~Note that the situation here is different fro
the S51/2 case where them convergence of the spin- an
dimer-correlation functions is almost achieved atm5450:
See Fig. 1.! Because of the errors in the estimates ofj c1

(3/2)

and j c2
(3/2) , we cannot determine whetherj c2

(3/2) is either larger
than or equal toj c1

(3/2) . Thus, in our present calculation, th
gapped chiral phase has not been identified in theS53/2
case as well as in theS51/2 case. We have performed th
same calculation for variousD with varying j, but have not
been able to identify the gapped chiral phase at anyj andD.

In Fig. 5~a!, we show the dimer-correlation functio
Cdim

x (r ) for D50.6 and for several typical values ofj. At a
glance, the data may look like indicating a finite dimer LR

FIG. 5. ~a! The r dependence of the dimer-correlation functio
Cdim

x (r ) of the S53/2 chain for D50.6 and for several typica
values ofj. The number of kept states ism5220. To illustrate them
dependence of the data, we also plot the data withm5180 and 140
by crosses forj 50.320,0.340, and 0.420. The truncation errors
the otherj ’s are smaller than the symbols.~b! The j dependence of
the value ofCdim

x (r 5100) for variousm. The dotted lines represen
the phase boundaries,j 5 j d

(3/2)(D50.6).0.335 and j 5 j c2
(3/2)(D

50.6).0.410.
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even in the SF phase (j , j d
(3/2).0.335) and in the gaples

chiral phase (j . j c2
(3/2).0.410) where no dimer LRO is to b

expected. The dimer correlations in these phases, howe
rapidly decrease with increasingm, whereas them conver-
gence has almost been attained in the intermediate rangej
corresponding to the gapped phase (j d

(3/2), j , j c2
(3/2)). To elu-

cidate them dependence of the long-distance value of t
dimer correlation, we plot in Fig. 5~b! the value ofCdim

x (r
5100), which is expected to be a good approximation
Cdim

x (r→`).23 The figure shows thatCdim
x (r 5100) in the

gapped phase converges to a nonzero value asm→`, while
it decreases toward zero in the SF and the gapless c
phases. Thus, we infer that the apparent finite dimer L
observed inCdim

x (r ) for j , j d
(3/2) and j . j c2

(3/2) is a spurious
effect due to the truncation error.24 The variation of the data
with varying j near the expected phase boundaries is ra
gentle, which prevents us from estimating the transit
points accurately from Fig. 5~b!. Nevertheless, we may con
clude that the system in the gapped regionj d

(3/2), j , j c2
(3/2)

possesses a true dimer LRO and is indeed in the dimer ph
We show in Fig. 6 the obtained ground-state phase d

gram of theS53/2 chain including the SF-dimer and th
dimer-chiral transition lines,j d

(3/2) and j c1
(3/2) . We note that the

dimer phase exists even in theXY case (D50) for j d
(3/2)

.0.334, j , j c1
(3/2).0.339 although its width is quite narrow

The value ofj c1
(3/2) becomes larger asD becomes larger, and

the dimer-chiral phase boundary appears to tend to
Heisenberg lineD51 as j→`.

C. Spin-2 case

In this subsection, we present our results for theS52
case. It has been known that theS52 chain with only the
nearest-neighbor coupling exhibits a phase transition
tween the SF and the Haldane phases.25,26 The transition
point was estimated to be atD5DH

(2)( j 50).0.966.26 Mean-
while, the Lifshitz point in the Heisenberg case was es
mated to be atj 5 j L

(2)(D51)50.325.16 Very recently, the
existence of the gapless and gapped chiral phases has
suggested by the large-S approach8 and the bosonization
method.9

r

FIG. 6. The ground-state phase diagram of theS53/2 chain,
wherej andD denote the ratioJ2 /J1 and the exchange anisotropy
respectively, defined in Eq.~1!. The diamonds and circles represe
the transition pointsj d

(3/2) and j c1
(3/2) .
0-6
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Let us first consider the SF-Haldane transition atj 5 j H
(2) .

In Fig. 7, we show the generalized-string- and sp
correlation functionsCstr(r ) and Cs

x(r ) for D50 and for
several typical values ofj on log-log plots. It can be seen i
Fig. 7~a! that Cstr(r ) is bent upward forj . j H

(2).0.280 sug-
gesting a finite LRO, while it shows a linear behavior forj
, j H

(2) suggesting an algebraic decay. Meanwhile, as sho
in Fig. 7~b!, Cs

x(r ) decays exponentially forj . j H
(2) indicat-

ing a finite gap, whereas it decays algebraically forj , j H
(2) .

We thus conclude that there occurs a phase transitionj
5 j H

(2) between the SF and the Haldane phases. The cri
value j H

(2) is estimated to bej H
(2)50.28060.006. We estimate

the critical points for various fixedD ( j ), and determine the
phase boundary. The transition line smoothly connects
point j 5 j H

(2)(D50)50.28060.006 in theXY case to the
point of the case of no frustration,D5DH

(2)( j 50)50.96
60.01. ~See the phase diagram shown in Fig. 9.! The latter
estimate is consistent with the previous estimate by Nom
and Kitazawa,DH

(2)( j 50).0.966.26

FIG. 7. Various correlation functions of theS52 chain forD
50 and for several typical values ofj around the SF-Haldane tran
sition: ~a! generalized-string-correlation functionCstr(r ); ~b! spin-
correlation function (21)rCs

x(r ). The number of kept states ism
5220. The truncation errors are smaller than the symbols.
17443
-

n

t
al

e

ra

Next, we consider the transition between the Haldane
the chiral phases. Figure 8~a! exhibits the chiral-correlation
function Ck(r ) for D50 and for several typical values ofj.
As can clearly be seen from the figure,Ck(r ) exhibits a finite
LRO for j . j c1

(2).0.318 whereas it exhibits an exponenti
decay forj , j c1

(2) . We estimate the transition point where th
chiral LRO sets in to bej c1

(2)50.31860.001. As shown in
Fig. 8~b!, the generalized-string correlationCstr(r ) exhibits a
finite LRO for j , j c2

(2).0.324 whereas it decays algebr
ically for j . j c2

(2) .27 Meanwhile, as shown in Fig. 8~c!, the
spin-correlation functionCs

x(r ) divided by the leading oscil-
lating factor cos(Qr) decays exponentially forj , j c2

(2)

whereas it decays algebraically forj . j c2
(2) . From these ob-

servations, we estimate the transition point where the exc
tion spectrum becomes gapless and the generalized-strin
der vanishes to bej c2

(2)50.32420.002
10.006. Here the estimate o

j c2
(2) is quite close to, but distinctly larger than that ofj c1

(2)

50.31860.001. Indeed, the data ofj 50.320 in Fig. 8
clearly show the existence of an intermediate phase,
gapped chiral phase, where the chiral and the general
string LRO’s coexist and the spin correlation decays ex
nentially. Hence, we conclude that, as in the case of thS
51 chain, the gapped chiral~chiral Haldane! phase exists
also in theS52 chain in a very narrow but finite regio
( j c1

(2), j , j c2
(2)) between the Haldane phase (j , j c1

(2)) and the
gapless chiral phase (j . j c2

(2)). Performing the same calcula
tions for various fixedD, we estimate the transition point
j c1
(2) and j c2

(2) . The chiral Haldane phase is also found in
certain range ofj for D50.2, 0.4, 0.6, and 0.8. By contras
we cannot confirm its existence forD.0.8 corresponding to
j *0.5 within our numerical accuracy. This is due to t
large truncation error growing drastically with increasingj,
which prevents us from precisely determining the transit
points.

The obtained phase diagram of theS52 chain is shown in
Fig. 9. The gapless chiral phase appears in a quite br
region of largej. The boundary of the region with the chira
LRO, j c1

(2) , rises steeply asj increases from the point on th
XY line, j c1

(2)(D50).0.318, tending to the Heisenberg lin
D51. We note that, although our estimates of the poi
where the chiral LRO sets in are very close toD51 for j
>0.6, i.e.,Dc1

(2)50.997560.0025 for allj 50.6, 0.7, 0.8, and
1.0, the chiral LRO is not observed on the Heisenberg l
D51 where there no longer exists the twofold discrete ch
degeneracy.

We finally refer to our numerical results on the possib
double-Haldane~DH! phase. The DH phase was first foun
in the large-j region of the frustratedS51 Heisenberg
chain.15 In the DH phase, the next-nearest-neighbor coupl
J2 is dominant and the system can be regarded as
Haldane subchains coupled by the weak inter-subchain c
pling J1. The DH phase is characterized by the absence
the string, spin, and chiral LRO’s.28 It has been shown that in
the frustratedS51 XXZ chain withD*0.95, there occurs a
first order phase transition between the Haldane and the
phases.7,15 The string order parameter vanishes discontin
ously at the transition point. In our present study on t
0-7
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FIG. 8. Various correlation functions of theS52 chain forD
50 and for several typical values ofj around the Haldane-chira
transition: ~a! chiral-correlation functionCk(r ); ~b! generalized-
string-correlation functionCstr(r ); ~c! spin-correlation function
Cs

x(r ) divided by the oscillating factor cos(Qr). The number of kept
states ism5260. To illustrate them dependence, we also indica
by crosses the data withm5220 and 180 forj 50.318 in ~a!, j
50.324 and 0.330 in~b!, and j 50.324 in ~c!. In other cases, the
truncation errors are smaller than the symbols.
17443
frustratedS52 Heisenberg chain, such a vanishing of t
string order has not been observed: The generalized-str
correlation functionCstr(r ) in the Heisenberg case (D51)
exhibits a finite LRO for an entire region studied here,
< j <1, while both the spin- and chiral-correlation function
Cs

x(r ) and Ck(r ) show an exponential decay for 0< j <1
suggesting a gapfull excitation. We note that, asj increases,
the extrapolated valueCstr(r→`) decreases rapidly aroun
j .0.4. Although the rapid drop of the string LRO might b
a sign of a phase transition from the Haldane phase to a
intermediate phase between the Haldane and the DH ph
as suggested in Ref. 16, the situation here remains lar
unclear. Further work is required to clarify the details of t
transition at and nearD51 and the possible existence of th
DH phase forj *1.

IV. S DEPENDENCE

Based on our present results forS51/2, 3/2, and 2 and
our previous result forS51,7 we now discuss how the
ground-state phase diagrams change asS increases fromS
51/2 toward the classical limitS→`. We are interested
particularly in the way how the classical limit is achieve
from the quantum phases analyzed above.

By comparing the obtained phase diagrams forS51/2, 1,
3/2, and 2, we deduce several features of the phase diagr
The first is about the fate of the dimer and the Halda
phases. These phases are pure quantum ones in the sen
singlet spin pairs play an essential role in stabilizing the
Hence, it is natural to expect that the regions of these qu
tum phases become narrower asS gets larger. This feature
can clearly be seen in the phase diagrams obtained for
<S<2: The dimer phase forS53/2 is narrower than that fo
S51/2, while the Haldane phase forS52 is narrower than
that for S51. It thus seems reasonable to expect that
dimer and the Haldane phases continue to become narro
for S.2, and eventually vanish in the classical limitS→`.

The second feature concerns the chiral-ordered pha
Recently, theS dependence of the boundary of the chira
ordered phases was examined via the field-theoretical largS
approach.8 It was shown there that, asS increased, the region
of the gapless chiral phase converged smoothly to that of

FIG. 9. The ground-state phase diagram of theS52 chain,
wherej andD denote the ratioJ2 /J1 and the exchange anisotropy
respectively, defined in Eq.~1!. The diamonds, circles, and squar
represent the transition pointsj d

(2) , j c1
(2) , and j c2

(2) , respectively.
0-8
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TABLE I. The estimates ofj d
(S) , j H

(S) , j c1
(S) , and j c2

(S) in the XY case (D50) for half-odd integerS (S
51/2 and 3/2) and for integerS (S51 and 2). The data forS51 are from Ref. 7. The ratio (j c2

(S)

2 j c1
(S))/ j c1

(S) for integerS is also listed.

S j d
(S) j H

(S) j c1
(S) j c2

(S) ( j c2
(S)2 j c1

(S))/ j c1
(S)

1/2 0.33a 1.2620.03
10.01 1.2660.01

3/2 0.33460.004 0.33960.001 0.34020.002
10.004

1 0 0.47360.001 0.49020.005
10.010 0.036

2 0.28060.006 0.31860.001 0.32420.002
10.006 0.019

aReference 20.
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helical-ordered phase in the classical limitS→`, whereas
the gapped chiral phase vanished asymptotically. This
ture of the chiral phases might be understood intuitively
considering the role of quantum fluctuations in the symme
breaking. In the helical-ordered state with a finite magne
LRO realized in the classical limitS→`, both the discrete
Z2 parity and the continuous U(1) spin symmetries are b
ken spontaneously. In the gapless chiral phase, quan
fluctuations marginally recover the continuous U(1) symm
try yielding the quasi-long-range spin order, with keeping
discreteZ2 parity symmetry broken. In this sense, the ga
less chiral phases can be regarded as a quantum remna
the classical helical phase. By contrast, the gapped ch
phase should be regarded as a pure-quantum phase si
exhibits a topological LRO, i.e., the string LRO, in th
chiral-Haldane phase for integerS. ~In the chiral-dimer phase
for half-odd integerS, if any, the topological LRO is the
dimer LRO, although we do not find evidence of such
phase in the present study.! We therefore expect that th
gapped chiral phase should vanish in the classical limiS
→`. The observed behaviors of the chiral phases in
obtained phase diagrams are consistent with the above
pectation. With increasingS, the chiral-transition line
j c1
(S)(D) approaches that of the helical-ordered phase,j 51/4.

Meanwhile, the region of the chiral-Haldane phase found
integerS shrinks asS increases. As an example, we list
Table I the estimated values ofj c1

(S) and j c2
(S) in the XY case

(D50) and their ratio (j c2
(S)2 j c1

(S))/ j c1
(S) for integerS, which is

a measure of the relative stability of the chiral-Halda
phase.

The third feature concerns the SF phase. One may n
rally expect that, asS increases, the region of the SF pha
converges to that of the Ne´el phase in the classical limitS
→`. Somewhat unexpectedly, in the obtained phase
grams, the SF phase grows asS becomes larger,exceeding
the classical phase boundary of the Ne´el phase,j 51/4. ~See
the phase diagrams and Table I in which the estimates ofj d

(S)

and j H
(S) in the XY case are listed.! We consider that this

‘‘overshooting’’ is due to the rapid shrink of the dimer an
the Haldane phases and that the boundary of the SF p
eventually ‘‘turns back’’ converging to the classical pha
boundaryj 51/4 for large enoughS. In order to confirm this
conjecture, the analysis of largerS is needed, which is be
yond the scope of the present work.

Finally, we wish to compare our numerical result on t
decay exponent of the spin correlation with the predict
17443
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from the bosonization analysis.4,9 Applying the bosonization
technique and the mean-field approximation, the authors
Refs. 4 and 9 predicted that for large enoughj the spin-
correlation functionCs

x(r ) in theXY case should exhibit the
asymptotic behavior,

Cs
x~r !5Acos~Qr !r 2hx, ~10!

whereA is a numerical constant and the exponenthx is given
by hx51/(8S). We fit our numerical data for theS51/2,
3/2, and 2XY chains with Eq.~10!, taking A, Q, andhx as
fitting parameters. Resulting estimates of the decay expo
hx are shown in Fig. 10 together with our previous estim
for theS51 XY chain.7 The error bar is estimated by chan
ing the region of the data used in the fitting and taking
difference of them. As can be seen from Fig. 10, the e
mates ofhx decrease monotonically asj increases. ForS
>1, the asymptoticj→` value has almost been attained
aroundj .1, which is in good agreement with the predicte
value 1/(8S). For theS51/2 case, on the other hand, we c
not reach the asymptoticj→` regime: The estimatedhx still
continues to decrease even aroundj .1.5, the largestj value
for which we can get reliable data. The estimatedhx , how-
ever, shows a tendency to further decrease toward the
dicted valuehx51/4 asj increases, which is consistent wit
the result of the bosonization study. Thus, our result c
be considered as a numerical support of the bosoniza
analysis.

FIG. 10. The estimated decay exponenthx as a function ofj for
the S51/2, 1, 3/2, and 2XY chains. The dotted lines represent th
prediction of the bosonization analysis4,9 at j→`, hx51/(8S).
0-9
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V. SUMMARY

In the present work, we have studied the ground-s
properties of the frustrated spin-S XXZchains~1!, especially
paying attention to the chiral-ordered phases in which o
the chirality exhibits a finite LRO without the standard ma
netic LRO. We have used the infinite-system DMRG meth
to calculate the correlation functions associated with
spin-, chiral-, dimer-, and string-order parameters. By a
lyzing the long-distance behavior of the correlation fun
tions, we have determined the ground-state phase diag
of theS51/2, 3/2, and 2 chains for 0<D<1 andj >0 ~Figs.
2, 6, and 9!.

By comparing the obtained results with our previous
sult for theS51 chain, we reach the following picture of th
ground-state phase diagram. In the integerS chains (S51
and 2), the phase diagram consists of four different pha
i.e., the SF, Haldane, gapless chiral, and gapped chiral~chiral
Haldane! phases. In the half-odd integerS chains (S51/2
and 3/2), on the other hand, we have found three phases
the SF, dimer, and gapless chiral phases. It thus turns out
the gapless chiral phase appears for generalS>1/2. For in-
tegerS, the gapped chiral~chiral Haldane! phase exists in a
narrow region between the Haldane and the gapless c
phases. For half-odd integerS, by contrast, the gapped chira
~chiral dimer! phase has not been identified within our n
merical precision: The rather large truncation error of
DMRG calculation prevents us from verifying whether t
chiral dimer phase exists or not. Our results suggests, h
ever, that the chiral dimer phase, if it ever exists, appear
a narrow region between the dimer and the gapless ch
phase. Further work will be required to solve the problem

We have also discussed theS dependence of the phas
ev

pn

J

13

95
e
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diagrams. The obtained phase diagrams indicate that,S
increases toward the classical limitS→`, the region of the
gapless chiral phase converge smoothly toward that of
classical helical phase, while the pure quantum phases,
the dimer, Haldane, and gapped chiral phases, become
rower and eventually vanish in theS→` limit. The predic-
tion from the bosonization study that the decay exponen
the spin correlation in theXY case (D50) takes a value
hx51/(8S) in the j→` limit has been verified.

Finally, we wish to touch upon the possible experimen
realization of the gapless chiral phase in a quasi-o
dimensional compound CaV2O4. This material is expected to
be described by the frustratedS51 chain~1! where the AF
next-nearest-neighbor couplingJ2 is comparable to the AF
nearest-neighbor couplingJ1. Recently, Kikuchi made mea
surements on magnetic susceptibility and on51V NMR, and
showed that the system had gapless excitations above
ground state.29 For the frustratedS51 chain~1!, theoretical
studies indicate that there is no gapless phase forj >0 and
D>0 except for the gapless chiral phase. Hence, CaV2O4
might be a promising candidate for the realization of t
chiral-ordered phase. For the future, it might be interesting
calculate thermodynamic properties at finite temperature
compare them with the experimental data on this compou
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which should be attributed to the truncation error associa
with the boundary effect.

25U. Schollwöck and Th. Jolicoeur, Europhys. Lett.30, 493~1995!.
26K. Nomura and A. Kitazawa, J. Phys. A31, 7341~1998!.
27In Fig. 8~b!, the generalized string correlation forj 50.330 is

slightly bent upward forr *60. However we note that, in the
range of r *60, the m convergence of the data has not be
achieved yet and the observed bend up tends to be suppre
with increasingm. Thus, from the behavior of the string corre
lation for r &50 where them convergence is achieved, we con
clude that the string correlation forj 50.330 exhibits an alge-
braic decay and the bend up observed for largerr is an artifact
due to the truncation error eventually vanishing in the limitm
→`.

28Since the system in the DH phase can be described approxim
by the direct product of two Haldane subchains, one may exp
the string correlations on each subchain to be the order par
eter of the phase. Contrary to this naive expectation, howe
the subchain string correlation in the DH phase does not exh
a finite LRO but decays exponentially.~See Ref. 15.!

29H. Kikuchi ~private communication!.
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