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An effective field theory is derived that describes the quantum critical behavior of itinerant ferromagnets in
the presence of quenched disorder. In contrast to previous approaches, all soft modes are kept explicitly. The
resulting effective theory is local and allows for an explicit perturbative treatment. It is shown that previous
suggestions for the critical fixed point and the critical behavior are recovered under certain assumptions. The
validity of these assumptions is discussed in the light of the existence of two different time scales. It is shown
that, in contrast to previous suggestions, the correct fixed-point action is not Gaussian, and that the previously
proposed critical behavior was correct only up to logarithmic corrections. The connection with other theories
of disordered interacting electrons and, in particular, with the resolution of the runaway flow problem encoun-
tered in these theories, is also discussed.
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I. INTRODUCTION modes other than the order-parameter fluctuations exist.
These modes are diffusivin disordered systemsr ballistic
The theory of quantum phase transitions, i.e., phase trarfin clean onepparticle-hole excitations. Since they couple to
sitions at zero temperaturd € 0), is an important problem the order-parameter fluctuations, they influence the critical
that is relevant to many topics in condensed-matter physicsPehavior. Specifically, they lead to an effective long-range
Perhaps the most obvious example is the 0 transiton Interaction between the order-parameter fluctuations. As a

from a paramagnet to an itinerant ferromagnet as it occurs if€SUlt, Refs. 4 and 5 found that the critical behavior is gov-
e.g., diluted Ni or in solid solutions like MnSi. Historically, €Med by & Gaussian fixed point that, however, does not yield
this was the first quantum phase transition that was studied i ggg'rgcgeen)ziosn\?vgf'cg ?rﬁe((:alntt:)cablebeexg?:\':lor determined in
detail. HertZ showed how to treat this transition by means of y

o A separate, and seemingly unconnected, development in
renormah.z.atlo_n groumRG)_metths anq he goncluded that the many-electron problem has been the study of metal-
the transition in the physically interesting dimensids 3

insulator transitions of disordered interacting electtoRer

was mean-field-like. This conclusion hinged on the observag,a of the universality classes that occur in this problem, a

tion that in quantum statistical mechanics the effective diyansition was found that isot a metal-insulator transition,
mension of a system for scaling purposesd iz, with dthe  pyt rather of magnetic natufeWhile the order parameter,
spatial dimensionality andthe dynamical critical exponent. and the nature of the ordered phase, could not be identified
Since in a simple theory at tree level one lras3 for clean  jth the methods employed, the critical behavior for all
itinerant quantum ferromagnets arm=4 for disordered quantities other than the order parameter was deternfined.
ones’ this seemed to imply that the upper critical dimensionapart from differences in logarithmic corrections to power
d; , above which one finds mean-field critical behavior, isjaws, this critical behavior turned out to be identical with the
d¢ =1 andd; =0 in the clean and disordered cases, respecGaussian critical behavior for the disordered ferromagnetic

tively. transition. This led, in Ref. 4, to the suggestion that the uni-
This conclusion was later challeng&d. Reference 3 dentified transition studied in Ref. 8 was the ferromagnetic
noted that Hertz's results for clean systemdinl—e di-  transition. The discrepancy with respect to the logarithmic

mensions were inconsistent with general scaling argumentserms was explained as due to the fact that, of the two inte-

This left open the possibility of mean-field behavior in physi-gral equations in Ref. 8 only one had been shown to be

cal dimensions. However, in Refs. 4 and 5 it was shown thagxact. The proposal thus was that the two approaches de-
the critical behavior ind>1 (clean caseandd>0 (disor- scribe the same transition, and that the critical behavior

dered casg respectively, is not mean-field-like after all. The found in Ref. 4 was exact while the one in Ref. 8 represented

salient point is that in itinerant electron system3 at0, soft an approximation.
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The theory developed in Refs. 4 and 5 suffers from onecitations. We identify an effective action that contains a
major drawback: Since the additional soft modes were intestable critical fixed point. This action is not Gaussian and its
grated out in order to obtain a description entirely in terms ofsolution is therefore nontrivial and deferred to Il. In Sec. IV
the order parameter, the effective field theory that was dewe discuss our results, in particular, the relation of the
rived is nonlocal and not very suitable for perturbatively Presentapproach to previous ones and the complications that
calculating effects that depend on all of the soft modes in théhe presence of two time scales leads to in scaling consider-
system. The analysis in Refs. 4 and 5 therefore was restrictedf'Ons.
to power-counting arguments at tree level to show that all
non-Gaussian terms are irrelevant in a RG sense. While this Il. EFFECTIVE FIELD THEORY
turned out to be true, relying entirely on tree-level power . . . . . )
counting can be dangerous. Indeed, even a one-loop analysis !N this section we start with a simple model for interacting
of Hertz’s action would have revealed that the mean_ﬁe|0electrons in _ad|sordered enwronment._ We Fhen introduce the
fixed point is unstable, and the absence of such a calculatioff'fomagnetic order parameter and identify all other soft
led to the instability that was not to be noticed for 20 yedrs. Modes. Integrating out the massive modes leads to an effec-

Furthermore, integrating out the fermionic degrees of freelive field theory that describes all of the soft modes in the
dom obscures the fact that the problem contains two tim&YStém. The general method employed here is the one that
scales, a diffusive one and a critical one, which in itselfW@s developed in Ref. 13.

makes power counting very subtle. This, combined with the

suggestive relation between the ferromagnetic transition and A. Model of itinerant electrons

the unidentified transition discussed above, and the puzzling
logarithmic discrepancies between the critical behaviors: - ; ) ;

found for the two transitions, makes it desirable to have %%?Cr? fcg;ebge:/:/trlit;fenn ]i(ﬁntﬁtéofr:)rc?')f{ a many-fermion system,
theoretical description of the quantum ferromagnetic transi-

tion that takes the form of a local field theory that facilitates

a controlled loop expansion and keeps the two time scales Z:J D[ ¢, wlexp S &, ). (2.19
explicitly. Another motivation for constructing a local field

theory is that it will allow for a more explicit study of the Here the functional integration measure is defined with re-
effects of rare regiort$ than was possible within the frame- 9

work of Refs. 4 and 5, although we will not pursue this issueSPeCt to Grassmannian or anticommuting figldand ¢ and
in the present paper. Sis the action,

Itis the purposljtla2 of the present paper, and a second one to
be referred to as H¢ to put these remaining questions to rest. B — d B
We will focus on the disordered case, although we expect S~ fo de AXipa(X,7) - (X, 7) — fo d7rH(7).
analogous conclusions to hold for clean systems. By using a (2.1b
local-field-theory description, we will show that Ref. 4
missed effects of the two time scales that lead to logarithmitVe denote the spatial position kyand the imaginary time
corrections to the Gaussian critical behavior. Moreover, takby 7. H(7) is the Hamiltonian in imaginary time representa-
ing these effects into account leads to integral equations faion, 8= 1/T is the inverse temperatura=1,2 denotes spin
the relevant vertex functions that are identical to the onesabels, and a summation over repeated spin indices is im-
derived in Ref. 8. The current formulation makes it obviousplied. We choose units such thei=#%=e?=1. The Hamil-
that the transition described by these equations is the quamenian describes a fluid of interacting electrons moving in a
tum ferromagnetic one, and it allows to determine the expostatic random potential (x),
nents in the ferromagnetic phase as well as those in the para-
magnetic one. It, furthermore, shows that the integral 1 _
equations that were first derived in Ref. 8 are exact and it H(r)=f dx[ﬁVwa(x, 7)-Vifa(X,7)
elucidates many physical points that were rather obscure in
Ref. 4, and to an even larger extent in Ref. 8. _

This paper is organized as follows. In Sec. Il we use o (X) = m]pa(X, 7) a(X, 7)
methods developed in Ref. 13 to derive an effective theory

Our starting point is a general field-theoretic representa-

for disordered itinerant quantum ferromagnets that system- 1 _ _

atically separates massive modes from soft ones and explic- + Ef Axdyu(X—y) ¢a(X,7) (Y, 7)

itly keeps all of the latter. In Sec. lll we give a RG analysis

of this model. We first show how Hertz’s fixed point as well X (Y, T) Wa(X, 7). (2.29

as the Gaussian fixed point of Ref. 4 emerge within this

framework. We then show that Hertz's fixed point is un- Heremis the electron masg, is the chemical potential, and
stable, and the Gaussian one is marginally unstable due w(x—y) is the electron-electron interaction potential. For
the existence of two separate time scales, viz., a critical timsimplicity, we assume that the random potenti@t) is delta
scale associated with the order-parameter fluctuations, andcarrelated and obeys a Gaussian distribut®im (x)] with
diffusive one associated with the additional particle-hole exsecond moment
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1 andTg the spin-singlet interaction amplitude.
{fv(Xv(V}dis= 55— 9(X=Y), (2.2b Before we proceed, we integrate out the quenched disor-
2’7TN|:’Te| . . . .
der by means of the replica trick.Performing the disorder
where average as prescribed in E@.2¢ replaces the last contri-
bution to the actiorgy, Eq. (2.58, by
{- '}dis:f Dlv]P[v](---) (2.29 1 N 5 N
. . . Sism o — > f deT’J’ dxy (X, 7)
denotes the disorder averadé; is the bare density of states 4mNETel oy fap=1 Jo
per spin at the Fermi level, ang, is the bare electron elastic N — o )
mean-free time. Our results will not be sensitive to the sim- X MK D) P 2K ) P 2(X, 1), (2.6

plifications inherent in the assumptions that lead to Eq. h d lica indi N_0 is th i
(2.2b. We also mention that it would be possible to include V€€ @1 anda; are repiica indices, anli—» IS the num
more realistic features, e.g., band structure in the modeF.’er of r.ep"cas- .Of course, all other terms in the action also
However, ultimately we will be interested in universal be- dre replicatedN imes.
havior at a phase transition that is independent of all micro- _ _
scopic details. For our purposes it therefore is sufficient to B. Composite variables
study the model defined in Eq2.2)."° We now proceed by rewriting our model in terms of vari-
As in Ref. 4, and as is standard practice in the theory okbles that are more suitable for our purposes than the basic
magnetism, we break the interaction part of the act®n fermionic field. First of all, we decouple the spin-triplet in-
which we denote by5,, into spin-singlet and spin-triplet teraction by means of a Hubbard-Stratonovich transforma-
contributionsS™>" . For simplicity, we assume that the inter- tion. All other terms we rewrite in terms of bosonic matrix
actions are short ranged in both of these chantieEhe fieldsQ andA. The latter procedure exactly follows Ref. 13
spin-triplet interactionS{) describes interactions between and we refer the reader to this reference for details. Here we
spin-density fluctuations. This is the interaction that causefyst mention thaf\ serves as a Lagrangian multiplier whose
ferromagnetism and it therefore needs to be considered Sepﬁhysicaj interpretation is Se|f-energy' Wh@|s isomorphic

rately. We thus write to bilinear products of fermion fields. We perform a Fourier
transform from imaginary time- to Matsubara frequencies
_ ()
S=So+ St » 23 —24T(n+1/2),
with p
Ft '#n,a(x) = ﬁfo dTeiwnT‘ﬂa(Xu T),
Sh=% f dxdrng(x,7) - ng(x,7), (2.43
_ B —
whereng is the electron spin-density vector with components Un a(X)= \/?f dre ™ "“nTy (X, 7). (2.79
0
nis(X, 7) :Ea(X, 7) Uiabl//b(X, 7). (2.4b For later reference, we also define a spatial Fourier transform

Hereo; (i=1,2,3) are the Pauli matrices ahd is the spin- 1
triplet interaction amplitude that is related to the interaction K) = _f dxe ik X
potentialu in Eq. (2.2 via Ynalk) W Ynal),

1 o 1 o
g o, (249 Inalk)=— [ e G0, @

Sy in EqQ. (2.3) contains all other contributions to the action.
It explicitly reads

So=— foﬁdrf dx

and analogously for other position-dependent quantities. The
isomorphism then takes the fottn

_ 9 _ _ _
Ya(X,7) ——ha(X,7) — tha(X, 7) — Y — Yt e Yy
i| - ‘r/fllEZI - dfll% =1 o o

V2 I's(s Q== _ _ —
X ﬁ—’_'““ YalX,7) | = 7Jo dTJ dxne(X, 7)Nc(X,7) 2 Yoy o Yo — o
8 o o Yo Y Y1
_J de dXU(X) '//a(XaT)‘;ba(Xa T)v (253 (28)
0
Here all fields are understood to be taken at positpand
wheren, is the electron charge or number density, 1=(n.,a,), etc., comprises both frequency and replica la-
o bels. It is convenient to expand the<4l matrix in Eq.(2.8)
N(X, 7) = ha(X, ) ha(X, 7), (2.5b in a spin-quaternion basis,
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3 _ its saddle-point value, one obtains the inverse saddle-point

QAX)= 2 (1 ®5));Q1a(X) (2.9 Green functionGg, as the argument of the logarithth For
ri=0 our purposes it suffices to treat the disorder contribution to
the self-energy in the Born approximation, and to neglect the

and analogously folA. Here ro=s,=1, is the 2x2 unit 4 ) A
gously 0 2. 2 (Hartree-Fock interaction contributionGg, then reads

matrix andr; = —s;= —ioj (j=1,2,3), witho, , 3 the Pauli
matrices. In this basis,=0 andi=1,2,3 describe the spin- K2 _ 1
singlet and the spin-triplet, respectively. An explicit calcula- G K, )~ iy~ EJFM_F %sgnwn

el

tion reveals thatr=0,3 corresponds to the particle-hole
channel (i.e., products ), while r=12 describes the
particle-particle channei.e., productsy: or ). For our  Notice that Egs.(2.10 can also be obtained from Egs.
purposes the latter will not be of importance and we there(2.22—(2.25 in Ref. 13 by subjecting the spin-triplet inter-
fore dropr=1,2 from the spin-quaternion basis. action term to a Gaussian transformation and by using the

Denoting the Hubbard-Stratonovich field b§, we now  symmetry properties of th® matrices. However, the above
can exactly rewrite the partition function as an integral overderivation makes it clear that the order-parameter fi¢lis

(2.100

the three field®Q, A, andM, introduced in a standard way, and the only difference to a
standard treatment is that the fermionic parts of the action
Z:f D[Q A M]eA[Q,R,M] (2.103 have been rewritten in terms QfandK.
with an action C. Separation of soft and massive modes
~ The reason for our rewriting of the fermionic part of the
= A. (s) L . L ; .
ALQAM]=Agd QT+ At [ Q] action in terms of bosonic-matrix fields in the previous sub-
1 _ _ section was that this formulation is particularly well suited
+ ETHH(Gal—iA)"-TI’(AQ) for a separation of soft and massive modes. For the purpose

of analyzing a Fermi liquid, this separation was carried out in

s ' Ref. 13, and we briefly recall the most important points of
—f dxY, > > MA(X)'M? (x) that proceduré® One first uses group-theory arguments to
a noi=1 show that the most gener@ can be written in the form
3
+\2TT | dxX > > 'M2(x) Q=8PS™ . (2.11
n i=1
HereP is block diagonal in the Matsubara frequency space,
X 2 (V=12 tl(7©8) Qi n(0)]. .
r=03 m P 0
(2.10b P=l 0P| (212

Here Tr denotes a trace over all degrees of freedom, includ- _ _ . .
ing the continuous real space position, while tr is a trace ovewhere P~ and P~ are matrices with element8,,, where
all discrete degrees of freedom that are not summed ovér,m>0 andn,m<0, respectively. For a system witrep-

explicitly. The first two terms in Eq(2.10b explicitly read  licas and n Matsubara frequencies, the matrices are
elements of the homogeneous space USh(&)/

USP(4Nn,C) X USp(4Nn,C).*° As such they can be ex-

— 2

Aaid Q1= 27TNFTe|J dxtQ(x)]%, (2100 pressed in terms of matriceswhose elements, ., are re-
stricted to frequency labels=0, m<O0,

(s) e
_ _ r
Aint_ 2 f dxrg(;s( 1) ll—bbT b
S= —pb' m , (2.13a
x 2 2 [t{(r®50)Qn’ m(X)}]
ny,Np, M a
where
X[tr{(7r®SO)Qﬁ;+m,n2(X)}]- (2.100
-1
They are simply the last two terms in E@.5a, rewritten in b(q,.q")= 7qf(qTQ), (2.13b
terms of Q. Finally,
Gyl=—d.+V22m+p (2109 VN

is the inverse Green operator. For later reference we also B \F — 12
note that ifA in the Trln term in Eq(2.10b is replaced by o= §(1 1=07 (2139
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v1l—qq q
q' —J1-q7q]" (2.17b

in terms ofq, and(} is a frequency matrix with elements

Ward identities ensure that tfieare massive while thg are

massless. The latter are the diffusive modes or ‘diffusons’ o=
that we mentioned in the Introduction. Similarly, ¥ is

transformed according to

AX) =8 LX) A(X)S(X), (2.14

A can be shown to be massive. This representation thus

achieves the desired separation of modes. In Ref. 13jthe The coupling constant§ andH are proportional to the in-
were the only soft modes. In the present case, the ordekerse conductivityGe 1/o, and the specific heat coefficient,
parameter fieldVl is massive in the paramagnetic phase butH = y=lim;_, Cy /T, respectively’.'*??

becomes soft at criticality, so it must be handled together 6.4 contains the corrections to the nonlinear sigma model

912: (’To® So) 512wn1. (217@

with the diffusons. that were given in Ref. 13. We list explicitly the terms that
The next step is to expand the massive modes about thedre bilinear in the massive fluctuationd® andAA, but do
expectation values, not contain couplings between the massive modesgand
P=(P)+AP, A=(A)+AA. (2.15

5A<2>=AdiS[AP]+f dx tr AA(X)AP(X)]
As explained in Ref. 13, the expectation val§€y and(A)

can be replaced by simple saddle-point approximations. The 1
saddle point used in this reference is also a saddle point of + ZJ' dxdy trf G(X—Y)AA(Y)G(Y—X)AA(X)].
our current action, Eq2.100, if it is supplemented by the

saddle-point value oM, (M)=0. If P andA are integrated (2.18
out in the saddle-point approximation, i.e., if one neglects all

fluctuations of these fields, then one obtains for the fermionic D. Effective field theory for the soft modes
degrees of freedom the nonlinear sigma model ¢N1) that
was first proposed by Wegrf@ras an effective field theory
for the disordered-electron problem, and later studied exte
sively by him and other$?! Following the same procedure

So far we have exactly rewritten the microscopic action in
a form that separates the soft modes from the massive ones.
n this subsection we approximately integrate out the mas-
here we get the NizM, but without the spin-triplet interac- sive modes to arrive at an effective action that is capable of

tion term, from the first four terms on the right-hand side 0fdescrlblng the critical behavior at the ferromagnetic transi-

Eq. (2.108, and a coupling between the order-parameterﬂon' We will also add some terms to the bare action that we

field and both the soft and the massive fermionic modes frorﬁ"iII find later to_ be g_enerated by the renor_malizafcion_group.
the last one. We will also need the corrections to thesNL In Sec. Il we will derive these terms and will also justify our
and thus reWrite the action in the form approximations and show that they do not influence the

asymptatic critical behavior.
A[q,M,AP,AA]

=AnLoml ]+ 6A[AP,AA,q]

1. Integrating out the massive modes

We now need to dispose of the massive modes. Clearly,
3 we cannot just ignore the massive fluctuations. It is obvious
—J dxY, > > IME(X)'ME(X) from Egs.(2.16 and(2.17 that they are needed to bring the
o noi=1 purely M-dependent part of the action in a standard Landau-
3 Ginzburg-Wilson(LGW) form. Let us first integrate out P
+VrTK, | dx> > "M 2(x) andAA in a Gaussian approximation, while neglecting the
n =1 coupling betweerg and these massive fluctuations. We will
consider the effects of this coupling later. From KE2.18
Qe . (X) and the last term in Eq2.16) with S=1 we obtain a con-
’ tribution to the action that is quadratic in the order-parameter
field M. Combining it with theM? term in Eq.(2.16 yields
_ (2.16 @ term proportional to

X ZOSN—_l)fE tr(7,®S;)

2
TN (A PS™ ) i n(X)

3
Here K= wN2I'\/2. Ay ,u IS the action of the nonlinear SIS S iMek)[1+ 2T x(k, Q)M (—k),
sigma model, Pl = R .

(2.193
-1 . .
ANLUM=EJ dxtr[VQ(x)]2+2Hf dxtrf QQ(x)] where
+ AQLTNEQ/2], (2.173 X(KQ)=T > O(nny) 8y —n, nDhn,(K)
nq,Nn
with A% from Eq.(2.109, and o (2.19h
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is a restricted spin susceptibility that is given in terms of

-1

Dym(K)=@nm(K)| 1— m@nm(k) (2.199

v

with

1
enn(K) = 2 Gl Pron) G Pt Kiwom). (2190

HereGg, is the saddle-point Green function from Eg.10f).
The ® function in Eq.(2.19b, which restricts the frequency

sum to frequencies that both have the same sign, resujts in
being the nonhydrodynamic part of the spin susceptibility of

PHYSICAL REVIEW B33 174427

---ouv ---

FIG. 1. M-AP andM-AP-g? vertices. Broken lines denotd,
solid lines denotey, and wiggly lines denotaP.

limit of zero wave numbers and frequencies. For our pur-
poses it will suffice to keep the term of ordt*. We thus
should add to the action a term

AL = U f dXT 2 2 [MXwp,)-M(X,0p,)]

ni.Ny,.n3 a

noninteracting disordered electrons. For small frequencies

and wavenumbers, it reads

Y(k,Q,)=—Ng+0(k%,Q,). (2.203

For later reference, we also note that fon<0, D, is the

X[M“(X,wna)-M“(X,—wnl—wnz—wnS)], (2.22

whereu, is a number and/ is the three-vector whose com-
ponents are€ M. A detailed derivation shows that there is
also a term of the third order ik, with a coefficient that is

basic diffusion propagator. In the limit of small frequenciesproportional to either a gradient or a time derivative. This

and wavenumbers one finds

D= —2TNE o)
=———— (nm<O0),
T DK+ Qg
=27NGHD,_ (K), (2.201
with
Dp(k) = (2.200

k?+GH|Q,|

Here D=1/GH is a bare diffusion coefficient, and,
=27Tn is a bosonic Matsubara frequency.

Within the approximation, Eq(2.203, the effective ac-
tion has the form

3
Zteﬁ=—; > ; El "M (K)[t+ak?+Db[Q|TM _(—k)
3
+ Al Q17T [ xS 3 g

xrgg(ﬁ)r% (7 @5)Q%% n(0].  (2.2D

Heret=1-2NgI";, a andb are constants, and in the first

term we have truncated the gradient expansion after the lea

term is irrelevant for the critical behavior at the ferromag-
netic transitiof and we neglect it.

Both from simple physical considerations and from Ref. 4
it is obvious that another term @(M#*) must exist. This is
the “random mass” term that reflects spatial fluctuations in
the location of the critical point, and it has the structure

dx > 2 [M(x,0n)[2MA(x,0,)]2,
ny,ny a,B
(2.23
wherev, is a number. To see how this term arises in our
present formulation, we go back to EQ.16). If we expand

the S in the last term in powers df, the two lowest-order
contributioné®?* have the structures

Asf=os|

ﬁf dxM (X)AP(X), (2.243

ﬁf dxM(X)AP(X)q(x)q(X). (2.24b
Here we have dropped frequency labels and all other degrees
of freedom that are irrelevant for power-counting purposes.
Let us depict the fieldM, AP, andq by dashed, wavy, and
solid lines, respectively. Then the two vertices in Egs.
82.246) and(2.24b have the structures shown in Fig. 1.

~ Contracting the wavy lines yields an effective vertex of

ing wavenumber and frequency-dependent terms. Notice that . form
the first term taken in isolation describes a ferromagnetic

transition att=0, which represents the Stoner criterion.

The following structure emerges. Our effective action
takes the form of a LGW action for the order-parameter field

TJ dxM?2(x)g?(x), (2.240

M, a nonlinear sigma model for the soft fermionic modes,which is shown in Fig. 2.
and a coupling between the order parameter and the compos- This vertex can be used to construct the one-loop contri-

ite fermion field Q. In our current approximation, only the

bution to the term oD(M#) that is shown in Fig. 3.

Gaussian part of the LGW action appears. However, keeping Calculating the diagram yields E®.23. We will further

terms of higher order ihA P would clearly produce terms of

discuss this term from a power-counting point of view in

higher order inM, with coefficients that are numbers in the Sec. Il C 2 below.
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3
___m< ’ AC[M,q]z\/TrTKJ dx% ; EliMﬁ(x)

N | , X 2 (V=12 tl(7©8)Qpm-n(0].
FIG. 2. EffectiveM<-q“ vertex obtained by contracting theP r=0,3 m
fluctuations of the two vertices shown in Fig. 1. (2.259

2. Effective action and leading corrections It is useful to define a field

We now can assemble our effective action by collecting A
the various terms derived in the previous subsection. Before blz(X)=2 (7,®5));b1AX), (2.263
doing so, however, it is illustrative and convenient to add a b
term to the LGW part of the action that will be generated byyyith components

the RG in Sec. lll. As we will see, for dimensions<2

<4 the gradient-squared term in the first contributiogités i B 5>

not the leading wavenumber dependence. Rather, as one 1D12(K) =64 ) (—) 2 Onn,-n,

would expect from Ref. 4, there is a term proportional to

|k|972, which first appears at the one-loop order. We there- X[Mt(k)+(=)""HM ™ (k)]. (2.26b

fore add this term right away. Notice that the resulting action

is still local in the sense of Ref. 9. It will also turn out that In terms ofb, the coupling part of the action can be written
the term in the LGW action that is linear in frequency is notas

the leading frequency dependence. Rather, the coupling be-

tweenM and Q effectively produces a term proportional to
|Q,|/k?.2 Physically, this term reflects the fact that spin is a
conserved variable, i.e., the characteristic frequency scale
vanishes in the long-wavelength limit even away from theWe stress that we have added tk§'~? term in Eq.(2.25b
critical point. We can therefore drop the frequency depenfor convenience only. One could equally well work with the

1 ~
Ac[b,q]=—§\/7-rTKtJ’ dxtr[b(x)Q(x)]. (2.27

dence from the first term in E¢2.21). theory given by our action witlay_,=0, but some effects
Taking all of these points into account, we obtain thethat are included in the batd.x would then appear only at
following effective action: the loop level. We also stress that the coefficients of all non-

Gaussian terms il are finite in the limit of zero wave-
numbers and frequencies, so the theory is local in the sense
Aett=ALowIM ]+ AnLomlal+ AIM,q].  (2.253 of Ref. 9 in contrast to the situation in Ref. 4. More impor-
tantly, the physically relevant point is that the current formu-
lation, as opposed to the one in Ref. 4, makes obvious the
Here A qw is the modified LGW part of the action, existence of two time scales as we will see in Sec. Il below.
In order to justify the omission of the terms left out of our
effective action, we also need to know the structure of the

s omitted terms. We therefore list these here using notation

AguMI==2 X > X Ma(k)[t+ago|k|2 that leaves out anything that is not needed for power-
koooonisl counting purposes.

+ak? M (—k)+ ALDI M+ AGA M1, First of all we have the corrections to the nonlinear sigma

model. In addition to Eq(2.18), they consist of those terms
(2.25B  in the Trin term in Eq.(2.10B that contain cubic or higher
orders of AA, the part of Al that contains the massive

(4.0 and 442 are fluctuationAP, and corrections to the saddle-point approxi-

whereaq_, anda, are constants, andj gy, LewW . . .
. . mation for(P) in Eq. (2.15. These have all been discussed
from Egs. (2.22 and (2.23, respectively. The nonlinear in Ref. 13 and the same discussion applies here.

sigma model part of the actioMdy, ,m, has been given in
. Second, there are the terms that cougdleA P, andq, see
Eq. (2.173, and A, represents the coupling betwebhand the second term in the bracket in the last line of Ex16).

G In general, they have the structure

. ‘ dnﬁf dxM () AP(X)q"(X), (2.29
with coupling constantd,, andn=0,2,3 . .. 2* The first two
FIG. 3. One-loop renormalization of thé* vertex by means of terms in this expansion have already been given in Egs.

the vertex in Fig. 2. (2.24).
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3. Observables

For a physical interpretation of any results obtained from Al M,q]= _; ~ % .21 MR (K)uz(K)' M (k)
our effective action we need to identify the appropriate ob-

servables in terms of the coupling constants of the theory. It 4 i e (2) i
is obvious and easily confirmed by keeping a source term for e ; 12234 Z rA12(K)'T'35/34K) 34 — k)
the electron spin-density that the expectation value of the R
order-parameter fieldM determines the magnetizatiom. : i
Specifically +TTK Y 2 2 1a1aK) byl — k),
’ k 12 i,r
(FTIT (3.13
m= 2TIT {'MZ_o(X)). 2.29
MB t< n=ol )> ( a where
The two-pointM vertex is therefore proportional to the mag- Up(K)=t+ag_,| k|97 2+ ak?. (3.1b
netic susceptibility. )
Other relevant observables are the specific-heat coeffilne bare two-poing vertex reads
cient
TBadK) = 813024(K*+ GHQ,, )
4 + 51—2,3—450/10125011&3277-1—(3 Ks ' (31(:)
y= ?H (2.29h
L2302 fK) = 81304 K2+ GHQ, _ ), (3.1
and the electrical conductivity with K = — wNﬁFSIZ.
The quadratic form defined by this Gaussian action is eas-
8 ily inverted. For the order parameter correlations we find

. . 1
(ME(K)IME(P))= 8, —pBn,—m8ij Sap5Mn(K),

(see Sec. Il ¢ Also of interest is the electronic density of (3.2a
states per spini

(101K 1034(P)) = = 8, pOr8ij By cy Oy M, -y (K)
N(ert©)=Ng0QR (¥))iw, ~wrior (2290 X[81 23 a—(—=) 81-243] (32D

) ~ in terms of the paramagnon propagator
where the energy or frequenayis measured from the Fermi
energyeg. 1
Mi(k)=

t+ag_ k|9 2+ a,k2+ K
d_
IIl. RENORMALIZATION GROUP ANALYSIS 2 2 e GH,

In this section, we first consider low-order perturbation (3.29

theory to see how those terms in E(B.29 that were notin  Ntice that the coupling between the order-parameter field
the bare action are generated. We then do a power-countingyq the fermionic degrees of freedom has produced the dy-

analysis to determine the minimal effective action that needfamical piece of\M that is characteristic of disordered itin-
to be analyzed in order to find the critical behavior at thegrant ferromagnet.

ferromagnetic transition. Finally, we show that the terms that 4y the fermionic propagators we find
were omitted from the effective action are irrelevant, in the
RG sense, for the critical behavior. . ' G
(1K) P)) = 8- pBis i g T Bad'(K), (330
A. Perturbation theory in terms of the inverse of Eq3.10,
We first set up a standard perturbative expansion for our

effective action, starting with the Gaussian theory. T {932 (K) = 8138540 n,(K)
1. Gaussian propagators N 51*23*450‘1“25“1“3277TGK5
We start by expanding the effective action, E@25 to ><Dnl_nz(k)l)§f)_n (k), (3.3b
the bilinear order inM (or b) and g. We obtain for the v
Gaussian action and
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FIG. 4. One-loop renormalization of the vertax. FIG. 5. One-loop diagrams that renormalideand G.
1’2'3F(122),§41(k)=513524Dn1—n2(k) tivity, respectively, see S_ec. 11D 3_ above. 'I_'he _topological
structure of the relevant diagrams is shown in Fig. 5.
= 01-23-4%0,0,00,0,2TT GK; From extensive work on the nonlinear sigma model it is

known that Fig. B), combined with suitable contributions
X[Dn,-n,(K) My o (K). (330  from Fig. 5a), is finite ford>28 A calculation of Fig. %c)
and the remaining parts of Fig(& reveals that their contri-
HereD ) is the spin-singlet propagator, which in the limit of pytion to the one-loop renormalization 6 consists of two

long wavelengths and small frequencies réads pieces, which at zero external frequency are given by
DP(k)= . (3:3d (56) =2 Gt S mi Dip)Mi(p) (3.68
" k24+G(H+KgyQ, ' 8~ V%5 =
Finally, due to the coupling betweed and g we have a and
mixed propagator w
3 . a| 1
G (8G),=gG%Ki—~| 2 2712 Mi(p)
i i - a gy KoV P =0
<rq12(k)sb34(p)> 5k,—p§r55|] 5ala25ala3 2 7TK;
> OM o[6 X[Dy(p)=Di(p+k)], (3.6b
XD, _ _ s
=gl n=nglK)L91-23-4 respectively. Both of these integrals are finitedm2. A
+(=)8 43l (3.4)  simple calculation shows that the one-loop correction to the

density of states is given by the same integral &S);. For
the H renormalization, Fig. ®) is again finite while the

2. One-loop order o .
other two contributions yield

Let us now consider the renormalization of ke vertex
u,, Eq.(3.1b. At one-loop order, the relevant diagram is the 3 1 "1
one shown in Fig. 4. While the complete result is rather 5H=§GKtQ—ZTrTE v > D(p)M(p), (3.7a
involved, it can be simplified by means of the following n 1=0 P
observation. The structure of the diagram leads to avheren is the external frequency label. For later reference
frequency-momentum integral over diffusion poles multi-we note that Figs. ®) and 5c) each contribute one half of
plied by one or more paramagnon propagators. Inspectiothis result. Individually, each of these diagrams also contrib-
shows that the frequency in this integral scales like a waveytes pieces that diverge like(l}; these contributions cancel
number squared. To leading order in the distance from th@etween the two diagramgThe same is true for Fig.(B)
critical point and for the purpose of obtaining leading infra- and the corresponding contributions from Figa)5 Notice
red singularities, we therefore can use the following approxithat the frequency structure is slightly different than in the

mation in the integrand: case of theG-renormalization. This leads to a finite fre-
g quency sum in Eq(3.7a@ and as a result the integral is loga-
GKD(p)M;(p)=1+0O(t,|p|%). (3.53  rithmically infrared divergent for all dimensions<xi<4,
At zero external frequency the diagram then yields 3_—
SH= ZGKt In(1/Q),,). (3.7b
G2 K, ” _
duy(k)=——+ % ZWT;) Dy(p)Di(p+k). Here G=GS,/(27)Y, with S, the surface area of the unit

(3.5 (d—1) sphere. While this is consistent with the result of Ref.
4 that the specific-heat coefficient at the quantum ferromag-
Performing the integrals shows that this diagram provides aetic transition is logarithmically divergent for alked<4,
finite renormalization of the coefficierty_, of the |[k|9"2 it is obvious from the present formulation of the theory that
term. In particular, it would generate this term if it were not this is very unlikely to be the exact critical behavior as
present in the bare action. This is the reason why we addecdlaimed in that reference. The reason is that an insertion of
this term by hand in Sec. 11 D 2. the one-loopH into the one-loop diagrams yields a2l
We now consider the one-loop renormalizations of thesingularity and so on. Similarly, inserting the one-loop result
other vertices in the effective action. Of particular interestfor the g propagator in the diagram shown in Fig. 3.5 gener-
are the coupling constantsandG in the two-pointg vertex,  ates a logarithmic correction to the vertex(k). Unless
which determine the specific-heat coefficient and the condudhese insertions are exactly canceled by skeleton-diagram
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contributions, the exact critical behavior must therefore in-volves a length rescaling by a factbr all quantities will
volve a more complicated function of fb. We will come  then change according ta— b!AA, with [A] the scale di-
back to this point in the next subsection and in Il. mension ofA. In particular, imaginary time- and tempera-
Finally, the diagrams shown in Fig. 5 also determine theture T or frequency() have scale dimensiorjs]=—z, and
renormalization oK. Again, Fig. 3b) yields a finite result, [T]=[Q]=z, respectively.
while from the other two diagrams one expects
1. Hertz's fixed point

OKs=—2H, 8.79 To illustrate an important point, let us first show how one
wheresH is the divergent part of thil renormalization, Eq.  recovers Hertz’s mean-field fixed pdinuithin the present
(3.7b. This result follows from what is known about the formalism. Let us look for a fixed point where the coeffi-
nonlinear sigma model as we will discuss in Sec. IV A. cientsa, andc, are marginal[a,]=[c,]=0. This choicé®

Notice that the effects we have discussed above at this motivated by the desire to find a fixed point with mean
one-loop level would of course also occur if we had workedfield-like static critical behavior and with dynamics given by
with the theory that one obtains if one puts the bage, the frequency dependence of the standard paramagnon
equal to zero. However, in that theory their derivation wouldpropagatorM, Eq. (3.29. (Recall that the frequency depen-
have required a renormalization of the paramagnon propagaence ofM was produced by the vertex with coupling con-
tor. In a diagrammatic language, by adding th€' =2 term  stantc;.) From the condition that the action be dimensionless
to our bare action, we have made use of skeleton diagram&e then obtain the scale dimensions of the order-parameter
that contain certain infinite resummations. We note in passfield,
ing that one might worry about higher orders in the loop

expansion producing even stronger nonanalyticities than [Ma()]=(d=2)/2, (3.99
|k|%~2. We will show in Il that this is not the case. and we findt to be relevant with scale dimension
[t]=2. (3.9n

B. Naive fixed points and their instability

We now proceed to perform a power-counting ana|ysis oiWe expect the correlations of thpfleld to describe the dif-
our effective action, Eqs2.29. Our goal is to understand fusive dynamics of the fermions, so we chobse
the perturbative results of the preceding subsection from a
more general point of view, and to determine the minimal [Anm(x)]=(d=2)/2, (3.99
effective action which, when solved, will yield thexact andG, H, andK, are all dimensionless. The marginality of
critical behavior. For this purpose it is convenient to rewritethe coupling constart; then implies
the action in a schematic form that suppresses everything

that is not necessary for power counting, z=[T]=4. (3.99
This is the fixed point proposed by Hefayhich leads to
AiM,q]= _f dXM[t+ag_»d% %+a,02]M mean-field critical behavior. It is unstable because the cou-

pling a4_» is relevant with respect to this fixed point as has
1 been pointed out in Ref. 4. While this is obvious from the
+0O(dM?,M*) — af dx(dq) %+ Hf dxQg?  action as formulated here, the following interesting question
arises. Suppose we had not added the term with coupling
, 1 - . constantay_, to our bare action. Since this term was gener-
+ KSTJ dxq°— G_f dxdyq”+ H4f dxQq ated by means of thilg? vertex with coupling constart,,
4 see Fig. 4¢, should be relevant with respect to Hertz's fixed

point. However, power counting with the above scale dimen-
+O(Tq3,(9§q6,9q6)+ \/fclf dxMq sions yie|ds

+ Tczf dxMaq?+ O(ﬁMq“). (3.8 [co]= _71(d+z—6), (3.9

Here the fields are understood to be functions of position ando with the above value=4, ¢, seems to be irrelevant. The
frequency and only quantities that carry a scale dimensiomesolution of this paradox lies in the fact that there is more
are shown. The bare values®f, andH, are proportional to  than one time scale in the problem, and hence all factofs of
those of G and H.* The term of ordefTq®, which arises do not carry the same scale dimensioiThis is obvious if
from the interacting part ofdy ,m, Will not be of impor-  we consider the fermionic sector of our action; the factors of
tance for our purposes although its coupling constant squared in the g? vertex carry a scale dimensidim]=zg=2,
has the same scale dimension & JdandH,. It is therefore  which corresponds to the diffusive time scale that describes
not shown explicitly. Thec,, c,, etc. are the coupling con- the dynamics of the electronic soft modes and which is dis-
stants of the terms contained i, Eq.(2.250. tinct from the critical time scale that corresponds[fD]

We now assign to a length a scale dimensiofiL]= =z.=4. The scale dimensions of the factors F in the
—1. Under a renormalization-group transformation that in-coupling part of the action are therefore reofpriori clear,
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and they may depend on the diagrammatic context a vertex is n=4—d. (3.1109
used in. Consider the diagram in Fig. 4 again. In this contextT ) i o ) .
the two factors of/T contribute to the frequency measure of | NiS Makesa, irrelevant, whilet is relevant with scale di-

a fermionic loop and hence they carry the diffusive timeMension
scale. Indeed, witk=2 Eq.(3.98 shows that, is relevant [t]=d—2 (3.123
for 2<d<4 and its scale dimension is consistent with that of ' '
aq_o- which leads to a correlation-length exponent

It is worthwhile to mention that one can telpriori that
the scale dimension fdr Eq. (3.9b, cannot correspond to a v=1[t]=1/d-2). (3.12b

stable fixed point since it c_orres_ponds toa corr(_alatio_n-l_engtrNotice that in contrast to the situation at Hertz's fixed point,
exponenty=1/[t]=1/2, which violates the Harris criterion thjg result respects the Harris criteribhHere and in the
inequality v=2/d.”" The relevance of, provides an explicit  remainder of this paper we restrict ourselves to the range of
mechanism for the instability. dimensions 2 d<4, which includes the physically interest-

We also note that the above discussion is oversimpliﬁeqlng| cased=3. For the behavior in higher dimensions, see
in that it pretends thal has always the same scale dimen-peat 4. '

sion, independent of the context the order-parameter fluctua- The preceding results characterize the Gaussian fixed
tions appear in. As we will see in the next subsection, this i$ygint that was discussed in Ref. 4. If all other terms in the
not quite true. However, since this point is not crucial for theaction were irrelevant or marginal leading to finite renormal-
instability of Hertz's fixed point we have suppressed it jzations only, then this fixed point would be stable. To check
this, we need to consider the corrections to the Gaussian
action. We start wittc,, whose scale dimension is

Given the presence of the term with coupling constant
a4_,, an obvious attempt to find a stable fixed point is to [c2]=1-2/2, (3.13

H . 28
chooseay -, andc, to be marginal instead @f; andc;. ™A \yhere 7 is the scale dimension of the factor @fin that

slight complication, however, lies in the fact that due 10 theyeriex |f this temperature represents the critical time scale,
existence of two time scalesy_, will not necessarily be

- X - thenc, is irrelevant. However if it represents the diffusive
marginal under all circumstances. Namely, if the frequencyjne scale, then it is marginal. This can indeed happen as we
in the paramagnon propagator, £8.20, is diffusive, i.e., if a6 discussed in Sec. Il B 1 above. The example we used,
it scales likek” thenay_, will be irrelevant. As we will see i, the diagram in Fig. 4 just leads to a finite renormaliza-
below, this can happen if the paramagnon propagator appeafig, of the coefficientay ,, which is part of our effective

as an .ir.1ternal propagator in perturbqtion theory although i%lction anyway. If this were the only effect @f, then we

the critical paramagnomy -, is marginal. In general, We oo |4 neglect it. However, this is not the case. The one-loop
therefore demand _only that; bg margllnal, th_at the scale renormalization oH that was discussed in Sec. Il A 2 pro-

dimension of theg field be consistent with a diffusivédd)  iges an example of how operators that appear irrelevant by
propagator, naive power counting can be effectively marginal due to the
1 existence of two time scales, lead to logarithms, and there-

[qnm(x)]zi(d_z), (3.10a fore need to be kept. Consequentby is not necessarily

harmless even iz=d in Eq. (3.13. This is an important

and that the diffusive time scale be represented by a dynampoint that we now discuss in detail.

2. A marginally unstable fixed point

cal critical exponent Consider Figs. & and §c). They both lead to a correc-
tion to the two-pointg vertex that is of the form, at zero
Zgitt = 2. (3.10n  external wavenumber and frequency,

Equation(3.8) then implies 1 %
2)o =
[G]=[H]=[K]=0. (3.109 or® v Ep: lel Di(p)M(p). (3.143

The marginality ofc, implies for the scale dimension of the For scaling purposes, let us cut off the momentum integral in
order-parameter field the infrared by M, whereb is a RG-length scale factor.
_ B Doing the integral then shows that it is given by a constant
[Mn()]=1+(d=2)/2, (3.113 plus a term proportional tdb~%Inb. The constants cancel
wherez is the dynamical exponent associated with {8 between the two diagrams, and we have
prefactor in thec; vertex. In the critical paramagnon propa-

—d
gator we expectay_, to be marginal, which implies ST ~p~9Inb. (3.14b
[Mn(x)]=1, and hence a critical time scale characterized by\otice that the frequency in the above integral scales like a
2 =d (3.11h wavenumber to the powed, so (c,)? in Fig. 5c) has a
c .

negative scale dimension (d—2), and so does the quartic
and a critical exponentp, defined by[M,(X)]=(d—2 vertex in Fig. %a). The salient point is now as follows. For
+7)/2, the purpose of the renormalization @&, i.e., the wave
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number-dependent part Bf2, we need to replace Kby k. evant operators. If one can show that all other terms are truly

We then obtain the gradient squared of the bare vertex time&rélevant, then the conclusion would be that to determine the
a factor |k|9"2. The contribution is therefore irrelevant, in €Xact critical behavior it suffices to keep the Gaussian action

. . . . . 2 H 4 H
agreement with the negative scale dimensions of the verticddus theMg® coupling and all terms up t@(q”). We inves-
and the result of the explicit perturbative calculation. How-tigate this hypothesis next.
ever, for the purpose of the renormalizationtbfve need to

replace 1 by an appropriate power of the frequency. This C. Effective action for the critical behavior

can beQ'? if O represents the diffusive frequency scale or ) _

QY if it represents the critical one. Since the frequency in 1. The effective action

the integral scales likép|9, the latter applies and we have From the discussion in the preceding subsection we infer

@ an educated guess for an effective action that contains only
oI In 4, (3149 the terms needed for a description of the critical fixed point
in agreement with Eq(3.7h). and the associated critical behavior. This action should con-

The point illustrated above is as follows. Due to the exis-tain all of the terms that are shown explicitly in EG.8),
tence of two different time scales, the fact that an operatofxcept that for 22d<4 one can drop the gradient-squared
has a negative scale dimension by naive power countingerm in the LGW part of the action. Notice that we need to
which is based on the consideration of length scales, does nkgep the terms 0D(539*,Q29*) in the expansion of the non-
necessarily imply that it will be irrelevant. Rather, operatorslinear sigma model in powers of as they give rise to in Fig.
with scale dimensions between zero andd—2) may act 5(a). These terms appear irrelevant by naive power counting
as marginal operators with respect to frequency scaling. Nobut contribute to the leading-frequency dependence by
tice, however, that for this mechanism to be operative it igneans of the mechanism discussed in Sec. Ill B 2 and in the
crucial that the vertex being renormalized is proportional toAppendix. By the same argument one should keep the terms
frequency. Therefore, the seemingly irrelevant operators besf order O(q®) and O(g?) that arise from the spin-singlet
come effectively marginal with respect té but not with  interaction. However, by themselves these vertices give only
respect taG or any other coupling constant. In the Appendix rise to diagrams that are finite @>2,° and combined with
we discuss another aspect of this phenomenon. c, or other vertices that contaid they lead to mixedbaq)

We conclude that the Gaussian fixed point of Ref. 4 is nopropagators, Eq:3.4), which are less infrared divergent then
stable since there are operators that are effectively margingie second term on the right-hand side of E2)30. These
with respect to it. If these operators just led to finite renor-terms can therefore safely be neglected. This leaves the spin-
malizations, this would still not change the conclusions ofsinglet interaction constar{s entering the effective theory
the earlier paper. However, as we have seen above, they leai the vertex'® only. SinceK #0 does not change the
to logarithmic corrections to power-law scaling and hencediffusive structure of the noninteractirggpropagator, it can
need to be kept. The problem is less severe than in the cabe dropped there as well. Restoring all indices, the suggested
of Hertz’s fixed point, however, since now there are no rel-effective action for describing the critical fixed point redds

3

) ) 4 ) ) )
App=— 2 2 MEK)[t+ag_ ok MY (—k)— = X > 181K T34 K)idaa( —K)
kK,n,a i G k 1,234 r,i

=

1 1

I

4G 15540 S i iSia V kg ks kg 2T gk kg kg Ka) Mo (K Zaad K) 2 daa(Ka) a1 Ka)

3

) ) 1 ;
+c1ﬁ§%:bdk)'rqlz(—kﬁczﬁwi D l% aEﬁ:t»ﬁ;;;m

k,p ny,np,mr,sti=

X[LARA (P AR i~ p— It e rer)tr(sis;sh) — s (P)Eafn, (— P—Otr(r i rtr(sis!s) ], (3.153

with T'®) from Egs.(3.109 and(3.1d with K,=0, and The bare values of the coupling constaets and c, are
related, and given by

i1igigi41(4 B C
rétzus 41-‘&2)34(k17k2 ,k3 'k4) T 5k1+k2+k3+k4,0tr( TrTg 7-tTu)

cy=16c,=47K,. 3.15
Xtr(sils;rzsiss;r4)(k1.k3+kl.k4 1 2 TR ( 0
TKikatka-ky=GHOR . Notice that this action iswot Gaussian, and therefore the

(3.15h critical behavior is not easy to determine.
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We will solve the effective model given by Eq8.15 in might expect from naive power counting. The resolution of
11,2 where we will show that the exact critical behavior dif- this discrepancy is as follows. The vertex shown in Fig. 2
fers from the Gaussian one by logarithmic corrections onlyat zero wavenumber has the schematic structure
In the remainder of this paper we show that the action given

by Egs.(3.19 really is sufficient for describing the critical f f 2 2
behavior in 2<d<4. dy [ dwa(q°(x)g(y)), (3.18

which has a naive scale dimensionafwith z=2). How-
_ ~ever, the integral is a finite number and so its actual scale
We now show that all terms that were neglected in writingdimension is zero. If we consider the vertex function at a

Egs. (3.15 are irrelevant by power counting, keeping in finite wavenumberk| and perform a gradient expansion,
mind the complications due to the two time scales that werghen we obtain an expansion of the form

discussed in Sec. Il B above. In addition to the scale dimen-
sions ofM andq given in Egs.(3.103 and(3.113, we need const+ k?+ k|9, (3.19

for this purpose the scale dimension of the massive figlds . . .
. What happens here is that power counting yields the scale
andAA. The correlations oA P are short ranged, and of the . . . X : .
dimension of the firshonanalyticterm in the gradient ex-

same nature as at the Fermi-liquid fixed point that was dis- . . . . L
cussed in Ref. 13. We thus choose pansion, but misses more dominant analytic contributions.

This is of no consequence as long as the latter just renormal-
_ _ ize existing terms in the action. Here, however, they produce
[APCII=[AAC)]=ar2. (3.19 a new term in the action, viz., the random mass term and
Power counting now proceeds as usual. The nonlinear sigrﬁaerefore need to be taken into account. The difference be-
model action we have kept up ©(q*). Higher-order cor- tween the naive scale dimension of the integral, 818,
rections have the same scale dimensions as at the FermMiz., d and its actual scale dimension, viz., zero is precisely
liquid fixed point in Ref. 13. They thus are all irrelevant with the difference betweejv ,]=d—4 and[(dod,)?]= —4.
scale dimensions that are smaller tha{d—2) and are We finally come back to the simplifications inherent in
therefore harmless. The couplings betwedn g, and the our starting point, Egs(2.2), which describe the paramag-
massive modes given in E(2.29 for even powers offhave  netic phase as a disordered electron fluid while neglecting
scale dimensions band structure and other features of solids. The justification
for these simplifications is as follows. The disordered Fermi-
z -1 liquid fixed point is characterized by relatively few
(d=2)=5=—-(d+z-2) (319  parameters? This is in contrast to a clean Fermi liquid,
which requires an infinite number of Fermi-liquid parameters
for n=2, and thus can safely be neglected. For odd powersr a whole function to completely characterize the fixed
of g, the couplings contain an effective external frequencypoint.30 The crucial physical distinction is that for the disor-
and therefore are even less irrelevant than Bql7) sug- dered case the slowest, and therefore dominant, modes are
gests. In particular we confirm that;, which we have diffusive and arise only from electron number density, spin
dropped®* has a scale dimensidml;]=—3z/2 and is thus density, and particle-particle density variables. In contrast, in
more irrelevant thed,. [dog]=(d—2—2)/2, which becomes the clean case there are an infinite number of soft single-
marginal ind=4 if z=z44=2. However,d=4 is a special particle and two-particle modes. This simplification for the
dimension anyway, and fod>4 one obtains a different disordered case carries over to the description of the ferro-
fixed point since thek|9~2 term in the LGW action is no Magnetic quantum phase transition.
longer leading. A remaining question is whether the formally
irrelevantd, can be promoted to marginal or relevant status IV. DISCUSSION
by the same mechanism that is operative for, ecg.,The

answer is negative since the mechanism works only for therit'ia‘S IW; Ra://? rs?err: '? gec. ”il (; thnedifgeft';/i actlgntf?:r:ir:‘e
renormalization ofH, and in order to renormalizél, dg cntica’ behavior IS not L>aussian, a erelore a dete a

needs o e combined wih sor wih =2, However, 1900108 7HEe beiaor s onrval s cut it e
[dody]=—2z<—(d—2) for d<4. Therefore, all of thed,

can be safely neglected. Similarly, all terms of order higherdetermInGd exactly and is given by the power laws found in

than quadratic order iM are irrelevant. We mention, how- Ref. 4 with additional logarithmic corrections to scaling.

ever, that in the ordered phase the termO§M“) becomes This solution Qf the effective actlo_n will t_)e deferred to'dl.
. e Here we restrict ourselves to a discussion of some general
dangerously irrelevant and needs to be kept. This will b

. : Seatures of our effective theory and of its relation to previous
important in II.

Finally the random mass term{¢2), Eq.(2.23, deserves approaches to the problem.
an extra discussion. The scale dimension of the coupling
constantv, in Eq. (2.23 is [v4]=d—4, while the scale di-
mension of the combination af, andd, in Eq. (2.28 that Let us briefly discuss the relation between our current
producev, in perturbation theorysee Fig. 2 is [(dyd,)?] approach and previous theories. This is most easily done by
=—2z=—4. [v,] is thus much less irrelevant than one starting from EQ.(2.10h. By formally integrating out the

2. Corrections to the effective action

n-1
[dn]=———

A. Relation to other approaches
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fermions, i.e., the field® andA from this formulation of the ~ detail, this can be traced to the presence of dangerous irrel-
action one obtains an LGW theory or action entirely in termsgvant Vafiazb'e& which can always invalidate general scaling
of the order-parameter field. If the fermions are integratedirgumemg- _

out in the tree approximation, one recovers Hertz's thdory. W€ conclude that all of the previous approaches to the
If they are integrated out formally exactly, the vertices of theProPlem break down at some level, and that the basic prob-
LGW functional are given in terms of spin-density correla- lem is al_ways the same, namely a Iacl_<_of explicitness. Only
tion functions for a “reference ensemble” or fictitious elec- & local field theory that correctly identifies and keeps all of

tron system that has no bare spin-triplet interaction. This ithe soft modes allows for the explicit calculations necessary

. . o check more general arguments that may break down be-
the theory that was analyzed in Ref. 4. The disadvantage gcgiuse of the failure of hidden assumptions. Interestingly, as

that appr_oach Is that.the ref9fence ensemble contains s will show in Il, the problem was solved technically cor-
modes, viz., theg and integrating them out produces effec- oqqy in Ref. 8, but the missing physical interpretation ren-
tive vertices in the LGW theory tha_lt d|verge_|n the limit _of dered this result of limited value at the time.

small wave numbers and frequencies. That is, one obtains a
nonlocal field theory. Furthermore, Ref. 4 performed a
power-counting analysis only, and integrating out the fermi-
onic degrees of freedom obscured the subtleties that arise in Let us finally come back to the issue of the two different
this context due to the existence of the diffusive time scale iime scales, which has been crucial for a correct application
addition to the critical one. As a result, the power-countingof scaling ideas to the problem. As we have seen in Sec.
analysis of Ref. 4 was insensitive to the logarithmic correcdll B 1, the implicit assumption of the existence of only one
tions that we found by means of explicit perturbative calcu-time scale, namely the critical one can lead to wrong conclu-
lations in Sec. Ill A 2 and explained in Sec. Il B 2 in terms Sions if one relies strictly on power-counting arguments. Ex-
of a more sophisticated scaling analysis than the pure LG\Plicit loop calculations, on the other hand, reveal the falla-
theory allowed for. Notice that in some other respects Ref. £iousness of the assumption by producing terms in the action
was actually more sophisticated than the present theory. Fépat aré inconsistent with the power counting. The point is

instance, it included in the bare action, effects that require %{:at the diffusive modes, whose time scale 1S different from
one-loop analysis in the present approach, e.g.|kh& 2 the critical one, produce long-range correlatieverywhere

term in the vertexu,. However, the insensitivity to logarith- not just at the critical point as has been discussed in detail

mic corrections is hard to overcome within the framework Ofelsewhere%? These long-range correlations are reflected, for
instance, in thék|9~2 term in the LGW part of the action,
the nonlocal theory.

Eq. (2.25h, which is responsible for the instability of
The relation between the present theory and Ref. 8 is 'esﬁgrté’s fix?ad \é)voilnt ! ponsi ! e

obvious. To see it, consider E¢2.25 and integrate out/. For the instability of the Gaussian fixed point of Ref. 4 a
This ylelds a nqnllr_]ear sigma mod.el with a triplet interactiongjmilar mechanism applies, although it is weaker and less
amplitude that is given by the static paramagnon propagatoppyious. As we have seen in the context of E§s14), non-

We have performed expliCit calculations within this theory,Gaussian terms that forma”y have a negative scale dimen-
and ascertained that it yields the same results as the couplegbn can effectively become marginal with respect to
M-q theory discussed above, as it should. This equivalencequency-dependent coupling constants. This “counting ac-
between theévl-q theory and the sigma model is the basis forcident” can only happen for vertices that vanish at zero fre-
Eq. (3.70, since within the sigma modél +Kg is not sin-  quency, and it has been analyzed from a RG point of view in
gularly renormalized. The bare nonlinear sigma model in Sec. Il B 2 and in the Appendix.

Ref. 8 had a pointlike spin-triplet interaction amplitude, but We will come back to these arguments in I, where we
under renormalization thik|9~? that is characteristic of the Will provide both a resummation of perturbation theory to all
static paramagnon is generated. It is thus plausible that th@rders and a complete scaling description of the exact critical
pure nonlinear sigma model should contain the critical fixed?€havior, including all logarithmic corrections.

point for the ferromagnetic transition. However, since the

order parameter has been integrated out, the nature of the ACKNOWLEDGMENTS

transition is completely obscured within this approach, and a

description of the ordered phase is not possible. This is the This work was supported by the NSF under Grants Nos.
reason why Ref. 8 could only conclude that the transition iPMR-98-70597 and DMR-99-75259.

of magnetic naturd We will come back to the detailed

connection between the two appr_oache_s_ln II._Here_ we just \ppeNDIX: CONSEQUENCES OF TWO DIFFERENT
mention that the present analysis positively identifies the

B. Scaling issues

. h . _ TIME SCALES
runaway flow that is encountered in the nonlinear sigma
model in the absence of any spin-flip mechanfasssignal- In this appendix we discuss two additional aspects of the
ing the ferromagnetic transitioh. crucial point made in Sec. Il B 2.

We also mention that the fixed point identified in Sec. Let us first take a phenomenological scaling point of
[l C above violates some of the general scaling laws obview. The scaling equation for the two-poigivertex func-
tained by SachdeVAs has been discussed in Ref. 4 in sometion I'®) reads
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I'®k=0,0)=b"2yA(Qb% Qb c,b @272 de, -
(Al) m = dC1/2, (AZb)
Here the ellipses denote the dependence of the scaling func-
tion 4® on all operators that are not shown explicitly.
Among these are @, andH ,, which play the same role for dc,
scaling asc3 does. For simplicity we restrict the discussion dnp = (d=2)c/2 (A2c)
to the effect of the latter. In writing EqA1), we have al-
lowed for a dependence on both the diffusive and the critical
frequency scale. At the zero-loop ordef?) depends only on  plus higher-loop orders. Again, G4 and H, play a role
the former, and by putting=1/y/Q we havel'®(k=0,0)  analogous te3 and we have suppressed them for simplicity.
«(). At one-loop order, it depends on the critical frequencyThe solution of this system of flow equations is
as well, which opens the possibility of a stronger frequency
dependence proportional t0%9. However, the one-loop
contribution has the property®(x,y,z) = f(yz%), which re- A(b)=H(b=1)b%+cons b2Inb. (A3)
stores the linear-frequency behaviorld®). This is the same
phenomenon that we have discussed within the context of

explicit perturbation theory in connection with Eq8.14. In this picture, the positive scale dimensionstbfand’c,
Logarithmic corrections to scaling are neglected in thisreflect the fact that frequency or temperature is a relevant
simple argument. variable. The critical frequency is more relevant than the

To illustrate the same point from a RG flow-equation diffusive one but this difference is made up for by the fact
point of view, and at the same time see the origin of thethat the critical frequency is always multiplied b§. In this
logarithms, we absorb the frequency or temperature factorgay the formally irrelevant, effectively acquires a mar-
multiplying H and ¢, in Eq. (3.8) into these coupling con-  ginal status. The logarithm, at one-loop order, reflects a reso-

stants by definindd =HQ andc,=c;\T. ForH, ¢;, andc,  nance between the scale dimensiongpfndc,, and rep-

we then have the flow equations resents one of the possibilities in Wegner's classification of
. logarithmic corrections to scalifyas was already pointed
— 2Fi+ constx 62¢2, (A2a) outin Ref. 4. At higher-loop orqler, how_ever, additional loga-
dinb rithmic terms appear as we will show in II.
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