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Quantum critical behavior in disordered itinerant ferromagnets:
Logarithmic corrections to scaling
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The quantum critical behavior of disordered itinerant ferromagnets is determined exactly by solving a
recently developed effective field theory. It is shown that there are logarithmic corrections to a previous
calculation of the critical behavior, and that the exact critical behavior coincides with that found earlier for a
phase transition of undetermined nature in disordered interacting-electron systems. This confirms a previous
suggestion that the unspecified transition should be identified with the ferromagnetic transition. The behavior
of the conductivity, the tunneling density of states, and the phase and quasiparticle-relaxation rates across the
ferromagnetic transition are also calculated.
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I. INTRODUCTION

In a recent paper,1 hereafter denoted by I, a local fiel
theory capable of describing the zero-temperature (T50)
ferromagnetic phase transition in disordered itinerant e
tron systems was developed. In the present paper this th
is used to exactly determine the critical behavior at the ph
transition and the connections between the local theory
previous descriptions of the ferromagnetic quantum ph
transition are established.

Historically, the ferromagnetic transition in itinerant ele
tron systems atT50 was the first quantum phase transiti
to be studied in detail. Hertz2 concluded that the transition i
the physically interesting dimensiond53 was mean-field-
like. The basic idea behind this result was that the effec
dimension of the system, which is given by the spatial
mensiond plus the effective time dimensionz, was above the
upper-critical dimension for the transition so that fluctuati
effects could be ignored. This conclusion is now known to
incorrect. For example, the Harris criterion3 for phase tran-
sitions in disordered systems states that the correlat
length exponentn must satisfy the inequalityn>2/d,
whereas the mean-field theory givesn51/2 for all d. This in
turn implies that a simple mean-field descriptionmustbreak
down in dimensionsd,4.

The reason for this breakdown of the mean-field the
was shown in Ref. 4 to be the existence, in itinerant-elect
systems, of soft or massless modes other than the orde
rameter fluctuations, which were not taken into accoun
Hertz’s theory. In disordered systems these modes are d
sive and they couple to the order-parameter fluctuations
modify the critical behavior.5 Among other things, they lead
0163-1829/2001/63~17!/174428~14!/$20.00 63 1744
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to a correlation-length exponent that satisfies the Harris
terion. Technically, if these additional soft modes are in
grated out, they lead to a long-ranged interaction between
order-parameter fluctuations. It was argued that once this
fect is taken into account, all other fluctuation effects a
suppressed by the long-range nature of the interactions,
that the critical behavior is governed by a fixed point that
Gaussian but does not yield mean-field exponents. It w
thought that the critical behavior found in Ref. 4 was exa

Several years before the work reported in Ref. 4, the st
of metal-insulator transitions of disordered interacting el
trons constituted a separate development in the ma
electron problem.7 Within this context, a transition was en
countered that wasnot a metal-insulator transition but rathe
of magnetic nature.8 Due to the methods used in Ref. 8, th
order parameter and the nature of the ordered state were
identified, but the critical behavior was determined and w
found to consist of power laws with simple exponents mo
fied by complicated logarithmic corrections. The critical b
havior for the ferromagnetic transition determined in Ref
turned out to consist of the same simple power laws alb
with different and much simpler logarithmic correction
This led, in Ref. 4, to the suggestion that the transition st
ied in Ref. 8 was in fact the ferromagnetic transition. T
discrepancy in the logarithmic corrections between the t
approaches was attributed to the fact that of the two inte
equations derived in Ref. 8, only one had been shown to
exact. The conclusion thus was that the theories presente
Refs. 4 and 8 had treated the same problem, and that
former solution was exact while the latter was approxima

The latter conclusion, however, relied on a weak link
©2001 The American Physical Society28-1
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the chain of arguments since the theory developed in Re
was not very suitable for determining logarithmic correctio
to power laws. The reason was that the additional soft mo
were integrated out to obtain a description solely in terms
order-parameter fluctuations. The resulting field theory w
thus nonlocal, which makes explicit calculations cumb
some. Consequently, most of the arguments used in Ref.
determine the critical behavior were simple power-count
techniques that were not sensitive to logarithmic correcti
to power laws.

It is the purpose of the present paper, in conjunction w
the preceding paper, to settle the remaining questions reg
ing the relation between Refs. 4 and 8, and the exact crit
behavior, including logarithmic corrections to scaling at t
quantum ferromagnetic transition of disordered itiner
electrons. By using the local field-theoretic description o
that explicitly keeps all soft modes, we show that Ref.
missed marginal operators that lead to logarithmic corr
tions to the Gaussian critical behavior discussed there. M
over, taking these marginal operators into account lead
integral equations for the relevant vertex functions that
identical to the ones derived in Ref. 8. The current formu
tion can further be mapped onto the one of Ref. 8, wh
shows that the transition found in the latter paper was re
-
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the ferromagnetic one, and that the results originally deriv
in that reference are exact.

This paper is organized as follows. In Sec. II we fir
recall the results of I. We then use diagrammatic techniq
to derive exact integral equations for the two-point vert
functions that appear in the theory. We conclude this sec
by quoting a previous solution to these equations that is v
at the critical point. In Sec. III we show how some physic
observables in the paramagnetic phase are related to t
vertex functions. We then develop a scaling theory to de
mine the critical behavior of other observables of interest
well as the critical behavior in the ferromagnetic phase.
Sec. IV we discuss general theoretical aspects of this pa
as well as experimental consequences of our results. Var
technical issues are relegated to several appendices.

II. EFFECTIVE FIELD THEORY AND ITS SOLUTION

A. Effective action

In I it was shown that the effective long-wavelength a
low-frequency field theory that contains the critical fixe
point and describes the exact quantum critical behavior
disordered itinerant ferromagnets is given by the action
Aeff52 (
k,n,a

(
i 51

3

iMn
a~k!u2~k! iM 2n

a ~2k!2
4

G (
k

(
1,2,3,4

(
r ,i

r
i q12~k!G12,34
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i q34~2k!

2
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(
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V (
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i 1i 2i 3i 4G1234

(4) ~k1 ,k2 ,k3 ,k4!r
i 1q12~k1!s

i 2q32~k2! t
i 3q34~k3!u

i 4q14~k4!

1c1AT(
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r
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3@s
j qn2m

ab ~p! t
kqn1m

ab ~2p2k!tr~t rtst t
†!tr~sisjsk
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Here Mn
a(k), with componentsiMn

a(k), is the fluctuating
magnetization at wavenumberk and bosonic Matsubara fre
quencyVn52pTn, wherea is a replica label and the fieldb
is defined in terms of the magnetization,

r
i b12~k!5da1a2

~2 !r /2(
n

dn,n12n2

3@ iMn
a1~k!1~2 !r 11iM

2n
a1 ~k!#. ~2.2!

The labels 1, 2, etc., comprise both frequency and rep
indices, 1[(n1 ,a1), etc. The two-pointM vertex is given by

u2~k!5t01ad22ukud221a2k2. ~2.3a!

Here the nonanalytic term proportional toukud22 reflects the
nonanalytic wavenumber dependence of the electron
susceptibility in a disordered itinerant electron system, as
a

in
as

been explained in I. For weak disorder characterized b
mean-free pathl @1/kF , wherekF is the Fermi wavenumber
the prefactorad22 is of order 1/kFl while a25O(1). For
physical values of the spatial dimensiond and for asymptoti-
cally small wavenumbers, the nonanalytic term domina
the analytick2 term. However, for completeness and lat
reference we include the latter, which had been dropped f
the final effective action in I.t0 is the bare distance from th
ferromagnetic critical point.

The fermionic degrees of freedom are represented by
field q; electron number, spin, and energy-density fluctu
tions can all be expressed in terms of ther

i qnm
ab . These are the

additional slow modes mentioned in Sec. I above. The
quency labelsn>0, m,0 of the q denote fermionic Mat-
subara frequency indices,i is a spin label (i 50 and i
51,2,3 correspond to spin-singlet and spin-triplet fluctu
tions, respectively!, and the labelr (r 50,3) serves to write
the complex-valuedq fields as two-component real-numb
8-2
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QUANTUM CRITICAL BEHAVIOR IN DISORDERED . . . PHYSICAL REVIEW B63 174428
valued fields.9 The fermionic part of the action is characte
ized by the two-point vertex

G12,34
(2) ~k!5d13d24~k21GHVn12n2

!, ~2.3b!

and the four-point vertex

rstu
i 1i 2i 3i 4G1234

(4) ~k1 ,k2 ,k3 ,k4!

52dk11k21k31k4,0 tr~t rts
†t ttu

†!tr~si 1
si 2

† si 3
si 4

† !

3~k1•k31k1•k41k1•k21k2•k42GHVn12n2
!.

~2.3c!

The parameterG58/ps0 is a measure of the disorde
wheres0 is the bare conductivity.H5pNF/4, whereNF is
the bare single-particle or tunneling density of states per s
at the Fermi surface, is a bare quasiparticle density of st
that also determines the specific-heat coefficient. Fina
c1 ,c2 are coupling constants whose bare values are rel
and given by

c1516c254ApKt, ~2.3d!

whereKt is the spin-triplet interaction amplitude of the ele
trons. The replicated partition function is given in terms
the action by

Z5E D@M ,q#eAeff[M ,q] . ~2.4!

B. Perturbation theory to all orders

We will now show that the effective action given in th
preceding subsection can be solved perturbatively exa
i.e., it is possible to resum perturbation theory to all orde
The basic idea is to first show that then-point vertices for
n>3 are either not renormalized or their renormalization
simply related to that of the two-point vertex functions. Th
in turn implies that exact self-consistent equations for
two-point vertex functions can be derived. The net result w
be that the determination of the critical behavior of the fie
theory is reduced to the solution of two coupled integ
equations that were first derived by different methods in R
8.

1. Gaussian propagators

In order to set up a loop expansion we will need the ba
two-point propagators for the above theory. They are de
mined by the Gaussian action,

AG@M ,q#52(
k

(
n

(
a

(
i 51

3

iMn
a~k!u2~k! iM 2n

a ~2k!

2
4

G (
k

(
1,2,3,4

(
i ,r

r
i q12~k!G12,34

(2) ~k!r
i q34~2k!

14ApTKt(
k

(
12

(
i ,r

r
i q12~k!r

i b12~2k!.

~2.5!
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The quadratic form defined by this Gaussian action has b
inverted in I. For the order-parameter correlations we fin

^ iMn
a~k! jMm

b ~p!&5dk,2pdn,2md i j dab

1

2
Mn~k!,

~2.6a!

^ r
i b12~k!s

j b34~p!&52dk,2pd rsd i j da1a2
da1a3

Mn12n2
~k!

3@d122,3242~2 !rd122,423#; ~2.6b!

in terms of the paramagnon propagator,

Mn~k!5
1

t01ad22ukud221a2k21
GKtuVnu

k21GHuVnu

.

~2.6c!

The dynamical piece of the paramagnon propagatorM,
whose structure is characteristic of disordered itinerant
romagnets, has been produced by the coupling between
order-parameter field and the fermionic degrees of freed

For the fermionic propagators one finds

^ r
i q12~k!s

j q34~p!&5dk,2pd rsd i j

G

8
iG12,34

(2)21~k!; ~2.7!

in terms of the inverse ofG (2),

0G12,34
(2)21~k!5d13d24Dn12n2

~k!, ~2.8a!

and the propagator

1,2,3G12,34
(2)21~k!5d13d24Dn12n2

~k!

2d122,324da1a2
da1a3

2pTGKt

3@Dn12n2
~k!#2Mn12n2

~k!. ~2.8b!

HereD is the basic diffusion propagator or diffusion. In th
limit of small frequencies and wave numbers it reads

Dn~k!5
1

k21GHVn

. ~2.9!

Physically,D describes heat diffusion.10,7

Finally, due to the coupling betweenM and q there is a
mixed propagator,

^ r
i q12~k! s

j b34~p!&52dk,2pd rsd i j da1a2
da1a3

3
G

2
ApTKtDn12n2

~k!Mn12n2
~k!

3@d122,3241~2 !r 11d122,423#. ~2.10!

2. Three-point and four-point vertices

We now determine loop corrections to the tree-lev
theory. We begin by considering the three-point vert
whose coupling constant is denoted byc2 in Eq. ~2.1!. Dia-
8-3
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grammatically the bare three-point vertex is given in Fig.
Now consider the one-loop renormalizations of this vert
which are shown in Fig. 2.

For scaling purposes we can use simple estimates for
propagators. Specifically, theq propagators all scale like a
inverse wavenumber squared,11

^q12~k!q34~2k!&;1/k2. ~2.11a!

The M propagator at criticality may scale like a number
like an inverse wave number to the powerd22. This de-
pends on the scaling behavior of the frequency, which can
different in different contexts as has been explained in I a
can be seen from Eqs.~2.6c! and ~2.9!, respectively:V can
scale either likeukud as in the paramagnon propagator or li
k2 as in the diffusion. The two possibilities therefore are

^M1~k!M2~2k!&;H const if V;k2

1/ukud22 if V;ukud.

~2.11b!

Similarly, the mixed propagator, Eq.~2.10!, scales like

^q12~k!b34~2k!&;H 1/uku if V;k2

1/ukud/2 if V;ukud. ~2.11c!

If we use an infrared wave number cutoffL, we see that the
integrals that correspond to the diagrams shown in Fig. 2
scale likeLd22. That is, the one-loop renormalization ofc2
at zero external wave number and frequency is a finite n
ber for alld.2. More generally, ann-loop skeleton diagram
has n independent wave number and frequency integr
Diagrams that contain only solid and dashed lines containn
^qq& propagators and up ton ^MM & propagators. Similar
considerations hold for diagrams that contain mixed pro
gators. The net result is that anyn-loop skeleton diagram
scales likeLn(d22). All of these contributions thus amount t
finite corrections to the bare value ofc2. By induction it
follows that insertions do not produce singular contributio
either. We conclude that there are no singular renormal
tions of the three-point vertex function in the field theo
defined by Eq.~2.1!.

In addition to the renormalization ofc2, a new three-point
vertex with a replica structure that is different from the o

FIG. 1. Diagrammatic representation of the barebq2 vertex.
Dashed lines denoteM or b fields and solid lines denoteq fields.

FIG. 2. One-loop corrections to the vertex shown in Fig.
Solid lines denotê qq& propagators, dashed lines denote^bb&
propagators, and dashed-dotted lines denote^bq& propagators.
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of c2 is generated by the renormalization group at one-lo
order. As shown in Appendix A, the frequency structure
this vertex is such that it carries one more frequency sum
associated temperature factor than the vertex with coup
constantc2. Its coupling constant is therefore more irreleva
thanc2 and can be neglected.

Next we consider the four-point vertexG (4) in Eq. ~2.1!.
The bare four-point vertex is given analytically in Eq.~2.3c!
and shown diagrammatically in Fig. 3, and the one-lo
renormalizations are shown in Fig. 4.

Notice that this vertex is proportional either to a wa
number squared or to a frequency. Using the estimates g
by Eqs.~2.11!, we find that the renormalization of the part o
G (4) that is proportional to a wave number squared is alw
a finite number again scaling asL (d22). For the part that is
proportional to frequency, on the other hand, power count
shows that this term can have logarithmically singular ren
malizations. An explicit calculation would be very cumbe
some. However, it is not necessary since the one-loop re
malization of the coupling constantH in Eq. ~2.3c! obtained
this way is identical to that obtained by renormalizing t
two-point vertex, Eq.~2.3b!. This is because both terms aris
from the same term in the underlying nonlinear sigma mo
for the fermionic degrees of freedom, which is believed to
renormalizable.12 By the same argument, the renormalizati
of G (4) to all orders is given by that ofG (2) and therefore
need not be considered separately. The explicit calculatio
G (2) confirms the existence of the logarithms that were
luded to above as we will demonstrate in the next subsect

In addition to the diagrams that renormalizeG (4), there
are one-loop terms that represent four-point vertices w
more restrictive replica structures. These correspond eithe
the two-body interaction terms that were shown in I to n
change the critical behavior, or to many-body interactio
that are shown in Appendix A to be more irrelevant thanG (4)

and thus can be neglected.

3. Two-point vertices

We now turn to the two-point vertices in the effectiv
action. The one-loop renormalization of thebq vertex is
shown in Fig. 5.

Using Eqs.~2.11!, it is easy to see that this diagram
finite in d.2. Since the three-point vertex is not singular
renormalized, see the previous subsection, it follows that
bq vertex has only finite renormalizations to all orders
perturbation theory. This means that the coupling constanKt

.

FIG. 3. The bare four-point vertex.

FIG. 4. One-loop corrections to the vertex shown in Fig. 3.
8-4
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QUANTUM CRITICAL BEHAVIOR IN DISORDERED . . . PHYSICAL REVIEW B63 174428
is not singularly renormalized.
The one-loop renormalizations ofG (2) are shown in

Fig. 6.
As was shown in I, the renormalization ofG obtained

from these diagrams is finite ind.2. For the renormalized
H, which we denote byH( iVn), one obtains to one-loop
order

H~ iVn!5H1
3

8
GKt

2pT

Vn
(
l 50

n
1

V (
p

Dl~p!Ml~p!,

~2.12!

which diverges logarithmically asVn→0 for all 2,d,4.
As was explained in I, this divergent renormalization, whi
arises from the nominally irrelevant verticesG (4) andc2, is a
consequence of the presence of two time scales in the p
lem. In addition, there are terms that are finite ind.2. It is
important to note that the structureDM in the integrand of
Eq. ~2.12! stems from the second term proportional toD 2M
in the triplet qq propagator, Eq.~2.8b!, times a termD 21

that is due to the wave number and frequency dependenc
the quartic vertex, Eq.~2.3c!.

The exact vertexG (2) can be generated from the one-loo
diagrams by dressing all propagators and all vertices in
6. The relevant vertices areG (4) and c2. As was shown in
Sec. II B 2, the latter has no singular renormalizations ind
.2 so it need not be dressed. Denoting the exact fouq
vertex by a square and the dressed propagators by do
lines, we therefore have the diagrammatic representatio
the renormalization ofG (2) to all orders shown in Fig. 7.

Analytically, this result corresponds to simply dressi
the propagators in Eq.~2.12!. Notice that this procedure in
cludes the vertex renormalization due to the structure poin
out above. Also notice that it is crucial for our argument th
G and Kt carry finite renormalizations only. We thus hav
the exact result, as far as the asymptotic critical behavio
concerned,

H~ iVn!5H1
3

8
GKt

2pT

Vn
(
l 50

n
1

V

3(
p

1

GKtV l1p2u2~p,iV l !
, ~2.13a!

FIG. 5. One-loop renormalizations of the mixed two-po
vertex.

FIG. 6. One-loop renormalizations of the fermionic two-po
vertexG (2).
17442
b-

of

g.

ble
of

d
t

is

whereu2(p,iV l) is the fully renormalizedbb vertex. By the
same arguments, we obtain the latter as shown in Fig. 8
dressing the propagators in the analytic one-loop expres
given in Eq.~3.5b! of I, we have forVn>0,

u2~k,iVn!5t02
G2

2

Kt

V (
p

2pT

3(
l 50

`
1

p21GH~ iV l !V l

3
1

~p1k!21GH~ iV l1 iVn!~V l1Vn!
.

~2.13b!

In writing Eq. ~2.13b!, we have for simplicity put the bare
coupling constantsad22 anda2 equal to zero since they ar
generated at one-loop order.

C. Integral equations for diffusion coefficients

Equation~2.13! in Sec. II B constitute two closed integra
equations for the two-point vertices. As we have seen,
has been possible to achieve since~1! the four-point vertex
G (4) renormalizes like the two-point vertexG (2) and ~2! all
other vertices are subject to finite renormalizations only.
a result, the solution of Eqs.~2.13! provides us with the
perturbativelyexactcritical behavior.

To make contact with previous work, it is useful to r
write Eqs.~2.13! in terms of the~thermal! diffusion coeffi-
cient D( iVn)51/GH( iVn) and the spin diffusion coeffi-
cient, Ds(k,iVn)5u2(k,iVn)/GKt . If we analytically
continue to real frequencies,iVn→V1 i0, the self-
consistent one-loop equations read

Ds~k,V!5Ds
01

iG

2V (
p
E

0

`

dv

3
1

p22 iv/D~v!

1

~p1k!22 i ~v1V!/D~v1V!
,

~2.14a!

FIG. 7. Renormalization of the fermionic two-point vertexG (2)

to all orders.

FIG. 8. Renormalization of the two-point magnetization vert
u2 to all orders.
8-5
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1

D~V!
5

1

D0
1

3G

8V (
p

1

VE
0

V

dv
1

2 iv1p2Ds~p,v!
.

~2.14b!
HereD051/GH andDs

05t0 /GKt are the bare diffusion co
efficients. These integral equations were first derived in R
8 by means of a resummation of perturbation theory withi
nonlinear sigma model for interacting electrons in the lim
of a large spin-triplet interaction amplitude. As has been d
cussed in I, this sigma model is recovered from the curr
model by integrating out the magnetization. This is the m
ping between the two models that was referred to in
Introduction.

D. Solution of the integral equations

In Ref. 8 the coupled integral equations, Eqs.~2.14!, were
solved by three distinct methods: a direct analytic solution
renormalization group~RG! solution, and a numerical solu
tion. The results of all three approaches were consistent
one another. Here we will quote the most relevant res
restricting ourselves as in I to 2,d,4.

Simple scaling arguments show that at criticality,t
[u2(k50,Vn50)50, D(V→0) is a constant except fo
logarithmic terms. This suggests the ansatz

D~V!5D0/F@ ln~1/Vt!#. ~2.15!

Here 1/t5pnG/8m, wheren is the electron density andm is
the electron effective mass, is the elastic-scattering rate.
same arguments yieldDs(k,V50);ukud22 at the critical
point except for logarithmic terms. So we write

Ds~k,V50!5Ds
0~ uku/kF!d22Fs@ ln~kF /uku!#. ~2.16!

Solving the resulting equations forF andFs gives8

D~V→0!5D0@g$ ln 1/Vt!%] 21, ~2.17a!

Ds~k→0,V50!5Ds
0~ uku/kF!d22d8~GKt /H !kF

d22

3@g$2 ln~kF /uku!%#21. ~2.17b!

Here

g~x!5 (
n50

`

@$c~d!x%n/n! #exp@~n22n!ln~2/d!/2#.

~2.18a!

In an asymptotic expansion for largex, the leading term is

g~x!'@2 ln~d/2!/p#21/2exp„@ ln$c~d!x%#2/2 ln~d/2!….
~2.18b!

The dimensionality-dependent coefficientc(d) is given by

c~d!5c8~d!/d8~d!, ~2.19a!

where

d8~d!5c9G~22d/2!F~22d/2,1/2;3/2;1!, ~2.19b!

whereF is a hypergeometric function,G is the gamma func-
tion, andc8 andc9 are smoothly varying functions ofd.
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The leading dependence of eitherD or Ds on t away from
criticality at zero frequency and wave number or that ofDs
at t50 as a function of frequency atk50, will follow from
the scaling theory to be developed in Sec. III below.

III. CRITICAL BEHAVIOR OF OBSERVABLES

In this section we determine the exact critical behavior
various observables. We do so by developing a general s
ing description for the free energy and various transport
efficients and relaxation rates, and using the exact solutio
Sec. II to determine the values of the independent criti
exponents. Again, we restrict ourselves to the dimensiona
range 2,d,4. The results ford.4 in Ref. 4 were exact,
and the behavior ind54 can be obtained by combining th
solution of the integral equations from Ref. 8 for that ca
with the arguments given below. We have also check
some of our results by means of explicit perturbation theo
see Appendix B. Parts of the results presented here h
been previously published in Ref. 13.

A. Identification of observables

We first discuss how to relate the behavior of some phy
cal observables of interest near the quantum critical poin
the solution of the effective field theory given in Sec. II. W
consider the electrical conductivitys, the specific-heat coef
ficient gC , the tunneling density of statesN, the spin suscep-
tibility xs , the heat and spin diffusion coefficientsD and
Ds , respectively, the phase relaxation ratetph

21 , and various
quasiparticle properties, in particular, the quasiparticle de
ratetQP

21 . The magnetizationm will be obtained from the free
energy in Sec. III B below.

The conductivity,s58/pG51/r, where isr the resistiv-
ity, is proportional to the inverse of the renormalized diso
der parameterG in Eq. ~2.1! and the specific-heat coefficien
gC5C/T, whereC is the specific heat, is proportional to th
renormalized value ofH in Eqs. ~2.3b! and ~2.3c!.7 The
single-particle density of states~DOS! as a function of the
distance in energy or frequency space from the Fermi sur
N(e) is given by Eq.~2.29d! in I. In terms of expectation
values of the fieldq, it takes the form of an expansion

N~eF1e!5NFF12
1

2 (
b

(
m

(
i ,r

^ r
i qnm

ab~x!r
i qnm

ab~x!& ivn→e1 i0

1O~^q4&!G . ~3.1!

Experimentally,e is equal to the electron-charge times t
bias voltage. The dynamical spin susceptibility is given
the M•M correlation function and we have seen that t
coupling between theM and q fields affects the dynamica
part of that correlation function only. This implies that th
static spin susceptibilityxs(k) is given by the renormalized
value ofu2(k,iVn50), compare Eq.~2.13b!. Alternatively,
it is proportional to the inverse of the static spin diffusio
coefficient
8-6
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xs~k!5
1

2GKtDs~k,iVn50!
. ~3.2!

The heat and spin diffusion coefficientsD andDs are explic-
itly given by the solution of the integral equations discuss
in Sec. II. In Appendix C we show how to generalize t
integral equations to the ordered phase, so that the equ
of state or the magnetizationm, can be obtained. In Sec. III B
we determine the magnetization by means of a sca
theory.

The relaxation rates are defined in terms of the diffus
whose bare propagator is given by Eq.~2.9!. Its renormalized
counterpart has the form

D~k,iVn!5
Z2

k21GH~ iVn!Vn

5
Z2

k21Vn /D~ iVn!
.

~3.3a!

Here Z is the wave function renormalization, which dete
mines the single-particle DOS, Eq.~3.1!, via N5NFZ. In
addition, the quasiparticle DOSNQP is related toN via

NQP5N/aQP, ~3.3b!

whereaQP is the quasiparticle weight. Upon an analytic co
tinuation to real frequencies,H( iVn) acquires a real partH8
and an imaginary partH9, H( iVn→e1 i0)5H8(e)
1 iH 9(e). Dividing by GH8, the renormalized diffusion can
be written

D~k,iVn→e1 i0!5
1

G

~NQP/NF
2!aQP

2

DQPk
22 i e1tQP

21
, ~3.3c!

where aQP5NFZ/H8(e), NQP5H8(e), DQP51/GH8(e) is
the quasiparticle diffusion coefficient, and

tQP
215eH9~e!/H8~e! ~3.4a!

is the quasiparticle decay rate. In contrast, the phase brea
rate tph

21 is the ‘‘mass’’ that is acquired by the diffusion a
real frequencies and finite temperature. Equation~3.3a!
shows that it can be identified, apart from a multiplicati
constant, with

tph
215Re@VH~ iV!#/NFu iV→e1 i0 ~3.4b!

or in terms of the imaginary part ofH,

tph
215eH9~e!/NF . ~3.4c!

For later reference we also give the renormalized param
non propagator. Leaving out terms that are irrelevant for
purposes, it reads

M~k,iVn!5
1

u2~k,iVn!1GKtuVnu/k2

5
1/GKt

Ds~k,iVn!1uVnu/k2
. ~3.5!
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The above quantities have all been defined atT50, with an
eye on the fact that the results of Sec. II are only valid
T50. In general, we are also interested in the analog
results atT.0. This is of particular importance for the re
laxation rates, since only atT.0 do they provide a mass fo
the diffusion propagator and hence constitute a true real-t
decay rate. In order to obtain complete results at finite te
peratures, a Matsubara frequency sum and an analytic
tinuation to real frequencies need to be performed. The le
ing temperature dependence of the inelastic-scattering r
actually comes from a branch cut in this analy
continuation.14 It turns out that to capture this effect on
needs to retain terms that were neglected in the derivatio
the integral equations in Sec. II. Alternatively, the inelast
scattering rates atT50 as functions of real frequency or th
distance in energy space from the Fermi surface can be
tained from the results of Sec. II, see Eqs.~3.4! above. Scal-
ing theory can then be used to obtain the results ate50 and
T.0. We will follow this second route.

B. Scaling considerations

In this section we develop a general scaling theory for
physical observables near the quantum critical point. T
explicit solution given in Sec. II D is used to identify th
results for the critical exponents.

1. Critical exponents

From the explicit solution quoted in Sec. II above, w
obtain various critical exponents. As has been pointed ou
I, there are multiple dynamical exponents. This is also ob
ous from Eqs.~2.14! in conjunction with Eqs.~2.17!. Fur-
thermore, the logarithmic corrections to scaling that char
terize the solution of the field theory mean that t
asymptotic critical behavior is not given by simple pow
laws. A convenient way to account for that is to write th
critical behavior as power laws with scale-dependent criti
exponents. For instance, the critical time scale, which de
mines the dynamics of the paramagnon propagator, is g
by a dynamical exponent

zc5d1 ln g~ ln b!/ ln b, ~3.6a!

where b is an arbitrary renormalization-group-length sca
factor. To see this consider Eq.~3.5! in conjunction with Eq.
~2.17b!, which shows that the frequency in the paramagn
scales likeV;k2Ds(k,V50);ukud/g@ ln(kF /uku)#. In addi-
tion, there are diffusive time scales with power 2 and vario
logarithmic corrections. For instance, the frequencyV in the
dressed diffusion, Eq.~3.3a!, defines a time scale with a criti
cal exponent

z̃d521 ln g~ ln b!/ ln b. ~3.6b!

There are other diffusive time scales, however. For instan
the quantityH( iVn)Vn /NF is dimensionally a frequency
that defines a time scale with critical exponent

zd52. ~3.6c!
8-7
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This is the scale dimension of the phase-relaxation rate,
~3.4b!. For the other two independent critical exponents
pick h, which describes the wave number dependence of
order-parameter susceptibility and the correlation-length
ponentn. From Eq.~2.17b!, we have for the former

h542d2 ln g~ ln b!/ ln b. ~3.6d!

The exponentn was determined in Ref. 8 with the result

1/n5d221 ln g~ ln b!/ ln b. ~3.6e!

The scale-dependent exponents shown determine
asymptotic critical behavior, including the leading logarit
mic corrections to scaling. They do not include logarithm
terms that are less leading than the log-log-normal dep
dence due to the functiong(ln b). In particular, simple pow-
ers of logarithms would correspond to terms of ord
ln ln b/ln b in Eqs.~3.6!.

2. Thermodynamic quantities and the density of states

We start by considering the thermodynamic propert
near the phase transition. They can all be obtained by a s
ing ansatz for the free energy as a function oft, T, and h,
whereh is the magnetic field. Two key ideas will be use
First, the existence of two essentially different time sca
see Sec. III B 1, implies that the free-energy densityf should
consist of two scaling parts. The second idea is thath also
represents an energy scale~namely, the Zeeman energy! and
it therefore scales like the frequency or the temperature.

Taking all of this into account, the natural scaling ans
for f is

f ~ t,T,h!5b2(d1zc) f 1~ tb1/n,Tbzc,hbzc!

1b2(d1 z̃d) f 2~ tb1/n,Tbz̃d,hbzc!, ~3.7!

where f 1 and f 2 are scaling functions. Note thata priori
there is no reason for the temperature argument off 2 to be
given by the diffusive time scale with the dynamical exp
nentz̃d rather than by the critical time scale with the dynam
cal exponentzc . It requires explicit calculations to see th
for some quantities, e.g., the magnetization, the diffus
temperature scale is the relevant one. In Appendix C
show that the equation of state contains only the diffus
temperature scale and our scaling ansatz forf 2 reflects this
feature~see also Ref. 4!. In addition to theT and h depen-
dences in Eq.~3.7! with scales determined byzc , there are
subleading dependences involving the diffusive time sc
that we suppress. The magnetizationm, specific heatC, and
spin susceptibilityxs , respectively, are given by

m5] f /]h, ~3.8a!

C52T]2f /]T2, ~3.8b!

xs5]2f /]h2. ~3.8c!

Generalized homogeneity laws form, gC5C/T and xs are
obtained by using Eq.~3.7! in Eqs. ~3.8!. Substituting the
exponent values given by Eqs.~3.6!, we find
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m~ t,T,h!5b22f m„tb
d22g~ ln b!,Tb2g~ ln b!,hbdg~ ln b!…,

~3.9a!

gC~ t,T,h!5g~ ln b! f g„tb
d22g~ ln b!,

Tbdg~ ln b!,hbdg~ ln b!…, ~3.9b!

xs~ t,T,h!5bd22g~ ln b! f x„tb
d22g~ ln b!,

Tb2g~ ln b!,hbdg~ ln b!…, ~3.9c!

where f m , f g , and f x are scaling functions. With suitabl
choices of the scale factorb, Eqs.~3.9! imply

m~ t,0,0!5 f m~1,0,0!F tgS 1

d22
ln

1

t D G
2/(d22)

,

~3.10a!

m~0,0,h!5 f m~0,0,1!FhgS 1

d
ln

1

hD G2/d

, ~3.10b!

gC~0,T,0!5 f g~0,1,0!gS 1

d
ln

1

TD , ~3.10c!

xs~ t,0,0!5 f x~1,0,0!t21 ~3.10d!

for the leading asymptotic critical behavior in the sense
plained at the end of Sec. III B 1. For the critical expone
b, g, d, and a, defined bym}tb, xs}t2g, m}h1/d, and
gC}T2(11a) ~the latter is a generalization to zero
temperature transitions of the usual definition of the ex
nenta), we obtain from Eqs.~3.10!

b52n, ~3.11a!

g51, ~3.11b!

d5zc/2, ~3.11c!

a52d/zc , ~3.11d!

with n andzc from Eqs.~3.6!.
Next we consider the single-particle density of states.

define DN5N2NF , where NF is the disordered Fermi
liquid value ofN. DN can be related to a correlation functio
that has scale dimension2(d22).15 This implies the scaling
form

DN~ t,e,T!5b2(d22)f N„tb
d22g~ ln b!,ebdg~ ln b!,

Tbdg~ ln b!…. ~3.12a!

Notice that the scale dimension ofDN is minus that oft,
modulo the logarithmic corrections to the latter. This leads
a resonance in the RG-flow equations forDN, which in turn
leads to an additional logarithmic dependence ofDN on t,
see Appendix D. Anticipating that logarithm, we generali
Eq. ~3.12a! to
8-8
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DN~ t,e,T!5const3tg~ ln b!ln b

1b2(d22) f̃ N„tb
d22g~ ln b!,ebdg~ ln b!,

Tbdg~ ln b!…. ~3.12b!

This implies

N~0,e,0!5NFF11cNH e

eF
gS 1

d
ln

eF

e D J (d22)/d

1O~e (d22)/2!G ,
~3.13a!

and

N~ t,0,0!5NFF11dNtgS 1

d22
ln

1

t D ln
1

t
1•••G ,

~3.13b!

with constantscN anddN . It should be pointed out, howeve
that one should not take thetg(ln 1/t)ln t behavior in Eq.
~3.13b! too seriously. The reason is that the log-log-norm
factor g(ln 1/t) may have multiplicative simple-log correc
tions that the asymptotic solution of the field theory is n
sensitive to, see the remark after Eq.~3.6e!.

3. Transport coefficients

The scaling theory for the transport coefficients,s, D,
andDs can be presented in several different ways. Here
give two arguments for the scaling part ofs. The first one
starts with the fact that the conductivity is a charge-curr
correlation function whose scale dimension with respec
the quantum magnetic fixed point is expected to be ze
That is,s neither vanishes nor diverges at this quantum cr
cal point. However,s will depend on the critical dynamic
since the paramagnon propagator enters the calculations
in perturbation theory, see Appendix B. The critical corre
tion to the bare or background conductivity further depen
linearly on the leading irrelevant operator, which we den
by u. The latter is related to diffusive electron dynamics a
one therefore expects the scale ofu to be the same as in th
disordered Fermi-liquid theory, namely,@u#52(d22).15

Scaling arguments then suggest a generalized homoge
law

s~ t,T,V!5 f s„tb
d22g~ ln b!,Tbdg~ ln b!,

Vbdg~ ln b!,ub2(d22)
…

5const1b2(d22) f̃ s„tb
d22g~ ln b!,Tbdg~ ln b!,

Vbdg~ ln b!…. ~3.14a!

Again, there is a resonance condition that leads to a sim
logarithm in thet dependence ofs. This is due to the scale
dimension ofu being the negative of that oft, modulo loga-
rithmic corrections. As in the case of the density of states,
therefore generalize Eq.~3.14a! to

s~ t,T,V!5const1const3tg~ ln b!ln b

1b2(d22) f̃ s„tb
d22g~ ln b!,Tbdg~ ln b!,

Vbdg~ ln b!…. ~3.14b!
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This scaling relation yields

s~0,T,0!5s0F11csH T

TF
gS 1

d
ln

eF

T D J (d22)/d

1O~T(d22)/2!G , ~3.15a!

and

s~ t,0,0!5s0F11dstgS 1

d22
ln

1

t D ln
1

t
1O~ t !G ,

~3.15b!

with cs andds constants. The same caveat as given after
~3.13b! applies.

An alternative argument that gives Eqs.~3.15! is to as-
sume thats consists of a background part that does not sc
and a singular part,ds, that does. In fundamental units
@ds#52(d22). This suggests the scaling form

ds~ t,T,V!5b2(d22) f̃ s„tb
d22g~ ln b!,

Tbdg~ ln b!,Vbdg~ ln b!…. ~3.16a!

Here the dependence onu is already implicitly taken into
account, so we dropped the explicit dependence. Taking
account the resonance between the scale dimension ods
and t, see Appendix D, gives

ds~ t,T,V!5const3tg~ ln b!ln b1b2(d22) f̃ s„tb
d22g~ ln b!,

Tbdg~ ln b!,Vbdg~ ln b!…. ~3.16b!

This also yields Eqs.~3.15!.
The diffusion coefficientsD and Ds have dimensions of

length squared divided by time. Since there are two ti
scales, there are two possible scale dimensions for the d
sion coefficients.Ds is the diffusion coefficient for the order
parameter fluctuations so one expects the critical time s
to apply, whileD is the quasiparticle diffusion coefficient, s
the diffusive time scale is appropriate. This leads to hom
geneity laws

Ds~ t,T,V!5@b2(d22)/g~ ln b!# f Ds
„tbd22g~ ln b!,

Tbdg~ ln b!,Vbdg~ ln b!…, ~3.17a!

D~ t,T,V!5@g~ ln b!#21f D„tb
d22g~ ln b!,

Tbdf ~ ln b!,Vbdg~ ln b!…. ~3.17b!

These two results are consistent with the fact that the c
ductivity is noncritical to the leading order and scales li
s;Dsxs;DH. Indeed, the above results fors, Ds , andD
can be used to obtain scaling results forxs and gC}H,
which justify our free-energy considerations in Sec. III B
above.

4. Relaxation rates

The phase-breaking ratetph
21 and the quasiparticle deca

rate tQP
21 are given by Eqs.~3.4!. By comparing Eq.~3.4b!
8-9
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and Eq.~3.3a!, we see thattph
21 scales like a wave numbe

squared~recall that G is not singularly renormalized an
hence does not scale! and therefore has a scale dimensi
@tph

21#52 with no logarithmic corrections. This observatio
leads to the homogeneity law

tph
21~ t,e,T!5b22f ph„tb

d22g~ ln b!,ebdg~ ln b!,

Tbdg~ ln b!,ub2(d22)
…. ~3.18a!

The leading irrelevant variableu represents interaction ef
fects that are necessary for any dephasing. The rate is th
fore linear inu, and we can write

tph
21~ t,e,T!5b2df̃ ph„tb

d22g~ ln b!,ebdg~ ln b!,Tbdg~ ln b!….
~3.18b!

At criticality, we find

tph
21~0,e,0!5cphegS 1

d
ln

eF

e D1O~ed/2!, ~3.18c!

wherecph is a constant.
The quasiparticle-relaxation rate is given by the ra

H9/H8, see Eq.~3.4a!. The scaling properties oftQP
21 thus

follow from those ofH or gC , Eq. ~3.9b!. Explicitly we find

tQP
21~ t50,e,T50!5cQPe lnF ln

eF

e G Y ln
eF

e
1•••,

~3.19!

wherecQP is a constant. Fore!eF , tÞ0 we have asymp-
totically

tph
21~ t,e!}tQP

21~ t,e!}~e/t !d/2. ~3.20!

To obtain Eq.~3.20! we have used the well-known fact th
at the disordered Fermi-liquid fixed point the relaxation ra
are proportional toed/2. In terms of our scaling argument
this result is rederived in Appendix E.

IV. DISCUSSION AND EXPERIMENTAL RELEVANCE

This paper completes our discussion of various aspec
the ferromagnetic phase transition in low-temperature dis
dered itinerant electron systems. We have given the e
solution for the magnetic critical behavior near the quant
phase transition from a paramagnetic metal to a ferrom
netic metal. We have also determined the critical behavio
a number of other relevant physical variables near the t
sition, in particular, the electrical conductivity and the tu
neling density of states. In addition, we have established
eral connections between previously formulated theories.
conclude with a discussion of the general aspects of our
sults and their experimental relevance starting with
former.

A. General discussion

One important aspect of the present analysis is the es
lishment of connections between various theoretical form
lations of the quantum-ferromagnetic-transition proble
First, we related our previous nonlocal order-parameter fi
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theory4 to the local coupled field theory involving both th
fermion-density fluctuations and the magnetic ord
parameter fluctuations that was formulated in I. The t
theories yield the same critical behavior apart from logari
mic corrections to power-law scaling that were missed
Ref. 4 and are correctly given by the coupled local theo
Second, we have unambiguously related earlier work on
disordered interacting electron problem, involving runaw
renormalization-group flow, to the quantum ferromagne
phase transition.16 This connection was actually made earli
in Ref. 8. However as explained in the Introduction our
gument then was not complete. Indeed, even though Re
correctly obtained the critical behavior, it failed to identi
the nature of the phase transition as the ferromagnetic on
hindsight, this is surprising given that the scaling theory w
used to correctly identify the order-parameter exponenb
52n. The problem was that Ref. 8 was formulated solely
terms of fermionic number and spin-density fluctuations
the Fermi surface, so that the behavior of quantities that
volve electrons far from the Fermi surface, such as the m
netization, was not obvious. Indeed, we argued that altho
the above exponent equality was formally valid, the mag
tization was actually zero in the ordered phase since the s
ing function had a zero prefactor.17 This argument was in-
correct because it failed to take into account that
electrons away from the Fermi surface are also order
This, in turn, leads to a nonzero scaling function.

The difficulties interpreting the theory put forward in Re
8 notwithstanding, it is very remarkable that this nonline
sigma-model formulation of the problem yielded the corre
result, since it was not geared at all towards describing
romagnetism. The focus on degrees of freedom near
Fermi surface mentioned above is one reason and ano
one is the fact that the sigma model is derived by expand
about the paramagnetic-metal fixed point, so it is not obvio
why it is capable of describing a critical fixed point. This
actually a general question about sigma models,18 and the
answer is only incompletely known. Indeed, periodica
even the capability of theO(N) nonlinear sigma model to
qualitatively correctly describe the Heisenberg transition
d53 has been questioned.19

The connection between the runaway renormalizati
group flow encountered in low orders of a loop expans
and ferromagnetism is particularly interesting in tw
dimensional systems because of recent experiments
show either metallic or metalliclike behavior in Si MOS
FETs and other materials,20 and even more recent ones th
show that this behavior happens near a quantum phase
sition to a ferromagnetic state.21 The connection between
ferromagnetism and two-dimensional~2D! metalliclike be-
havior is not obvious, but the observation of a ferromagne
phase ind52 is consistent with our identification of th
runaway flow behavior with ferromagnetism. The same c
nection was more recently made by others.22 It is also inter-
esting to note that a nearby ferromagnetic phase in di
dered systems is favorable to an exotic type of even-pa
triplet superconductivity.23 After the experimental observa
tion of 2D metallic behavior, this was proposed as a poss
explanation.24 Proposals of superconducting or otherwise e
8-10
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QUANTUM CRITICAL BEHAVIOR IN DISORDERED . . . PHYSICAL REVIEW B63 174428
otic phases as the explanation for the observations are
stered by the conclusion that conventional metallic beha
in a two-dimensional ferromagnetic system is unlikely
occur.25 Even if the observed metallic or pseudometal
phase is unrelated to superconductivity, the presence
ferromagnetic phase makes the existence of a triplet su
conducting phase nearby more likely.

B. Experimental consequences

Most of the results of the present paper can be dire
checked by experiments, at least in principle. For instan
the pressure tuned ferromagnetic transitions observed at
low temperatures in MnSi~Ref. 26! and UGe2 ~Ref. 27!
provide examples of systems where the quantum crit
point is directly accessible. These experiments were don
very clean samples, where the ferromagnetic transition
low temperatures is of the first order in agreement with t
oretical predictions.28 However, upon introducing quenche
disorder one expects the transition to become of the sec
order,28 and the current theory to apply.

The critical behavior predicted for the thermodynam
quantities is markedly different from the mean-field exp
nents predicted by Hertz’s theory.2 For instance, the pre
dicted value of the magnetization exponent ind53, b52
with logarithmic corrections is very different from both th
mean-field valuebMF50.5 and the 3D classical Heisenbe
valuebH'0.37. One important remark in this context is th
the logarithmic corrections will, over any realistical
achievable range oft values, mimic a power so that the ob
served value ofb should be expected to be smaller than
Similarly, the correlation-length exponentn will be equal to
1 with logarithmic corrections ind53. However, these ex
ponents may be hard to measure directly, especially ne
quantum phase transition that must be triggered by a n
thermal control parameter that is more difficult to accurat
vary than the temperature. It is therefore important that
values of the critical exponents are also reflected in the
havior of the tunneling density of states and the electr
conductivity across the transition. Even though these obs
ables do not show any leading critical behavior, the lead
corrections expressed in Eqs.~3.13! and ~3.15! reflect the
values ofn andz, and they should be easier to measure th
the critical behavior of, say, the magnetization. For instan
our prediction for the tunneling density of states ind53 is as
follows. Far from the transition, it will show the well-know
square-root anomaly as a function of the bias voltage tha
characteristic of disordered metals.29 Near the transition, the
voltage region that shows the square-root behavior
shrink and outside of it a region of cube-root behavior w
appear, until at criticality the behavior is given by thee1/3

behavior shown in Eq.~3.13a!. The same discussion applie
to the conductivity as a function of temperature, see
~3.15a!. Again, the logarithmic corrections to scaling w
manifest themselves in a real experiment as an effec
power smaller than 1/3.

In this context we also come back to the relative values
the coefficientsa2 andad22 in Eq. ~2.3a!. The leading criti-
cal behavior is due to theukud22 term whose coefficient is
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ad22 as can be seen, for instance, from Eq.~B2! in conjunc-
tion with Eq. ~2.6c!. Sincead225O(1/kFl ), see Eq.~2.3a!,
this implies that the leading effects will be manifest only f
sufficiently strong disorder or if we scale the wave numb
with the correlation lengthj, for sufficiently largej at fixed
mean-free pathl. Sincead5O(1), thenonanalytic term will
dominate forj* l or usingn51, for t&1/kFl . Typical values
of the disorder results in mean-free pathsl'10/kF . For such
a value, our leading results will apply everywhere in t
critical region. For less disordered samples, their region
validity will be correspondingly narrower.

C. Conclusion

In conclusion, we now have a complete theory for t
quantum critical behavior of disordered itinerant ferroma
nets ind.2, including the exact values of the critical exp
nents, the leading logarithmic corrections to power-law sc
ing, and the relations between various theoretical approac
to the problem. Specific predictions for the behavior of
important observables allow for a direct experimental tes
this theory. However, ind52 there remains a puzzling dis
crepancy between existing theory and observations. The
est experimental evidence is for a transition with increas
electron density from a paramagnetic insulator to a ferrom
netic metal,21 while there is no theory that can account for
metallic state, ferromagnetic or otherwise, ind52. In par-
ticular, it has recently been shown that ferromagnetic fl
tuations ind52 do not produce a metallic state within
perturbative RG treatment25 ruling out a possible mechanism
for a metal-insulator transition ind52. This state of affairs
has recently been reviewed in Ref. 20.
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APPENDIX A: ADDITIONAL THREE-POINT
AND FOUR-POINT VERTICES

Starting at one-loop order, the RG generates vertices
are not in the effective action. An example is the three-po
vertex shown in Fig. 9.

In contrast to the vertexc2, all external legs in this dia-
gram carry the same replica index. To see the physical me
ing of this term, we integrate out theb field to arrive at an
effective four-pointq vertex that is completely diagonal i

FIG. 9. A one-loop diagram that generates a new three-p
vertex. Parts of the diagrams shown in Fig. 2 also contribute to
vertex.
8-11
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replica space. This corresponds to a four-body interac
term that in imaginary time space must have the form

E
0

b

dt@ns~t!#4, ~A1a!

where ns(t) is an electron spin density in imaginary tim
representation. Performing a Fourier transform and mak
use of the isomorphism between density operators andq ma-
trices that has been explained in I~see also Ref. 15!, this
corresponds in schematic notation to

T3E dx(
a

@Qaa~x!#4. ~A1b!

HereQ(x) is the matrix field from I Eq.~2.8! and we have
suppressed frequency labels and frequency sums for cla
A Hubbard-Stratonovich transformation to reintroduce
b-field then leads to abq2 vertex of the structure

c̃2T3/2E dx(
a

baa~x!qaa~x!qaa~x!, ~A2!

where c̃2 is a coupling constant. This vertex thus carries
higher power of the temperature than the one with coup
constantc2. By using Eqs.~2.11! to estimate the behavior o
the diagram shown in Fig. 9 we find thatc̃2 diverges ford
,4 in the long-wavelength and small-frequency limit,c̃2
5c5 2Ld24, whereL is the infrared-momentum cutoff from
Sec. II B 2. The scale dimension ofc5 2 is therefore smaller
than that ofc2,

@c5 2#<@c2#2~d22!. ~A3!

This term is therefore irrelevant for the critical behavior.
Similarly, the RG generates four-point vertices that a

not in the effective action. For instance, Fig. 10~a! regener-
ates the two-body interaction that was shown in I to be irr
evant and was therefore dropped. Figure 10~b! is a four-body
interaction of the same type as discussed above in conne
with Fig. 9. All of these terms, and similar ones not shown
Fig. 10, are thus RG irrelevant and can be safely neglec

APPENDIX B: PERTURBATIVE RESULTS FOR THE
DENSITY OF STATES AND THE CONDUCTIVITY

In this appendix we show that the scaling results obtai
in Sec. III are consistent with perturbation theory forN and
s.

From Eq.~3.1! we find the one-loop result forDN as

DN~eF1e!52
NF

2 (
b

(
m

(
i ,r

^ r
i qnm

ab~x!r
i qnm

ab~x!& ivn→e1 i0 .

~B1!

FIG. 10. One-loop diagrams that generate~a! a two-body and
~b! a four-body interaction.
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Using Eqs.~2.7! and ~2.8!, this yields

DN~eF1e!5
3p

4
G2NFKt

1

V (
p

T (
m,0

@Dn2m~p!#2

3Mn2m~p!u ivn→e1 i0 . ~B2!

In Sec. II we have seen that the self-consistent one-l
theory for the propagatorsD and M is exact. Using the
resulting dressed propagators in Eq.~B2! and doing the in-
tegrals, one obtains Eqs.~3.13!.

Similarly, if we use the perturbative result for the condu
tivity given by Eqs. ~3.6! of I and the exact propagator
derived in Sec. II of the present paper, then Eqs.~3.15! for s
are obtained.

These two results buttress the scaling arguments give
Sec. III. Note that these perturbative calculations are equ
lent to taking the standard Altshuler-Aronov perturbati
results,29 and using propagators that are appropriate near
magnetic quantum phase transition.

The classical limit of Eq.~B2! for the density of states o
the equivalent result for the conductivitys can be related to
the established result for the critical behavior of the cond
tivity at a Heisenberg critical point.30 To see this, note that a
finite temperatures the diffusion propagatorD in Eq. ~B2!
has a mass due to inelastic-scattering processes. For the
ing critical behavior,D can therefore be replaced by a co
stant. Also, in the classical limit the frequency sum in E
~B2! turns into an integral over all frequencies since in th
limit the Boltzmann weight that restricts the frequency su
is absent. The net result is that this contribution toDN or Ds
is proportional to a magnetization-magnetization correlat
function that is local in space and time,

DN}Ds}^M2~x,t!&. ~B3!

The correlation function on the right-hand side of Eq.~B3! is
essentially the magnetic energy density and hence scale
t12a, t being the distance intemperature spaceto the clas-
sical phase transition anda being the usual specific-hea
critical exponent. This gives the result of Ref. 30,

DN;Ds;t12a. ~B4!

APPENDIX C: EQUATION OF STATE

In this appendix we show how to generalize the se
consistent equations given in Sec. II for correlation functio
in the paramagnetic phase to the ferromagnetic phase. In
way we will derive and validate the scaling argument giv
in Sec. III for the magnetizationm as a function oft.

To simplify the discussion we first ignore the logarithm
corrections to scaling. Then, in the paramagnetic phase
diffusion coefficientD is simply a number and the equatio
for Ds is given by Eq.~2.14a! with D(v) replaced by that
number. The propagators in the ordered phase have b
derived in Ref. 25. Assuming that the magnetization is in
z direction, we first need to specify whether longitudinal
transverse spin-density correlations will be considered. In
ferromagnetic phase, the transverse spin-density fluctuat
8-12



cit
he
q
is
h
on
’’

iv
li
ro

o

-

e

n
le

a
d

v
ro

-

c-
m
e

the
e
ms

are

n is

Eq.

his

tors
ur
een
we

ing

al
e
we

ies
mo-

r-
-

y
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become propagating Goldstone modes or spin-wave ex
tions while the longitudinal ones remain diffusive. For t
longitudinal spin-density mode, the left-hand side of E
~2.14a! therefore still describes a diffusion coefficient. It
easily shown that in this case the diffusion poles on the rig
hand side of this equation are cut off by the magnetizati
The frequency corresponding to this cutoff is a ‘‘cyclotron
frequency that scales likevc;umu. The explicit generaliza-
tion of these propagators to the ferromagnetic phase is g
by Eqs.~3.10! of Ref. 25. Using these results, the genera
zation of Eq.~2.14a! to the ferromagnetic phase is, at ze
external frequency and wave number

Ds5Ds
01

iG

2V (
p
E

0

`

dv
1

~p22 iv/D1cumu!2
, ~C1!

wherec is a constant. Carrying out the integrals yields f
2,d,4

Ds52c1utu1c2m(d22)/2. ~C2!

Here utu52t.0 is the distance from criticality in the ferro
magnetic phase andc1 and c2 are constants. Equation~C2!
implies thatm scales as

m;utu2/(d22). ~C3!

Equation ~C3! is consistent with the scaling result for th
critical exponentb, Eq. ~3.11a!, apart from logarithmic
terms.

The logarithmic corrections to the exponentb can be un-
derstood as follows. As noted in Sec. III B 1, the correlatio
length exponentn has leading logarithmic corrections, whi
the critical exponentg does not.8 Within the integral-
equation approach and in the paramagnetic phase, this m
fests itself in the following structure of the renormalize
paramagnon propagator@see Eqs.~3.5! and ~2.17b!#:

M~k,iVn!5
1

t1ukud22/g@ ln~kF /uku!#1uVnu/k2
.

~C4!

That is, the term proportional toukud22 carries leading loga-
rithmic corrections, while the termt does not. In Eq.~C4! we
have left out all constants for clarity. If one scales the wa
vector with the correlation length then this structure p
duces the logarithmic corrections to the exponentn. In the
ferromagnetic phase, theukud22 nonanalyticity is cut off by a
magnetic length or cyclotron radius,l m}1/m1/2. This means
that theukud22 gets replaced bym(d22)/2, see Eq.~C2!. The
net result is that againt has no leading logarithmic correc
tion, while m(d22)/2 does have one. Scalingm with the ap-
propriate power oft then yields Eq.~3.11a! for b.

APPENDIX D: LOGARITHMIC CORRECTIONS
TO SCALING

Wegner31 has given a classification of logarithmic corre
tions to scaling. The first class consists of simple logarith
that arise due to resonance conditions between scale dim
sions. In the present context, such a resonance occurs
17442
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single-particle density of states and the relevant variablt.
For clarity, let us neglect the more complicated logarith
that are embodied in the functiong(ln b) for the time being.
The one-loop flow equations for these two quantities then

dDN

d ln b
5~d22!DN1const3t, ~D1a!

dt

d ln b
5~d22!t. ~D1b!

The general solution of the homogeneous equation forDN is

~DN!hom~b!5~DN!~b51!bd22. ~D2!

This has the sameb dependence as the inhomogeneityt(b).
Consequently, the solution of the inhomogeneous equatio

~DN!~b!5@~DN!~b51!1const3t~b51!ln b#bd22.
~D3!

The resulting logarithm has been taken into account in
~3.12b!. @Notice that the physical quantity isDN(b51).#
The same mechanism is at work for the conductivity and t
is reflected in Eq.~3.14b!.

Wegner’s second mechanism is due to marginal opera
and it can lead to arbitrary functions of logarithms. In o
case,c2 acts as an effectively marginal operator as has b
explained in I and this leads to the log-log-normal factors
denote byg(ln b).

APPENDIX E: RELAXATION RATES IN A FERMI
LIQUID

Here we illustrate how to obtain Schmid’s result32 for the
relaxation rates in a disordered Fermi-liquid from the scal
theory developed in Sec. III.

At a disordered Fermi liquid fixed point, the dynamic
exponent isz52 reflecting the diffusive dynamics of th
quasiparticles, and the leading irrelevant variable, which
denote byu, has a scale dimension@u#52(d22).15 Since
tph

21;tQP
21 both are dimensionally frequencies or energ

they scale the same way and we have for either rate a ho
geneity law

t21~e,T!5b22f t~eb2,Tb2,ub2(d22)!. ~E1!

The dependence onu arises from the electron-electron inte
action terms that lead tot21Þ0 in the first place and there
fore the scaling function has the propertyf t21(1,0,x)}x.
The explicit dependence onu can therefore be eliminated b
writing, instead of Eq.~E1!,

t21~e,T!5b2df̃ t~eb2,Tb2!. ~E2a!

In particular, we have32

t21~e,0!5 f̃ t~1,0!ed/2, ~E2b!

which we used to derive Eq.~3.20!.
8-13
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