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The ground-state phase diagram of the frustrated SpiXZchain with the competing nearest- and next-
nearest-neighbor antiferromagnetic couplings is studied numerically by using the density-matrix
renormalization-group method for the case$efl/2, 3/2, and 2. We are particularly interested in the possible
gapless and gapped chiral phases, in which the chiraliyS'S, ; — 'S, ; exhibits a finite long-range order
whereas the spin correlation decays either algebraically or exponentially. We show that the gapless chiral phase
appears in a broad region of the phase diagram for geSeBy} contrast, the gapped chiral phase is found for
integerSin a narrow region of the phase diagram, while it has not been identified for half-odd ii®egain
our numerical accuracy. By combining the results with our previous resu#at, we discuss th& depen-
dence of the phase diagram. The prediction from a bosonization analysis on the decay exponent of the spin
correlation is verified.
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I. INTRODUCTION 1
OK:—2 2 K|, (3)
The study of frustrated quantum spin chains has been the LSt
subject of much interest for many years. This is mainly be-
cause these systems exhibit a wide variety of exotic phases k=SS, S 1 =[$%XS 1],

accompanied with various types of spontaneous symmetrKI ) S
breaking due to the interplay between frustration and quanNote that this vector chirality, is distinct from the scalar
tum fluctuations. Among them, one of the simplest modefchirality often discussed in the literatdrelefined by x,
may be the quantum spin chain with the antiferromagneti=S,_,-S XS, 1: The chirality O, changes its sign under
(AF) nearest-neighbor coupling; and the frustrating AF the parity operation but is invariant under the time-reversal
next-nearest-neighbor coupliny. The model Hamiltonian operation, while the scalar chirality changes its sign under
has the form the both operations.
) In the quantum cas8< <, it seems well established that
B e vy ez no magnetic LRO emerges at least foeQA <1 in contrast
H_,,Z‘l Jp2| (SSL, S5, HASSL )1 (D 1o the classical limit. The magnetic LRQ) is destroyed by
quantum fluctuations. We note that the absence of magnetic
whereS§, is the spinS operator at sitéandA is the exchange LRO in the quantum spin chaifi) is proved rigorously for
anisotropy. Throughout this paper, we consider the case ¢he XY (A=0) and the Heisenberg\(=1) cases.By con-
0=<A<1 andj=J,/J,>0. trast, no theorem prohibiting the spontaneous breaking of the
In the classical limitS— o, the spin chair(1) exhibits a  Parity symmetry has been known. Accordingly, there re-
magnetic long-range ordéLRO) in the ground state char- Mains a possibility of the appearance of a * chiral” ordered

acterized by a certain wave numlzgiThe order parameter is Phase in which only the chiralit8) exhibits a LRO without
defined by the magnetic helical LRQ2). This phase breaks only the

parity symmetry spontaneously with preserving both the
- 1 2 il time-reversal and translational symmetries.
m(a) =g Z Se', ) For theS= 1/2 chain, Nersesyaet al. predicted, using the
bosonization technique combined with a mean-field analysis,
wherelL is the total number of spins. The LRO is of theeMle that in theXY case A =0) the system might exhibit a chiral-
type (q=) when the frustration is smaller than a critical ordered phase with gapless excitations for Igt§@his gap-
value, j<1/4, whereas it becomes of helical-type fpr less chiral phase, however, has not been identified in our
>1/4 with a wave numbeq=cos (—1/4j). Both the time-  previous numerical work in which the Binder parameter of
reversal and parity symmetries are broken in this helicalthe chirality was calculated numerically for ti&=1/2 XY
ordered phase. In th&Y-like case (B<A<1), the helical- chain with up toL =20 sites using the exact-diagonalization
ordered state possesses a twofold discrete chiral degenera@D) method® Although Aligia et al® pointed out that the
characterized by the right- and left-handed chirality, in addi-system sizeL =20 might be insufficient to deal with the
tion to a continuous degeneracy associated with the originathirality in the larger region where the gapless chiral phase
U(1) symmetry of theXY spin. The chiral order parameter was expected, the question whether the chiral phase is real-
is defined by ized in theS=1/2 case has not been clarified so far.
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Meanwhile, the situation seems less controversial in thewumerical accuracy in the cases of half-odd inte§efS
S=1 case. In the previous works, we determined the ground=1/2 and 3/2). It also turns out that the region of the gapless
state phase diagram of tif&=1 XXZ chain by means of chiral phase becomes broaderSisecomes larger, smoothly
both the ED and the density-matrix renormalization-groupconverging to the region of the helical-ordered phase in the
(DMRG) calculations, and showed that the gapless chiraP— limit realized atj=1/4.
phase appeared in a broad region of th& plane®’ This The plan of this paper is as follows. In Sec. I, we explain
observation was supported by the recent field-theoreticdh® method used in this paper. Various correlation functions
analysis by KolezhuR,in which he obtained the gapless chi- associated with each order parameter are introduced. We
ral phase not only foS=1 but also for general integed show th_e results of our DMRG calculation in Sec. Ill. The
Lecheminantet al. extended the bosonization analysis by Phase diagrams obtained % 1/2, 3/2, and 2 are presented

in Secs. llIA, llIB, and Ill C, respectively. By combining
l;lfetr;:sgy;;etsasl.Ctgiritlar;iféseand concluded the appearance the results with theS=1 phase diagram determined

. . ) ' reviously’ we discuss theéS dependence of the phase dia-
An interesting observation that was first revealed by our -
. S . ram in Sec. IV. We also compare our result on the deca
numerical study of thes=1 chain is that there exist two 9 ! b ur resu y

. . exponent of the spin correlation with the prediction from the
different types of chiral phasés.In one of them, the gapless conization studiek? Finally, our results are summarized

chiral phase, the chiral LRO exists while the string and spin, gec. v.

correlations decay algebraically suggesting gapless excita-
‘t‘ion's. In the ot,lywer, called the. gapped c.hiral ph:’:lse or_the Il. CORRELATION EUNCTIONS AND

chiral Haldane pha;e, the chiral and strlng LRO’s coe?ast NUMERICAL METHOD

and the spin correlation decays exponentially suggesting a
finite energy gap. The chiral Haldane phase exists in a very In this section, we introduce various correlation functions
narrow but finite region between the Haldane and the gaplednd explain our numerical method.

chiral phases. For example, in the pot¥-case A =0), the For half-odd integerS it has been known via previous
system undergoes two successive transitions with increasirgjudies that there exist two distinct phases, the spin (Bl
j, first atj =} =0.473 from the Haldane phase to the chiraland the dimer phasés.The SF phase is characterized by
Haldane phase, and then jatjg):olélgo from the chiral gapless_ excitations a_bove the _smglet ground state and an
Haldane phase to the gapless chiral phase. The next questiglgePraic decay of spin correlations. By contrast, the dimer
that arises naturally is whether the gapped chiral phase #hase is characterized by a finite energy gap above the dou-
even realized for gener&# 1, or it is specific toS=1. In b'Y degenera}te ground states and an exponential dgcay of
Ref. 8, Kolezhuk suggested that the gapped chiral phase exPin co_rrelatlons. In t_he dimer phase, both the parity and
isted also for general integs8 although the method used translational symmetries are broke_n spontanequsl_y. The or-
was not applicable to half-odd integr Lecheminangt al. der parameter characterizing the dimer phase is given as
showed within the bosonization analysis that the gapless chi-

ral phase reali;ed at Iargje'lmight undgrgo a transition' into Ogim:i 2 ™ (a=x,2) (4)
the gapped chiral phase with decreagifigr any Sincluding LS? T

both integer and half-odd integ&® However, both of these

analyses were based on some approximations, and the ques- =(-1)'S'S" ;.

tion whether the gapped chiral phase exists for genSral
#1 still remains open.

The aim of this paper is to examine whether the gaples
and gapped chiral phases exist in the frustrated” chain 1
(1) for generalS. Furthermore, we wish to clarify how the Cu(1)= =K 1K1 412 (5)
chiral-ordered phases change their character as the spin st 0
guantum numbes increases, to be connected to the helical-
ordered phase realized in the classical liBt-oo. For these 1
purposes, we numerically determine the ground-state phase Cim(")= §<Sxofr/2$xofr/2+l
diagrams of the spin chaifl) in the cases oB8=1/2, 3/2,
and 2. The method used is the same as that in our previous X (S oo 1= S s 10 1S 1o 2) )
work.” Using the DMRG method, we calculate appropriate 0 0 0 0
correlation functions associated with the order parameters (6)
characterizing each phase, and analyze their long-distance
behaviors. A preliminary account of our result for tise 1
=1/2 chain has been given in Ref. 10. By combining the Cg(r):§<3%—r/23%+r/z> (a=x,2), (7)
obtained results with those of tHf8=1 chain determined
previously! we find that the gapless chiral phase appears inwhich are associated with the order paramet8ys(4), and
the cases of gener&@=1/2. By contrast, the gapped chiral (2), respectively. The site numbég represents the center
phase has been identified only in the cases of int€ye®  position of the open chains, i.dg=L/2 for evenr andl,
=1 and 2): It has not been identified within our present=(L+1)/2 for oddr. We note that the number of siteis

For the S=1/2 and S=3/2 open chains, we calculate the
ghiral-, dimer-, and spin-correlation functions defined by
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set to be even. The notatidn- - ) represents the expectation Kosterlitz-ThoulessKT) phase transition from the SF phase
value at the lowest energy state in the subspac&gf, to the dimer phase gt=j{'?.'*% The critical valuej{'?
=0. has been estimated accurately focQ=<1: It runs from
For integerS, on the other hand, it has been known thatj{"?(A=0)=0.33 in theXY case toj{*?(A=1)=0.2411
there generally exist the SF and the Haldane phsmezept  in the Heisenberg case ds increases® Furthermore, the
for the S=1 case where only the Haldane phase appears fd?hase diagram is divided into two regions according to the
A=0.° The Haldane phase, in which the spin correlationhature of the short-range spin correlation. The structure fac-
decays exponentially with a finite energy gap above the sintor S(q) has a maximum aj= = for j<j{*? whereas the

glet ground state, is characterized by the generalized strin@laximum of S(q) occurs at an incommensurate positipn

order paramet&d ! < for j>j¥? The Lifshitz pointj{*? in the Heisenberg
- case A=1) has been estimated to pg'’?=0.52%' Mean-
1 A while, the phase diagram in the largeregion remains
Os=13 2| ex;{ kzl 'gsk) S (8  largely unclear. In particular, as already mentioned in Sec. |,

the question whether the chiral phase ever exists for Igrger
In the S=1 case, it has also been found that there exists thetill remains controversial.
“double-Haldane” phase in the region of larggf® al- Now, we show our numerical results on the dimer-chiral
though its existence has not been clear in the cas8s@f1®  transition. Our results for the pubeY case A=0) have
In order to identify these possible Haldane and doublebeen presented in Ref. 10. Here, we consider the general case
Haldane phases in thB=2 open chain, we calculate the of A>0. As an example, the calculated chiral-, dimer-, and
generalized-string-correlation function, spin-correlation functions are shown in Figga)t-1(c) on
B log-log plots forj=1.4 and for several typical values Af.
1/, |°+r2/2 o 7| oz As can clearly be seen from Fig.(&), the chiral-correlation
Coul )= 2 Sig-r128X P el 125)Sge2) O fynction C.(r) for A<A}?=0.06 is bent upward at larger
. N . , , r suggesting a finite chiral LRO, whil€ (r) for A>A{?)
in addition to the chiral-correlation functio@,(r) and the s pent downward suggesting an exponential decay of chiral
spin-correlation functiorC¢(r) introduced above. correlations. Although the data around the transition point
We calculate those correlation functions for various fixedsyffer from the truncation error inherent to the DMRG cal-
values ofA (j) with varyingj (A), and estimate the transi- cyjation, we can estimate the transition point Aﬁ’z)

tion point j. (Ac) by examining ther dependence of the _g 06993 by taking account of then dependence of the
correlation functions at long distances. We employ they '

T _ ata shown in the figure. Thus, we conclude that the chiral-
infinite-system DMRG algorithm proposed by Whifeln e req phase appears in tBe 1/2 chain with thexX Y-like
the calculation of thes=2 chain, in particular, the acceler-

ated algorithm proposed by Nishino and Okunishi is USed. Szlrséc;t(r\(()pzhgze(gfgl)t 1|oS ;r?gs\l;ittehntﬂ\]/:tf;)r(;téricftlircl)?]mgf I?h;he
The number of kept statem is up tom=450, m=260, and  ,sonization studs. ’

m=260 for theS=1/2, 3/2, and 2 cases, respectively. Con-\jeanwhile, as shown in Fig.(t), the dimer-correlation
vergence of the data with respectnois checked by con- function C%, (r) for A>ALD=0 06 is bent upward for
secutively increasingn. The truncation error of the DMRG larger r suggesting a finitefzdimer LRO. whereas it is bent
calculation increases dramatically pecomes larger. Ac- downward forA<A§12’2). We estimate t,he dimer-transition

cordingly, in the calculation of largej, we need to keep () 1%)_
more and more states in order to achievertheonvergence point A _to belg - 0.06= O_.Ol. We note that, contrary
to the chiral-correlation function, then convergence of

of the data. Due to this difficulty, our calculation is limited to . .
rather smalj, i.e.,j<1.6 forS=1/2 andj=<1 for S=3/2 and gm(r) has almost been attained th=459-. Figure lc)
2. In the infinite-system DMRG algorithm, the system size isShoWs the spin-correlation functio@(r) divided by the
increased by two at each DMRG step and the calculation i§2ding oscillating factor cof(), whereQ is the wave num-
continued until theL convergence of the data has been at-ber characterizing the incommensurability ©}(r) in real
tained. We have performed the calculation of typically 1000space. Here, then convergence of the data has also almost
DMRG steps(corresponding to the system with=2000 been attained. Although the plots are largely scattered, which
site9 by confirming theL convergence. We can thereby might be attributed to the possible influence of correction
safely avoid the finite-size effect arising from the incommen-terms characterized by wave numbegs #Q, it is still
surate character of the spin correlation as pointed out bylearly visible in the figure that the spin correlation is bent
Aligia et al® downward forA>A{? suggesting an exponential decay,
while it exhibits a linear behavior fak <A} suggesting a
IIl. NUMERICAL RESULTS power-law decay. From these behaviors of the dimer and
_ spin correlations, we conclude that, asdecreases, the sys-
A. Spin-1/2 case tem exhibits a transition from the gapped phase with the
We begin with theS=1/2 case. The frustratedXZ spin ~ dimer LRO A>A{}?) to the gapless phase without the
chain(1) for S=1/2 has been studied extensively so far. Wedimer LRO (A<A{}?)). The behaviors of the chiral, dimer,
first review the known properties of the ground-state phasand spin correlations mentioned above are essentially the
diagram. With increasingj, the system undergoes a same as those fax=0.1°
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FIG. 1. Various correlation functions of tH&= 1/2 chain forj
=1.4 and for several typical values df around the dimer-chiral
transition: (a) chiral-correlation function C,(r); (b) dimer-
correlation function € 1)"C(r); (c) spin-correlation function
CX(r) divided by the oscillating factor co®¢). The number of kept
states ism=450. To illustrate then dependence, we also indicate
by crosses the data withn=400 and 350 forA =0.04, 0.06, and
0.08 in (@) where them dependence is relatively large. In other
cases, the truncation errors are smaller than the symbols.
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FIG. 2. The ground-state phase diagram of 8we1/2 chain,
wherej andA denote the ratid,/J, and the exchange anisotropy,
respectively, defined in Eql). The diamonds and circles represent

the transition pointg{? and (/2.

The remaining problem is the relation betweef{? and

A2 Two possibilities seem to be allowed from our data,
ie., (i) AGP=A02 or (i) AGP>A02 . If the case(i) is
realized, the system undergoes only one phase transition at
A=A1P=A1? between the dimer phase and the gapless
chiral phase with no dimer order. If the ca@e is realized,

on the other hand, the system undergoes two successive tran-
sitions on decreasing, first at A=A} from the dimer
phase to the gapped chiral phage the ‘“chiral dimer”
phasé where both the dimer and chiral LRO’s coexist with
gapfull excitations, and then at=A{? from the chiral
dimer phase to the gapless chiral phase. Unfortunately, rather
large error bars of\{}? and A} prevent us from deter-
mining which of the cases is realized although our result
suggests that the chiral dimer phase, if it ever exists, appears
only in a rather narrow region between the dimer and gapless
chiral phases. The situation here is very much similar to the
one encountered in the pukeY case (A =0) with varying

j.1° Further work will be necessary to settle the question
whether the chiral dimer phase exists in e 1/2 case.

Performing the calculations for several fixed valueg of
with varying A and combining the result of Ref. 10, we
determine the phase boundary between the dimer and the
gapless chiral phases. The obtained transition pgjfi¢
(A% are plotted in Fig. 2 together with the SF-dimer tran-
sition pointsj{? determined by Nomura and Okamdtfb.
The transition ling () rises ag increases from the point in
the XY case,j(}?(A=0)=1.261° As can be seen from the
phase diagram, the gapless chiral phase does exist in the
largej region. At least within our present numerical preci-
sion, on the other hand, we did not find any evidence of the
gapped chiral(chiral dime)p phase at all estimated points
between the dimer and the gapless chiral phases.

Finally, we mention the reason why the ED analysis of
Ref. 5 on the chain up t& =20 sites failed to detect the
chiral ordering in theS=1/2 XY chain. We now consider
that this failure can be ascribed to the finite-size effect dis-
cussed in Ref. 6. The wave numb@r characterizing the
incommensurability decreases rapidly fr@w 7 atj=j to
Q=m/2 atj—x asj increases. In th&=1/2 XY chain, the
shift of Q from #/2 turns out to be smaller than 083or
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S$=3/2,A=0.6 (a) chiral correlation  S=3/2, A=0.6
10“g
A
bm,‘ 0—2
1
[ ]
4l°
10 “fm
m]
A
10’ r 10
FIG. 3. The spin-correlation function—1)"C%(r) of the S ) )
=3/2 chain forA =0.6 and for several typical values joiround the (b) spin correlation  S=3/2, A=0.6
SF-dimer transition. The number of kept statesis 220 for allj. é e A$ A
The truncation errors are smaller than the symbols. s sz @% %
$
j=j¥=1.26. Meanwhile, in a finite open chain with . °!. "
. . o a2k
sites, the incommensurability smaller tham/2. cannot be alo b ’.;‘:@ o
. " = Q@
taken into account because of the condition that the wave a °e @,
function should vanish on both ends of the chain. As a con- L
sequence, the system size must be larger tha0 if one =
wishes to detect the shift @ of order 0.03r. Thus, the ED o ®:j=0.395
calculation on chains up tb=20 might fail to extract the 107%F© 11=0.400
true asymptotic properties of the chiral Binder parameter for ; fl: 0.404
izia” A;i—0410~](3/2)
A 1j=0.420
B. Spin-32 case 10" r

In this subsection, we present the results for 8we3/2
case. The frustrate®=3/2 chain(1) was studied for the
Heisenberg caseA(=1).1%%2 It was shown there that the -0 ana for. ! , ! , ,
system was in the SF phase ﬂo(1(3/2) while it was in the trans_ltlon.g(a) chl_ra}l-correlatlon fupctlngK(r), (b) spin-correlation

(32) e function C¢(r) divided by the oscillating factor co®f). The num-
dimer phase for] >(31/2) The phast_e tr?.nSIthn of the K_T ber of kept states im=260. We also indicate by crosses the data
type occurs af =]y ~=0.33. The Lifshitz point was esti- \ith m=220 and 180 fofj=0.400 and 0.404 irfa), and the data
mated to be atJ*J(‘°”2)(A:1):0-~’388-16 Besides, the ap- with m=220 forj =0.400, 0.404, 0.406, and 0.410 ). In other
pearance of the gapped and gapless chiral phases was sugses, the truncation errors are smaller than the symbols.

gested recently for th¥Y case A =0) by the bosonization
study? and for several typical values ¢f As shown in the figure,

In Fig. 3, we show the DMRG data of the spin-correlationC,(r) is bent upward foj >} 3/2=0.404 suggesting a finite
functionC¥(r) for A=0.6 and for several typical valuesjof ~LRO, while it is bent downward fO[<J(3/2) suggesting an
As can be seen from the figure, the spin correlation changesxponential decay. Hence, the chiral-ordered phase is real-
its behavior asj increases from a power-law decay ( ized also in thes=23/2 case. The transition point at which the
<j{¥@=0.335) to an exponential decay;{*?). We es- chiral LRO sets in is estimated to hg?=0.404" 3352 The
timate the transition point between the gapless SF phase asgin-correlation functiol©}(r) for A=0.6 is shown in Fig. 4
the gapped dimer phase g8?(A=0.6)=0.335+0.015. By  (b) where the data are divided by the oscillating factor
interpolating the transition points estimated in this way forcosQr). As in theS=1/2 case, the plots are largely scattered
various A, we determine the SF-dimer transition line. The suggesting the existence of non-negligible correction terms.
line runs fromj $?(A=0)=0.334+0.004 in theXY case to  Nevertheless, it can be seen that the behaviorC{(r)

j$¥(A=1)=0.335+0.015 in the Heisenberg case, the latterchanges agincreases from an exponential decay to an alge-
(32) _

being consistent with the estimate by Ziman and Schulzbraic decay at arounp=j:,“~=0.410+0.010. We thus con-

j$¥P(A=1)=0.33%2 clude that the system foy>1(3’2) is in the gapless chiral

Let us next consider the dimer-chiral transition. Figurephase. Unfortunately, the error of our estimatej @‘2) is
4(a) shows the chiral-correlation functidd,(r) for A=0.6  quite large. This large error is ascribed to the poocon-

FIG. 4. Various correlation functions of the=23/2 chain for
A=0.6 and for several typical values pfairound the dimer-chiral
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(a) 8=3/2, A=0.6 1 I
A
. SF
=
x O
O gapless chiral
g % é%%%%xxxxxwooco«xxxxmomw«xxxmw
_ZKXXWW o——r——
1077 AA*%xx 7 0 0.5 j 1
MXKXX" XX KX XXXX
R -]
7 FIG. 6. The ground-state phase diagram of 8e3/2 chain,
e :j=0.320 m:j=0.360 a :j=0.400 wherej andA denote the ratid, /J; and the exchange anisotropy,
0:j=0340 0 :j=0.380 A :j=0.420 respectively, defined in Eql). The diamonds and circles represent
10' ; 10 the transition pointg?'? andj&/?.
. . +(32) _ .
(b) S=3/2, A=0.6 evgn in the _SF_E)srllzz)asq €jg “=0.335) ahd in the gapless
02— - chiral phase (>3 “=0.410) where no dimer LRO is to be
°fm=f2° o ® expected. The dimer correlations in these phases, however,
::2:28 ¥ rapidly decrease with increasing, whereas then conver-
_ v m;100 ® i gence has almost been attained in the intermediate ranjge of
S v corresponding to the gapped phagg 0<j<j$?). To elu-
o % x cidate them dependence of the long-distance value of the
<z 0.1k + | dimer correlation, we plot in Fig.(5) the value ofCY(r
>g ' =100), which is expected to be a good approximation of

Ck.(r—=).2 The figure shows tha€C%(r=100) in the
gapped phase converges to a nonzero valua-ase, while
v it decreases toward zero in the SF and the gapless chiral
L id phases. Thus, we infer that the apparent finite dimer LRO
5 % & i observed inC%,.(r) for j<j&? andj>j$? is a spurious
0 om0 effect due to the truncation err6t The variation of the data

‘ ' J ' with varyingj near the expected phase boundaries is rather
gentle, which prevents us from estimating the transition

o F('G) 5% (ti) Tlswe ;/c;epﬁm_jerflcerf g‘: dimder]:correlatio? :””_C“‘IJ” points accurately from Fig.(5). Nevertheless, we may con-
aim ) OF the 5=3/2 chain Tor2=2.6-and for several ypical - .,,qa that the system in the gapped regj§ii?<j<j&?
values ofl. The number of kept statesns=220. To illustrate then Y gapp g!é 1=lc2

dependence of the data, we also plot the data mith180 and 140 possesses a Frue_dlmer LRO ar!d is indeed in the dimer phz_ise.
by crosses foj =0.320,0.340, and 0.420. The truncation errors for We show in Fig. 6 the obtained ground-state phase dia-
the otherj’s are smaller than the symbols) Thej dependence of g_ram of _theS= 3/2 Chr_:un !r(1§|2L)Jd|ng. (tg)f/\g SF-dimer and the
the value ofC,(r =100) for variousm. The dotted lines represent dimer-chiral transition linegg™* andj¢; . We note that the
the phase boundarieg,=j@?(A=0.6)=0.335 andj=j?(a  dimer phase exists even in theY case A=0) for j§¥?
=0.6)=0.410. =0.334<j <[ 3P=0.339 although its width is quite narrow.
The value ofj " becomes larger as becomes larger, and
vergence of the data @g(r) shown in Fig. 4b) and of the  the dimer-chiral phase boundary appears to tend to the
data of the dimer-correlation functio@},(r) to be men- Heisenberg linA=1 asj—.
tioned below.(Note that the situation here is different from

the S=1/2 case where then convergence of the spin- and

(€ 3

dimer-correlation functions is almost achievednat 450: C. Spin-2 case
See Fig. 1. Because of the errors in the estimatesj G’ In this subsection, we present our results for Swe2
andj 3, we cannot determine whethgg? is either larger  case. It has been known that tBe=2 chain with only the

than or equal tg3?. Thus, in our present calculation, the nearest-neighbor coupling exhibits a phase transition be-

gapped chiral phase has not been identified in $re3/2  tween the SF and the Haldane pha®eS.The transition
case as well as in th6=1/2 case. We have performed the point was estimated to be At=A#)(j =0)=0.966%° Mean-
same calculation for various with varyingj, but have not while, the Lifshitz point in the Heisenberg case was esti-
been able to identify the gapped chiral phase atjaarydA.  mated to be af=j{?(A=1)=0.325% Very recently, the

In Fig. Xa), we show the dimer-correlation function existence of the gapless and gapped chiral phases has been
Cim(r) for A=0.6 and for several typical values pfAt a  suggested by the larg@-approach and the bosonization
glance, the data may look like indicating a finite dimer LRO method-
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(a) string correlation S=2, A=0 Next, we consider the transition between the Haldane and
ﬁAAI the chiral phases. Figurg&@ exhibits the chiral-correlation
0.04p o Aaln, ] function C,(r) for A=0 and for several typical values pf
¢ ;;EDGAAA As can clearly be seen from the figut@,(r) exhibits a finite

LRO for j>}{3)=0.318 whereas it exhibits an exponential
decay forj <j£21). We estimate the transition point where the
chiral LRO sets in to bg{3’=0.318+0.001. As shown in
Fig. 8(b), the generalized-string correlati@,(r) exhibits a
finite LRO for j<j{3=0.324 whereas it decays algebra-
ically for j>{3.2” Meanwhile, as shown in Fig.(8), the
spin-correlation functior€}(r) divided by the leading oscil-
lating factor cosQr) decays exponentially forj<j(
whereas it decays algebraically fpr-j{2). From these ob-
servations, we estimate the transition point where the excita-
tion spectrum becomes gapless and the generalized-string or-
der vanishes to bg{2=0.324"33%. Here the estimate of
j$2) is quite close to, but distinctly larger than that j4f)
=0.318+0.001. Indeed, the data gf=0.320 in Fig. 8
clearly show the existence of an intermediate phase, the
gapped chiral phase, where the chiral and the generalized
string LRO’s coexist and the spin correlation decays expo-
nentially. Hence, we conclude that, as in the case ofShe
107} =1 chain, the gapped chirdthiral Haldang¢ phase exists
also in theS=2 chain in a very narrow but finite region
(j@<j<j?) between the Haldane phase<j‘?) and the

o CStI’ (r)

s(1)

-1)'C

. gapless chiral phasg ¥ j'%)). Performing the same calcula-
o f1:=°'274 @ tions for various fixedA, we estimate the transition points
;;}:g:ggg_ n i@ andj2). The chiral Haldane phase is also found in a
4:j=0290 certain range of for A=0.2, 0.4, 0.6, and 0.8. By contrast,
A:j=0294 we cannot confirm its existence far>0.8 corresponding to
1(')1 p 10° j=0.5 within our numerical accuracy. This is due to the

large truncation error growing drastically with increasing
FIG. 7. Various correlation functions of tH&=2 chain fora ~ Which prevents us from precisely determining the transition
=0 and for several typical values paround the SF-Haldane tran- POINts.

sition: (a) generalized-string-correlation functid@y(r); (b) spin- _ The obtained phase diagram of the 2 chain is shown in
correlation function ¢ 1)'CX(r). The number of kept statesia ~ Fig. 9. The gapless chiral phase appears in a quite broad
=220. The truncation errors are smaller than the symbols. region of largg. The boundary of the region with the chiral

LRO, j(czl), rises steeply agincreases from the point on the

XY line, j{3(A=0)=0.318, tending to the Heisenberg line

A=1. We note that, although our estimates of the points

where the chiral LRO sets in are very closeAe1 for j

=0.6, i.e.,A3)=0.9975-0.0025 for allj=0.6, 0.7, 0.8, and

1.0, the chiral LRO is not observed on the Heisenberg line
=1 where there no longer exists the twofold discrete chiral
egeneracy.

We finally refer to our numerical results on the possible
double-HaldandDH) phase. The DH phase was first found
in the largej region of the frustratedS=1 Heisenberg
() . (2) : &hain’® In the DH phase, the next-nearest-neighbor coupling
valuejy” is estimated to bg};’=0.280=0.006. We estimate 3, s dominant and the system can be regarded as two
the critical points for various fixed (j), and determine the Haldane subchains coupled by the weak inter-subchain cou-
phase boundary. The transition line smoothly connects thgnng J;. The DH phase is characterized by the absence of
point j=j{(A=0)=0.280+0.006 in theXY case to the the string, spin, and chiral LRO%.It has been shown that in
point of the case of no frustratiomy=A?)(j=0)=0.96 the frustrateds=1 XXZ chain withA=0.95, there occurs a
+0.01.(See the phase diagram shown in Fig. Bhe latter  first order phase transition between the Haldane and the DH
estimate is consistent with the previous estimate by Nomurphases:*® The string order parameter vanishes discontinu-
and KitazawaA(Hz)(j=O)~=O.966.26 ously at the transition point. In our present study on the

Let us first consider the SF-Haldane transitiorj atj ().
In Fig. 7, we show the generalized-string- and spin-
correlation functionsCg(r) and C%(r) for A=0 and for
several typical values gfon log-log plots. It can be seen in
Fig. 7(a) that C4(r) is bent upward fof >j{#)=0.280 sug-
gesting a finite LRO, while it shows a linear behavior for
<j§42) suggesting an algebraic decay. Meanwhile, as show
in Fig. 7(b), C(r) decays exponentially fo'[>jf42) indicat-
ing a finite gap, whereas it decays algebraically jferj ().
We thus conclude that there occurs a phase transitign at
=j(?) between the SF and the Haldane phases. The critic
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FIG. 9. The ground-state phase diagram of ®&e2 chain,
wherej andA denote the ratid, /J; and the exchange anisotropy,
107 respectively, defined in Eq1). The diamonds, circles, and squares
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represent the transition poini§” , j'3, andj(?), respectively.

frustratedS=2 Heisenberg chain, such a vanishing of the
string order has not been observed: The generalized-string-
correlation functionCg,(r) in the Heisenberg case\E& 1)
exhibits a finite LRO for an entire region studied here, 0
=<j=1, while both the spin- and chiral-correlation functions
CX(r) and C,(r) show an exponential decay for<j <1
suggesting a gapfull excitation. We note thatj ascreases,

the extrapolated valu€(r— o) decreases rapidly around
j=0.4. Although the rapid drop of the string LRO might be

a sign of a phase transition from the Haldane phase to a new
intermediate phase between the Haldane and the DH phases
as suggested in Ref. 16, the situation here remains largely
unclear. Further work is required to clarify the details of the
transition at and neak =1 and the possible existence of the
DH phase forj=1.

IV. SDEPENDENCE

Based on our present results 6+ 1/2, 3/2, and 2 and
our previous result forS=1, we now discuss how the
ground-state phase diagrams changeSascreases fron
=1/2 toward the classical limiB—«~. We are interested
particularly in the way how the classical limit is achieved
from the quantum phases analyzed above.

By comparing the obtained phase diagramsSerl/2, 1,
3/2, and 2, we deduce several features of the phase diagrams.
The first is about the fate of the dimer and the Haldane
phases. These phases are pure quantum ones in the sense that
singlet spin pairs play an essential role in stabilizing them.
Hence, it is natural to expect that the regions of these quan-
tum phases become narrower @gets larger. This feature
can clearly be seen in the phase diagrams obtained for 1/2
<S<2: The dimer phase fd= 3/2 is narrower than that for
S=1/2, while the Haldane phase f&=2 is narrower than

FIG. 8. Various correlation functions of t8&=2 chain forA

=0 and for several typical values gfaround the Haldane-chiral that for S=1. It thus seems reasonable to expect that the
transition: (@) chiral-correlation functionC,(r); (b) generalized- ~dimer and the Haldane phases continue to become narrower
string-correlation functionCg(r); (c) spin-correlation function for S>2, and eventually vanish in the classical lirB- .

CX(r) divided by the oscillating factor ca®¢). The number of kept

The second feature concerns the chiral-ordered phases.

states ism=260. To illustrate then dependence, we also indicate Recently, theS dependence of the boundary of the chiral-

by crosses the data with=220 and 180 forj=0.318 in(a), j

ordered phases was examined via the field-theoretical Brge-

=0.324 and 0.330 irtb), andj=0.324 in(c). In other cases, the approacﬁ‘. It was shown there that, &increased, the region

truncation errors are smaller than the symbols.
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TABLE 1. The estimates of ¥, |, j9, andj'3 in the XY case A =0) for half-odd integerS (S
=1/2 and 3/2) and for intege® (S=1 and 2). The data foS=1 are from Ref. 7. The ratioj@
=i for integerSis also listed.

s i i i& i& (8-
112 0.33% 1.26'55% 1.26+0.01

3/2 0.334£0.004 0.339-0.001 0.340°30%

1 0 0.473-0.001 0.490" 3982 0.036

2 0.280+0.006 0.318&0.001 0.324° 5555 0.019

aReference 20.

helical-ordered phase in the classical liit>, whereas from the bosonization analysts.Applying the bosonization
the gapped chiral phase vanished asymptotically. This feaechnique and the mean-field approximation, the authors of
ture of the chiral phases might be understood intuitively byRefs. 4 and 9 predicted that for large enougthe spin-
considering the role of quantum fluctuations in the symmetrycorrelation functiorC%(r) in the XY case should exhibit the
breaking. In the helical-ordered state with a finite magneticasymptotic behavior,

LRO realized in the classical lim—o<, both the discrete

Z, parity and the continuous U(1) spin symmetries are bro- CX(r)=Acog Qr)r~ (10)

ken spontaneously. In the gapless chiral phase, quantum S ’

fluctuations marginally recover the continuous U(1) SYmMmMe- oA is a numerical constant and the exponspis given

try yielding the.quasi-long-range spin orde_r, with keeping theby .= 1/(8S). We fit our numerical data for th&=1/2
dlscretgzz parity symmetry broken. In this sense, the gap—3/g ;nd 2XY chains with Eq(10), taking A, Q, and 7, a's
less chiral phases can be regarded as a quantum remnantf?ﬂng parameters. Resulting estimates of the decay exponent

the classical helical phase. By contrast, the gapped chlran are shown in Fig. 10 together with our previous estimate

phase should be regarded as a pure-quantum phase since’ft - " . . i
exhibits a topological LRO, i.e., the string LRO, in the(?r?r t?ﬁeséli;(r:(g??;g ;—:; eur;c(;rdbie;]r Iti:i?t?nategn%ygll?r?ga
chiral-Haldane phase for integ8r(In the chiral-dimer phase di?ferencegof them. As can be seen from Fig 10. the (gsti-
for half-odd integerS, if any, the topological LRO is the ' ; L 9. 1Y,

mates of », decrease monotonically gsincreases. FofS

dimer LRO, although we do not find evidence of such a>1 the asymptofig—c value has almost been attained at
phase in the present stughye therefore expect that the aroundj=1, which is in good agreement with the predicted

gapped chiral phase should vanish in the classical IBnit o

—, The observed behaviors of the chiral phases in thé’altue 1/(h$¥t)1' For thetS—t'1/2wcase_, on. E:jr? Oth?_r ha;nd, V\'ﬁl can

obtained phase diagrams are consistent with the above eRotreach the asymptofjc=c regime. 1he estima e.dx st
continues to decrease even aroyrdl.5, the largesi value

pectation. With increasingS the chiral-transition line for which we can get reliable data, The estimatgd how
1E) ical- ; - -
1 (A) approaches that of the helical-ordered phgsel/4. ever, shows a tendency to further decrease toward the pre-

Meanwhile, the region of the chiral-Haldane phase found fordicted valuen,=1/4 asj increases, which is consistent with
integer S shrinks asS increases. As an example, we list in 7 ) ’

. _(5) (9 the result of the bosonization study. Thus, our result can
Table I the estllmatgd .\(/glug?s)pfﬁ_ (gndj?z n theXY-cage be considered as a numerical support of the bosonization
(A=0) and their ratio o5 — j7)/] o7 for integerS, which is

. c1 . analysis.
a measure of the relative stability of the chiral-Haldane

phase.
The third feature concerns the SF phase. One may natu- o
rally expect that, a$ increases, the region of the SF phase ..
converges to that of the eephase in the classical lims o
—oo, Somewhat unexpectedly, in the obtained phase dia- . i{ $
grams, the SF phase grows &$ecomes largerexceeding < osl i
i

=
N
e

[N R N7

the classical phase boundary of theeNphasej=1/4. (See
the phase diagrams and Table | in which the estimat¢§of
and j& in the XY case are listef.We consider that this
“overshooting” is due to the rapid shrink of the dimer and . co o 1 set
the Haldane phases and that the boundary of the SF phase . @ --;L-E:------ e oA
eventually “turns back” converging to the classical phase |
boundaryj = 1/4 for large enougls. In order to confirm this 0 0.5 i 1 1.5
conjecture, the analysis of larg&ris needed, which is be-
yond the scope of the present work. FIG. 10. The estimated decay exponegtas a function of for
Finally, we wish to compare our numerical result on thethe S=1/2, 1, 3/2, and XY chains. The dotted lines represent the
decay exponent of the spin correlation with the predictionprediction of the bosonization analy$fsat j —, 7,=1/(8S).

3 s=12

~s=2

174430-9



T. HIKIHARA, M. KABURAGI, AND H. KAWAMURA PHYSICAL REVIEW B 63174430

V. SUMMARY diagrams. The obtained phase diagrams indicate tha§ as

In the present work, we have studied the ground-staténcreases toward the classical lingt>«, the region of the

. . . apless chiral phase converge smoothly toward that of the
properties of fthe frustrated_ spBiXXZchains(1), (_espec_lally 2Iagsical helica?phase, Whilegthe pure q)(Jantum phases, i.e.,
paying attention to the chiral-ordered phases in which Onh{he dimer, Haldane, and gapped chiral phases, become nar-
the chirality exhibits a finite LRO without the standard mag- ower and eventualiy vanish in the o limit Thé predic-

netic LRO. We have used the infinite-system DMRG method. R
. : ; . ion from the bosonization study that the decay exponent of
to calculate the correlation functions associated with th

spin-, chiral-, dimer-, and string-order parameters. By ana-he spin correlation in th& case 4=0) takes a value

lyzing the long-distance behavior of the correlation func- 7= 1/(8S) in the j =< limit has been verified.

tions, we have determined the ground-state phase diagrams Finally, we wish to touch upon the possible experimental

of theS=1/2, 3/2, and 2 chains for9A=<1 andj=0 (Figs. rgahzat!on IOf the gapless Ch'?l phasg Il'n a quasi-one-
2.6, and 9. dimensional compound Ca®,. This material is expected to

By comparing the obtained results with our previous re-be ?escrlbe(tj by. tpg frustrat;?;j:; chain(1) V\g;erf t?ﬁ AAI\:F
sult for theS=1 chain, we reach the following picture of the next-nearest-neignbor coup I is comparable 1o the
ground-state phase diagram. In the inte§echains 6=1 nearest-neighbor coupling. Recently, K'ku%:h' made mea-
and 2), the phase diagram consists of four different phase§urements on magnetic susceptibility and _bl '.\'MR’ and
i.e., the SF, Haldane, gapless chiral, and gapped dchakl Showed that the system had gapless excitations above the

Haldane phases. In the half-odd integ&rchains 6 1/2 ground staté® For the frustrated=1 chain(1), theoretical

. studies indicate that there is no gapless phasg 3 and
and 3/2), on the other hand, we have found three phases, i. (=0 except for the gapless chiral phase. Hence, BV

the SF, dimer, and gapless chiral phases. It thus turns out thmight be a promising candidate for the realization of the

the gapless chiral phase appears for gengral/2. For in- > oo . .
tegegspthe gappedpchireﬂchF;PaI Haldangéa phase exists in a chiral-ordered phase. For the future, it might be interesting to
gfalculate thermodynamic properties at finite temperatures to

narrow region between the Haldane and the gapless Chircom are them with the experimental data on this compound
phases. For half-odd integ&r by contrast, the gapped chiral P P P '

(chiral dime) phase has not been identified within our nu-
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decays even at=100 although the decay rate is extremely ?’In Fig. 8(b), the generalized string correlation fgr=0.330 is

small and becomes smaller asincreases. Consequently, the
value ofC}j;,(r = 100) in the SF phase slightly overestimates the
extrapolated valu€y,(r — ).

2*More precisely, we believe that the effect of open boundaries is

also essential to the apparent LROG,(r). Generally speak-
ing, at least whed, is not so large, the correlation of a spin pair
on the edge of an open chain is stronger than that in the bulk of
the chain, while the correlation of a spin pair next to the edge is
weaker. Such a “strong-weak” pattern propagates into the bulk

slightly bent upward for =60. However we note that, in the
range ofr=60, them convergence of the data has not been
achieved yet and the observed bend up tends to be suppressed
with increasingm. Thus, from the behavior of the string corre-
lation for r =50 where them convergence is achieved, we con-
clude that the string correlation fgr=0.330 exhibits an alge-
braic decay and the bend up observed for largisran artifact

due to the truncation error eventually vanishing in the limit

— 00,

of the chain. When the system is in the gapless phases, sudiSince the system in the DH phase can be described approximately

deviation of the spin correlation is expected to decay algebra-
ically as the edge of the chain goes away. We thus consider that
we should observe an algebraic decay of the boundary effect if
we do the DMRG calculation for the gapless phases with
—0, In contrast to this expectation, our present calculation with

by the direct product of two Haldane subchains, one may expect
the string correlations on each subchain to be the order param-
eter of the phase. Contrary to this naive expectation, however,
the subchain string correlation in the DH phase does not exhibit
a finite LRO but decays exponentiall{See Ref. 15.

finite m yields an apparent dimer LRO in the gapless phases?’H. Kikuchi (private communication
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