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Phase transitions in the one-dimensional spin-S J1-J2 XY model
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The one-dimensional spin-S J1-J2 XY model is studied within the bosonization approach. Around the two
limits (J2 /J1!1, J2 /J1@1) where a field theoretical analysis can be derived, we discuss the phases as well
as the different phase transitions that occur in the model. In particular, it is found that the chiral critical spin
nematic phase, discovered by Nersesyanet al. @Phys. Rev. Lett.81, 910 ~1998!# for S51/2, exists in the
general spin-S case. The nature of the effective-field theory that describes the transition between this chiral
critical phase and a chiral gapped phase is also determined.
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I. INTRODUCTION

The interplay between frustration and quantum fluct
tions in low-dimensional spin systems has attracted m
interest. One of the main reasons for this attention is t
frustration is expected to lead to new exotic phases as we
unconventional spin excitations. In the one-dimensio
case, powerful nonperturbative methods are available and
key features of frustration can then be analyzed in depth
this respect, the phase diagram of the one-dimensionS
51/2 J1-J2 XY model has been studied extensively over
years. The lattice Hamiltonian of this model is defined by

H5J1(
n

~Sn
xSn11

x 1Sn
ySn11

y !1J2(
n

~Sn
xSn12

x 1Sn
ySn12

y !,

~1!

whereSn
65Sn

x6 iSn
y is a spin-1/2 operator at siten andJ2 is

a competitive antiferromagnetic interaction (J1 ,J2.0)
which introduces frustration in the model. The phase d
gram of the Hamiltonian~1! is expected to be rich. For
small value ofJ2, one has a spin fluid phase (XY phase!
characterized by gapless excitations with central chargc
51 whereas forJ2 /J1.0.32 ~Ref. 1! a phase transition o
Kosterlitz-Thouless~KT! type occurs and the model enters
massive region with a twofold degenerate ground s
~dimerized phase!.2 Interestingly enough, it was recently pre
dicted by Nersesyanet al.,3 within the bosonization
approach,4 that in the largeJ2 limit, where the model can be
viewed as a two-legXY zigzag ladder, a critical spin nemat
phase with chiral long-range order@^(SW n`SW n11)z&5” 0#
should emerge. This unconventional phase with unbro
time-reversal symmetry is characterized by nonzero lo
spin currents polarized along the anisotropyz axis. The
transverse spin-spin correlation functions are incommen
rate and fall off with the distance as a power law with t
exponent 1/4. However, this phase has not been reporte
the numerical calculations of Refs. 5 and 6. In contrast, o
the previous well-known phases~the spin fluid and dimer-
ized phases! have been found. A numerical analysis of t
model using an exact diagonalization method with twis
0163-1829/2001/63~17!/174426~12!/$20.00 63 1744
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boundary conditions has pointed out the presence of inc
mensuration in the largeJ2 limit 7 but within this approach it
has not been possible to conclude on the criticality or no
this phase. Very recently, Nishiyama8 has investigated the
existence of chiral order of the Josephson-junction lad
with half a flux quantum per plaquette by means of the ex
diagonalization method. He was able to show that the crit
phase predicted in Ref. 3 does exist in the range of the
rameters of the model~1! in constrast to the numerical find
ings of Ref. 5.

The situation is less controversial in theS51 case and the
corresponding phase diagram has been determined b
density-matrix renormalization-group~DMRG! study.5,6 The
model withJ250 is a critical spin fluid~the so-calledXY1
phase9! and as soon as the next-nearest-neighbor interac
is switched on the Haldane phase is stabilized~KT transi-
tion!. As noted in Ref. 5, this fact seems to be in contrad
tion with the bosonization result obtained in the smallJ2

limit 10 which suggests that theXY1 phase extends to finite
J2 /J1. Increasing on the value ofJ2 /J1, the authors of Refs
5 and 6 have reported the occurrence of two successive
sitions: A first one at (J2 /J1)c1.0.473 ~Ising transition!
from the Haldane phase to a gapped phase with chiral lo
range order~chiral gapped phase! and a second transition a
(J2 /J1)c2.0.49 ~presumably a KT transition! with a chiral
critical phase which corresponds to the spin nematic ph
discussed by Nersesyanet al.3 in the context of the two-leg
S51/2 XY zigzag ladder. In this latter phase, the spin-sp
correlations are incommensurate and decay with a power
with an exponent approximately equal to 0.15.6 Recently, the
phase diagram of the model~1! in the general spin-S case has
been further discussed in Ref. 11 by means of a largS
approach. It has been found that the existence of the gap
and gapped chiral phases is not specific ofS51 but is rather
a generic large-S feature. The predicted phase diagram h
four different phases. First of all, one has theXY1 critical
spin fluid phase and for a finite value ofJ2 ~KT transition!
one enters the Haldane phase. AsJ2 /J1 is further increased,
there are the two successive phase transitions previously
cussed: An Ising-type transition separating the Halda
©2001 The American Physical Society26-1
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phase from the chiral gapped phase, followed by a KT tr
sition corresponding to the transition between the chiral g
less phase and the chiral gapped phase. However, this la
S approach does not distinguish between integer and h
integer spins and also it does not take into account the
sibility of a spontaneously dimerized phase. In addition,
the very specialS51 case, the numerical calculations
Refs. 5 and 6 predict rather that the critical phaseXY1 does
not extend for a finite value ofJ2.

In this paper, we shall investigate the phase diagram
the one-dimensional spin-S J1-J2 XY model within the
bosonization approach. Using the Abelian bosonization o
general spin-S operator introduced by Schulz,9 the low-
energy physics of the Hamiltonian~1! can be studied in two
different limits: in the weak-coupling limit whenJ2 /J1!1
and in the ladder limitJ2 /J1@1. This enables us to dete
mine the nature of the phase transitions that occur in
model from a field theoretical point of view together with
comparison with the numerical results5,6 as well as the large
S preditions.11 The remainder of the paper is organized
follows: the weak-coupling analysis (J2 /J1!1) is given in
Sec. II whereas the zigzag limit of the model (J2 /J1@1) is
performed in Sec. III. Section IV presents our concludi
remarks and finally the conventions and some technical
tails used in this work are described in the two appendix

II. WEAK-COUPLING LIMIT

In this section, we shall investigate the low-energy ph
ics of the one-dimensional spin-S J1-J2 XY model in the
limit J2 /J1!1 within the bosonization approach. This e
ables us to study the stability of the criticalXY1 phase~for
J250) upon switching on a small next-nearest-neighbor
teraction. The Hamiltonian~1! in theS51 case can be tack
led within the bosonization framework by representi
spin-1 operators as a sum of two spin-1/2 operators:Sn

6

5s1,n
6 1s2,n

6 . It has been argued12–14 that the additional loca
singlets introduced will lead to extra levels with higher e
ergy than the triplet states so that the ground state and
low-lying excitations are correctly captured. In particula
with this representation, Timonen and Luther15 and Schulz9

predicted the correct phase diagram of the one-dimensi
anisotropic antiferromagnetic spin-1 Heisenberg model w
single-ion anisotropy. Moreover, the effect of weak rando
ness on this latter model has also been analyzed within
bosonization approach.16 This procedure was further gene
alized by Schulz9 by representing a general spin-S operator
Sn

6 as the sum of 2S spin-1/2 operatorssa,n
6 , a51, . . . ,2S:

Sn
65 (

a51

2S

sa,n
6 , ~2!

from which the low-energy physics of the one-dimensio
spin-S Heisenberg model can be captured and in particu
the difference between half-integer and integer spins.17

Let us first review the continuum description of the sp
S XY chain obtained by Schulz.9 Using the decomposition
~2!, the Hamiltonian~1! for J250 writes
17442
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HXY15
J1

2 (
a51

2S

(
n

~sa,n
† sa,n11

2 1H.c.!

1
J1

2 (
aÞb

(
n

~sa,n
† sb,n11

2 1H.c.!. ~3!

The first term in this equation corresponds to 2S decoupled
spin-1/2XY chains. As recalled in the Appendix A, the low
energy physics of the spin-1/2XY chain can be extracted
from the introduction of a single U~1! bosonic fieldw with
chiral componentswR,L . As a consequence, the next step
the approach is to introduce 2S chiral decoupled bosonic
fields waR,L , a51, . . . ,2S and the Hamiltonian density o
the first term in Eq.~3! in the continuum limit is given by

HXY.
v0

2 (
a51

2S

@~]xwa!21~]xqa!2#, ~4!

wherewa5waL1waR , qa5waL2waR being the dual field,
and v05J1a0 (a0 being the lattice spacing! is the spin ve-
locity. One can then derive the continuum limit of the seco
term in Eq. ~3! using the bosonic description~A7! of the
spin-1/2 operatorssa

6 described in Appendix A:

sa
15

~21!x/a0

A2pa0

exp~ iApqa!1
1

A8pa0

@exp~ i3ApwaL

1 iApwaR!1exp~2 i3ApwaR2 iApwaL!#. ~5!

Notice thata priori this procedure has only a sense provid
that the coupling constant associated to the second piec
Eq. ~3! is much smaller thanJ1 and this is clearly not the
case here. However, one expects in this problem, on gen
grounds, a continuity between weak- and strong-coupl
limits so that it is natural to bosonize the second term of E
~3! using the correspondence~5!. The leading part of the
density Hamiltonian associated to Eq.~3! in the continuum
limit reads thus as follows:

HXY1.
v0

2 (
a51

2S

@~]xwa!21~]xqa!2#

2
J1

2pa0
(
a5” b

cos@Ap~qa2qb!#. ~6!

It is then suitable to switch to a basis to single out the
grees of freedom that will remain critical in the infrare
limit. To this end, let us introduce a diagonal bosonic fie
F1R(L) and 2S21 relative bosonic fieldsFmR(L) , m
5(1, . . . ,2S21) as follows:

F1R(L)5
1

A2S
~w11•••1w2S!R(L)

FmR(L)5
1

Am~m11!
~w11•••1wm2mwm11!R(L) . ~7!

The transformation~7! is canonical and preserves th
bosonic commutation relations. This basis has been in
6-2
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duced in Ref. 18 in the Abelian bosonization study of t
one-dimensional Hubbard model with a SU~N! symmetry.
The inverse transformation of Eq.~7! is easily found to be

w1R(L)5
1

A2S
F1R(L)1 (

l 51

2S21
F lR(L)

Al ~ l 11!
,

waR(L)5
1

A2S
F1R(L)2Aa21

a
F (a21)R(L)

1 (
l 5a

2S21
F lsR(L)

Al ~ l 11!
, a52, . . . ,2S21,

w2SR(L)5
1

A2S
F1R(L)2A2S21

2S
F (2S21)R(L) . ~8!

Using Eq. ~6!, one observes that all relative dual field
Qm , m51, . . . ,2S21 are pinned whereas the diagon
bosonic fieldF1 (F15F1L1F1R) is a strongly fluctuat-
ing field so that

HXY1.
v0

2
@~]xF1!21~]xQ1!2#, ~9!

where Q15F1L2F1R . From Eq.~5! and by integrating
out the massive degrees of freedom, the expression of
effective spin-S densityS6 in terms of the massless boson
field in the1 sector can be deduced:

S6;~21!x/a0 exp~6 iAp/2SQ1!. ~10!

The dual fieldQ1 is thus a compactified bosonic field wit
radius R̃S5A2S/p. Using the general relation between th
radius (2pR̃SRS51), we deduce that the compactified r
dius of the bosonic fieldF1 is: RS51/A8pS. Futhermore,
one deduces from Eq.~10! that the transverse spin-spin co
relation function has a power-law behavior with an expon
h'51/(4S). The value of this exponent coincides with th
prediction of Alcaraz and Moreo19 who have analyzed the
critical properties of theXXZ spin-S Heisenberg model by
means of a combination of conformal invariance and ex
diagonalizations techniques. It is worth noting that the va
of the exponent in theS51 case (h'51/4) has been pre
dicted by Kitazawaet al.20 within a level spectroscopy
analysis of theS51 bond-alternatingXXZ spin chain. Fi-
nally, one should observe that the uniform part of the s
density is a short-ranged piece since the massive modes
enter in this expression have a zero vacuum expecta
value and thus give rise to an exponential decay in the
form part of the spin-spin correlation function. However,
shown by Schulz,9 in the special half-integer case, high
orders of perturbation theory produce a strongly fluctuat
piece in the uniform part of the spin density~10! with scaling
dimension 2S11/(8S) which is less relevant than the alte
nating contribution in Eq.~10! which has scaling dimensio
1/(8S).

With all these results at hand, the stability of this critic
XY1 phase with respect to a next-nearest-neighbor excha
17442
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interactionJ2 /J1!1 can be analyzed. To this end, let us fir
rewrite the second term (HXY2) of the Hamiltonian~1! in
terms of the 2S spin-1/2 operators:

HXY25
J2

2 (
a51

2S

(
n

~sa,n
† sa,n12

2 1H.c.!

1
J2

2 (
aÞb

(
n

~sa,n
† sb,n12

2 1H.c.!. ~11!

The first part of this equation corresponds to the sum oN
decoupled next-nearest-neighborS51/2 XY chains. The re-
sulting continuum limit has been obtained by Haldane in
erratum of Ref. 2 and is reviewed for completeness in A
pendix B@see in particular Eq.~B4!#. The continuum limit of
the second term in Eq.~11! can be obtained using th
bosonized description~5! of the spin densitysa

6 . The result-
ing continuum limit of the Hamiltonian~11! reads thus as
follows:

HXY2.2
4J2a0

p (
a51

2S

~]xqa!21
J2

pa0

3 (
a,b

cos@Ap~qa2qb!#

2
J2

p2a0
(
a51

2S

cos~A16pwa!

1
J2

2pa0
(
a,b

cos@A4p~wa1wb!#

3cos@Ap~qa2qb!#. ~12!

Using the canonical transformation~8!, one finally obtains
the following effective Hamiltonian:

H.
v
2 S K~]xQ1!21

1

K
~]xF1!2D , ~13!

with

v5v0A12
8J2

pJ1
,

K5A12
8J2

pJ1
. ~14!

Of course, as usual, these latter identifications hold only
the vinicity of the Gaussian fixed point atJ2 /J150. How-
ever, one should carefully look at the higher-order corr
tions of perturbation theory that might generate an additio
operator in the effective theory~13! and potentially
destablizes theXY1 phase. In this respect, integer and ha
integer spins should be treated separately. For integer s
S, the last term in Eq.~12! leads to the following contribution
at theSth order of perturbation theory:
6-3
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E )
i 51

S

d2xi)
i 51

S

cos@A4p~w2i 211w2i !#~xi !

3cos@Ap~q2i 212q2i !#~xi !, ~15!

which, after integrating out the short-ranged degrees of fr
dom and using the canonical transformation~8!, gives rise to
a fluctuating field in the1 channel: cos(A8pSF1). In the
same way, for half-integer spinsS, one has the following
contribution at the 2Sth order of perturbation theory:

E )
i 51

2S

d2xi)
i 51

2S

cos@A4p~w i1w i 11!#~xi !

3cos@Ap~q i2q i 11!#~xi !, ~16!

with the identification:w2S115w1 and q2S115q1. One
then obtains the following operator: cos(A32pSF1) after
averaging on the short-ranged degrees of freedom. The
fective field theory associated to the spin-S J1-J2 XY chain
in the weak-coupling limit is thus

H.
v
2 S K~]xQ1!21

1

K
~]xF1!2D2

ge f f

a0
cos~mA8pSF1!,

~17!

with m51 ~respectively 2) ifS is integer~respectively half-
integer!. One should note that the Hamiltonian~17! corre-
sponds to the effective-field theory of the spin-S XXZ
Heisenberg chain derived by Schulz.9 In fact, the last opera-
tor in Eq. ~17! can also be justified from a symmetry anal
sis. Indeed, under the one-step translation symmetry,
bosonic fieldwa transforms according to@see Eq.~A8! of
Appendix A#: wa→wa1Ap/21paAp, pa being an integer.
From the definition~7! of the diagonal bosonic fieldF1 ,
one thus has

F1→F11ApS

2
1pA p

2S
, ~18!

from which we conclude that the cos(mA8pSF1) term is
the operator invariant under the translation symmetry w
the smallest scaling dimension.

The phase diagram of the spin-S J1-J2 XY chain in the
small J2 /J1 limit can then be deduced from the structure
the effective-field theory~17!. For a small value ofJ2 /J1,
the cosine operator in Eq.~17! is a strongly irrelevant con
tribution and the system is critical with central chargec51
~Luttinger liquid!: it is the spin fluidXY1 phase that extend
to a finite value ofJ2. As J2 /J1 increases, one expects fro
Eqs.~14! and~17! a KT phase transition from this spin flui
phase to a fully massive region~dimerized or Haldane phase
depending on the nature of the spinS).21 At the transition,
the Luttinger parameterKc is equal to:Kc51/(Sm2) and a
very naive estimate of the critical value of (J2 /J1)c can then
be deduced from Eq.~14! within the bosonization approach

S J2

J1
D

c

.
p~S2m421!

8S2m4
. ~19!
17442
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In particular, for S51/2, one finds (J2 /J1)c53p/32
.0.2945 which is not too bad in comparaison to the va
obtained in the numerical simulations of Ref. 1: (J2 /J1)c
.0.3238. Moreover, in theS51 case, theXY1 phase is
destabilized upon switching on a nonzero value ofJ2 in full
agreement with the numerical findings of Refs. 5 and 6. T
origin of the discrepancy noted in Ref. 5 between the DMR
study5,6 and the bosonization results obtained in Ref.
stems from the fact that the latter authors do not look
higher orders in perturbation theory as in this work. TheS
51 case does not correspond to the generic situation s
we observe from the estimate~19! that the size of theXY1
phase increases asS increases in the half-integer and integ
cases. In this respect, one should note that the situation
close parallel to the phase transition between theXY1 and
the Haldane phases in the integer spin-S XXZ Heisenberg
chain. In theS51 case, the resulting phase transition occ
precisely at theXY1 point9,22,20whereas theXY1 phase ex-
tends considerably asS increases.9,19,23,24

III. ZIGZAG LADDER LIMIT

We shall now study the model~1! in the ladder limitJ1
!J2 where it can be viewed as a two-leg spin-S XY ladder
coupled in a zigzag way. ForS51/2 Heisenberg spins, th
effect of a transverse zigzag interchain interaction has b
extensively studied in Refs. 25,26,3,27,28 and also in Ref
in the S51 case. In the special case ofS51/2 XY spins, it
has been found by Nersesyanet al.3 that the model is a criti-
cal spin nematic. In this section, we shall investigate
existence of such a phase in the general spin-S case and
study its stability as the interchain interaction is further v
ied.

A. Critical spin nematic phase

The lattice Hamiltonian of the model~1!, considered as a
two-leg spin ladder, is defined now as follows:

H5
J2

2 (
n

~S1,n
† S1,n11

2 1S2,n21/2
† S2,n11/2

2 1H.c.!

1
J1

2 (
n

@S1,n
† ~S2,n21/2

2 1S2,n11/2
2 !1H.c.#, ~20!

where S1,n
6 ~respectivelyS2,n11/2

6 ) is the spin-S operator of
chain of index 1~respectively 2) at siten ~respectivelyn
11/2). It is more suitable to change the labeling of the s
ond chain in the following way to perform the continuu
limit of the model:

H5
J2

2 (
a51

2

(
n

~Sa,n
† Sa,n11

2 1H.c.!1
J1

2 (
n

@S1,n
† ~S2,n

2

1S2,n21
2 !1H.c.#. ~21!

At this point, one should note that the interchain zigzag c
pling can also be written as~using intrachain periodic bound
ary conditions!:
6-4
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Hint8 5
J1

2 (
n

@~S1,n
† 1S1,n11

† !S2,n
2 1H.c.#. ~22!

Consequently, we shall thus write the interacting part of
Hamiltonian~21! in a symmetrized way for taking the con
tinuum limit of the model:

H5
J2

2 (
a51

2

(
n

~Sa,n
† Sa,n11

2 1H.c.!

1
J1

4 (
n

„~S1,n
† 1S1,n11

† !S2,n
2

1S1,n
† ~S2,n

2 1S2,n21
2 !1H.c.…. ~23!

In the absence of the interchain coupling (J150), the model
corresponds to two decoupled spin-S XYchains. As seen in
Sec. II, it is critical with central chargec52 and its low-
energy physics can be obtained with the introduction of t
decoupled chiral gapless bosonic fieldsFa1R,L (a51,2).
The leading contribution of the spin densitySa

6 comes from
the alternating part@see Eq.~10!#:

Sa
6.

l

Aa0

~21!x/a0 exp~6 iAp/2SQa1!, ~24!

l being a nonuniversal constant. From Eq.~24!, we deduce
the continuum limit of the model~23! in the smallJ1!J2
limit:

H.
v
2 (

a56
@~]xF̄a!21~]xQ̄a!2#1g]xQ̄1 sinSAp

S
Q̄2D ,

~25!

where g5J1l2Ap/(4S) and we have introduced the sym
metric and antisymmetric combinations of the two boso
fields:

F̄65
1

A2
~F116F21!,

Q̄65
1

A2
~Q116Q21!. ~26!

The Hamiltonian ~25! describes a nontrivial field theor
since the field with coupling constantg, called twist term in
Ref. 3, is a parity symmetry-breaking perturbation with
nonzero conformal spin~equal to 1!. The effect of such term
is rather unclear since the usual irrelevant versus rele
criterion does not hold for such a nonscalar perturbation~see,
for instance, Ref. 4!. The simplest spin-1 conformal pertu
bation is the uniform part of the spin density (]xF) that
couples to a uniform magnetic field along thez axis. In this
case, this term leads to incommensuration as is well kno
It is thus natural to expect some incommensurability effec
the model~25! due to the twist term as emphasized by Ne
esyanet al.3 In particular, the presence of incommensurati
in the system can be found by a direct mean-field analysi
17442
e

o

c

nt

n.
n
-

of

the model~25!. Indeed, it is easy to see that the mean-fie
Hamiltonian separates into two commuting parts:HMF
5H11H2 with

H15
v
2

@~]xF̄1!21~]xQ̄1!2#1k]xQ̄1 ,

H25
v
2

@~]xF̄2!21~]xQ̄2!2#2
m

a0
sinSAp

S
Q̄2D ,

~27!

the mean-field parameters being

k5gK sinSAp

S
Q̄2D L ,

m

a0
52g^]xQ̄1&. ~28!

The Hamiltonian (H1) is easily solved by the redefinition

Q̄1→Q̄12kx/v. The1 sector displays thus criticality with
a nonzero topological spin current in the ground sta

^]xQ̄1&52k/v5” 0. In contrast, the Hamiltonian (H2) in
the other sector is a standard sine-Gordon model atb2

5p/S which describes a massive theory with massive qu
tum solitons and their bound states~breathers! together with

massive kinks. The dual fieldQ̄2 is locked at: ^Q̄2&
5ApS/4 sgn m(mod A4Sp). The mean-field analysis

can then be closed using the fact that:^sin(Ap/SQ̄2)&
5c(a0umu/v)1/(8S21) (c being a constant that can b
determined30! and one easily finds

m56
v
a0

S a0g

v D (8S21)/(4S21)

c(8S21)/(8S22),

k56
v
a0

S a0g

v D 4S/(4S21)

c(8S21)/(8S22). ~29!

From the correspondence~24!, one can then estimate th
asymptotic behavior of the transverse spin-spin correla
functions of the model which display an incommensur
critical behavior:

^S1
†~x!Sa

2~0!&;
eiqSx

uxu1/(8S)
, a51,2, ~30!

with qS2p/a0;(J1 /J2)4S/(4S21). The transverse spin-spi
correlation functions fall off thus with the distance as
power law with the exponent 1/(8S). In the S51 case, one
should note that this exponent (1/850.125) found in this
bosonization study is in good agreement with the numer
findings 0.15 of the DMRG analysis of Ref. 6.

Besides this incommensurate critical behavior observe
the spin-spin correlation functions~30!, the physical picture
of this phase obtained at the mean-field level correspond
a spin nematic.31 Indeed, let us first introduce thez compo-
nent of the spin currentJas

z associated to theath spin-S XY
chain (a51,2):
6-5
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Jas
z 52vA2S

p
]xQa1 . ~31!

The vacuum expectation value of this operator can then
computed since one has in the ground state of the mean-

Hamiltonian~27!: ^]xQ̄1&52k/v5” 0 and^]xQ̄2&50. This
latter result stems from the fact that the Hamiltonian (H2) in
Eq. ~27! is a standard sine-Gordon model characterized b
ground state with zero topological charge. Using the red
nition ~26!, one finally obtains the following estimate:

^J1s
z &5^J2s

z &52vAS

p
^]xQ̄1&5AS

p
k5” 0. ~32!

These spin currents can also be expressed in terms o
original spin degrees of freedom of the lattice Hamiltoni
~23! using the identification~24!:

^~SW a,n`SW a,n11!z&.2l2A p

4S
^]xQ̄1&5” 0, a51,2,

~33!

whereas similarily the~interchain! zigzag spin current along
the z axis reads as follows:

J1^~SW 1,n`SW 2,n!z&.22AS

p
gK sinSAp

S
Q̄2D L 522AS

p
k

Þ0, ~34!

where Eq.~28! has been used.
The physical picture that emerges from this mean-fi

analysis is therefore a spin nematic phase that preserve
U~1! and time-reversal symmetries and displays long-ra
chiral ordering in its ground state~33! and ~34!. In the clas-
sification of Ref. 31, this phase corresponds to ap-type spin
nematic. At this point, it is important to stress that this chi
ordering is different from the scalar chirality orde

operator:32 ^SW 1,n•(SW 2,n`SW 2,n21)& which breaks parity and
time reversal symmetries. In our case, the spin nematic p
does not break the time-reversal symmetry but spontaneo
breaks aZ2 symmetry of the model which, as it will be
shown in the next section, is a tensor product of a site-pa
and link-parity symmetries on the two chains. As a result
first discovered in theS51/2 case in Ref. 3, this produces
picture of local nonzero spin currents~32! and~34! polarized
along thez-anistropy axis circulating around the triangul
plaquettes of the two-leg zigzag spin ladder.

B. Stability of the chiral critical phase

It is important to study further the stability of this critica
spin nematic phase~chiral critical phase! in the 1 channel
with respect to various operators that will be generated
higher orders of perturbation theory or equivalently ter
consistent with the symmetries of the original lattice mod
Indeed, on general grounds, one expects that some oper
in the 1 sector should destroy the criticality of the phase
least for some finite value ofJ1 /J2. First of all, in the mean-
field approach, the twist term acts like a sort of magne
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field. As is well known, a magnetic field along the anisotro
axis is a source of incommensuration but also leads t
renormalization of the compactification radius of the boso
field. This last effect was not found in the previous approa
as seen in theuniversalbehavior of the spin-spin correlation
~30!. From a symmetry point of view@continuous U~1! sym-
metry#, there are no reasons to expect such universal be
ior. It is a first sign that higher-order terms in perturbati
theory might be important here. On the other hand, as see
Sec. II, there is at least a massive region~the dimerized or
Haldane phases! in the phase diagram when increasing t
value of J1 at fixed J2. It is therefore likely that a vertex
operator, generated in the renormalization-group flow, in
1 channel will kill the critical phase at least for a critica
value (J1 /J2)c .

We shall now discuss the bosonic representation of
different discrete lattice symmetries of the model~23! to find
the nature of the operator that will be generated in the1
sector by the renormalization-group flow. Let us first co
sider the one-step translation (ta0

(a)), site parity (PS
(a)), and

link parity (PL
(a)) corresponding to the chain of indexa

51,2. Using the definition~7! of the diagonal bosonic field
that accounts for the criticality of theXY1 spin fluid phase in
the decoupling limit (J150) and the bosonic representatio
~A8!–~A10! in the S51/2 case described in Appendix A
one obtains the following identifications respectively for t
one-step translation, site parity, and link parity:

Fa1→Fa11ApS

2
1paA p

2S
,

Qa1→Qa11A2Sp1pa8A8pS, ~35!

Fa1~x!→2Fa1~2x!1ApS

2
1qaA p

2S
,

Qa1~x!→Qa1~2x!1qa8A8pS, ~36!

and

Fa1~x!→2Fa1~2x!1naA p

2S
,

Qa1~x!→Qa1~2x!1A2pS1na8A8pS, ~37!

where pa ,pa8 ,qa ,qa8 ,na ,na8 are integers. From these corre
spondences, one can deduce the bosonic representatio
the discrete symmetries of the Hamiltonian~23!. The trans-
lation symmetry acts on the symmetric and antisymme
combinations~26! of the bosonic fieldsFa1 as follows:
6-6
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F̄1→F̄11ApS1A p

4S
~p11p2!,

Q̄1→Q̄11A4Sp1A4pS~p181p28!,

F̄2→F̄21A p

4S
~p12p2!,

Q̄2→Q̄21A4pS~p182p28!. ~38!

A second type of discrete symmetry of the Hamiltonian~23!
s1 consists of a vertical axial symmetry combined by
one-step translation symmetryta0

(1) along the lower chain~la-

beled 1 in the following!:

SW 1,n→SW 1,2n11 ,

SW 2,n→SW 2,2n , ~39!

namely in the continuum limit:

nW 1~x!→2nW 1~2x!,

nW 2~x!→nW 2~2x!, ~40!

which corresponds to a tensor product of a link-parity tra
formation on chain 1 and a site-parity transformation
chain 2 (s15PL

(1)
^ PS

(2)) when the model is viewed as
zigzag ladder@Eq. ~20!#. The bosonic representation of th
discrete symmetry is thus

F̄1~x!→2F̄1~2x!1
ApS

2
1A p

4S
~n11q2!,

Q̄1~x!→Q̄1~2x!1ASp1A4pS~n181q28!,

F̄2~x!→2F̄2~2x!2
ApS

2
1A p

4S
~n12q2!,

Q̄2~x!→Q̄2~2x!1ASp1A4pS~n182q28!. ~41!

In the same way, the Hamiltonian~23! is also invariant under
the transformation (s2 symmetry!:

SW 1,n→SW 1,2n ,

SW 2,n→SW 2,2n21 , ~42!

which can be viewed as aPL
(2)

^ PS
(1) transformation. In

terms of the bosonic fields of the basis~26!, this latter sym-
metry is realized through

F̄1~x!→2F̄1~2x!1
ApS

2
1A p

4S
~n21q1!,

Q̄1~x!→Q̄1~2x!1ASp1A4pS~n281q18!,
17442
-

F̄2~x!→2F̄2~2x!1
ApS

2
1A p

4S
~2n21q1!,

Q̄2~x!→Q̄2~2x!2ASp1A4pS~2n281q18!. ~43!

There is a second family of discrete symmetries of
Hamiltonian~23!: s35P12^ ta0

(1) or s45P12^ t2a0

(2) which cor-

responds to an interchange of the chains combined wit
translation symmetry along the lower or upper chain.
terms of the original spin degrees of freedom, thes3 ands4
symmetries respectively write:

SW 1,n→SW 2,n ,

SW 2,n→SW 1,n11 , ~44!

SW 1,n→SW 2,n21 ,

SW 2,n→SW 1,n , ~45!

so that in the continuum limit, one has

nW 1~x!→nW 2~x!,

nW 2~x!→2nW 1~x!, ~46!

and

nW 1~x!→2nW 2~x!,

nW 2~x!→nW 1~x!. ~47!

The bosonic representation of these last discrete symme
of Eq. ~23! is then respectively given by

F̄1→F̄11
ApS

2
1A p

4S
p1 ,

Q̄1→Q̄11ASp1A4pSp18 ,

F̄2→2F̄22
ApS

2
2A p

4S
p1 ,

Q̄2→2Q̄22ASp2A4pSp18 , ~48!

F̄1→F̄11
ApS

2
1A p

4S
p2 ,

Q̄1→Q̄11ASp1A4pSp28 ,

F̄2→2F̄21
ApS

2
1A p

4S
p2 ,

Q̄2→2Q̄21ASp1A4pSp28 . ~49!
6-7
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With all these identifications, one observes that the c
tinuum limit ~25! of the lattice Hamiltonian~23! is invariant
under all discrete symmetries~38!, ~41!, ~43!, ~48!, and~49!
as it should be. However, the mean-field Hamiltonian~27! is
invariant under Eqs.~38!, ~48!, and ~49! but breaks thes1,2
symmetries~41! and ~43!. These latterZ2 discrete symme-
tries are spontaneously broken in the ground state of
critical spin nematic phase and account for the formation
nonzero local spin currents polarized along thez axis circu-
lating around the triangular plaquette of the two-leg zigz
spin ladder. The operator, that occurs in the1 sector of the
mean-field Hamiltonian~27!, with the smallest scaling di
mension and consistent with the symmetries~38!, ~48!, and
~49! without breaking the continuous U~1! diagonal symme-

try of the model turns out to be: cos(mA16pSF̄1), with m
51 ~respectivelym52) if S is integer ~respectively half-
integer!. The stable effective field theory in the1 channel is
thus

H1.
v
2 FK~]xQ̄1!21

1

K
~]xF̄1!2G1k]xQ̄1

2
ge f f

a0
cos~mA16pSF̄1!, ~50!

where the value of the Luttinger parametersv,K cannot be
determined within this bosonization approach. For a sm
value ofJ1 /J2 ~i.e.,K.1), the cosine operator in Eq.~50! is
a strongly irrelevant contribution and the system display

critical phase with incommensuration generated by the]xQ̄1

field. This chiral critical phase, predicted in theS51/2 case
in Ref. 3, is thus a generic phase in the largeJ1 /J2 limit of
the model~1! in the general spin-S case. In particular, it is
worth stressing that, in theS51/2 case, the operato

cos(A8pF̄1), which opens a mass gap in the1 channel and
thus destroys the chiral critical phase found in Ref. 3, is
generated by the renormalization-group flow. Indeed, wh
this latter operator is permitted by the translation symme
~38!, it is odd under thes3 ands4 discrete symmetries~48!
and ~49! which forbid its presence in the low-energ
effective-field theory. This result leads us to expect that
chiral critical phase does exist in the certain range of
parameter of the lattice model forS51/2 in full agreement
with the very recent numerical study.8 As J1 /J2 is further
increased, it is natural to expect that the effective theory~50!
describes a phase transition of KT type from the chiral g
less phase atge f f50 to a chiral gapped phase. Indeed, the
will be a critical value (J1 /J2)c @the Luttinger parameter a
the transition being equal toKc51/(2Sm2)#, which cannot
be obtained within this bosonization approach, above wh

the cosine operator cos(bF̄1) becomes relevant and a ma
gap opens in the1 sector~KT transition! withoutkilling the

incommensuration stemming from the]xQ̄1 operator. In this
respect, this mechanism of generation of incommensura
is different from the usual commensurate-incommensu
scenario33 since, in this latter case, there is acompetition

between the uniform spin density]xF̄1 field and the cosine
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operator cos(bF̄1) leading to a threshold above which th
incommensuration settles in the system. One should note
the existence of this incommensurate gapful phase when
cosine operator in Eq.~50! becomes relevant can also be
seen using a Luther-Emery or Toulouse limit of the Ham
tonian ~50! as it has been used to explain the origin of t
incommensuration found in the phase diagram of the qu
tum axial next-nearest-neighbor Ising chain.34

The full characterization of the intermediate phase~chiral
gapped phase! depends on whetherS is integer or half-

integer. Indeed, forJ1 /J2.(J1 /J2)c , the bosonic fieldF̄1

of Eq. ~50! is locked in one of the minima of the potentia

2ge f f cos(mA16pSF̄1) which for ge f f.0 Ref. 35! are lo-

cated at:^F̄1&5p Ap/4S/m, p being an integer. More-
over, the value of the compactification radius of the boso

field F̄1 is equal to:R̄S51/A16pS. This follows from the
redefinition~26! and the fact that the compactification radi
of the bosonic field that accounts for the critical properties
the spin-S XYchain isRS51/A8pS as it has been found in

Sec. II. From the precise knowledge ofR̄S , one deduces the
following identification:

F̄1;F̄112pR̄S5F̄11A p

4S
. ~51!

From this equivalence and the position of the minima cor

sponding to the pinning of the bosonic fieldF̄1 , we thus
conclude that in the integer spin case (m51) the ground
state of the massive phase is nondegenerate whereas for
integer spins (m52) there is a twofold degenerate groun
state.36 Therefore the chiral gapful phase corresponds t
massive phase with a coexistence of incommensuration a
Haldane phase~respectively dimerized phase! in the integer
~respectively half-integer! spin case. From the identificatio
of the massive phase found at largeJ1 /J2 in the weak-
coupling analysis~see Sec. II!, we then expect an Ising (Z2)
transition between the chiral gapped phase and the Hald
or dimerized phases asJ1 /J2 is further increased. At this

Ising critical point, the total spin current^]xQ̄1& vanishes,
i.e., the disappearance of the incommensurate behavior
the systems enters a commensurate massive phase: Ha
or dimerized phases depending on the spin. At this point,
has to mention that the existence of this intermediate inco
mensurate massive phase, within our mean-field appro
relies on the decouping of the degrees of freedom in the
channels1 and 2 as in Eq. ~27!. We cannot rule out a
different scenario that might occur in the system nonper
batively due to the effect of the interactions in the two se
tors: a single phase transition between the chiral criti
phase and the Haldane or dimerized phases. At this crit
point, one hassimultaneouslythe appearance of a mass g
in the spectrum as well as the cancelation of the spin cur
so that the chiral gapful phase shrinks to zero in this cas
6-8
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IV. CONCLUDING REMARKS

In the present work, we have investigated the low-ene
physics of the one-dimensional spin-S J12J2 XY model
within the bosonization approach. Around the two lim
(J2 /J1!1, J1 /J2!1) where a field theoretical analysis ca
be performed, we have described the nature of the diffe
phases that occurs as well as the determination of
effective-field theories of the resulting phase transitions. T
critical XY1 spin fluid phase atJ250 is generically stable
upon switching on a nonzero value of the next-neare
neighbor interaction except for the very specialS51 case
where the Haldane phase is immediately stabilized in
agreement with the DMRG study of Refs. 5 and 6. As
exchange interactionJ2 is further varied, the model exhibit
a KT phase transition described by a standard sine-Gor
model between theXY1 spin fluid phase and a fully massiv
dimerized or Haldane phases depending on the value o
spin. In the zigzag ladder limit (J1 /J2!1), we have shown
that, whatever the value of the spin, the chiral critical pha
first predicted in theS51/2 case by Nersesyanet al.,3 should
exist in a certain range of the parameters of the model. T
interesting spin nematic phase preserves the U~1! and time-
reversal symmetries but spontaneously breaks aZ2 symme-
try (PL

(1)
^ PS

(2)) resulting on the formation of nonzero loc
spin currents in the ground state polarized along the ani
ropy z axis. Futhermore, the transverse spin-spin correla
functions are incommensurate with a wave vectorqS
2p/a0;(J1 /J2)4S/(4S21) and decay algebraically with th
distance with an exponent 1/(8S) obtained within the mean
field approach used here. As the interchainJ1 /J2 is further
increased, one expects the existence of a KT phase trans
between the chiral critical spin nematic phase and an inc
mensurate gapful phase~chiral gapped phase!. In particular,
the effective-field theory corresponding to this transition h
been determined in this work. The nature of this chi
gapped phase corresponds to a coexistence of incomme
ration stemming from the presence of nonzero spin curre
in the ground state and a Haldane or dimerized phases
pending on whether the spinS is an integer or half-integer
We then expect an Ising phase transition associated to
disappearance of the spin current between the chiral gap
phase and the standard Haldane or dimerized phases.
phase diagram found in this work is consistent with the p
dictions of the large-S study of Kolezhuk11 except for the
specialS51 case where theXY1 spin fluid phase shrinks to
zero. It will be very interesting if some extended DMR
studies can be performed in theS.1 case to further shed
light on the physical properties of the model as well as
possibility to extract the Luttinger parameters of t
effective-field theory~50!. The different phase transitions re
ported in this work could also be investigated by means o
level spectroscopy analysis as in the one-dimensional s
S XXZHeisenberg model.24

Note added. When this work was completed, we becam
aware of a very recent work by Hikiharaet al.39 who have
investigated theS51/2, 3/2, 2J1-J2 XY chain using a
DMRG analysis. They have found that the chiral critic
phase appears in a broad region of the phase diagram in
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general spin-S case in agreement with our work. Futhermo
the prediction on the decay of the spin-spin correlat
@1/(8S)# in the chiral critical phase found within th
bosonization approach has been numerically verified.
nally, for integer spins (S51, 2), the authors of Ref. 39
have reported the existence of the chiral gapped phase
very narrow region of the phase diagram whereas in the h
integer case (S51/2, 3/2) it has not been identified withi
the numerical precision of the work.39
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APPENDIX A: XY CHAIN IN THE CONTINUUM LIMIT

In this appendix, we shall recall some well-known fac
on the continuum limit of theXY chain to fix the notations
that will be used throughout this paper. The Hamiltonian
the antiferromagnetic spin-1/2XY chain is (J1.0)

H05J1(
n

~Sn
xSn11

x 1Sn
ySn11

y !, ~A1!

whereSW n is a spin-1/2 operator at siten. As is well known,
this model can be written in terms of lattice fermionscn
using the Jordan-Wigner transformation:

Sn
z5cn

†cn2
1

2
,

Sn
15~21!ncn

† expS ip (
j 51

n21

cj
†cj D . ~A2!

The continuum limit of the model~A1! can then be per-
formed with the introduction of right- and left-moving fer
mion fields R,L: cn /Aa0→R(x)( i )x/a01L(x)(2 i )x/a0, x
5na0 , a0 being the lattice spacing. Using the fermio
boson correspondence~see, for instance, Refs. 37 and 4!:

R5
1

A2pa0

exp~ iA4pFR!,

L5
1

A2pa0

exp~2 iA4pFL!, ~A3!

the Hamiltonian~A1! can be expressed in terms of a boson
field F and its dual fieldQ in the continuum limit:

H05
v0

2 E dx@~]xQ!21~]xF!2#, ~A4!

wherev05J1a0 is the spin velocity and we work with the
following conventions:
6-9
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F5FL1FR ,

Q5FL2FR ,

@FR ,FL#5 i /4. ~A5!

This latter commutation relation is necessary to insure
anticommutation between the right and left fermion ope
tors @see Eq.~A3!#. The bosonic field is compactified wit
the radiusR51/A4p: F;F1Ap whereas the dual field is

compactified with the radiusR̃51/(2pR): Q;Q12Ap.
The spin density operator in the continuum limit decompo
into uniform and alternating parts:

SW .JW1~21!x/a0nW , ~A6!

which can also be expressed in terms of the bosonic field
follows:

nz5
21

pa0
sin~A4pF!, ~A7!

n†5
1

A2pa0

exp~ iApQ!,

Jz5
1

Ap
]xF,

J†5
1

A8pa0

~exp@ i3ApFL1 iApFR!1exp~2 i3ApFR

2 iApFL!#,

5
1

A2pa0

exp~ iApQ!sin~A4pF!.

We end this appendix by giving the bosonic represen
tion of the discrete symmetries of theXY Hamiltonian~A1!
that will be very useful when investigating the stability of th
chiral critical phase in Sec. III B. Under a one-step trans
tion symmetry, the bosonic fields transform according to

F→F1
Ap

2
1pAp,

Q→Q1Ap1p8A4p, ~A8!

p,p8 being integers since from Eq.~A6! the alternating part

(nW ) of the spin density should be odd under the one-s

translation symmetry. Under the site parityPs(S
W

n→SW 2n),
the uniform and staggered parts of the spin density shoul
even so that

F~x!→2F~2x!1
Ap

2
1qAp,

Q~x!→Q~2x!1q8A4p, ~A9!
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whereq,q8 are integers. The link parityPL(n→12n) is a
combination of a site parity and a translation symmetry
that underPL the bosonic fieldsF andQ transform as

F~x!→2F~2x!1nAp,

Q~x!→Q~2x!1Ap1n8A4p, ~A10!

n,n8 being integers.

APPENDIX B: ONE-DIMENSIONAL SÄ1Õ2 J1-J2

XY MODEL

In this appendix, we derive the continuum limit of th
model ~1! in the S51/2 case in the weak-coupling limitJ2
!J1. This calculation has been done several times2,1,38 with
different bosonized expressions. This discrepancy ste
from the fact that one has to be extremely careful when
riving the continuum limit and in particular for obtaining th
correct velocity renormalization. We shall redo here this c
culation for completeness and also since it will be needed
Sec. II when deriving the bosonization approach of theJ1-J2
spin-S XYchain in theJ2!J1 limit.

The first step of the computation is to express the int
acting part of Hamiltonian~1! in terms of the lattice fermions
using the Jordan-Wigner transformation~A2!:

Hint52J2(
n

@cn12
† ~cn11

† cn1121/2!cn1H.c.#. ~B1!

Using the continuum limit of the fermions and the bosoniz
tion correspondence~A3! described in Appendix A, one ha

Hint5
J2a0

2p E dx@~2 i !x/a0:e2 iA4pFR:~x12a0!

1~ i !x/a0:eiA4pFL:~x12a0!#S 1

Ap
]xF~x1a0!

1
~21!x/a0

p
:sin~A4pF!:~x1a0!D

3@~ i !x/a0:eiA4pFR:~x!1~2 i !x/a0:e2 iA4pFL:~x!#

1H. c. ~B2!

To derive the continuum expression of this Hamiltonian,
need the following operator product expansions in a stand
Gaussianc51 theory:

:e2 iA4pFR:~ z̄!]xF~w,w̄!;:]xFLe2 iA4pFR:~w,w̄!

2
1

A4p~ z̄2w̄!
:e2 iA4pFR:~w̄!

2
1

A4p
: ]̄e2 iA4pFR:~w̄!,
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:eiA4pFL:~z!]xF~w,w̄!;:]xFReiA4pFL:~w,w̄!

2
1

A4p~z2w!
:eiA4pFL:~w!

2
1

A4p
:]eiA4pFL:~w!,

:e2 iA4pFR:~ z̄!:sin~A4pF!:~w,w̄!

;2
z̄2w̄

2
:e2 iA16pFR(w̄)e2 iA4pFL(w):

1
1

2~ z̄2w̄!
:@12 iA4p~ z̄2w̄!]̄FR

22p~ z̄2w̄!2~ ]̄FR!2#eiA4pFL:~w,w̄!,
ev

,

pn

J

ys

e

17442
:eiA4pFL:~z!:sin~A4pF!:~w,w̄!

;2
z2w

2
:eiA16pFL(w)eiA4pFR(w̄):

1
1

2~z2w!
:@11 iA4p~z2w!]FL

22p~z2w!2~]FL!2#e2 iA4pFR:~w,w̄! ~B3!

with the conventionw5v0t1 ix and ]x5 i (]2 ]̄). Using
these results and keeping only nonoscillatory contribution
Eq. ~B2!, we finally obtain

Hint.2
J2

p2a0
E dx cos~A16pF!2

4J2a0

p E dx~]xQ!2

~B4!
which is in perfect agreement with the earlier derivati
made by Haldane~see the erratum!2 and is in contradiction
with some recent ones in the literature.1,38
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