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An effective field theory is derived that describes the quantum critical behavior of itinerant ferromagnets in
the presence of quenched disorder. In contrast to previous approaches, all soft modes are kept explicitly. The
resulting effective theory is local and allows for an explicit perturbative treatment. It is shown that previous
suggestions for the critical fixed point and the critical behavior are recovered under certain assumptions. The
validity of these assumptions is discussed in the light of the existence of two different time scales. It is shown
that, in contrast to previous suggestions, the correct fixed-point action is not Gaussian, and that the previously
proposed critical behavior was correct only up to logarithmic corrections. The connection with other theories
of disordered interacting electrons and, in particular, with the resolution of the runaway flow problem encoun-
tered in these theories, is also discussed.
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I. INTRODUCTION

The theory of quantum phase transitions, i.e., phase t
sitions at zero temperature (T50), is an important problem
that is relevant to many topics in condensed-matter phys1

Perhaps the most obvious example is theT50 transition
from a paramagnet to an itinerant ferromagnet as it occur
e.g., diluted Ni or in solid solutions like MnSi. Historically
this was the first quantum phase transition that was studie
detail. Hertz2 showed how to treat this transition by means
renormalization group~RG! methods and he concluded th
the transition in the physically interesting dimensiond53
was mean-field-like. This conclusion hinged on the obser
tion that in quantum statistical mechanics the effective
mension of a system for scaling purposes isd1z, with d the
spatial dimensionality andz the dynamical critical exponent
Since in a simple theory at tree level one hasz53 for clean
itinerant quantum ferromagnets andz54 for disordered
ones,2 this seemed to imply that the upper critical dimensi
dc

1 , above which one finds mean-field critical behavior,
dc

151 anddc
150 in the clean and disordered cases, resp

tively.
This conclusion was later challenged.3–5 Reference 3

noted that Hertz’s results for clean systems ind512e di-
mensions were inconsistent with general scaling argume
This left open the possibility of mean-field behavior in phy
cal dimensions. However, in Refs. 4 and 5 it was shown t
the critical behavior ind.1 ~clean case! and d.0 ~disor-
dered case!, respectively, is not mean-field-like after all. Th
salient point is that in itinerant electron systems atT50, soft
0163-1829/2001/63~17!/174427~16!/$20.00 63 1744
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modes other than the order-parameter fluctuations e
These modes are diffusive~in disordered systems! or ballistic
~in clean ones! particle-hole excitations. Since they couple
the order-parameter fluctuations, they influence the crit
behavior. Specifically, they lead to an effective long-ran
interaction between the order-parameter fluctuations. A
result, Refs. 4 and 5 found that the critical behavior is go
erned by a Gaussian fixed point that, however, does not y
mean-field exponents. The critical behavior determined
these references was claimed to be exact.

A separate, and seemingly unconnected, developmen
the many-electron problem has been the study of me
insulator transitions of disordered interacting electrons.6 For
one of the universality classes that occur in this problem
transition was found that isnot a metal-insulator transition
but rather of magnetic nature.7 While the order parameter
and the nature of the ordered phase, could not be ident
with the methods employed, the critical behavior for
quantities other than the order parameter was determin8

Apart from differences in logarithmic corrections to pow
laws, this critical behavior turned out to be identical with t
Gaussian critical behavior for the disordered ferromagn
transition. This led, in Ref. 4, to the suggestion that the u
dentified transition studied in Ref. 8 was the ferromagne
transition. The discrepancy with respect to the logarithm
terms was explained as due to the fact that, of the two in
gral equations in Ref. 8 only one had been shown to
exact. The proposal thus was that the two approaches
scribe the same transition, and that the critical behav
found in Ref. 4 was exact while the one in Ref. 8 represen
an approximation.
©2001 The American Physical Society27-1
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The theory developed in Refs. 4 and 5 suffers from o
major drawback: Since the additional soft modes were in
grated out in order to obtain a description entirely in terms
the order parameter, the effective field theory that was
rived is nonlocal9 and not very suitable for perturbativel
calculating effects that depend on all of the soft modes in
system. The analysis in Refs. 4 and 5 therefore was restri
to power-counting arguments at tree level to show that
non-Gaussian terms are irrelevant in a RG sense. While
turned out to be true, relying entirely on tree-level pow
counting can be dangerous. Indeed, even a one-loop ana
of Hertz’s action would have revealed that the mean-fi
fixed point is unstable, and the absence of such a calcula
led to the instability that was not to be noticed for 20 years10

Furthermore, integrating out the fermionic degrees of fr
dom obscures the fact that the problem contains two t
scales, a diffusive one and a critical one, which in its
makes power counting very subtle. This, combined with
suggestive relation between the ferromagnetic transition
the unidentified transition discussed above, and the puzz
logarithmic discrepancies between the critical behavi
found for the two transitions, makes it desirable to hav
theoretical description of the quantum ferromagnetic tran
tion that takes the form of a local field theory that facilitat
a controlled loop expansion and keeps the two time sc
explicitly. Another motivation for constructing a local fiel
theory is that it will allow for a more explicit study of th
effects of rare regions11 than was possible within the frame
work of Refs. 4 and 5, although we will not pursue this iss
in the present paper.

It is the purpose of the present paper, and a second on
be referred to as II,12 to put these remaining questions to re
We will focus on the disordered case, although we exp
analogous conclusions to hold for clean systems. By usin
local-field-theory description, we will show that Ref.
missed effects of the two time scales that lead to logarith
corrections to the Gaussian critical behavior. Moreover, t
ing these effects into account leads to integral equations
the relevant vertex functions that are identical to the o
derived in Ref. 8. The current formulation makes it obvio
that the transition described by these equations is the q
tum ferromagnetic one, and it allows to determine the ex
nents in the ferromagnetic phase as well as those in the p
magnetic one. It, furthermore, shows that the integ
equations that were first derived in Ref. 8 are exact an
elucidates many physical points that were rather obscur
Ref. 4, and to an even larger extent in Ref. 8.

This paper is organized as follows. In Sec. II we u
methods developed in Ref. 13 to derive an effective the
for disordered itinerant quantum ferromagnets that syst
atically separates massive modes from soft ones and ex
itly keeps all of the latter. In Sec. III we give a RG analys
of this model. We first show how Hertz’s fixed point as we
as the Gaussian fixed point of Ref. 4 emerge within t
framework. We then show that Hertz’s fixed point is u
stable, and the Gaussian one is marginally unstable du
the existence of two separate time scales, viz., a critical t
scale associated with the order-parameter fluctuations, a
diffusive one associated with the additional particle-hole
17442
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citations. We identify an effective action that contains
stable critical fixed point. This action is not Gaussian and
solution is therefore nontrivial and deferred to II. In Sec.
we discuss our results, in particular, the relation of t
present approach to previous ones and the complications
the presence of two time scales leads to in scaling consi
ations.

II. EFFECTIVE FIELD THEORY

In this section we start with a simple model for interacti
electrons in a disordered environment. We then introduce
ferromagnetic order parameter and identify all other s
modes. Integrating out the massive modes leads to an e
tive field theory that describes all of the soft modes in t
system. The general method employed here is the one
was developed in Ref. 13.

A. Model of itinerant electrons

Our starting point is a general field-theoretic represen
tion of the partition function of a many-fermion system
which can be written in the form14

Z5E D@c̄,c#exp~S@c̄,c#!. ~2.1a!

Here the functional integration measure is defined with
spect to Grassmannian or anticommuting fieldsc̄ andc and
S is the action,

S52E
0

b

dtE dxc̄a~x,t!
]

]t
ca~x,t!2E

0

b

dtH~t!.

~2.1b!

We denote the spatial position byx and the imaginary time
by t. H(t) is the Hamiltonian in imaginary time represent
tion, b51/T is the inverse temperature,a51,2 denotes spin
labels, and a summation over repeated spin indices is
plied. We choose units such thatkB5\5e251. The Hamil-
tonian describes a fluid of interacting electrons moving in
static random potentialv(x),

H~t!5E dxH 1

2m
¹c̄a~x,t!•¹ca~x,t!

1@v~x!2m#c̄a~x,t!ca~x,t!J
1

1

2E dxdyu~x2y!c̄a~x,t!c̄b~y,t!

3cb~y,t!ca~x,t!. ~2.2a!

Herem is the electron mass,m is the chemical potential, and
u(x2y) is the electron-electron interaction potential. F
simplicity, we assume that the random potentialv(x) is delta
correlated and obeys a Gaussian distributionP@v(x…# with
second moment
7-2
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LOCAL FIELD THEORY FOR DISORDERED ITINERANT . . . PHYSICAL REVIEW B 63 174427
$v~x!v~y!%dis5
1

2pNFtel
d~x2y!, ~2.2b!

where

$•••%dis5E D@v#P@v#~••• ! ~2.2c!

denotes the disorder average,NF is the bare density of state
per spin at the Fermi level, andtel is the bare electron elasti
mean-free time. Our results will not be sensitive to the s
plifications inherent in the assumptions that lead to E
~2.2b!. We also mention that it would be possible to inclu
more realistic features, e.g., band structure in the mo
However, ultimately we will be interested in universal b
havior at a phase transition that is independent of all mic
scopic details. For our purposes it therefore is sufficien
study the model defined in Eqs.~2.2!.15

As in Ref. 4, and as is standard practice in the theory
magnetism, we break the interaction part of the actionS,
which we denote bySint , into spin-singlet and spin-triple

contributionsS
(s,t)

. For simplicity, we assume that the inte
actions are short ranged in both of these channels.16 The
spin-triplet interactionSint

(t) describes interactions betwee
spin-density fluctuations. This is the interaction that cau
ferromagnetism and it therefore needs to be considered s
rately. We thus write

S5S01Sint
(t) , ~2.3!

with

Sint
(t)5

G t

2 E dxdtns~x,t!•ns~x,t!, ~2.4a!

wherens is the electron spin-density vector with compone

ns
i ~x,t!5c̄a~x,t!s i

abcb~x,t!. ~2.4b!

Heres i ( i 51,2,3) are the Pauli matrices andG t is the spin-
triplet interaction amplitude that is related to the interact
potentialu in Eq. ~2.2a! via

G t5
1

2E dxu~x!. ~2.4c!

S0 in Eq. ~2.3! contains all other contributions to the actio
It explicitly reads

S052E
0

b

dtE dxF c̄a~x,t!
]

]t
ca~x,t!2c̄a~x,t!

3H ¹2

2m
1mJ ca~x,t!G2

Gs

2 E
0

b

dtE dxnc~x,t!nc~x,t!

2E
0

b

dtE dxv~x!c̄a~x,t!ca~x,t!, ~2.5a!

wherenc is the electron charge or number density,

nc~x,t!5c̄a~x,t!ca~x,t!, ~2.5b!
17442
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andGs the spin-singlet interaction amplitude.
Before we proceed, we integrate out the quenched di

der by means of the replica trick.17 Performing the disorder
average as prescribed in Eq.~2.2c! replaces the last contri
bution to the actionS0, Eq. ~2.5a!, by

Sdis5
1

4pNFtel
(

a1 ,a251

N E
0

b

dtdt8E dxc̄a
a1~x,t!

3ca
a1~x,t!c̄b

a2~x,t8!cb
a2~x,t8!, ~2.6!

wherea1 anda2 are replica indices, andN→0 is the num-
ber of replicas. Of course, all other terms in the action a
are replicatedN times.

B. Composite variables

We now proceed by rewriting our model in terms of va
ables that are more suitable for our purposes than the b
fermionic field. First of all, we decouple the spin-triplet in
teraction by means of a Hubbard-Stratonovich transform
tion. All other terms we rewrite in terms of bosonic matr
fieldsQ andL̃. The latter procedure exactly follows Ref. 1
and we refer the reader to this reference for details. Here
just mention thatL̃ serves as a Lagrangian multiplier who
physical interpretation is self-energy, whileQ is isomorphic
to bilinear products of fermion fields. We perform a Fouri
transform from imaginary timet to Matsubara frequencie
vn52pT(n11/2),

cn,a~x!5ATE
0

b

dteivntca~x,t!,

c̄n,a~x!5ATE
0

b

dte2 ivntc̄a~x,t!. ~2.7a!

For later reference, we also define a spatial Fourier transf

cn,a~k!5
1

AV
E dxe2 ik•xcn,a~x!,

c̄n,a~k!5
1

AV
E dxeik•xc̄n,a~x!, ~2.7b!

and analogously for other position-dependent quantities.
isomorphism then takes the form13

Q12>
i

2 S 2c1↑c̄2↑ 2c1↑c̄2↓ 2c1↑c2↓ c1↑c2↑

2c1↓c̄2↑ 2c1↓c̄2↓ 2c1↓c2↓ c1↓c2↑

c̄1↓c̄2↑ c̄1↓c̄2↓ c̄1↓c2↓ 2c̄1↓c2↑

2c̄1↑c̄2↑ 2c̄1↑c̄2↓ 2c̄1↑c2↓ c̄1↑c2↑

D .

~2.8!

Here all fields are understood to be taken at positionx, and
1[(n1 ,a1), etc., comprises both frequency and replica
bels. It is convenient to expand the 434 matrix in Eq.~2.8!
in a spin-quaternion basis,
7-3



-
la
le

re

ve

lu
v
v

al

oint

to
the

.
-
the
e

o a
tion

e
b-
d
ose

t in
of
to

ce,

-

BELITZ, KIRKPATRICK, MERCALDO, AND SESSIONS PHYSICAL REVIEW B63 174427
Q12~x!5 (
r ,i 50

3

~t r ^ si !r
i Q12~x! ~2.9!

and analogously forL̃. Here t05s0512 is the 232 unit
matrix andt j52sj52 is j ( j 51,2,3), withs1,2,3 the Pauli
matrices. In this basis,i 50 and i 51,2,3 describe the spin
singlet and the spin-triplet, respectively. An explicit calcu
tion reveals thatr 50,3 corresponds to the particle-ho
channel ~i.e., products c̄c), while r 51,2 describes the
particle-particle channel~i.e., productsc̄c̄ or cc). For our
purposes the latter will not be of importance and we the
fore dropr 51,2 from the spin-quaternion basis.

Denoting the Hubbard-Stratonovich field byM, we now
can exactly rewrite the partition function as an integral o
the three fieldsQ, L̃, andM,

Z5E D@Q,L̃,M #eA[Q,L̃,M ] , ~2.10a!

with an action

A@Q,L̃,M #5Adis@Q#1Aint
(s)@Q#

1
1

2
Tr ln~G0

212 i L̃ !1Tr~L̃Q!

2E dx(
a

(
n

(
i 51

3

iMn
a~x! iM 2n

a ~x!

1A2TG tE dx(
a

(
n

(
i 51

3

iMn
a~x!

3 (
r 50,3

~A21!r(
m

tr@~t r ^ si !Qm,m1n
aa ~x!#.

~2.10b!

Here Tr denotes a trace over all degrees of freedom, inc
ing the continuous real space position, while tr is a trace o
all discrete degrees of freedom that are not summed o
explicitly. The first two terms in Eq.~2.10b! explicitly read

Adis@Q#5
1

2pNFtel
E dxtr@Q~x!#2, ~2.10c!

Aint
(s)5

TG (s)

2 E dx (
r 50,3

~21!r

3 (
n1 ,n2 ,m

(
a

@ tr$~t r ^ s0!Qn1 ,n11m
aa ~x!%#

3@ tr$~t r ^ s0!Qn21m,n2

aa ~x!%#. ~2.10d!

They are simply the last two terms in Eq.~2.5a!, rewritten in
terms ofQ. Finally,

G0
2152]t1¹2/2m1m ~2.10e!

is the inverse Green operator. For later reference we
note that ifL̃ in the Tr ln term in Eq.~2.10b! is replaced by
17442
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its saddle-point value, one obtains the inverse saddle-p
Green functionGsp as the argument of the logarithm.13 For
our purposes it suffices to treat the disorder contribution
the self-energy in the Born approximation, and to neglect
~Hartree-Fock! interaction contribution.Gsp then reads

Gsp~k,vn!'F ivn2
k2

2m
1m1

i

2tel
sgnvnG21

.

~2.10f!

Notice that Eqs.~2.10! can also be obtained from Eqs
~2.22!–~2.25! in Ref. 13 by subjecting the spin-triplet inter
action term to a Gaussian transformation and by using
symmetry properties of theQ matrices. However, the abov
derivation makes it clear that the order-parameter fieldM is
introduced in a standard way, and the only difference t
standard treatment is that the fermionic parts of the ac
have been rewritten in terms ofQ and L̃.

C. Separation of soft and massive modes

The reason for our rewriting of the fermionic part of th
action in terms of bosonic-matrix fields in the previous su
section was that this formulation is particularly well suite
for a separation of soft and massive modes. For the purp
of analyzing a Fermi liquid, this separation was carried ou
Ref. 13, and we briefly recall the most important points
that procedure.18 One first uses group-theory arguments
show that the most generalQ can be written in the form

Q5SPS 21. ~2.11!

HereP is block diagonal in the Matsubara frequency spa

P5S P. 0

0 P,D , ~2.12!

where P. and P, are matrices with elementsPnm where
n,m.0 andn,m,0, respectively. For a system withN rep-
licas and n Matsubara frequencies, the matricesS are
elements of the homogeneous space USp(8Nn,C)/
USp(4Nn,C)3USp(4Nn,C).19 As such they can be ex
pressed in terms of matricesq whose elementsqnm are re-
stricted to frequency labelsn>0, m,0,

S5S A12bb† b

2b† A12b†bD , ~2.13a!

where

b~q,q†!5
21

2
q f~q†q!, ~2.13b!

with

f ~x!5A2

x
~12A12x!1/2. ~2.13c!
7-4
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Ward identities ensure that theP are massive while theq are
massless. The latter are the diffusive modes or ‘diffuso
that we mentioned in the Introduction. Similarly, ifL̃ is
transformed according to

L~x!5S 21~x!L̃~x!S~x!, ~2.14!

L can be shown to be massive. This representation
achieves the desired separation of modes. In Ref. 13 thq
were the only soft modes. In the present case, the or
parameter fieldM is massive in the paramagnetic phase
becomes soft at criticality, so it must be handled toget
with the diffusons.

The next step is to expand the massive modes about
expectation values,

P5^P&1DP, L5^L&1DL. ~2.15!

As explained in Ref. 13, the expectation values^P& and^L&
can be replaced by simple saddle-point approximations.
saddle point used in this reference is also a saddle poin
our current action, Eq.~2.10b!, if it is supplemented by the
saddle-point value ofM, ^M &50. If P andL are integrated
out in the saddle-point approximation, i.e., if one neglects
fluctuations of these fields, then one obtains for the fermio
degrees of freedom the nonlinear sigma model (NLsM) that
was first proposed by Wegner20 as an effective field theory
for the disordered-electron problem, and later studied ex
sively by him and others.6,21 Following the same procedur
here we get the NLsM, but without the spin-triplet interac
tion term, from the first four terms on the right-hand side
Eq. ~2.10b!, and a coupling between the order-parame
field and both the soft and the massive fermionic modes fr
the last one. We will also need the corrections to the NLsM
and thus rewrite the action in the form

A@q,M ,DP,DL#

5ANLsM@q#1dA@DP,DL,q#

2E dx(
a

(
n

(
i 51

3

iMn
a~x! iM 2n

a ~x!

1ApTKtE dx(
a

(
n

(
i 51

3

iMn
a~x!

3 (
r 50,3

~A21!r(
m

tr~t r ^ si !F Q̂m,m1n
aa ~x!

1
2

pNF
~SDPS 21!m,m1n

aa ~x!G . ~2.16!

Here Kt5pNF
2G t/2. ANLsM is the action of the nonlinea

sigma model,

ANLsM5
21

2GE dx tr@¹Q̂~x!#212HE dx tr@VQ̂~x!#

1Aint
(s)@pNFQ̂/2#, ~2.17a!

with Aint
(s) from Eq. ~2.10d!, and
17442
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Q̂5S A12qq† q

q† 2A12q†qD , ~2.17b!

in terms ofq, andV is a frequency matrix with elements

V125~t0^ s0!d12vn1
. ~2.17c!

The coupling constantsG and H are proportional to the in-
verse conductivity,G}1/s, and the specific heat coefficien
H}g[ limT→0 CV /T, respectively.6,13,22

dA contains the corrections to the nonlinear sigma mo
that were given in Ref. 13. We list explicitly the terms th
are bilinear in the massive fluctuationsDP andDL, but do
not contain couplings between the massive modes andq,

dA (2)5Adis@DP#1E dx tr@DL~x!DP~x!#

1
1

4E dxdy tr@G~x2y!DL~y!G~y2x!DL~x!#.

~2.18!

D. Effective field theory for the soft modes

So far we have exactly rewritten the microscopic action
a form that separates the soft modes from the massive o
In this subsection we approximately integrate out the m
sive modes to arrive at an effective action that is capable
describing the critical behavior at the ferromagnetic tran
tion. We will also add some terms to the bare action that
will find later to be generated by the renormalization grou
In Sec. III we will derive these terms and will also justify ou
approximations and show that they do not influence
asymptotic critical behavior.

1. Integrating out the massive modes

We now need to dispose of the massive modes. Clea
we cannot just ignore the massive fluctuations. It is obvio
from Eqs.~2.16! and~2.17! that they are needed to bring th
purely M-dependent part of the action in a standard Land
Ginzburg-Wilson~LGW! form. Let us first integrate outDP
and DL in a Gaussian approximation, while neglecting t
coupling betweenq and these massive fluctuations. We w
consider the effects of this coupling later. From Eq.~2.18!
and the last term in Eq.~2.16! with S51 we obtain a con-
tribution to the action that is quadratic in the order-parame
field M. Combining it with theM2 term in Eq.~2.16! yields
a term proportional to

(
k

(
a

(
n

(
i 51

3

iMn
a~k!@112G tx̃~k,Vn!# iM 2n

a ~2k!,

~2.19a!

where

x̃~k,Vn!5T (
n1 ,n2

Q~n1n2!dn12n2 ,nDn1n2
~k!

~2.19b!
7-5
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is a restricted spin susceptibility that is given in terms of

Dnm~k!5wnm~k!F12
1

2pNFtel
wnm~k!G21

~2.19c!

with

wnm~k!5
1

V (
p

Gsp~p,vn!Gsp~p1k,vm!. ~2.19d!

HereGsp is the saddle-point Green function from Eq.~2.10f!.
TheQ function in Eq.~2.19b!, which restricts the frequenc
sum to frequencies that both have the same sign, resultsx̃
being the nonhydrodynamic part of the spin susceptibility
noninteracting disordered electrons. For small frequen
and wavenumbers, it reads

x̃~k,Vn!52NF1O~k2,Vn!. ~2.20a!

For later reference, we also note that fornm,0, Dnm is the
basic diffusion propagator. In the limit of small frequenci
and wavenumbers one finds

Dnm~k!5
2pNF

Dk21uVn2mu
~nm,0!,

[2pNFGHDn2m~k!, ~2.20b!

with

Dn~k!5
1

k21GHuVnu
. ~2.20c!

Here D51/GH is a bare diffusion coefficient, andVn
52pTn is a bosonic Matsubara frequency.

Within the approximation, Eq.~2.20a!, the effective ac-
tion has the form

Ãeff52(
k

(
a

(
n

(
i 51

3

iMn~k!@ t1ak21buVnu# iM 2n~2k!

1ANLsM@Q̂#1ApTKtE dx(
a

(
n

(
i 51

3

iMn
a~x!

3 (
r 50,3

~A21!r(
m

tr@~t r ^ si !Q̂m,m1n
aa ~x!#. ~2.21!

Here t5122NFG t , a and b are constants, and in the firs
term we have truncated the gradient expansion after the l
ing wavenumber and frequency-dependent terms. Notice
the first term taken in isolation describes a ferromagn
transition att50, which represents the Stoner criterion.

The following structure emerges. Our effective acti
takes the form of a LGW action for the order-parameter fi
M, a nonlinear sigma model for the soft fermionic mod
and a coupling between the order parameter and the com
ite fermion fieldQ̂. In our current approximation, only th
Gaussian part of the LGW action appears. However, keep
terms of higher order inDP would clearly produce terms o
higher order inM, with coefficients that are numbers in th
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limit of zero wave numbers and frequencies. For our p
poses it will suffice to keep the term of orderM4. We thus
should add to the action a term

ALGW
(4,1)5u4E dxT (

n1 ,n2 ,n3
(
a

@Ma~x,vn1
!•Ma~x,vn2

!#

3@Ma~x,vn3
!•Ma~x,2vn1

2vn2
2vn3

!#, ~2.22!

whereu4 is a number andM is the three-vector whose com
ponents areiM . A detailed derivation shows that there
also a term of the third order inM , with a coefficient that is
proportional to either a gradient or a time derivative. Th
term is irrelevant for the critical behavior at the ferroma
netic transition4 and we neglect it.

Both from simple physical considerations and from Ref
it is obvious that another term ofO(M4) must exist. This is
the ‘‘random mass’’ term that reflects spatial fluctuations
the location of the critical point, and it has the structure

ALGW
(4,2)5v4E dx (

n1 ,n2
(
a,b

uMa~x,vn1
!u2uMb~x,vn2

!u2,

~2.23!

wherev4 is a number. To see how this term arises in o
present formulation, we go back to Eq.~2.16!. If we expand
the S in the last term in powers ofq, the two lowest-order
contributions23,24 have the structures

ATE dxM ~x!DP~x!, ~2.24a!

ATE dxM ~x!DP~x!q~x!q~x!. ~2.24b!

Here we have dropped frequency labels and all other deg
of freedom that are irrelevant for power-counting purpos
Let us depict the fieldsM, DP, andq by dashed, wavy, and
solid lines, respectively. Then the two vertices in Eq
~2.24a! and ~2.24b! have the structures shown in Fig. 1.

Contracting the wavy lines yields an effective vertex
the form

TE dxM2~x!q2~x!, ~2.24c!

which is shown in Fig. 2.
This vertex can be used to construct the one-loop con

bution to the term ofO(M4) that is shown in Fig. 3.
Calculating the diagram yields Eq.~2.23!. We will further

discuss this term from a power-counting point of view
Sec. III C 2 below.

FIG. 1. M -DP andM -DP-q2 vertices. Broken lines denoteM,
solid lines denoteq, and wiggly lines denoteDP.
7-6
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2. Effective action and leading corrections

We now can assemble our effective action by collect
the various terms derived in the previous subsection. Be
doing so, however, it is illustrative and convenient to ad
term to the LGW part of the action that will be generated
the RG in Sec. III. As we will see, for dimensions 2,d

,4 the gradient-squared term in the first contribution toÃ is
not the leading wavenumber dependence. Rather, as
would expect from Ref. 4, there is a term proportional
ukud22, which first appears at the one-loop order. We the
fore add this term right away. Notice that the resulting act
is still local in the sense of Ref. 9. It will also turn out th
the term in the LGW action that is linear in frequency is n
the leading frequency dependence. Rather, the coupling
tweenM and Q̂ effectively produces a term proportional
uVnu/k2.2 Physically, this term reflects the fact that spin is
conserved variable, i.e., the characteristic frequency s
vanishes in the long-wavelength limit even away from t
critical point. We can therefore drop the frequency dep
dence from the first term in Eq.~2.21!.

Taking all of these points into account, we obtain t
following effective action:

Aeff5ALGW@M #1ANLsM@q#1Ac@M ,q#. ~2.25a!

HereALGW is the modified LGW part of the action,

ALGW@M #52(
k

(
a

(
n

(
i 51

3

iMn
a~k!@ t1ad22ukud22

1a2k2# iM 2n
a ~2k!1ALGW

(4,1)@M #1ALGW
(4,2)@M #,

~2.25b!

wheread22 anda2 are constants, andALGW
(4,1) andALGW

(4,2) are
from Eqs. ~2.22! and ~2.23!, respectively. The nonlinea
sigma model part of the action,ANLsM , has been given in
Eq. ~2.17a!, andAc represents the coupling betweenM and
q,

FIG. 2. EffectiveM2-q2 vertex obtained by contracting theDP
fluctuations of the two vertices shown in Fig. 1.

FIG. 3. One-loop renormalization of theM4 vertex by means of
the vertex in Fig. 2.
17442
g
re
a

ne

-
n

t
e-

le

-

Ac@M ,q#5ApTKtE dx(
a

(
n

(
i 51

3

iMn
a~x!

3 (
r 50,3

~A21!r(
m

tr@~t r ^ si !Q̂m,m1n
aa ~x!#.

~2.25c!

It is useful to define a field

b12~x!5(
i ,r

~t r ^ si !r
i b12~x!, ~2.26a!

with components

r
i b12~k!5da1a2

~2 !r /2(
n

dn,n12n2

3@ iMn
a1~k!1~2 !r 11iM

2n
a1 ~k!#. ~2.26b!

In terms ofb, the coupling part of the action can be writte
as

Ac@b,q#52
1

2
ApTKtE dx tr@b~x!Q̂~x!#. ~2.27!

We stress that we have added theukud22 term in Eq.~2.25b!
for convenience only. One could equally well work with th
theory given by our action withad2250, but some effects
that are included in the bareAeff would then appear only a
the loop level. We also stress that the coefficients of all n
Gaussian terms inAeff are finite in the limit of zero wave-
numbers and frequencies, so the theory is local in the se
of Ref. 9 in contrast to the situation in Ref. 4. More impo
tantly, the physically relevant point is that the current form
lation, as opposed to the one in Ref. 4, makes obvious
existence of two time scales as we will see in Sec. III belo

In order to justify the omission of the terms left out of o
effective action, we also need to know the structure of
omitted terms. We therefore list these here using nota
that leaves out anything that is not needed for pow
counting purposes.

First of all we have the corrections to the nonlinear sig
model. In addition to Eq.~2.18!, they consist of those term
in the Tr ln term in Eq.~2.10b! that contain cubic or highe
orders of DL, the part ofAint

(s) that contains the massiv
fluctuationDP, and corrections to the saddle-point appro
mation for^P& in Eq. ~2.15!. These have all been discusse
in Ref. 13 and the same discussion applies here.

Second, there are the terms that coupleM, DP, andq, see
the second term in the bracket in the last line of Eq.~2.16!.
In general, they have the structure

dnATE dxM ~x!DP~x!qn~x!, ~2.28!

with coupling constantsdn andn50,2,3, . . . .24 The first two
terms in this expansion have already been given in E
~2.24!.
7-7
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3. Observables

For a physical interpretation of any results obtained fr
our effective action we need to identify the appropriate o
servables in terms of the coupling constants of the theor
is obvious and easily confirmed by keeping a source term
the electron spin-density that the expectation value of
order-parameter fieldM determines the magnetizationm.
Specifically,

m5mBA2T/G t^
iMn50

a ~x!&. ~2.29a!

The two-pointM vertex is therefore proportional to the ma
netic susceptibility.

Other relevant observables are the specific-heat co
cient

g5
4p

3
H ~2.29b!

and the electrical conductivity

s5
8

pG
~2.29c!

~see Sec. II C!. Also of interest is the electronic density o
states per spin13

N~eF1v!5NF^0
0Q̂nn

aa~x!& ivn→v1 i0 , ~2.29d!

where the energy or frequencyv is measured from the Ferm
energyeF .

III. RENORMALIZATION GROUP ANALYSIS

In this section, we first consider low-order perturbati
theory to see how those terms in Eqs.~2.25! that were not in
the bare action are generated. We then do a power-coun
analysis to determine the minimal effective action that ne
to be analyzed in order to find the critical behavior at t
ferromagnetic transition. Finally, we show that the terms t
were omitted from the effective action are irrelevant, in t
RG sense, for the critical behavior.

A. Perturbation theory

We first set up a standard perturbative expansion for
effective action, starting with the Gaussian theory.

1. Gaussian propagators

We start by expanding the effective action, Eqs.~2.25! to
the bilinear order inM ~or b) and q. We obtain for the
Gaussian action
17442
-
It
r
e

fi-

ng
s

t

r

AG@M ,q#52(
k

(
n

(
a

(
i 51

3

iMn
a~k!u2~k! iM 2n

a ~2k!

2
4

G (
k

(
1,2,3,4

(
i ,r

r
i q12~k! iG12,34

(2) ~k!r
i q34~2k!

14ApTKt(
k

(
12

(
i ,r

r
i q12~k!r

i b12~2k!,

~3.1a!

where

u2~k!5t1ad22ukud221a2k2. ~3.1b!

The bare two-pointq vertex reads

0G12,34
(2) ~k!5d13d24~k21GHVn12n2

!

1d122,324da1a2
da1a3

2pTGKs , ~3.1c!

1,2,3G12,34
(2) ~k!5d13d24~k21GHVn12n2

!, ~3.1d!

with Ks52pNF
2Gs/2.

The quadratic form defined by this Gaussian action is e
ily inverted. For the order parameter correlations we find

^ iMn
a~k! jMm

b ~p!&5dk,2pdn,2md i j dab

1

2
Mn~k!,

~3.2a!

^ r
i b12~k!s

j b34~p!&52dk,2pd rsd i j da1a2
da1a3

Mn12n2
~k!

3@d122,3242~2 !rd122,423# ~3.2b!

in terms of the paramagnon propagator

Mn~k!5
1

t1ad22ukud221a2k21
GKtuVnu

k21GHuVnu

.

~3.2c!

Notice that the coupling between the order-parameter fi
and the fermionic degrees of freedom has produced the
namical piece ofM that is characteristic of disordered itin
erant ferromagnets.2

For the fermionic propagators we find

^ r
i q12~k!s

j q34~p!&5dk,2pd rsd i j

G

8
iG12,34

(2)21~k!, ~3.3a!

in terms of the inverse of Eq.~3.1c!,

0G12,34
(2)21~k!5d13d24Dn12n2

~k!

2d122,324da1a2
da1a3

2pTGKs

3Dn12n2
~k!D n12n2

(s) ~k!, ~3.3b!

and
7-8
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1,2,3G12,34
(2)21~k!5d13d24Dn12n2

~k!

2d122,324da1a2
da1a3

2pTGKt

3@Dn12n2
~k!#2Mn12n2

~k!. ~3.3c!

HereD (s) is the spin-singlet propagator, which in the limit o
long wavelengths and small frequencies reads6

D n
(s)~k!5

1

k21G~H1Ks!Vn

. ~3.3d!

Finally, due to the coupling betweenM and q we have a
mixed propagator

^ r
i q12~k!s

j b34~p!&52dk,2pd rsd i j da1a2
da1a3

G

2
ApTKt

3Dn12n2
~k!Mn12n2

~k!@d122,324

1~2 !r 11d122,423#. ~3.4!

2. One-loop order

Let us now consider the renormalization of theM2 vertex
u2, Eq. ~3.1b!. At one-loop order, the relevant diagram is t
one shown in Fig. 4. While the complete result is rath
involved, it can be simplified by means of the followin
observation. The structure of the diagram leads to
frequency-momentum integral over diffusion poles mu
plied by one or more paramagnon propagators. Inspec
shows that the frequency in this integral scales like a wa
number squared. To leading order in the distance from
critical point and for the purpose of obtaining leading infr
red singularities, we therefore can use the following appro
mation in the integrand:

GKtV lDl~p!Ml~p!511O~ t,upud!. ~3.5a!

At zero external frequency the diagram then yields

du2~k!52
G2

2

Kt

V (
p

2pT(
l 50

`

Dl~p!Dl~p1k!.

~3.5b!

Performing the integrals shows that this diagram provide
finite renormalization of the coefficientad22 of the ukud22

term. In particular, it would generate this term if it were n
present in the bare action. This is the reason why we ad
this term by hand in Sec. II D 2.

We now consider the one-loop renormalizations of
other vertices in the effective action. Of particular intere
are the coupling constantsH andG in the two-pointq vertex,
which determine the specific-heat coefficient and the cond

FIG. 4. One-loop renormalization of the vertexu2.
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tivity, respectively, see Sec. II D 3 above. The topologic
structure of the relevant diagrams is shown in Fig. 5.

From extensive work on the nonlinear sigma model it
known that Fig. 5~b!, combined with suitable contribution
from Fig. 5~a!, is finite for d.2.6 A calculation of Fig. 5~c!
and the remaining parts of Fig. 5~a! reveals that their contri-
bution to the one-loop renormalization ofG consists of two
pieces, which at zero external frequency are given by

~dG!15
3

8
G3

Kt

V (
p

2pT(
l 50

`

D l
2~p!Ml~p! ~3.6a!

and

~dG!25
3

8
G3Kt

]

]k2U
k50

1

V (
p

2pT(
l 50

`

Ml~p!

3@Dl~p!2Dl~p1k!#, ~3.6b!

respectively. Both of these integrals are finite ind.2. A
simple calculation shows that the one-loop correction to
density of states is given by the same integral as (dG)1. For
the H renormalization, Fig. 5~b! is again finite while the
other two contributions yield

dH5
3

8
GKt

1

Vn
2pT(

l 50

n
1

V (
p

Dl~p!Ml~p!, ~3.7a!

wheren is the external frequency label. For later referen
we note that Figs. 5~a! and 5~c! each contribute one half o
this result. Individually, each of these diagrams also cont
utes pieces that diverge like 1/Vn ; these contributions cance
between the two diagrams.@The same is true for Fig. 5~b!
and the corresponding contributions from Fig. 5~a!.# Notice
that the frequency structure is slightly different than in t
case of theG-renormalization. This leads to a finite fre
quency sum in Eq.~3.7a! and as a result the integral is loga
rithmically infrared divergent for all dimensions 2<d,4,

dH5
3

4
ḠKt ln~1/Vn!. ~3.7b!

Here Ḡ5GSd /(2p)d, with Sd the surface area of the un
(d21) sphere. While this is consistent with the result of R
4 that the specific-heat coefficient at the quantum ferrom
netic transition is logarithmically divergent for all 2,d,4,
it is obvious from the present formulation of the theory th
this is very unlikely to be the exact critical behavior
claimed in that reference. The reason is that an insertion
the one-loopH into the one-loop diagrams yields a ln2 V
singularity and so on. Similarly, inserting the one-loop res
for theq propagator in the diagram shown in Fig. 3.5 gen
ates a logarithmic correction to the vertexu2(k). Unless
these insertions are exactly canceled by skeleton-diag

FIG. 5. One-loop diagrams that renormalizeH andG.
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contributions, the exact critical behavior must therefore
volve a more complicated function of lnV. We will come
back to this point in the next subsection and in II.

Finally, the diagrams shown in Fig. 5 also determine
renormalization ofKs . Again, Fig. 5~b! yields a finite result,
while from the other two diagrams one expects

dKs52dH, ~3.7c!

wheredH is the divergent part of theH renormalization, Eq.
~3.7b!. This result follows from what is known about th
nonlinear sigma model as we will discuss in Sec. IV A.

Notice that the effects we have discussed above at
one-loop level would of course also occur if we had work
with the theory that one obtains if one puts the baread22
equal to zero. However, in that theory their derivation wou
have required a renormalization of the paramagnon prop
tor. In a diagrammatic language, by adding theukud22 term
to our bare action, we have made use of skeleton diagr
that contain certain infinite resummations. We note in pa
ing that one might worry about higher orders in the lo
expansion producing even stronger nonanalyticities t
ukud22. We will show in II that this is not the case.

B. Naive fixed points and their instability

We now proceed to perform a power-counting analysis
our effective action, Eqs.~2.25!. Our goal is to understand
the perturbative results of the preceding subsection from
more general point of view, and to determine the minim
effective action which, when solved, will yield theexact
critical behavior. For this purpose it is convenient to rewr
the action in a schematic form that suppresses everyt
that is not necessary for power counting,

Aeff@M ,q#52E dxM @ t1ad22]x
d221a2]x

2#M

1O~]x
4M2,M4!2

1

GE dx~]xq!21HE dxVq2

1KsTE dxq22
1

G4
E dx]x

2q41H4E dxVq4

1O~Tq3,]x
2q6,Vq6!1ATc1E dxMq

1ATc2E dxMq21O~ATMq4!. ~3.8!

Here the fields are understood to be functions of position
frequency and only quantities that carry a scale dimens
are shown. The bare values ofG4 andH4 are proportional to
those ofG and H.25 The term of orderTq3, which arises
from the interacting part ofANLsM , will not be of impor-
tance for our purposes although its coupling constant squ
has the same scale dimension as 1/G4 andH4. It is therefore
not shown explicitly. Thec1 , c2, etc. are the coupling con
stants of the terms contained inAc , Eq. ~2.25c!.

We now assign to a lengthL a scale dimension@L#5
21. Under a renormalization-group transformation that
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volves a length rescaling by a factorb, all quantities will
then change according toA→b[A]A, with @A# the scale di-
mension ofA. In particular, imaginary timet and tempera-
ture T or frequencyV have scale dimensions@t#[2z, and
@T#5@V#[z, respectively.

1. Hertz’s fixed point

To illustrate an important point, let us first show how o
recovers Hertz’s mean-field fixed point2 within the present
formalism. Let us look for a fixed point where the coef
cientsa2 andc1 are marginal,@a2#5@c1#50. This choice26

is motivated by the desire to find a fixed point with me
field-like static critical behavior and with dynamics given b
the frequency dependence of the standard paramag
propagatorM, Eq. ~3.2c!. ~Recall that the frequency depen
dence ofM was produced by the vertex with coupling co
stantc1.! From the condition that the action be dimensionle
we then obtain the scale dimensions of the order-param
field,

@Mn~x!#5~d22!/2, ~3.9a!

and we findt to be relevant with scale dimension

@ t#52. ~3.9b!

We expect the correlations of theq field to describe the dif-
fusive dynamics of the fermions, so we choose13

@qnm~x!#5~d22!/2, ~3.9c!

andG, H, andKs are all dimensionless. The marginality o
the coupling constantc1 then implies

z5@T#54. ~3.9d!

This is the fixed point proposed by Hertz,2 which leads to
mean-field critical behavior. It is unstable because the c
pling ad22 is relevant with respect to this fixed point as h
been pointed out in Ref. 4. While this is obvious from t
action as formulated here, the following interesting quest
arises. Suppose we had not added the term with coup
constantad22 to our bare action. Since this term was gen
ated by means of theMq2 vertex with coupling constantc2,
see Fig. 4,c2 should be relevant with respect to Hertz’s fixe
point. However, power counting with the above scale dim
sions yields

@c2#5
21

2
~d1z26!, ~3.9e!

so with the above valuez54, c2 seems to be irrelevant. Th
resolution of this paradox lies in the fact that there is mo
than one time scale in the problem, and hence all factorsT
do not carry the same scale dimensionz. This is obvious if
we consider the fermionic sector of our action; the factors
T in the q2 vertex carry a scale dimension@T#5zdiff52,
which corresponds to the diffusive time scale that descri
the dynamics of the electronic soft modes and which is d
tinct from the critical time scale that corresponds to@T#
5zc54. The scale dimensions of the factors ofAT in the
coupling part of the action are therefore nota priori clear,
7-10
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and they may depend on the diagrammatic context a verte
used in. Consider the diagram in Fig. 4 again. In this cont
the two factors ofAT contribute to the frequency measure
a fermionic loop and hence they carry the diffusive tim
scale. Indeed, withz52 Eq. ~3.9e! shows thatc2 is relevant
for 2,d,4 and its scale dimension is consistent with that
ad22.

It is worthwhile to mention that one can tella priori that
the scale dimension fort, Eq. ~3.9b!, cannot correspond to
stable fixed point since it corresponds to a correlation-len
exponentn51/@ t#51/2, which violates the Harris criterion
inequalityn>2/d.27 The relevance ofc2 provides an explicit
mechanism for the instability.

We also note that the above discussion is oversimpli
in that it pretends thatM has always the same scale dime
sion, independent of the context the order-parameter fluc
tions appear in. As we will see in the next subsection, thi
not quite true. However, since this point is not crucial for t
instability of Hertz’s fixed point we have suppressed it.

2. A marginally unstable fixed point

Given the presence of the term with coupling const
ad22, an obvious attempt to find a stable fixed point is
choosead22 andc1 to be marginal instead ofa2 andc1.28 A
slight complication, however, lies in the fact that due to t
existence of two time scales,ad22 will not necessarily be
marginal under all circumstances. Namely, if the frequen
in the paramagnon propagator, Eq.~3.2c!, is diffusive, i.e., if
it scales likek2 thenad22 will be irrelevant. As we will see
below, this can happen if the paramagnon propagator app
as an internal propagator in perturbation theory although
the critical paramagnonad22 is marginal. In general, we
therefore demand only thatc1 be marginal, that the scal
dimension of theq field be consistent with a diffusivêqq&
propagator,

@qnm~x!#5
1

2
~d22!, ~3.10a!

and that the diffusive time scale be represented by a dyna
cal critical exponent

zdiff52. ~3.10b!

Equation~3.8! then implies

@G#5@H#5@Ks#50. ~3.10c!

The marginality ofc1 implies for the scale dimension of th
order-parameter field

@Mn~x!#511~d2z!/2, ~3.11a!

wherez is the dynamical exponent associated with theAT
prefactor in thec1 vertex. In the critical paramagnon prop
gator we expectad22 to be marginal, which implies
@Mn(x)#51, and hence a critical time scale characterized

zc5d ~3.11b!

and a critical exponenth, defined by @Mn(x)#5(d22
1h)/2,
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h542d. ~3.11c!

This makesa2 irrelevant, whilet is relevant with scale di-
mension

@ t#5d22, ~3.12a!

which leads to a correlation-length exponent

n51/@ t#51/~d22!. ~3.12b!

Notice that in contrast to the situation at Hertz’s fixed poi
this result respects the Harris criterion.27 Here and in the
remainder of this paper we restrict ourselves to the rang
dimensions 2,d,4, which includes the physically interes
ing cased53. For the behavior in higher dimensions, s
Ref. 4.

The preceding results characterize the Gaussian fi
point that was discussed in Ref. 4. If all other terms in t
action were irrelevant or marginal leading to finite renorm
izations only, then this fixed point would be stable. To che
this, we need to consider the corrections to the Gaus
action. We start withc2, whose scale dimension is

@c2#512z/2, ~3.13!

where z is the scale dimension of the factor ofT in that
vertex. If this temperature represents the critical time sc
then c2 is irrelevant. However if it represents the diffusiv
time scale, then it is marginal. This can indeed happen as
have discussed in Sec. III B 1 above. The example we u
viz., the diagram in Fig. 4 just leads to a finite renormaliz
tion of the coefficientad22, which is part of our effective
action anyway. If this were the only effect ofc2, then we
could neglect it. However, this is not the case. The one-lo
renormalization ofH that was discussed in Sec. III A 2 pro
vides an example of how operators that appear irrelevan
naive power counting can be effectively marginal due to
existence of two time scales, lead to logarithms, and the
fore need to be kept. Consequently,c2 is not necessarily
harmless even ifz5d in Eq. ~3.13!. This is an important
point that we now discuss in detail.

Consider Figs. 5~a! and 5~c!. They both lead to a correc
tion to the two-pointq vertex that is of the form, at zero
external wavenumber and frequency,

dG (2)}
1

V (
p

T(
l 51

`

Dl~p!Ml~p!. ~3.14a!

For scaling purposes, let us cut off the momentum integra
the infrared by 1/b, where b is a RG-length scale factor
Doing the integral then shows that it is given by a const
plus a term proportional tob2d ln b. The constants cance
between the two diagrams, and we have

dG (2);b2d ln b. ~3.14b!

Notice that the frequency in the above integral scales lik
wavenumber to the powerd, so (c2)2 in Fig. 5~c! has a
negative scale dimension2(d22), and so does the quarti
vertex in Fig. 5~a!. The salient point is now as follows. Fo
the purpose of the renormalization ofG, i.e., the wave
7-11
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number-dependent part ofG (2), we need to replace 1/b by k.
We then obtain the gradient squared of the bare vertex ti
a factor ukud22. The contribution is therefore irrelevant, i
agreement with the negative scale dimensions of the vert
and the result of the explicit perturbative calculation. Ho
ever, for the purpose of the renormalization ofH we need to
replace 1/b by an appropriate power of the frequency. Th
can beV1/2, if V represents the diffusive frequency scale
V1/d, if it represents the critical one. Since the frequency
the integral scales likeupud, the latter applies and we have

dG (2)}V ln V, ~3.14c!

in agreement with Eq.~3.7b!.
The point illustrated above is as follows. Due to the ex

tence of two different time scales, the fact that an opera
has a negative scale dimension by naive power count
which is based on the consideration of length scales, does
necessarily imply that it will be irrelevant. Rather, operato
with scale dimensions between zero and2(d22) may act
as marginal operators with respect to frequency scaling.
tice, however, that for this mechanism to be operative i
crucial that the vertex being renormalized is proportiona
frequency. Therefore, the seemingly irrelevant operators
come effectively marginal with respect toH but not with
respect toG or any other coupling constant. In the Append
we discuss another aspect of this phenomenon.

We conclude that the Gaussian fixed point of Ref. 4 is
stable since there are operators that are effectively marg
with respect to it. If these operators just led to finite ren
malizations, this would still not change the conclusions
the earlier paper. However, as we have seen above, they
to logarithmic corrections to power-law scaling and hen
need to be kept. The problem is less severe than in the
of Hertz’s fixed point, however, since now there are no r
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evant operators. If one can show that all other terms are t
irrelevant, then the conclusion would be that to determine
exact critical behavior it suffices to keep the Gaussian ac
plus theMq2 coupling and all terms up toO(q4). We inves-
tigate this hypothesis next.

C. Effective action for the critical behavior

1. The effective action

From the discussion in the preceding subsection we in
an educated guess for an effective action that contains
the terms needed for a description of the critical fixed po
and the associated critical behavior. This action should c
tain all of the terms that are shown explicitly in Eq.~3.8!,
except that for 2,d,4 one can drop the gradient-squar
term in the LGW part of the action. Notice that we need
keep the terms ofO(]x

2q4,Vq4) in the expansion of the non
linear sigma model in powers ofq, as they give rise to in Fig
5~a!. These terms appear irrelevant by naive power coun
but contribute to the leading-frequency dependence
means of the mechanism discussed in Sec. III B 2 and in
Appendix. By the same argument one should keep the te
of order O(q3) and O(q4) that arise from the spin-single
interaction. However, by themselves these vertices give o
rise to diagrams that are finite ind.2,6 and combined with
c2 or other vertices that containM they lead to mixed̂bq&
propagators, Eq.~3.4!, which are less infrared divergent the
the second term on the right-hand side of Eq.~3.3c!. These
terms can therefore safely be neglected. This leaves the s
singlet interaction constantKs entering the effective theory
via the vertexG (2) only. SinceKsÞ0 does not change th
diffusive structure of the noninteractingq propagator, it can
be dropped there as well. Restoring all indices, the sugge
effective action for describing the critical fixed point reads29
AFP52 (
k,n,a

(
i 51

3

iMn
a~k!@ t1ad22ukud22# iM 2n

a ~2k!2
4

G (
k

(
1,2,3,4

(
r ,i

r
i q12~k! iG12,34

(2) ~k!r
i q34~2k!

2
1

4G (
1,2,3,4

(
r ,s,t,u

(
i 1 ,i 2 ,i 3 ,i 4

1

V (
k1 ,k2 ,k3 ,k4

rstu
i 1i 2i 3i 4G1234

(4) ~k1 ,k2 ,k3 ,k4!r
i 1q12~k1!s

i 2q32~k2! t
i 3q34~k3!u

i 4q14~k4!

1c1AT(
k

(
12

r
i b12~k!r

i q12~2k!1c2AT
1

AV
(
k,p

(
n1 ,n2 ,m

(
r ,s,t

(
i 51

3

(
j ,k

(
a,b

r
i bn1n2

aa ~k!

3@s
j qn2m

ab ~p! t
kqn1m

ab ~2p2k!tr~t rtst t
†!tr~sisjsk

†!2s
j qmn2

ba ~p! t
kqmn1

ba ~2p2k!tr~t rts
†t t!tr~sisj

†sk!#, ~3.15a!
e

with G (2) from Eqs.~3.1c! and ~3.1d! with Ks50, and

rstu
i 1i 2i 3i 4G1234

(4) ~k1 ,k2 ,k3 ,k4!52dk11k21k31k4,0tr~t rts
†t ttu

†!

3tr~si 1
si 2

† si 3
si 4

† !~k1•k31k1•k4

1k1•k21k2•k42GHVn12n2
.

~3.15b!
The bare values of the coupling constantsc1 and c2 are
related, and given by

c1516c254ApKt. ~3.15c!

Notice that this action isnot Gaussian, and therefore th
critical behavior is not easy to determine.
7-12
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We will solve the effective model given by Eqs.~3.15! in
II,12 where we will show that the exact critical behavior d
fers from the Gaussian one by logarithmic corrections on
In the remainder of this paper we show that the action gi
by Eqs.~3.15! really is sufficient for describing the critica
behavior in 2,d,4.

2. Corrections to the effective action

We now show that all terms that were neglected in writi
Eqs. ~3.15! are irrelevant by power counting, keeping
mind the complications due to the two time scales that w
discussed in Sec. III B above. In addition to the scale dim
sions ofM andq given in Eqs.~3.10a! and~3.11a!, we need
for this purpose the scale dimension of the massive fieldsDP
andDL. The correlations ofDP are short ranged, and of th
same nature as at the Fermi-liquid fixed point that was
cussed in Ref. 13. We thus choose

@DP~x!#5@DL~x!#5d/2. ~3.16!

Power counting now proceeds as usual. The nonlinear si
model action we have kept up toO(q4). Higher-order cor-
rections have the same scale dimensions as at the Fe
liquid fixed point in Ref. 13. They thus are all irrelevant wi
scale dimensions that are smaller than2(d22) and are
therefore harmless. The couplings betweenM, q, and the
massive modes given in Eq.~2.28! for even powers ofq have
scale dimensions

@dn#52
n21

2
~d22!2

z

2
<

21

2
~d1z22! ~3.17!

for n>2, and thus can safely be neglected. For odd pow
of q, the couplings contain an effective external frequen
and therefore are even less irrelevant than Eq.~3.17! sug-
gests. In particular we confirm thatd1, which we have
dropped,24 has a scale dimension@d1#523z/2 and is thus
more irrelevant thend2 . @d0#5(d222z)/2, which becomes
marginal ind54 if z5zdiff52. However,d54 is a special
dimension anyway, and ford.4 one obtains a differen
fixed point since theukud22 term in the LGW action is no
longer leading. A remaining question is whether the forma
irrelevantd0 can be promoted to marginal or relevant sta
by the same mechanism that is operative for, e.g.,c2. The
answer is negative since the mechanism works only for
renormalization ofH, and in order to renormalizeH, d0
needs to be combined with somedn with n>2. However,
@d0d2#52z,2(d22) for d,4. Therefore, all of thedn
can be safely neglected. Similarly, all terms of order hig
than quadratic order inM are irrelevant. We mention, how
ever, that in the ordered phase the term ofO(M4) becomes
dangerously irrelevant and needs to be kept. This will
important in II.

Finally the random mass termALGW
(4,2) , Eq. ~2.23!, deserves

an extra discussion. The scale dimension of the coup
constantv4 in Eq. ~2.23! is @v4#5d24, while the scale di-
mension of the combination ofd0 andd2 in Eq. ~2.28! that
producev4 in perturbation theory~see Fig. 2! is @(d0d2)2#
522z524. @v4# is thus much less irrelevant than on
17442
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might expect from naive power counting. The resolution
this discrepancy is as follows. Thev4 vertex shown in Fig. 2
at zero wavenumber has the schematic structure

E dyE dvv^q2~x!q2~y!&, ~3.18!

which has a naive scale dimension ofd ~with z52). How-
ever, the integral is a finite number and so its actual sc
dimension is zero. If we consider the vertex function a
finite wavenumberuku and perform a gradient expansio
then we obtain an expansion of the form

const1k21ukud. ~3.19!

What happens here is that power counting yields the s
dimension of the firstnonanalyticterm in the gradient ex-
pansion, but misses more dominant analytic contributio
This is of no consequence as long as the latter just renorm
ize existing terms in the action. Here, however, they prod
a new term in the action, viz., the random mass term a
therefore need to be taken into account. The difference
tween the naive scale dimension of the integral, Eq.~3.18!,
viz., d and its actual scale dimension, viz., zero is precis
the difference between@v4#5d24 and@(d0d2)2#524.

We finally come back to the simplifications inherent
our starting point, Eqs.~2.2!, which describe the paramag
netic phase as a disordered electron fluid while neglec
band structure and other features of solids. The justifica
for these simplifications is as follows. The disordered Ferm
liquid fixed point is characterized by relatively few
parameters.13 This is in contrast to a clean Fermi liquid
which requires an infinite number of Fermi-liquid paramete
or a whole function to completely characterize the fix
point.30 The crucial physical distinction is that for the diso
dered case the slowest, and therefore dominant, modes
diffusive and arise only from electron number density, sp
density, and particle-particle density variables. In contrast
the clean case there are an infinite number of soft sin
particle and two-particle modes. This simplification for th
disordered case carries over to the description of the fe
magnetic quantum phase transition.

IV. DISCUSSION

As we have seen in Sec. III C, the effective action for t
critical behavior is not Gaussian, and therefore a determ
tion of the critical behavior is nontrivial. It turns out that th
critical behavior in all dimensionsd.2 can nevertheless b
determined exactly and is given by the power laws found
Ref. 4 with additional logarithmic corrections to scalin
This solution of the effective action will be deferred to II.12

Here we restrict ourselves to a discussion of some gen
features of our effective theory and of its relation to previo
approaches to the problem.

A. Relation to other approaches

Let us briefly discuss the relation between our curr
approach and previous theories. This is most easily done
starting from Eq.~2.10b!. By formally integrating out the
7-13
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fermions, i.e., the fieldsQ andL̃ from this formulation of the
action one obtains an LGW theory or action entirely in ter
of the order-parameter field. If the fermions are integra
out in the tree approximation, one recovers Hertz’s theo2

If they are integrated out formally exactly, the vertices of t
LGW functional are given in terms of spin-density corre
tion functions for a ‘‘reference ensemble’’ or fictitious ele
tron system that has no bare spin-triplet interaction. Thi
the theory that was analyzed in Ref. 4. The disadvantag
that approach is that the reference ensemble contains
modes, viz., theq and integrating them out produces effe
tive vertices in the LGW theory that diverge in the limit o
small wave numbers and frequencies. That is, one obtai
nonlocal field theory. Furthermore, Ref. 4 performed
power-counting analysis only, and integrating out the ferm
onic degrees of freedom obscured the subtleties that aris
this context due to the existence of the diffusive time scale
addition to the critical one. As a result, the power-count
analysis of Ref. 4 was insensitive to the logarithmic corr
tions that we found by means of explicit perturbative calc
lations in Sec. III A 2 and explained in Sec. III B 2 in term
of a more sophisticated scaling analysis than the pure L
theory allowed for. Notice that in some other respects Re
was actually more sophisticated than the present theory.
instance, it included in the bare action, effects that requir
one-loop analysis in the present approach, e.g. theukud22

term in the vertexu2. However, the insensitivity to logarith
mic corrections is hard to overcome within the framework
the nonlocal theory.

The relation between the present theory and Ref. 8 is
obvious. To see it, consider Eqs.~2.25! and integrate outM.
This yields a nonlinear sigma model with a triplet interacti
amplitude that is given by the static paramagnon propaga
We have performed explicit calculations within this theo
and ascertained that it yields the same results as the cou
M -q theory discussed above, as it should. This equivale
between theM -q theory and the sigma model is the basis
Eq. ~3.7c!, since within the sigma modelH1Ks is not sin-
gularly renormalized.6 The bare nonlinear sigma model
Ref. 8 had a pointlike spin-triplet interaction amplitude, b
under renormalization theukud22 that is characteristic of the
static paramagnon is generated. It is thus plausible that
pure nonlinear sigma model should contain the critical fix
point for the ferromagnetic transition. However, since t
order parameter has been integrated out, the nature o
transition is completely obscured within this approach, an
description of the ordered phase is not possible. This is
reason why Ref. 8 could only conclude that the transition
of magnetic nature.31 We will come back to the detailed
connection between the two approaches in II. Here we
mention that the present analysis positively identifies
runaway flow that is encountered in the nonlinear sig
model in the absence of any spin-flip mechanisms6 as signal-
ing the ferromagnetic transition.7

We also mention that the fixed point identified in Se
III C above violates some of the general scaling laws
tained by Sachdev.3 As has been discussed in Ref. 4 in som
17442
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detail, this can be traced to the presence of dangerous i
evant variables, which can always invalidate general sca
arguments.32

We conclude that all of the previous approaches to
problem break down at some level, and that the basic pr
lem is always the same, namely a lack of explicitness. O
a local field theory that correctly identifies and keeps all
the soft modes allows for the explicit calculations necess
to check more general arguments that may break down
cause of the failure of hidden assumptions. Interestingly
we will show in II, the problem was solved technically co
rectly in Ref. 8, but the missing physical interpretation re
dered this result of limited value at the time.

B. Scaling issues

Let us finally come back to the issue of the two differe
time scales, which has been crucial for a correct applica
of scaling ideas to the problem. As we have seen in S
III B 1, the implicit assumption of the existence of only on
time scale, namely the critical one can lead to wrong conc
sions if one relies strictly on power-counting arguments. E
plicit loop calculations, on the other hand, reveal the fal
ciousness of the assumption by producing terms in the ac
that are inconsistent with the power counting. The point
that the diffusive modes, whose time scale is different fro
the critical one, produce long-range correlationseverywhere,
not just at the critical point as has been discussed in de
elsewhere.33 These long-range correlations are reflected,
instance, in theukud22 term in the LGW part of the action
Eq. ~2.25b!, which is responsible for the instability o
Hertz’s fixed point.

For the instability of the Gaussian fixed point of Ref. 4
similar mechanism applies, although it is weaker and l
obvious. As we have seen in the context of Eqs.~3.14!, non-
Gaussian terms that formally have a negative scale dim
sion can effectively become marginal with respect
frequency-dependent coupling constants. This ‘‘counting
cident’’ can only happen for vertices that vanish at zero f
quency, and it has been analyzed from a RG point of view
Sec. III B 2 and in the Appendix.

We will come back to these arguments in II, where w
will provide both a resummation of perturbation theory to
orders and a complete scaling description of the exact crit
behavior, including all logarithmic corrections.
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APPENDIX: CONSEQUENCES OF TWO DIFFERENT
TIME SCALES

In this appendix we discuss two additional aspects of
crucial point made in Sec. III B 2.

Let us first take a phenomenological scaling point
view. The scaling equation for the two-pointq-vertex func-
tion G (2) reads
7-14
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G (2)~k50,V!5b22g (2)~Vb2,Vbd,c2b2(d22)/2, . . . !.
~A1!

Here the ellipses denote the dependence of the scaling f
tion g (2) on all operators that are not shown explicitl
Among these are 1/G4 andH4, which play the same role fo
scaling asc2

2 does. For simplicity we restrict the discussio
to the effect of the latter. In writing Eq.~A1!, we have al-
lowed for a dependence on both the diffusive and the crit
frequency scale. At the zero-loop order,g (2) depends only on
the former, and by puttingb51/AV we haveG (2)(k50,V)
}V. At one-loop order, it depends on the critical frequen
as well, which opens the possibility of a stronger frequen
dependence proportional toV2/d. However, the one-loop
contribution has the propertyg (2)(x,y,z)5 f (yz2), which re-
stores the linear-frequency behavior ofG (2). This is the same
phenomenon that we have discussed within the contex
explicit perturbation theory in connection with Eqs.~3.14!.
Logarithmic corrections to scaling are neglected in t
simple argument.

To illustrate the same point from a RG flow-equati
point of view, and at the same time see the origin of
logarithms, we absorb the frequency or temperature fac
multiplying H and c1 in Eq. ~3.8! into these coupling con
stants by definingH̃5HV andc̃15c1AT. For H̃, c̃1, andc2
we then have the flow equations

dH̃

d ln b
52H̃1const3 c̃1

2c2
2 , ~A2a!
.
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dc̃1

d ln b
5dc̃1/2, ~A2b!

dc2

d ln b
52~d22!c2/2 ~A2c!

plus higher-loop orders. Again, 1/G4 and H4 play a role
analogous toc2

2 and we have suppressed them for simplici
The solution of this system of flow equations is

H̃~b!5H̃~b51!b21const3b2 ln b. ~A3!

In this picture, the positive scale dimensions ofH̃ and c̃1
reflect the fact that frequency or temperature is a relev
variable. The critical frequency is more relevant than t
diffusive one but this difference is made up for by the fa
that the critical frequency is always multiplied byc2

2. In this
way the formally irrelevantc2 effectively acquires a mar
ginal status. The logarithm, at one-loop order, reflects a re
nance between the scale dimensions ofc̃1 and c2, and rep-
resents one of the possibilities in Wegner’s classification
logarithmic corrections to scaling34 as was already pointed
out in Ref. 4. At higher-loop order, however, additional log
rithmic terms appear as we will show in II.
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