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The quantum critical behavior of disordered itinerant ferromagnets is determined exactly by solving a
recently developed effective field theory. It is shown that there are logarithmic corrections to a previous
calculation of the critical behavior, and that the exact critical behavior coincides with that found earlier for a
phase transition of undetermined nature in disordered interacting-electron systems. This confirms a previous
suggestion that the unspecified transition should be identified with the ferromagnetic transition. The behavior
of the conductivity, the tunneling density of states, and the phase and quasiparticle-relaxation rates across the
ferromagnetic transition are also calculated.
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[. INTRODUCTION to a correlation-length exponent that satisfies the Harris cri-

In a recent paper,hereafter denoted by |, a local field terion. Technically, if these additional soft modes are inte-
theory capable of describing the zero-temperature- Q) grated out, they lead to a long-ranged interaction between the
ferromagnetic phase transition in disordered itinerant elecerder-parameter fluctuations. It was argued that once this ef-
tron systems was developed. In the present paper this theofgct is taken into account, all other fluctuation effects are
is used to exactly determine the critical behavior at the phassuppressed by the long-range nature of the interactions, and
transition and the connections between the local theory anthat the critical behavior is governed by a fixed point that is
previous descriptions of the ferromagnetic quantum phasGaussian but does not yield mean-field exponents. It was
transition are established. thought that the critical behavior found in Ref. 4 was exact.

Historically, the ferromagnetic transition in itinerant elec-  Several years before the work reported in Ref. 4, the study
tron systems al =0 was the first quantum phase transition of metal-insulator transitions of disordered interacting elec-
to be studied in detail. Hetzoncluded that the transition in trons constituted a separate development in the many-
the physically interesting dimensicth=3 was mean-field- electron probleni. Within this context, a transition was en-
like. The basic idea behind this result was that the effectivesountered that wasot a metal-insulator transition but rather
dimension of the system, which is given by the spatial di-of magnetic naturé.Due to the methods used in Ref. 8, the
mensiond plus the effective time dimensianwas above the order parameter and the nature of the ordered state were not
upper-critical dimension for the transition so that fluctuationidentified, but the critical behavior was determined and was
effects could be ignored. This conclusion is now known to befound to consist of power laws with simple exponents modi-
incorrect. For example, the Harris criterfofor phase tran-  fied by complicated logarithmic corrections. The critical be-
sitions in disordered systems states that the correlatiorhavior for the ferromagnetic transition determined in Ref. 4
length exponentr must satisfy the inequalityy=2/d,  turned out to consist of the same simple power laws albeit
whereas the mean-field theory gives 1/2 for alld. Thisin  with different and much simpler logarithmic corrections.
turn implies that a simple mean-field descriptimustbreak  This led, in Ref. 4, to the suggestion that the transition stud-
down in dimensionsl<4. ied in Ref. 8 was in fact the ferromagnetic transition. The

The reason for this breakdown of the mean-field theorydiscrepancy in the logarithmic corrections between the two
was shown in Ref. 4 to be the existence, in itinerant-electrompproaches was attributed to the fact that of the two integral
systems, of soft or massless modes other than the order paquations derived in Ref. 8, only one had been shown to be
rameter fluctuations, which were not taken into account irexact. The conclusion thus was that the theories presented in
Hertz's theory. In disordered systems these modes are difflRefs. 4 and 8 had treated the same problem, and that the
sive and they couple to the order-parameter fluctuations anfhrmer solution was exact while the latter was approximate.
modify the critical behavior.Among other things, they lead The latter conclusion, however, relied on a weak link in
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the chain of arguments since the theory developed in Ref. the ferromagnetic one, and that the results originally derived
was not very suitable for determining logarithmic correctionsin that reference are exact.
to power laws. The reason was that the additional soft modes This paper is organized as follows. In Sec. Il we first
were integrated out to obtain a description solely in terms ofecall the results of I. We then use diagrammatic techniques
order-parameter fluctuations. The resulting field theory was$o derive exact integral equations for the two-point vertex
thus nonlocal, which makes explicit calculations cumber-functions that appear in the theory. We conclude this section
some. Consequently, most of the arguments used in Ref. 4 toy quoting a previous solution to these equations that is valid
determine the critical behavior were simple power-countingat the critical point. In Sec. Il we show how some physical
techniques that were not sensitive to logarithmic correction®bservables in the paramagnetic phase are related to these
to power laws. vertex functions. We then develop a scaling theory to deter-
It is the purpose of the present paper, in conjunction withmine the critical behavior of other observables of interest as
the preceding paper, to settle the remaining questions regardrell as the critical behavior in the ferromagnetic phase. In
ing the relation between Refs. 4 and 8, and the exact criticabec. IV we discuss general theoretical aspects of this paper
behavior, including logarithmic corrections to scaling at theas well as experimental consequences of our results. Various
guantum ferromagnetic transition of disordered itinerantechnical issues are relegated to several appendices.
electrons. By using the local field-theoretic description of |
that explicitly keeps all soft modes, we show that Ref. 4
missed marginal operators that lead to logarithmic correc- 1I. EFFECTIVE FIELD THEORY AND ITS SOLUTION
tions to the Gaussian critical behavior discussed there. More-
over, taking these marginal operators into account leads to
integral equations for the relevant vertex functions that are In | it was shown that the effective long-wavelength and
identical to the ones derived in Ref. 8. The current formuladow-frequency field theory that contains the critical fixed
tion can further be mapped onto the one of Ref. 8, whichpoint and describes the exact quantum critical behavior of
shows that the transition found in the latter paper was reallgisordered itinerant ferromagnets is given by the action

A. Effective action
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Here M{(k), with components'M2(k), is the fluctuating
magnetization at wavenumbkrand bosonic Matsubara fre-
quencyQ,=2=Tn, wherea is a replica label and the field
is defined in terms of the magnetization,

1012(K) = 84,0, =) "2 B,

XM K) + (=) M (k)] (22

been explained in I. For weak disorder characterized by a
mean-free path> 1/kg, wherekg is the Fermi wavenumber,
the prefactoray_», is of order 1kg while a,=0O(1). For
physical values of the spatial dimensidand for asymptoti-
cally small wavenumbers, the nonanalytic term dominates
the analytick? term. However, for completeness and later
reference we include the latter, which had been dropped from
the final effective action in Ity is the bare distance from the
ferromagnetic critical point.

The fermionic degrees of freedom are represented by the

The labels 1, 2, etc., comprise both frequency and replic§€!d d; electron number, spin, and energy-density fluctua-

indices, ==(nq,a4), etc. The two-poinM vertex is given by
Up(K)=to+aq_o| k|9 2+ ak?. (2.39

Here the nonanalytic term proportional [td®~ 2 reflects the

tions can all be expressed in terms of {igg” . These are the
additional slow modes mentioned in Sec. | above. The fre-
quency labelsn=0, m<0 of the g denote fermionic Mat-
subara frequency indices, is a spin label (=0 and i
=1,2,3 correspond to spin-singlet and spin-triplet fluctua-

nonanalytic wavenumber dependence of the electron spitions, respectively and the label (r=0,3) serves to write
susceptibility in a disordered itinerant electron system, as hage complex-valuedj fields as two-component real-number
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valued fields’ The fermionic part of the action is character- The quadratic form defined by this Gaussian action has been
ized by the two-point vertex inverted in |. For the order-parameter correlations we find

T{24K)= 813042+ GHQ, ), (2.3b . . 1
= e (MAROTME(P)Y= 8~ pOin, - mij Sup 5Mn(K),

(2.6a
Bty My (K)

and the four-point vertex

T 9k ks ke)

(1012(K)1bsa(P)) =~ 8~ pOrsBij ayay

X[61-23-4—(—)'61-24-3]; (2.6D
in terms of the paramagnon propagator,

_ t_ ot te of
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X (Ky-Kg+K-Kg+Ki-Kot+Ko ke GHOQ, ).

(2.30 1
The parameteitG=8/moy is a measure of the disorder, My(k)=
where oy is the bare conductivityH = 7Ng/4, whereNg is o+ ay_o|K|9~2+ ak?+ GKi| Q|
the bare single-particle or tunneling density of states per spin 0" Fd-2 2 k?+GH|Q,|
at the Fermi surface, is a bare quasiparticle density of states (2.60

that also determines the specific-heat coefficient. Finally he d ical oi f th
¢,,c, are coupling constants whose bare values are relatel’® dynamical piece of the paramagnon propagatdr

and given by whose structure is characteristic of disordered itinerant fer-
romagnets, has been produced by the coupling between the
¢, =16c,= 47Ky, (2.39  order-parameter field and the fermionic degrees of freedom.

: L ) . ) For the fermionic propagators one finds
whereK; is the spin-triplet interaction amplitude of the elec-

trons. The replicated partition function is given in terms of i . G, 2)-1
the action by (+912(K)5034(P)) = 8, pSrs 6 3 %54 (k) (2.7)
Z:f DM, q]ePerM.dl 2.4 in terms of the inverse of (?),
T B3d(K) = 813024Dn —n,(K), (2.8a

B. Perturbation theory to all orders
and the propagator

We will now show that the effective action given in the

preceding subsection can be solved perturbatively exactly, 1’2'3F(122?3_41(k)=513524Dnl_n2(k)

i.e., it is possible to resum perturbation theory to all orders.

The basic idea is to first show that thepoint vertices for = 01-23-400,0,00,0,2TT GK;

n=3 are either not renormalized or their renormalization is 5

simply related to that of the two-point vertex functions. This X[annz(k)] M"r“z(k)' (2.80

in turn implies that exact self-consistent equations for thq_|
two-point vertex functions can be derived. The net result will
be that the determination of the critical behavior of the field
theory is reduced to the solution of two coupled integral
equations that were first derived by different methods in Ref. Dy(k)=
8.

ereD is the basic diffusion propagator or diffusion. In the
limit of small frequencies and wave numbers it reads

—_. 2.9
k?2+GHQ, @9

1. Gaussian propagators Physically, D describes heat diffusiof:’
Finally, due to the coupling betweeévi and g there is a

In order to set up a loop expansion we will need the baSi(?nixed propagator

two-point propagators for the above theory. They are deter-

mined by the Gaussian action, <irq12(k) jsb34(p)>= — 8 pBrsd 5a1a25a1a3
3
- _ inga inme G
AG[M'q] ; 2 ; ;1 Mn(k)uZ(k) M—n( k) XE\/WTKtDnlfnz(k)Mnlfnz(k)
4 i i X[81_ 23 a+(—)"16, 24 3] (2.1
_6; 12234; Irle(k)F(122),34{k)qu34(_k) [01-23 41T (—) 1-24-3]. (210
2. Three-point and four-point vertices
+4 WTKt; 2 2 101 K)jbio —K). We now determine loop corrections to the tree-level
I,r

theory. We begin by considering the three-point vertex
(2.5  whose coupling constant is denoted &yyin Eq. (2.1). Dia-
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FIG. 1. Diagrammatic representation of the bamg® vertex.

Dashed lines denoti or b fields and solid lines denot fields. FIG. 3. The bare four-point vertex.

grammatically the bare three-point vertex is given in Fig. 1.0f ¢, is generated by the renormalization group at one-loop
Now consider the one-loop renormalizations of this vertexorder. As shown in Appendix A, the frequency structure of
which are shown in Fig. 2. this vertex is such that it carries one more frequency sum and
For scaling purposes we can use simple estimates for thessociated temperature factor than the vertex with coupling
propagators. Specifically, thgpropagators all scale like an constant,. Its coupling constant is therefore more irrelevant

inverse wavenumber squar&d, thanc, and can be neglected.
, Next we consider the four-point vertdX*) in Eq. (2.1).
(012(K) dza —k))~ 1K= (2.118  The bare four-point vertex is given analytically in E8.30

and shown diagrammatically in Fig. 3, and the one-loop
renormalizations are shown in Fig. 4.

Notice that this vertex is proportional either to a wave
umber squared or to a frequency. Using the estimates given
y Egs.(2.11), we find that the renormalization of the part of
I"®) that is proportional to a wave number squared is always
a finite number again scaling as“~2). For the part that is
proportional to frequency, on the other hand, power counting

const if O~Kk2 shows that this term can have logarithmically singular renor-
k)~ o malizations. An explicit calculation would be very cumber-
(M (k)M2(=k)) k|2 it @~k some. However, it is not necessary since the one-loop renor-
(2.11p  malization of the coupling constaht in Eq. (2.3¢ obtained
o ) ) this way is identical to that obtained by renormalizing the
Similarly, the mixed propagator, E.10), scales like two-point vertex, Eq(2.3b). This is because both terms arise
1//k| it (K2 from the same term in the underlying nonlin(_ear sigma model
for the fermionic degrees of freedom, which is believed to be
(Gaak)ad —K))~1 1k|¥2 if Q~[k[? (2110 renormalizablé? By the same argument, the renormalization
of I'® to all ordersis given by that ofl'® and therefore
If we use an infrared wave number cutdff we see that the need not be considered separately. The explicit calculation of
integrals that correspond to the diagrams shown in Fig. 2 all® confirms the existence of the logarithms that were al-
scale likeA9"2. That is, the one-loop renormalization of  luded to above as we will demonstrate in the next subsection.
at zero external wave number and frequency is a finite num- In addition to the diagrams that renormalité®, there
ber for alld>2. More generally, am-loop skeleton diagram are one-loop terms that represent four-point vertices with
has n independent wave number and frequency integralsmore restrictive replica structures. These correspond either to
Diagrams that contain only solid and dashed lines contain 2 the two-body interaction terms that were shown in | to not
(qq) propagators and up to (MM) propagators. Similar change the critical behavior, or to many-body interactions
considerations hold for diagrams that contain mixed propathat are shown in Appendix A to be more irrelevant tisf?
gators. The net result is that amyloop skeleton diagram and thus can be neglected.
scales likeA"(~2)_ All of these contributions thus amount to
finite corrections to the bare value of. By induction it 3. Two-point vertices
follows that insertions do not produce singular contributions
either. We conclude that there are no singular renormaliza; .
tions of the three-point vertex function in the field theory
defined by Eq(2.1).
In addition to the renormalization a@f, a new three-point
vertex with a replica structure that is different from the one

The M propagator at criticality may scale like a number or
like an inverse wave number to the power 2. This de-
pends on the scaling behavior of the frequency, which can be
different in different contexts as has been explained in | an
can be seen from Eq$2.69 and (2.9), respectively) can
scale either likgk|? as in the paramagnon propagator or like
k? as in the diffusion. The two possibilities therefore are

We now turn to the two-point vertices in the effective
tion. The one-loop renormalization of the vertex is
shown in Fig. 5.

Using Egs.(2.1)), it is easy to see that this diagram is
finite in d>2. Since the three-point vertex is not singularly
renormalized, see the previous subsection, it follows that the
bq vertex has only finite renormalizations to all orders in
,,,,, ' perturbation theory. This means that the coupling congtant

.
~.

’ 1
!
FIG. 2. One-loop corrections to the vertex shown in Fig. 1. >Q< : < :

Solid lines denote(qq) propagators, dashed lines dendteb)
propagators, and dashed-dotted lines defbtp propagators. FIG. 4. One-loop corrections to the vertex shown in Fig. 3.
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FIG. 5. One-loop renormalizations of the mixed two-point
vertex. FIG. 7. Renormalization of the fermionic two-point vertE$)
to all orders.
is not singularly renormalized.
The one-loop renormalizations df(®) are shown in Wwhereu,(p,i€})) is the fully renormalizedb vertex. By the
Fig. 6. same arguments, we obtain the latter as shown in Fig. 8. By
As was shown in I, the renormalization & obtained dressing the propagators in the analytic one-loop expression
from these diagrams is finite id>2. For the renormalized given in Eq.(3.5b of I, we have for(),=0,
H, which we denote byH(i{},), one obtains to one-loop

d
oreer uz(k,iQn)=to—7vtE 27T
H(iQ,) = H+86Kt Q lE v 2 Dy(p)M(p), - 1
212 & T ehaa),

which diverges logarithmically a€,—0 for all 2<d<4.
As was explained in I, this divergent renormalization, which % _
arises from the nominally irrelevant verticE§") andc,, is a (p+K)2+GH(IQ+iQ)(Q+Q,)
consequence of the presence of two time scales in the prob- (2.13b
lem. In addition, there are terms that are finitedin 2. It is '
important to note that the structuf2M in the integrand of

i 3 In writing Eq. (2.13b, we have for simplicity put the bare
Eq. (2.12 stems from the second term proportional M coupling constantay_, anda, equal to zero since they are

in the triplet qq propagator, Eq(2.8b), times a termD ! generated at one-loop order.
that is due to the wave number and frequency dependence of

the quartic vertex, Eq.2.30. _ o .

The exact verteX' @ can be generated from the one-loop C. Integral equations for diffusion coefficients
diagrams by dressing all propagators and all vertices in Fig. Equation(2.13 in Sec. Il B constitute two closed integral
6. The relevant vertices alé® andc,. As was shown in equations for the two-point vertices. As we have seen, this
Sec. II B 2, the latter has no singular renormalizationslin has been possible to achieve siridg the four-point vertex
>2 so it need not be dressed. Denoting the exact fpur- ') renormalizes like the two-point vertdx? and (2) all
vertex by a square and the dressed propagators by doubigher vertices are subject to finite renormalizations only. As
lines, we therefore have the diagrammatic representation &f result, the solution of Eqg2.13 provides us with the
the renormalization of ®) to all orders shown in Fig. 7. perturbativelyexactcritical behavior.

Analytically, this result corresponds to simply dressing To make contact with previous work, it is useful to re-
the propagators in Eq2.12. Notice that this procedure in- write Egs.(2.13 in terms of the(therma) diffusion coeffi-
cludes the vertex renormalization due to the structure pointedient D(i(2,)=1/GH(iQ},) and the spin diffusion coeffi-
out above. Also notice that it is crucial for our argument thatcient, D(k,iQ,)=u,(k,iQ,)/GK,. If we analytically
G andK; carry finite renormalizations only. We thus have continue to real frequenciesjQ,—Q+i0, the self-
the exact result, as far as the asymptotic critical behavior igonsistent one-loop equations read
concerned,

k,Q)=D%+ = d
H(i Q) = H+3GKt a2 % Delk.dl)= + 2 f ¢
1 X ! !
(2.133 p?—iw/D(w) (p+k)2—i(w+Q)/D(w+Q)’

>< 1
P GKQ+p?uy(p,i€))

+ —/\— - --

~ 7’
~ ”

N~__‘f

(2.143

FIG. 6. One-loop renormalizations of the fermionic two-point  FIG. 8. Renormalization of the two-point magnetization vertex
vertexI'(2), u, to all orders.
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The leading dependence of eith2ior D¢ ont away from

1
D Qj criticality at zero frequency and wave number or thaDaf
() _'w+P Dy(p,0) att=0 as a function of frequency &t=0, will follow from
(2.14b  the scaling theory to be developed in Sec. Ill below.

HereD%=1/GH and D2=to/G K, are the bare diffusion co-
efficients. These integral equations were first derived in Ref.
8 by means of a resummation of perturbation theory within a
nonlinear sigma model for interacting electrons in the limit  In this section we determine the exact critical behavior of
of a large spin-triplet interaction amplitude. As has been disvarious observables. We do so by developing a general scal-
cussed in I, this sigma model is recovered from the currening description for the free energy and various transport co-
model by integrating out the magnetization. This is the map-efficients and relaxation rates, and using the exact solution of
ping between the two models that was referred to in theSec. Il to determine the values of the independent critical

lll. CRITICAL BEHAVIOR OF OBSERVABLES

Introduction.

D. Solution of the integral equations

In Ref. 8 the coupled integral equations, E@s14), were

solved by three distinct methods: a direct analytic solution,
renormalization grougRG) solution, and a numerical solu-
tion. The results of all three approaches were consistent wit
one another. Here we will quote the most relevant results

restricting ourselves as in | to2d<4.
Simple scaling arguments show that at criticality,

=u,(k=0,0,=0)=0, D(Q2—0) is a constant except for

logarithmic terms. This suggests the ansatz
D(Q)=D%F[In(1/Q7)]. (2.15

Here 1/= wnG/8m, wheren is the electron density and is

exponents. Again, we restrict ourselves to the dimensionality
range 2d<4. The results fod>4 in Ref. 4 were exact,
and the behavior il=4 can be obtained by combining the
solution of the integral equations from Ref. 8 for that case
a\lNith the arguments given below. We have also checked
some of our results by means of explicit perturbation theory,
ee Appendix B. Parts of the results presented here have

een previously published in Ref. 13.

A. ldentification of observables

We first discuss how to relate the behavior of some physi-
cal observables of interest near the quantum critical point to
the solution of the effective field theory given in Sec. Il. We
consider the electrical conductivity, the specific-heat coef-
ficient yc, the tunneling density of statég the spin suscep-

the electron effective mass, is the elastic-scattering rate. Thebility y., the heat and spin diffusion coefficienis and

same arguments yiel®4(k,Q0=0)~|k|9 2 at the critical
point except for logarithmic terms. So we write

Dy(k,Q=0)=DJ(|k|/kg)* 2F{In(ke/|k])]. (2.16)
Solving the resulting equations fér andF give$

D(Q—0)=D%g{in1/Q7n)}] 1, (2.173

Dy(k—0,0=0)=D2(|k|/kg)? 2d" (GK,/H)kE 2
X[g{2 In(ke/[k[)}] ™ (2.17h

Here

g(x)= 2 [{c(d)x}"/n! Jexd (n?—n)In(2/d)/2].
n=0
(2.18a
In an asymptotic expansion for largethe leading term is

g(x)=[2 In(d/2)/w]~ Y2exp(In{c(d)x}]?%/2 In(d/2)).
(2.18p
The dimensionality-dependent coefficiar{t) is given by

c(d)=c’'(d)/d’(d), (2.193
where
d'(d)=c"T'(2—d/2)F(2—d/2,1/2;3/2;7), (2.19b

whereF is a hypergeometric functior; is the gamma func-
tion, andc’ andc” are smoothly varying functions af

D, respectively, the phase relaxation rag?‘1 and various
quasiparticle properties, in particular, the quasiparticle decay
rater(sé . The magnetizatiom will be obtained from the free
energy in Sec. Il B below.

The conductivity,o=8/mG=1/p, where isp the resistiv-
ity, is proportional to the inverse of the renormalized disor-
der paramete@ in Eq. (2.1) and the specific-heat coefficient

=C/T, whereC is the specific heat, is proportional to the
renormalized value oH in Egs. (2.3b and (2.39.” The
single-particle density of statd®09) as a function of the
distance in energy or frequency space from the Fermi surface
N(e) is given by Eq.(2.299 in I. In terms of expectation
values of the field, it takes the form of an expansion

1 , _
N(eF+e>=NF{1—§§ 2 2 (OO0 i e+ i0

+0((a%) |. (3.1

Experimentally,e is equal to the electron-charge times the
bias voltage. The dynamical spin susceptibility is given by
the M-M correlation function and we have seen that the
coupling between th&1 and q fields affects the dynamical
part of that correlation function only. This implies that the
static spin susceptibilitys(k) is given by the renormalized
value ofu,(k,iQ),=0), compare Eq(2.13h. Alternatively,

it is proportional to the inverse of the static spin diffusion
coefficient
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The above quantities have all been defined &t0, with an
xs(k)= 2GKD(Ki0.—=0)" (3.2 eye on the fact that the results of Sec. Il are only valid at
t~ sty n— . .
T=0. In general, we are also interested in the analogous
The heat and spin diffusion coefficieriisandD are explic-  results atT>0. This is of particular importance for the re-
itly given by the solution of the integral equations discussedaxation rates, since only 8t>0 do they provide a mass for
in Sec. Il. In Appendix C we show how to generalize thethe diffusion propagator and hence constitute a true real-time
integral equations to the ordered phase, so that the equatiatecay rate. In order to obtain complete results at finite tem-
of state or the magnetization, can be obtained. In Sec. Ill B peratures, a Matsubara frequency sum and an analytic con-
we determine the magnetization by means of a scalinginuation to real frequencies need to be performed. The lead-
theory. ing temperature dependence of the inelastic-scattering rates
The relaxation rates are defined in terms of the diffusioractually comes from a branch cut in this analytic
whose bare propagator is given by E2.9). Its renormalized  continuation:* It turns out that to capture this effect one

counterpart has the form needs to retain terms that were neglected in the derivation of
the integral equations in Sec. Il. Alternatively, the inelastic-
Z2 Z2 scattering rates at=0 as functions of real frequency or the
D(k,iQy)= distance in energy space from the Fermi surface can be ob-

kK*+GH(iQn) 0y K2+ 0,/D(iQy) 33 tained from the results of Sec. Il, see E(&4) above. Scal-
(339 ing theory can then be used to obtain the resulis=ad and

Here Z is the wave function renormalization, which deter- T>0. We will follow this second route.

mines the single-particle DOS, E3.1), via N=NgZ. In

addition, the quasiparticle DOSp is related toN via B. Scaling considerations

Nop=N/agp, (3.3b In_this section we develop a general scalir_lg theory for the
physical observables near the quantum critical point. The
whereagp is the quasiparticle weight. Upon an analytic con-explicit solution given in Sec. 1D is used to identify the

tinuation to real frequenciesi(i(),) acquires a real paH’ results for the critical exponents.

and an imaginary partH”, H(iQ,—e+i0)=H'(¢€)

+iH"(€). Dividing by GH’, the renormalized diffusion can 1. Critical exponents
be written

From the explicit solution quoted in Sec. Il above, we
obtain various critical exponents. As has been pointed out in
I, there are multiple dynamical exponents. This is also obvi-
ous from Egs.(2.14 in conjunction with Eqs(2.17). Fur-
thermore, the logarithmic corrections to scaling that charac-
where agp=NgZ/H'(€), Ngp=H'(€), Dgp=1/GH'(¢) is  terize the solution of the field theory mean that the

1 (Ngp/N2)aZ
DK,iQ,—eti0)=—=—2 F7® = (339
G D K2 1
Dok —ie+ 7o

the quasiparticle diffusion coefficient, and asymptotic critical behavior is not given by simple power
laws. A convenient way to account for that is to write the
T&é: eH"(e)/H'(€) (3.43 critical behavior as power laws with scale-dependent critical

exponents. For instance, the critical time scale, which deter-

rate T;hl is the “mass” that is acquired by the diffusion at py 3 dynamical exponent

real frequencies and finite temperature. Equati@ni3a
shows that it can be identified, apart from a multiplicative z.=d+Ing(Inb)/Inb, (3.6a
constant, with

whereb is an arbitrary renormalization-group-length scale

Ton =REOHIQ)/NHio . c1i0 (3.4b  factor. To see this consider E@.5) in conjunction with Eq.
. . . (2.17h, which shows that the frequency in the paramagnon
or in terms of the imaginary part ¢, scales likeQ ~k2D(k, 2 =0)~ |k|¥/g[In(k/|k|)]. In addi-

1 ()N 34 tion, there are diffusive time scales with power 2 and various
Ton = €H"(€)/NE. (3.49 logarithmic corrections. For instance, the frequeficyn the

For later reference we also give the renormalized paramagdiressed diffusion, Ed3.33, defines a time scale with a criti-

non propagator. Leaving out terms that are irrelevant for ouf@l exponent
purposes, it reads

Zg=2+Ing(Inb)/Inb. (3.6b
1
M(k,iQ,)= - 5 There are other diffusive time scales, however. For instance,
Uz(K,i Q)+ GKi| Q| /k the quantityH(iQ,)Q,/Ng is dimensionally a frequency
that defines a time scale with critical exponent
1/GK;
= - . (3.5
Dy(k,iQ,)+]Q,|/k? 24=2. (3.60
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This is the scale dimension of the phase-relaxation rate, EQ-m(t,T,h)=b‘2fm(tbd‘2g(|n b), Tb?g(Inb),hblg(Inb)),
(3.4b. For the other two independent critical exponents we

pick 7, which describes t_hg wave number depe_ndence of the (3.99

rder paameter suscepiily and thocorclton engh x4 7. -t o+ i),
n=4—d—Ing(Inb)/Inb. (3.60) Tb%(Inb) hb’g(Inb)), (299

The exponent was determined in Ref. 8 with the result xs(t, T,h)=b%"2g(Inb)f, (tb? ?g(Inb),
1v=d—2+Ing(Inb)/Inb. (3.60 Tb?g(Inb),hbg(Inb)), (3.99

The scale-dependent exponents shown determine theheref,, f,, andf, are scaling functions. With suitable
asymptotic critical behavior, including the leading logarith- choices of the scale factd, Eqgs.(3.9) imply
mic corrections to scaling. They do not include logarithmic

terms that are less leading than the log-log-normal depen- 1\]%@-2
dence due to the functiog(In b). In particular, simple pow- m(t,0,0):fm(l,0,0){tg(d_—zln f) '
ers of logarithms would correspond to terms of order (3.10a
InInb/inb in Egs.(3.6).
2/d
2. Thermodynamic quantities and the density of states m(0,0h)= fm(0,0,l){ hg(aln H) , (3.10b

We start by considering the thermodynamic properties
near the phase transition. They can all be obtained by a scal- 1 1
ing ansatz for the free energy as a functiont,of, andh, yC(O,T,O)=fy(O,1,0)g(—In _), (3.100
whereh is the magnetic field. Two key ideas will be used. d T
First, the existence of two essentially different time scales,
see Sec. Il B 1, implies that the free-energy densiiiould xs(1,0,00= fX(l,O,O)t‘1 (3.109
consist of two scaling parts. The second idea is thatso ) o o
represents an energy Sca"mme|y' the Zeeman enemand for.the |ead|ng asymptOtIC critical behavior |!ﬁ|- the sense ex-
it therefore scales like the frequency or the temperature.  Plained at the end of Sec. Ill B 1. For the critical exponents
Taking all of this into account, the natural scaling ansatz8: v, 8, and «, defined bymoct?, yoct™?, mech', and

for fis yexT-F@)  (the latter is a generalization to zero-
temperature transitions of the usual definition of the expo-
f(t,T,h)=b~(@T2)f, (tb"” Tb?%, hb%) nenta), we obtain from Eqs(3.10
+b~ @ 2df,(th1” Th%,hb%), (3.7 B=2v, (3.113
where f; and f, are scaling functions. Note that priori
there is no reason for the temperature argumerft,db be y=1, (3.11b
given by the diffusive time scale with the dynamical expo-
nentzy rather than by the critical time scale with the dynami- 0=12,12, (3.110
cal exponentz . It requires explicit calculations to see that
for some quantities, e.g., the magnetization, the diffusive a=—dlz, (3.119

temperature scale is the relevant one. In Appendix C we
show that the equation of state contains only the diffusivewith » andz. from Egs.(3.6).
temperature scale and our scaling ansatzfforeflects this Next we consider the single-particle density of states. We
feature(see also Ref. ¥ In addition to theT andh depen- define AN=N—Ng, where N¢ is the disordered Fermi-
dences in Eq(3.7) with scales determined by, there are liquid value ofN. AN can be related to a correlation function
subleading dependences involving the diffusive time scalghat has scale dimension(d—2).** This implies the scaling
that we suppress. The magnetizationspecific heaC, and ~ form
spin susceptibilityys, respectively, are given by

AN(t,e,T)=b" (@2 (tb" ?g(Inb),eb%(Inb),

=of/oh, 3.8
m=atlo (3.8 Tbig(Inb)). (3.123

C=—Ta?*f1dT?, 3.8b
( ) Notice that the scale dimension &fN is minus that oft,

xo=2floh2. (3.80 modulo the logarithmic corrections to the latter. This leads to
a resonance in the RG-flow equations foX, which in turn
Generalized homogeneity laws far, yo=C/T and ys are  leads to an additional logarithmic dependenceAdf on t,
obtained by using Eq(3.7) in Egs. (3.8). Substituting the see Appendix D. Anticipating that logarithm, we generalize
exponent values given by EgS.6), we find Eq.(3.123 to

174428-8
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AN(t,e,T)=consixtg(Inb)Inb
+b~(@=2F  (tb¥ 2g(Inb),eb%g(In b),

Thig(Inb)). (3.12
This implies
€ [1 e)@-20d )
N(0,6,00=Ng| 1+cy e_,:g(aln?)} +O(eld-22) |
(3.133
and
N(t,0,00=Ng 1+d ! I ! | -
(t,,)— E +th ﬁn? n?—i-...,
(3.13b

with constantsy anddy . It should be pointed out, however,

that one should not take thigy(In 1/t)Int behavior in Eq.

PHYSICAL REVIEW B63 174428

T 1 €r (d-2)/d
ol gn %]

+ O(T(dZ)IZ)},

This scaling relation yields

o(0,T,00=0¢|1+cC,

(3.153

and

o(t,0,0)=0g

1 1) 1
1+d,tg ﬁ'ﬂ{ In?+0(t) ,

(3.15h

with ¢, andd, constants. The same caveat as given after Eq.
(3.13b applies.

An alternative argument that gives Ed8.15 is to as-
sume thatr consists of a background part that does not scale
and a singular partgo, that does. In fundamental units,

(3.13b too seriously. The reason is that the log-log-normal[ §o]= — (d—2). This suggests the scaling form

factor g(In 1) may have multiplicative simple-log correc-
tions that the asymptotic solution of the field theory is not

sensitive to, see the remark after £§.66.

3. Transport coefficients

The scaling theory for the transport coefficients, D,

So(t,T,0)=b~(4=2f_(tb® ?g(Inb),
Thig(Inb),Qb%(Inb)). (3.163

Here the dependence anis already implicitly taken into
account, so we dropped the explicit dependence. Taking into

andDg can be presented in several different ways. Here weiccount the resonance between the scale dimensiafuof
give two arguments for the scaling part @f The first one andt, see Appendix D, gives

starts with the fact that the conductivity is a charge-current

correlation function whose scale dimension with respect tasq(t,T,Q))=cons tg(Inb)Inb+ b‘(d‘szg(tbd‘zg(ln b),
the quantum magnetic fixed point is expected to be zero.

That is,o neither vanishes nor diverges at this quantum criti- Tb%(Inb),2blg(Inb)).
cal point. Howeverg will depend on the critical dynamics This also yields Eqs(3.15.

since the paramagnon propagator enters the calculation of The diffusion coefficient andD. have dimensions of

in perturbation theory, see Appendix B. The critical correc-|ength squared divided by time. Sisnce there are two time

tion to the bare or background conductivity further dependgcjes there are two possible scale dimensions for the diffu-

Itl)near!?/hor} the Igadllng 'ge'e‘é?ﬁ[“ Qperalltor, Whg:h We.denOtgsion coefficientsDy is the diffusion coefficient for the order-
Y u. The latter Is related to ditfusive electron dynamics an parameter fluctuations so one expects the critical time scale

one therefore expects the scaleudb be the same as in the , 01y \whileD is the quasiparticle diffusion coefficient, so

d|sordered Fermi-liquid theory, namel{/u]—_ (d=2). the diffusive time scale is appropriate. This leads to homo-
Scaling arguments then suggest a generalized homogene@éneity laws

law

(3.16b

—_rp—(d-2) d-2
U(t,T,Q):fU(tbdizg(m b),deg(In b), Ds(trT1Q) [b /g(ln b)]st(tb g(ln b)!

Qblg(Inb),ub=@=2) Thig(Inb),Qbl%(Inb)), (3.173
—const-b~ (@~ 2F_(tb92g(Inb), Thig(Inb), D(t,T,Q)=[g(Inb)] *fp(tb* 2g(Inb),
Qbdg(Inb)). (3.143 Tb%(Inb),2b%(Inb)). (3.17b

Again, there is a resonance condition that leads to a simpl&hese two results are consistent with the fact that the con-
logarithm in thet dependence of-. This is due to the scale ductivity is noncritical to the leading order and scales like
dimension ofu being the negative of that of modulo loga- o~Dsxs~DH. Indeed, the above results for, Dg, andD
rithmic corrections. As in the case of the density of states, w€an be used to obtain scaling results fgy and ycxH,
therefore generalize E¢3.144 to which justify our free-energy considerations in Sec. Il B 2
above.
o(t,T,Q)=const-constxtg(Inb)inb
4. Relaxation rates
+b~ =25 _(tb? ?g(Inb),Th%(Inb),

The phase-breaking ratzrgh1 and the quasiparticle decay
Qb%/(Inb)). (3.14b

rate raé are given by Eqs(3.4). By comparing Eq(3.4b
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and Eq(33a’ we see thab—[:hl scales like a wave number theor)fl to the local Coupled field theory involving both the

squared(recall thatG is not singularly renormalized and fermion-density fluctuations and the magnetic order-
hence does not scaland therefore has a scale dimensionparameter fluctuations tha.t was formulated in I. The two
[T;hl]zz with no logarithmic corrections. This observation theories yield the same critical behavior apart from logarith-

leads to the homogeneity law mic corrections to power-law scaling that were missed in
. 5 4> § Ref. 4 and are correctly given by the coupled local theory.

Ton (1,€,T)=b™*f,(tb® “g(Inb),eb®g(Inb), Second, we have unambiguously related earlier work on the
Thi(Inb),ub(@-2). (3.183 disordered interacting electron problem, involving runaway

renormalization-group flow, to the quantum ferromagnetic
The leading irrelevant variabla represents interaction ef- phase transitiot® This connection was actually made earlier
fects that are necessary for any dephasing. The rate is therig Ref. 8. However as explained in the Introduction our ar-

fore linear inu, and we can write gument then was not complete. Indeed, even though Ref. 8
correctly obtained the critical behavior, it failed to identify
Ton (1,6, T)=b~ 9 (tb? 2g(Inb),ebg(Inb), Thig(Inb)).  the nature of the phase transition as the ferromagnetic one. In
(3.18hH hindsight, this is surprising given that the scaling theory was
At criticality, we find used to correctly identify the order-parameter expongnt

=2v. The problem was that Ref. 8 was formulated solely in
terms of fermionic number and spin-density fluctuations at
+0(e”?), (3180  the Fermi surface, so that the behavior of quantities that in-
volve electrons far from the Fermi surface, such as the mag-
wherec, is a constant. netization, was not obvious. Indeed, we argued that although
The quasiparticle-relaxation rate is given by the ratiothe above exponent equality was formally valid, the magne-
H"/H’, see Eq.(3.48. The scaling properties Ofgé thus  tization was actually zero in the ordered phase since the scal-
follow from those ofH or y¢, Eq.(3.9b. Explicitly we find  ing function had a zero prefactdf.This argument was in-
correct because it failed to take into account that the
/InEJru- electrons away from the Fermi surface are also ordering.

’ This, in turn, leads to a nonzero scaling function.

(3.19 The difficulties interpreting the theory put forward in Ref.
where cop is a constant. FoE<ep, t#0 we have asymp- 8' notwithstanding, it i_s; very remarkable that this nonlinear
totically S|gma—m_odel_formulat|on of the problem yielded the; correct

result, since it was not geared at all towards describing fer-
Tl;hl(t,e)ocTépl,(t,e)oc(e/t)d/% (3.20 romagnetism. The focus on deg_rees of freedom near the
) Fermi surface mentioned above is one reason and another
To obtain Eq.(3.20 we have used the well-known fact that e s the fact that the sigma model is derived by expanding
at the dlsorQered Fermi-liquid fixed point the. relaxation rates;pout the paramagnetic-metal fixed point, so it is not obvious
are proportional tee?. In terms of our scaling arguments why it is capable of describing a critical fixed point. This is

1 1 e
pn (0,€,0) = Cppeg aln?

rol(t=0,e,T=0)=copeIn| INF
QP 1€ Q €

this result is rederived in Appendix E. actually a general question about sigma modéland the
answer is only incompletely known. Indeed, periodically
IV. DISCUSSION AND EXPERIMENTAL RELEVANCE even the capability of th@©(N) nonlinear sigma model to

This paper completes our discussion of various aspects alitatively correctly describe the Heisenberg transition in

the ferromagnetic phase transition in low-temperature disor- _'I?)h has been quesgloné?i. h lizati
dered itinerant electron systems. We have given the exact e connection etW‘?e” the runaway renormalzatlpn-
solution for the magnetic critical behavior near the quantu roup flow encou_nterepl n '°"_V orders .Of a IO(_)p expansion
phase transition from a paramagnetic metal to a ferroma and ferromagnetism is particularly interesting in two-

netic metal. We have also determined the critical behavior Oglmenspnal syster_ns becausg Pf recent . eXPe“”f'e”ts that
show either metallic or metalliclike behavior in Si MOS-

a number of other relevant physical variables near the tranFE_I_S and other materia® and even more recent ones that

sition, in particular, the electrical conductivity and the tun- how that this behavior h s near mtum oh ran-
neling density of states. In addition, we have established sev 19 at this behavior happens near a guantum phase tra
ition to a ferromagnetic stat®.The connection between

eral connections between previously formulated theories. W . ; . .
conclude with a discussion of the general aspects of our r _errpmggnetlsm gnd two-dlmensmn(éip) metalliclike be- .
sults and their experimental relevance starting with th avioris not obymus, put the o.bservau'on Of. a fe.rromagneuc
former. phase ind=2 is consistent with our |d_ent|f|cat|on of the
runaway flow behavior with ferromagnetism. The same con-
nection was more recently made by oth&r# is also inter-
esting to note that a nearby ferromagnetic phase in disor-
One important aspect of the present analysis is the estaldered systems is favorable to an exotic type of even-parity,
lishment of connections between various theoretical formutriplet superconductivity® After the experimental observa-
lations of the quantum-ferromagnetic-transition problem.tion of 2D metallic behavior, this was proposed as a possible
First, we related our previous nonlocal order-parameter fiel@xplanatior?* Proposals of superconducting or otherwise ex-

A. General discussion
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otic phases as the explanation for the observations are bol- o
stered by the conclusion that conventional metallic behavior PPt
in a two-dimensional ferromagnetic system is unlikely to TS !
occur?® Even if the observed metallic or pseudometallic \

phase is unrelated to superconductivity, the presence of a
ferromagnetic phase makes the existence of a triplet super- FIG. 9. A one-loop diagram that generates a new three-point

conducting phase nearby more likely. vertex. Parts of the diagrams shown in Fig. 2 also contribute to this
vertex.
B. Experimental consequences aq_» as can be seen, for instance, from E8R) in conjunc-

Most of the results of the present paper can be directifion with Eq.(2.69. Sinceag_,=0(1/k¢l), see Eq/(2.33,
checked by experiments, at least in principle. For instancehis implies that the leading effects will be manifest only for
the pressure tuned ferromagnetic transitions observed at vefgfficiently strong disorder or if we scale the wave number
low temperatures in MnS{Ref. 26 and UGe (Ref. 27 with the correlatlo_n lengtlg, for sufficiently Iarg_eg at flxeq
provide examples of systems where the quantum criticalean-free path Sinceay=0(1), thenonanalytic term will
point is directly accessible. These experiments were done d#ominate foré=1 or usingv=1, fort=<1/kl. Typical values
very clean samples, where the ferromagnetic transition &@f the disorder results in mean-free paths10ke. For such
low temperatures is of the first order in agreement with the2 value, our leading results will apply everywhere in the
oretical prediction§_8 However, upon introducing quenched critical region. For less disordered Samples, their region of
disorder one expects the transition to become of the secoriglidity will be correspondingly narrower.
order?® and the current theory to apply.

The critical behavior predicted for the thermodynamic C. Conclusion
quantities is markedly different from the mean-field expo-
nents predicted by Hertz's theofyFor instance, the pre-
dicted value of the magnetization exponentdis3, 8=2
with logarithmic corrections is very different from both the
mean-field value,,;==0.5 and the 3D classical Heisenberg
value By~0.37. One important remark in this context is that
the logarithmic corrections will, over any realistically
achievable range dfvalues, mimic a power so that the ob-
served value of3 should be expected to be smaller than 2

In conclusion, we now have a complete theory for the
quantum critical behavior of disordered itinerant ferromag-
nets ind>2, including the exact values of the critical expo-
nents, the leading logarithmic corrections to power-law scal-
ing, and the relations between various theoretical approaches
to the problem. Specific predictions for the behavior of all
important observables allow for a direct experimental test of
this theory. However, id=2 there remains a puzzling dis-
- . i ‘crepancy between existing theory and observations. The lat-
Slm!larly, th? correlatlon-lgngth exponentwill be equal to est experimental evidence is for a transition with increasing
1 with logarithmic corrections iml=3. However, these ex- gjactron density from a paramagnetic insulator to a ferromag-
ponents may be hard to measure directly, especially near gutic metaf! while there is no theory that can account for a
quantum phase transition that must be triggered by a nongeajic state, ferromagnetic or otherwise,dr2. In par-
thermal control parameter that is more difficult to accurately 1ar it has,recently been shown that férromagnetic fluc-
vary than the temperature. It is therefore important that th‘?uatior;s ind=2 do not produce a metallic state within a
values of the critical exponents are also reflected in the b Serturbative RG treatmefitruling out a possible mechanism
havior of the tunneling density of states and the electricat, . 5 metal-insulator transition id=2. This state of affairs
conductivity across the transition. Even though these obser\ﬁas recently been reviewed in Ref. 20.
ables do not show any leading critical behavior, the leading
corrections expressed in Eg8.13 and (3.15 reflect the
values ofr andz, and they should be easier to measure than
the critical behavior of, say, the magnetization. For instance, part of this work was performed at the Aspen Center for
our prediction for the tunneling density of stateslin3 is as  physics. We thank the Center for hospitality and E. Abra-
follows. Far from the transition, it will show the well-known hams for he|pfu| discussions. This work was Supported by

square-root anomaly as a function of the bias voltage that ifhe NSF under Grants Nos. DMR-98-70597 and DMR-99-
characteristic of disordered met&fsNear the transition, the 75259

voltage region that shows the square-root behavior will
shrink and outside of it a region of cube-root behavior will
appear, until at criticality the behavior is given by te&3
behavior shown in Eq(3.139. The same discussion applies
to the conductivity as a function of temperature, see Eq. Starting at one-loop order, the RG generates vertices that
(3.159. Again, the logarithmic corrections to scaling will are not in the effective action. An example is the three-point
manifest themselves in a real experiment as an effectivgertex shown in Fig. 9.
power smaller than 1/3. In contrast to the verteg,, all external legs in this dia-

In this context we also come back to the relative values ofram carry the same replica index. To see the physical mean-
the coefficientsa, anday_, in Eq. (2.39. The leading criti-  ing of this term, we integrate out tHefield to arrive at an
cal behavior is due to thik|9"? term whose coefficient is effective four-pointq vertex that is completely diagonal in
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Using Eqgs.(2.7) and(2.8), this yields
(a):[ [ ® 9= Y

ANCep+ €)= T GNK, = S TS [Py (D)2
FIG. 10. One-loop diagrams that generé a two-body and F 4 Pty & Tt

(b) a four-body interaction.
><-A/ln*m(p)|iwn~>e+i0' (BZ)
replica space. This corresponds to a four-body interaction

term that in imaginary time space must have the form In Sec. Il we have seen that the self-consistent one-loop
theory for the propagator® and M is exact. Using the

B 4 resulting dressed propagators in EB2) and doing the in-
fo dr{ng7)]% (Ala)  tegrals, one obtains EqE3.13.

Similarly, if we use the perturbative result for the conduc-
whereng(7) is an electron spin density in imaginary time tivity given by Egs.(3.6) of | and the exact propagators
representation. Performing a Fourier transform and makinglerived in Sec. Il of the present paper, then Egsl5 for o
use of the isomorphism between density operatorsgamad-  are obtained.

trices that has been explained indee also Ref. 15 this These two results buttress the scaling arguments given in
corresponds in schematic notation to Sec. lll. Note that these perturbative calculations are equiva-
lent to taking the standard Altshuler-Aronov perturbative
T3f de [Qee(x)]%. (Alb) resultsz,? and using propagators_t_hat are appropriate near the
o magnetic quantum phase transition.

) o The classical limit of Eq(B2) for the density of states or
Here Q(x) is the matrix field from | Eq(2.8) and we have he equivalent result for the conductivity can be related to
suppressed frequency labels and frequency sums for clarity,e established result for the critical behavior of the conduc-
A _Hubbard—Stratonowcf; transformation to reintroduce thetivity at a Heisenberg critical poirif To see this, note that at
b-field then leads to #q” vertex of the structure finite temperatures the diffusion propaga®rin Eq. (B2)

has a mass due to inelastic-scattering processes. For the lead-
EZT3/2f dxz be(x)q**(x)q**(x), (A2) ing critical behavior,D can therefore be replaced by a con-
@ stant. Also, in the classical limit the frequency sum in Eq.

(B2) turns into an integral over all frequencies since in this

where C2 is a coupling constant. This vertex thu_s Carmes imit the Boltzmann weight that restricts the frequency sum
higher power of the temperature than the one with COUpIsz absent. The net result is that this contributioAtd or Ao

constgnt:z. By usmg_Eqs{Z.lD 0 ?St'milte the behavior of i proportional to a magnetization-magnetization correlation
the diagram shown in Fig. 9 we find thej diverges ford  function that is local in space and time,

<4 in the long-wavelength and small-frequency lingt,
=C,A%"*, whereA is the infrared-momentum cutoff from AN Ago(M?(x,7)). (B3)
Sec. Il B 2. The scale dimension 6§ is therefore smaller

than that ofc,, The correlation function on the right-hand side of E8g) is

essentially the magnetic energy density and hence scales as
[6,]=<[c,]—(d—2). (A3) tl_*“, t being the c_ii_stance item_perature spacto the_ _clas—
sical phase transition and being the usual specific-heat
This term is therefore irrelevant for the critical behavior.  critical exponent. This gives the result of Ref. 30,
Similarly, the RG generates four-point vertices that are
not in the effective action. For instance, Fig.(d0regener- AN~Ag~t1™e (B4)
ates the two-body interaction that was shown in | to be irrel-
evant and was therefore dropped. Figuré]l@s a four-body
interaction of the same type as discussed above in connection
with Fig. 9. All of these terms, and similar ones not shown in  In this appendix we show how to generalize the self-
Fig. 10, are thus RG irrelevant and can be safely neglectectonsistent equations given in Sec. Il for correlation functions
in the paramagnetic phase to the ferromagnetic phase. In this
APPENDIX B: PERTURBATIVE RESULTS FOR THE way we will derive and validate the scaling argument given
DENSITY OF STATES AND THE CONDUCTIVITY in Sec. lll for the magnetizatiom as a function ot.
To simplify the discussion we first ignore the logarithmic
In this appendix we show that the scaling results obtaine@orrections to scaling. Then, in the paramagnetic phase the
in Sec. Il are consistent with perturbation theory fdrand  diffusion coefficientD is simply a number and the equation
0. for D is given by Eq.(2.143 with D(w) replaced by that
From Eq.(3.1) we find the one-loop result fakN as number. The propagators in the ordered phase have been
N derived in Ref. 25. Assuming that the magnetization is in the
__‘F i @B AN @B ) z direction, we first need to specify whether longitudinal or
AN(epte) 2 % % 2 {rUamO)rGam(X) i, - e+io- transverse spin-density correlations will be considered. In the
(B1) ferromagnetic phase, the transverse spin-density fluctuations

APPENDIX C: EQUATION OF STATE
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become propagating Goldstone modes or spin-wave excitdween the scale dimensions of the leading correction to the
tions while the longitudinal ones remain diffusive. For the single-particle density of states and the relevant variable
longitudinal spin-density mode, the left-hand side of Eq.For clarity, let us neglect the more complicated logarithms
(2.143 therefore still describes a diffusion coefficient. It is that are embodied in the functiay{in b) for the time being.
easily shown that in this case the diffusion poles on the rightThe one-loop flow equations for these two quantities then are
hand side of this equation are cut off by the magnetization.

The frequency corresponding to this cutoff is a “cyclotron” dAN

frequency that scales like,~|m|. The explicit generaliza- dinp ~ (d=2)AN+consit, (D13
tion of these propagators to the ferromagnetic phase is given

by Egs.(3.10 of Ref. 25. Using these results, the generali- dt

zation of Eq.(2.14a to the ferromagnetic phase is, at zero dinb =(d=2)t. (D1b)

external frequency and wave number
The general solution of the homogeneous equationféris

iG o
N _

Ds=D%+ 3y 2 J, do e ramz Y (AN)pon b) = (AN) (b=1)b?"2, (D2)
wherec is a constant. Carrying out the integrals yields for This has the samie dependence as the inhomogeneity).
2<d<4 Consequently, the solution of the inhomogeneous equation is

D= —cy|t| +c,m@=272 (C2 (AN)(b)=[(AN)(b=1)+consXt(b=1)Inb]bd 2.
D3
Here|t|=—t>0 is the distance from criticality in the ferro- 3
magnetic phase ancy andc, are constants. Equatiqic2) ~ The resulting logarithm has been taken into account in Eq.
implies thatm scales as (3.12h. [Notice that the physical quantity iAN(b=1).]
The same mechanism is at work for the conductivity and this
m~|t]|2/d=2), (C3) s reflected in Eq(3.14D.

Wegner's second mechanism is due to marginal operators
and it can lead to arbitrary functions of logarithms. In our
casec, acts as an effectively marginal operator as has been
explained in | and this leads to the log-log-normal factors we
denote byg(Inb).

Equation(C3) is consistent with the scaling result for the
critical exponentgB, Eq. (3.113, apart from logarithmic
terms.

The logarithmic corrections to the exponghtan be un-
derstood as follows. As noted in Sec. 1l B 1, the correlation-
length exponent has leading logarithmic corrections, while
the critical exponenty does nof Within the integral- APPENDIX E: RELAXATION RATES IN A FERMI
equation approach and in the paramagnetic phase, this mani- LIQUID
fests itself in the following structure of the renormalized

paramagnon propagatfsee Eqs(3.5 and (2.17D]: Here we illustrate how to obtain Schmid’s restifor the

relaxation rates in a disordered Fermi-liquid from the scaling

1 theory developed in Sec. Ill.

- _ At a disordered Fermi liquid fixed point, the dynamical
t+ k|9 2/ gl In(ke/|k|) ]+ | Q| /K? exponent isz=2 reflecting the diffusive dynamics of the

(C9 quasiparticles, and the leading irrelevant variable, which we

denote byu, has a scale dimensiqu]=—(d—2).!® Since

T,jhl~ 7-5& both are dimensionally frequencies or energies

dhey scale the same way and we have for either rate a homo-

M(K,iQy)

That is, the term proportional 1|92 carries leading loga-
rithmic corrections, while the terindoes not. In Eq(C4) we
have left out all constants for clarity. If one scales the wav ;
vector with the correlation length then this structure pro-9€neity law

duces the logarithmic corrections to the exponentn the 1 L2 22 L (d-2
ferromagnetic phase, thk|9~2 nonanalyticity is cut off by a (& T)=b 21 (eb? Th?,ub™(472). (ED)
magnetic length or cyclotron radiuf,> 1/m*2. This means The dependence anarises from the electron-electron inter-
that the|k|*~? gets replaced byn(®~2)% see Eq(C2). The  action terms that lead to~ *+#0 in the first place and there-
net result is that agaihhas no leading logarithmic correc- fore the scaling function has the property-1(1,0x)x.
tion, while m®~2"2 does have one. Scaling with the ap-  The explicit dependence ancan therefore be eliminated by

propriate power of then yields Eq(3.113 for . writing, instead of Eq(E1),
APPENDIX D: LOGARITHMIC CORRECTIONS 7 e, T)=b 9 (eb? Th?). (E23
TO SCALING

. L o In particular, we havé&
Wegnei31 has given a classification of logarithmic correc-

tions to scaling. The first class consists of simple logarithms 7 Y,0)=T (1,0 €92 (E2b)
that arise due to resonance conditions between scale dimen- T
sions. In the present context, such a resonance occurs behich we used to derive E¢3.20.

174428-13



BELITZ, KIRKPATRICK, MERCALDO, AND SESSIONS

PHYSICAL REVIEW B33 174428

1D. Belitz, T. R. Kirkpatrick, Maria Teresa Mercaldo, and Sharon 15D, Belitz and T. R. Kirkpatrick, Phys. Rev. B8, 6513(1997).

L. Sessions, preceding paper, Phys. Reva33174427(200)).
2J. A. Hertz, Phys. Rev. B4, 1165(1976, and references therein.
SA. B. Harris, J. Phys. @, 1671(1974; J. Chayes, L. Chayes, D.

S. Fisher, and T. Spencer, Phys. Rev. LB#.2999(1986.
“T.R. Kirkpatrick and D. Belitz, Phys. Rev. B3, 14 364(1996.
5In clean systems the additional soft modes are ballistic in nature

and have a similar effect, see Ref. 6. Although much of our

discussion will in general terms apply to clean systems as well,
in this paper we will focus on disordered ones.
6T, Vojta, D. Belitz, R. Narayanan, and T. R. Kirkpatrick, Z. Phys.

B: Condens. Mattefl03 451 (1997).

"For a review, see D. Belitz and T. R. Kirkpatrick, Rev. Mod.

Phys.66, 261 (1994.
8D. Belitz and T. R. Kirkpatrick, Phys. Rev. 84, 955(1991); T.

R. Kirkpatrick and D. Belitzjbid. 45, 3187(1992.
9The values = 1,2 correspond to the so-called particle-particle or

Cooper degrees of freedom, see Ref. 7. These are not relevant

for the discussion of ferromagnetism and therefore have been
omitted from the action.

18The history of this subject is intricate and has led to substantial

confusion in the literature. A. M. Finkel'stein, ZhkEp. Teor.

Fiz. 84, 168(1983 [Sov. Phys. JETB7, 97(1983]; Z. Phys. B:
Condens. Matte§6, 189 (1984 first noticed that low-order per-
turbation theory within a nonlinear sigma model description of
disordered interacting electron systems leads, in the absence of
any spin-flip processes, to runaway flow; the spin-triplet inter-
action amplitude flows to infinity at a finite scale. He proposed
the formation of local moments as a physical interpretation, A.
M. Finkel'stein, Pis’'ma Zh. Esp. Teor. Fiz.40, 63 (1984
[JETP Lett.40, 796 (1984)]. Attempts to interpret the runaway
flow as signaling an unorthodox metal-insulator transition were
made by C. Castellani, G. Kotliar, and P. A. Lee, Phys. Rev.
Lett. 59, 323(1987; T. R. Kirkpatrick and D. Belitz, Phys. Rev.

B 40, 5227 (1989; but these attempts were later shown to be
futle by T. R. Kirkpatrick and D. Belitz,ibid. 41, 11 082
(199)). Reference 8 showed that a resummation of the loop
expansion to all orders cures the runaway flow problem ruling
out the local-moment interpretation and leads to a phase transi-

10C. castellani and C. DiCastro, Phys. Rev38& 5935(1986.
\We use the notation&~b” for “ a scales likeb” “ a~b,"” for
“a approximately equal®,” and “axb” for “ a is propor- '’See Eq(4.34 and the accompanying discussion in Ref. 7.
tional tob.” 183, Zinn-Justin,Quantum Field Theory and Critical Phenomena
12More precisely, what is known is that the nonlinear sigma model (Clarendon Press, Oxford, 1996
for the fermionic degrees of freedom, of which the terms of1°See E. Brein and S. Hikami, cond-mat/9612016npublisheg,
orderg? andg* in Eq. (2.1) are the first two terms in an expan- and references therein.
sion in powers ofy, is renormalizable with two renormalization 2°E. Abrahams, S. V. Kravchenko, and M. P. Sarachik,
constantqfor G and forH, respectively in the absencef the cond-mat/000605%unpublishegl
coupling to the magnetization fiel, see, e.g., J. Zinn-Justin, 2'S. A. Vitkalov, Hairong Zheng, K. M. Mertes, M. P. Sarachik,
Quantum Field Theory and Critical Phenomeri€larendon and T. M. Klapwijk, cond-mat/000945dinpublishedl
Press, Oxford, 1989 The coupling toM amounts to a spin- 22¢. chamon and E. R. Mucciolo, Phys. Rev. L&8, 5607(2000.
triplet interaction between the fermions whose interaction am?®T. R. Kirkpatrick and D. Belitz, Phys. Rev. Le@i6, 1533(1991);
plitude is given by the static paramagnon propagator as can be D. Belitz and T. R. Kirkpatrick, Phys. Rev. B6, 8393(1992);
seen by integrating oll. A standard hypothesis in the theory of 60, 3485(1999.
interacting disordered electrons is that such a generalized signf4D. Belitz and T. R. Kirkpatrick, Phys. Rev. B8, 8214(1998.
model of interacting fermions is renormalizable as well, albeit®T. R. Kirkpatrick and D. Belitz, Phys. Rev. B2, 952 (2000.
with three more renormalization constant&., a wave function 26C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich,
renormalization and one renormalization constant each for the Phys. Rev. B55, 8330(1997.
spin-triplet interaction amplitude and the spin-singlet interaction?’S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W.

tion that is not, however, a metal-insulator transition. The nature
of this transition was correctly recognized in Ref. 4.

amplitude that is generated under renormalizatieee Ref. 7.

There is evidence for this to be true although it has never been
proven. If it is true, then the quantiti€s andH in the second
and third terms on the right-hand side of E2.1) renormalize in
the same way. Note that the assumption oftallenormalizing

Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian,
P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braith-
waite, and J. Flouquet, Natufeondon 406, 587 (2000.

28D, Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. Le&2,

4707(1999.

the same way is weaker than that of the interacting sigma model®B. L. Altshuler and A. G. Aronov, irElectron-Electron interac-
being renormalizable; the latter assumption is sufficient for the tions in Disordered Systemsdited by A. L. Efros and M. Pol-
former to be true, but not necessary. lak (North-Holland, Amsterdam, 1985
18p. Belitz, T. R. Kirkpatrick, R. Narayanan, and Thomas Vojta, *°M. E. Fisher and J. S. Langer, Phys. Rev. L2, 665 (1968.
Phys. Rev. Lett85, 4602(2000. S1F. J. Wegner, ifPhase Transitions and Critical Phenomereal-
¥H. Fukuyama and E. Abrahams, Phys. Re®2B5976(1983; C. ited by C. Domb and M. S. GredAcademic, New York, 1976
Castellani, C. DiCastro, G. Kotliar, and P. A. Lee, Phys. Rev. Vol. 6.
Lett. 56, 1179(1986. 32A. Schmid, Z. Phys271, 251 (1974.

174428-14



