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The one-dimensional spi8- J;-J, XY model is studied within the bosonization approach. Around the two
limits (J,/J;<1, J,/J;>1) where a field theoretical analysis can be derived, we discuss the phases as well
as the different phase transitions that occur in the model. In particular, it is found that the chiral critical spin
nematic phase, discovered by Nersesgaml. [Phys. Rev. Lett81, 910 (1998] for S=1/2, exists in the
general spirs case. The nature of the effective-field theory that describes the transition between this chiral
critical phase and a chiral gapped phase is also determined.
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[. INTRODUCTION boundary conditions has pointed out the presence of incom-
mensuration in the largd, limit’ but within this approach it
The interplay between frustration and quantum fluctua-has not been possible to conclude on the criticality or not of
tions in low-dimensional spin systems has attracted muckhis phase. Very recently, Nishiyafhhas investigated the
interest. One of the main reasons for this attention is thagxistence of chiral order of the Josephson-junction ladder
frustration is expected to lead to new exotic phases as well agith half a flux quantum per p|aquette by means of the exact
unconventional spin excitations. In the one-dimensionaljagonalization method. He was able to show that the critical
case, powerful nonperturbative methods are available and t%ase predicted in Ref. 3 does exist in the range of the pa-
key features of frustration can then be analyzed in depth. Ip;meters of the modéll) in constrast to the numerical find-
this respect, the phase diagram of the one-dimensiSnaI ings of Ref. 5.
=123,-J; XY.modeI h_as peen stuQ|ed exter_15|vely over the The situation is less controversial in tBe=1 case and the
years. The lattice Hamiltonian of this model is defined by corresponding phase diagram has been determined by a
density-matrix renormalization-grolPMRG) study>® The
H=31D, (S, +9S, )+ (SIS, +9S, ), model withJ,=0 is a critical spin fluid(the so-calledXY1
. n 1 phasé) and as soon as the next-nearest-neighbor interaction
@ is switched on the Haldane phase is stabiliZ&d transi-
whereS, =S’ +iS) is a spin-1/2 operator at siteandJ, is  tion). As noted in Ref. 5, this fact seems to be in contradic-
a competitive antiferromagnetic interactionJ;(J,>0)  tion with the bosonization result obtained in the small
which introduces frustration in the model. The phase diadimit'® which suggests that th&Y1 phase extends to finite
gram of the Hamiltoniar(1) is expected to be rich. For a J,/J,. Increasing on the value @ /J,, the authors of Refs.
small value ofJ,, one has a spin fluid phas&{ phas¢ 5 and 6 have reported the occurrence of two successive tran-
characterized by gapless excitations with central charge sjtions: A first one at J,/J;).;=0.473 (Ising transition
=1 whereas fod,/J;=0.32 (Ref. 1) a phase transition of from the Haldane phase to a gapped phase with chiral long-
Kosterlitz-ThoulesgKT) type occurs and the model enters arange ordefchiral gapped phagand a second transition at
massive region with a twofold degenerate ground stat¢J,/J,).,=0.49 (presumably a KT transitiorwith a chiral
(dimerized phasé? Interestingly enough, it was recently pre- critical phase which corresponds to the spin nematic phase
dicted by Nersesyanetal,® within the bosonization discussed by Nersesya al? in the context of the two-leg
approach, that in the largeJ, limit, where the model can be S=1/2 XY zigzag ladder. In this latter phase, the spin-spin
viewed as a two-leXY zigzag ladder, a critical spin nematic correlations are incommensurate and decay with a power law
phase with chiral long-range orddi(S,/\S,.1),)#0]  With an exponent approximately equal to 0%1Becently, the
should emerge. This unconventional phase with unbrokephase diagram of the moddl) in the general spis case has
time-reversal symmetry is characterized by nonzero locabeen further discussed in Ref. 11 by means of a I&ge-
spin currents polarized along the anisotropyaxis. The approach. It has been found that the existence of the gapless
transverse spin-spin correlation functions are incommenswand gapped chiral phases is not specifiSefl but is rather
rate and fall off with the distance as a power law with thea generic larges feature. The predicted phase diagram has
exponent 1/4. However, this phase has not been reported four different phases. First of all, one has tk&1 critical
the numerical calculations of Refs. 5 and 6. In contrast, onlyspin fluid phase and for a finite value & (KT transition
the previous well-known phasdthe spin fluid and dimer- one enters the Haldane phase.A$J, is further increased,
ized phaseshave been found. A numerical analysis of thethere are the two successive phase transitions previously dis-
model using an exact diagonalization method with twistedcussed: An Ising-type transition separating the Haldane
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phase from the chiral gapped phase, followed by a KT tran- L 2S

sition corresponding to the transition between the chiral gap- HXY1:E E Z (s;ns;nHJr H.c.

less phase and the chiral gapped phase. However, this large- a=ln

S approach does not distinguish between integer and half- J

integer spins and also it does not take into account the pos- += > > (shispnratH.C). ©)
sibility of a spontaneously dimerized phase. In addition, for 2 47b 7 s

the very specialS=1 case, the numerical calculations of The first term in this equation corresponds 8 @ecoupled

Refs. 5 and 6 predict rather that the critical phs€l does spin-1/2XY chains. As recalled in the Appendix A, the low-

not extend for a finite value af,. _ energy physics of the spin-1/2Y chain can be extracted
In this paper, we shall investigate the phase diagram ofrom the introduction of a single (1) bosonic fielde with

the one-dimensional spi8- J-J, XY model within the  chjral componentsg, . As a consequence, the next step of

bosonization approach. Using the Abelian bosonization of gne approach is to introduceS2chiral decoupled bosonic

general spirs operator introduced by SChLﬁZI_he low- fields ¢,5., a=1,...,5 and the Hamiltonian density of

energy physics of the Hamiltonigl) can be studied in two e first term in Eq(3) in the continuum limit is given by

different limits: in the weak-coupling limit whed,/J;<<1

and in the ladder limit),/J;>1. This enables us to deter- vo

mine the nature of the phase transitions that occur in the Hxy=% > [(0x@a)?+ (9x92)2], (4)

model from a field theoretical point of view together with a a-t

comparison with the numerical resiiifsas well as the large- where ¢,= ¢, + ¢ar, V.= @aL— ¢ar being the dual field,

S preditions!* The remainder of the paper is organized asandv,=J;a, (2o being the lattice spacings the spin ve-

follows: the weak-coupling analysisl{/J;<1) is given in  locity. One can then derive the continuum limit of the second

Sec. Il whereas the zigzag limit of the modéL(J,>1) is  term in Eq.(3) using the bosonic descriptiofA7) of the

performed in Sec. Ill. Section IV presents our concludingspin-1/2 operators, described in Appendix A:

remarks and finally the conventions and some technical de-

tails used in this work are described in the two appendixes. . (—1)¥% i 7 9) 1 Cexp(i3r
s, =————exp(i V7 d,) + ——=[exp(i3ym
a \/2’7730 é \/87Ta0 Fa

[l. WEAK-COUPLING LIMIT ) ) .
o o +iTeaR) texp —i3Vmear—iVTea )] (5)
In this section, we shall investigate the low-energy phys-

ics of the one-dimensional spB-J-J, XY model in the Notice thata priori this procedure has only a sense provided
limit J,/3,<1 within the bosonization approach. This en- that the coupling constant associated to the second piece of

ables Us to study the stability of the criticélv1 phaseffor ~ Ed- (3) is much smaller thad, and this is clearly not the
J,=0) upon switching on a small next-nearest-neighbor in-case here. However, one expects in this problem, on general

teraction. The Hamiltoniafl) in the S=1 case can be tack- grounds, a continuity between weak- and strong-coupling
led within the bosonization framework by representing“m'ts so that it is natural to bosonize the second term of Eq.
spin-1 operators as a sum of two spin-1/2 operat&s: (3) using thg corresponde.nc(é). The Iegdlng partlof the
:Slt +52i It has been arguéﬁ*l“that the additional local density Hamiltonian associated to E®) in the continuum

n n-

singlets introduced will lead to extra levels with higher en-IImIt reads thus as follows:

ergy than the triplet states so that the ground state and the Vo 2S

low-lying excitations are correctly captured. In particular, Hyyi= = > [(90a)2+ (959,)?]

with this representation, Timonen and Lutheand Schul2 2 a1

predicted the correct phase diagram of the one-dimensional

anisotropic antiferromagnetic spin-1 Heisenberg model with — > co§ V(9. )] (6)

single-ion anisotropy. Moreover, the effect of weak random- 2o 4Th

ness on this latter model has also been analyzed within thig js then suitable to switch to a basis to single out the de-

bosonization approacti. This procedure was further gener- grees of freedom that will remain critical in the infrared

alized by SchulZ by representing a general spiheperator  limit. To this end, let us introduce a diagonal bosonic field

S, as the sum of 3 spin-1/2 operators, ,, a=1,...,%5: ® gy and 25—-1 relative bosonic fields® gy, M
=(1,...,5-1) as follows:

25
ST=> s-, 2 1
noam ¢+R(L)=\/?S(¢1+"'+<P23)R(L)

from which the low-energy physics of the one-dimensional
spin-S Heisenberg model can be captured and in particular 1
the difference between half-integer and integer spins. q’mFt(L):m(‘Pl+ ot emTMemsre - (7)
Let us first review the continuum description of the spin-
S XY chain obtained by SchufzUsing the decomposition The transformation(7) is canonical and preserves the
(2), the Hamiltonian(1) for J,=0 writes bosonic commutation relations. This basis has been intro-
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duced in Ref. 18 in the Abelian bosonization study of theinteractionJ,/J;<1 can be analyzed. To this end, let us first
one-dimensional Hubbard model with a @ symmetry. rewrite the second termHyy,) of the Hamiltonian(1) in
The inverse transformation of E) is easily found to be  terms of the & spin-1/2 operators:

25-1

:iq) +> _Pro) ) - —
PIR(L) /25 RO &~ +1) Hxy2=75 agl ; (SanSan+2tH.C)
J
1 a—1 _2 t -
(PaR(L):\/?Sq)+R(L)_ T‘D(a—l)R(L) + 2 a;, ; (Savnsb'“+2+H'c')' (12)
251 The first part of this equation corresponds to the suniNof
RO a=2 . 31, decoupled next-nearest-neight® 1/2 XY chains. The re-
=a JI(1+1) sulting continuum limit has been obtained by Haldane in the
erratum of Ref. 2 and is reviewed for completeness in Ap-
1 2S—-1 pendix B[see in particular EqB4)]. The continuum limit of
Qozsm):\/?sq’m(u_ T‘b(zs—l)R(L)- tS) the second term in Eq(ll) can be obtained using the
bosonized descriptiof5) of the spin density, . The result-
Using Eg. (6), one observes that all relative dual fields ing continuum limit of the Hamiltoniar{11) reads thus as
O, m=1...,5-1 are pinned whereas the diagonal follows:
bosonic fieldd, (& . =d | +d g) is a strongly fluctuat-
ing field so that 43,8 23 J
Hoxvz™~ 2, (592 + —
UO 2 > a=1 T 0
Hxva= 75 [(0xP )"+ (30 +)7], ©)
X co D= D
where®,=® ., —d . From Eq.(5) and by integrating azb L (Da=Dy)]
out the massive degrees of freedom, the expression of the 25
effective spinS densityS™ in terms of the massless bosonic _ J2 I
field in the + sector can be deduced: may, azl CosV16mea)
ST~ (—1)20exp +i\w/250,). (10
, . o o , - > cof VAT(@at op)]
The dual field® . is thus a compactified bosonic field with Tdo a<b
radius Rs=y2S/ 7. Using the general relation between the X cog (¥~ 9p)]. (12)

radius (erfzsRszl), we deduce that the compactified ra-

dius of the bosonic fieldb , is: Rs=1/\/87S. Futhermore, Using the canonical transformatid®), one finally obtains
one deduces from Eq10) that the transverse spin-spin cor- the following effective Hamiltonian:

relation function has a power-law behavior with an exponent

7, = 1/(4S). The value of this exponent coincides with the v , 1 5

prediction of Alcaraz and Moréd who have analyzed the H=5| K(0x0 )"+ (P )", (13
critical properties of theXXZ spinS Heisenberg model by

means of a combination of conformal invariance and exactvith

diagonalizations techniques. It is worth noting that the value

of the exponent in th&=1 case ¢, =1/4) has been pre- 8J,

dicted by Kitazawaet al?® within a level spectroscopy v=vo\/1— —,

analysis of theS=1 bond-alternatingKXZ spin chain. Fi- ™

nally, one should observe that the uniform part of the spin

density is a short-ranged piece since the massive modes that Ke/1— % (14
enter in this expression have a zero vacuum expectation N mdy

value and thus give rise to an exponential decay in the uni-
form part of the spin-spin correlation function. However, asOf course, as usual, these latter identifications hold only in
shown by SchulZ,in the special half-integer case, higher the vinicity of the Gaussian fixed point d/J,=0. How-
orders of perturbation theory produce a strongly fluctuatingever, one should carefully look at the higher-order correc-
piece in the uniform part of the spin densi}0) with scaling  tions of perturbation theory that might generate an additional
dimension B+ 1/(8S) which is less relevant than the alter- operator in the effective theory(13) and potentially
nating contribution in Eq(10) which has scaling dimension destablizes thX'Y1 phase. In this respect, integer and half-
1/(8S). integer spins should be treated separately. For integer spins
With all these results at hand, the stability of this critical S the last term in Eq(12) leads to the following contribution
XY1 phase with respect to a next-nearest-neighbor exchange the Sth order of perturbation theory:
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S In particular, for S=1/2, one finds J,/J;).=37/32

j H dzxiH cog VaAm(@qi 1+ @) 1(X;) =0.2945 which is not too bad in comparaison to the value
=1 =1 obtained in the numerical simulations of Ref. 1t,(J;).
Xco,i{\/;(z‘}m = 950 ](% (15) =0.3238. Moreover, in the&s=1 case, theXY1l phase is

destabilized upon switching on a nonzero valuelofn full
which, after integrating out the short-ranged degrees of freeagreement with the numerical findings of Refs. 5 and 6. The
dom and using the canonical transformat{8pn gives rise to  origin of the discrepancy noted in Ref. 5 between the DMRG
a fluctuating field in the+ channel: cos(87S®_). In the  study® and the bosonization results obtained in Ref. 10
same way, for half-integer spin§ one has the following stems from the fact that the latter authors do not look at
contribution at the 3th order of perturbation theory: higher orders in perturbation theory as in this work. e

=1 case does not correspond to the generic situation since

) we observe from the estimat&9) that the size of thex'Y1
f |H1 d Xiiﬂl co§ VAm(ei+ei41)](X) phase increases &increases in the half-integer and integer
cases. In this respect, one should note that the situation is in
X cog (%= ;41) (%), (16)  close parallel to the phase transition betweenXhe and

, . e the Haldane phases in the integer sBinXXZ Heisenberg
with the identification: ¢2s:1=¢; and dps.1="91. ON€  chajn. In theS=1 case, the resulting phase transition occurs

then obtains the following operator: cq@2mS®.) after  precisely at thex Y1 poinf?220whereas théXY1 phase ex-
averaging on the short-ranged degrees of freedom. The efengs considerably &8increaseg:1%23:24

fective field theory associated to the s@n-J;-J, XY chain

in the weak-coupling limit is thus IL. ZIGZAG LADDER LIMIT

_v 2 E 2| _ Geff Iy We shall now study the modél) in the ladder limitJ;
H=35|K(0O) (0:P+) coS uVBmSD) <J, where it can be viewed as a two-leg si8n-XY ladder
(17 coupled in a zigzag way. Fd=1/2 Heisenberg spins, the
effect of a transverse zigzag interchain interaction has been
extensively studied in Refs. 25,26,3,27,28 and also in Ref. 29
in the S=1 case. In the special case $f 1/2 XY spins, it

Heisenberg chain derived by Schdlin fact, the last opera- has bgen found. by Ner;esyahgl? that the model Is a criti-
tor in Eq. (17) can also be justified from a symmetry analy- cal spin nematic. In this section, we shall investigate the

sis. Indeed, under the one-step translation symmetry, thgXISténce of such a phase in the general Spicase and
bosonic fielde, transforms according tpsee Eq.(A8) of study its stability as the interchain interaction is further var-

Appendix Al: ¢,— @,+ 2+ pa\/7, P, being an integer.
From the definition(7) of the diagonal bosonic field, ,

with u=1 (respectively 2) ifSis integer(respectively half-
intege). One should note that the Hamiltonidh?7) corre-
sponds to the effective-field theory of the s@nXXZ

one thus has A. Critical spin nematic phase
s The lattice Hamiltonian of the modé€l), considered as a
a a _ i i 1 .
D, b, + /7+p /2_8’ (18) two-leg spin ladder, is defined now as follows:
J
from which we conclude that the cs(87S® ) term is H= ?2 > (S].S1i1t Sy 1S 1ot H-C)
= =1, : :

the operator invariant under the translation symmetry with
the smallest scaling dimension. J

The phase diagram of the sph-J,-J, XY chain in the + 2 > [SH(Son 1ot Sonsap) HHCL,  (20)
smallJ,/J, limit can then be deduced from the structure of 2 “n o '
the effective-field theory17). For a small value ofl,/J;,
the cosine operator in E@17) is a strongly irrelevant con-
tribution and the system is critical with central chaige1
(Luttinger liquid): it is the spin fluidX Y1 phase that extends
to a finite value ofl,. As J,/J, increases, one expects from
Egs.(14) and(17) a KT phase transition from this spin fluid
phase to a fully massive regigdimerized or Haldane phases
depending on the nature of the sfBh.?* At the transition,
the Luttinger parametef ., is equal to:K.=1/(Su?) and a
very naive estimate of the critical value afy(/J,). can then

where Sy, (respectivelyS; . 1,,) is the spinS operator of
chain of index 1(respectively 2) at site (respectivelyn
+1/2). It is more suitable to change the labeling of the sec-
ond chain in the following way to perform the continuum
limit of the model:

2
—{2 > (s ;n+1+Hc>+—E [S1a(S2

be deduced from Ed14) within the bosonization approach: +S;,-1)tH.cl. (21)
J m(SPut—1) At this point, one should note that the interchain zigzag cou-
(_2) = (19 pling can also be written gsising intrachain periodic bound-
/g 85w ary conditions:
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Bt ‘ : - the model(25). Indeed, it is easy to see that the mean-field
Hin=% > [(SI+Sl)Son+H.cl. (220 Hamiltonian separates into two commuting parfSir
" =H, +H_ with
Consequently, we shall thus write the interacting part of the
Hamiltonian(21) in a symmetrized way for taking the con- _v 9 2+ (9.0 )21+ kO
tinuum limit of the model: He 2[( (@) (0,0 ) T 10O
J, 2 v — — M m—
2 — .
H= > agl E (S 1Sans1tHC) Ho=5[(0:P)*+ (5,0 )] a—osm( \[g(‘)—)
3 (27)
+ Zl ; (Sl +St DS, the mean-field parameters being
_ _ —
+SI,n(82,n+SZ,n—1)+H'C')' (23 K=g<Sin< \[g(ﬁ))>
In the absence of the interchain couplinh € 0), the model
corresponds to two decoupled s@BnXY chains. As seen in Mo —
Sec. ll, it is critical with central charge=2 and its low- ag ~9(0x0 +)- (28)

energy physics can be obtained with the introduction of two o ) ) o
decoupled chiral gapless bosonic fields, g, (a=1,2). The Hamiltonian ¢¢.) is easily solved by the redefinition
The leading contribution of the spin densBy comes from  ®,—® , — kx/v. The+ sector displays thus criticality with
the alternating paitsee Eq.(10)]: a nonzero topological spin current in the ground state:

(0y® )y=—klv#0. In contrast, the HamiltonianH_) in

the other sector is a standard sine-Gordon modeB4t

= 7/ S which describes a massive theory with massive quan-
tum solitons and their bound statéseatherstogether with

massive kinks. The dual fiel® _ is locked at:(® )
=S4 sgn u(mod 4Sw). The mean-field analysis

can then be closed using the fact thasin(\/wlsg_))

v . ~ — m— =c(ao|u|/v)Y® D (¢ being a constant that can be
H=3 azi [(0xPa)"+(9xOa)"]+ 95,0, sin| /5O - determined®) and one easily finds

A
So=——(—1)¥% +im/2S0,.), 24
A @( yrloexp iy ) (24)

\ being a nonuniversal constant. From E24), we deduce
the continuum limit of the mode(23) in the smallJ;<J,
limit:

(25 b [agg| @S DS i
_ L Bt c(85-1)/(85-2)
where g=J;\%\/7/(4S) and we have introduced the sym- K ag\ v '
metric and antisymmetric combinations of the two bosonic S
fields: i ag ( )C(szl),(ssfz). 29
ao v
®i=i(<bl+i<b2+), From the correspondend®4), one can then estimate the
V2 asymptotic behavior of the transverse spin-spin correlation
functions of the model which display an incommensurate
— 1 critical behavior:
::E(®1+i®2+)- (26)
gldsx

3 - .~ g=
The Hamiltonian(25) describes a nontrivial field theory (S1%)8;(0)) |X|1/(85)’ a=12, (30

since the field with coupling constagt called twist term in

Ref. 3, is a parity symmetry-breaking perturbation with awith qs— m/ag~(J;/J;)*¥“S"1). The transverse spin-spin
nonzero conformal spifequal to 1. The effect of such term correlation functions fall off thus with the distance as a
is rather unclear since the usual irrelevant versus relevarfower law with the exponent 1/@. In the S=1 case, one
criterion does not hold for such a nonscalar perturbaiéee, should note that this exponent (¥#8.125) found in this
for instance, Ref. ¥ The simplest spin-1 conformal pertur- bosonization study is in good agreement with the numerical
bation is the uniform part of the spin density,®) that findings 0.15 of the DMRG analysis of Ref. 6.

couples to a uniform magnetic field along thexis. In this Besides this incommensurate critical behavior observed in
case, this term leads to incommensuration as is well knowrthe spin-spin correlation function80), the physical picture

It is thus natural to expect some incommensurability effect irof this phase obtained at the mean-field level corresponds to
the model(25) due to the twist term as emphasized by Ners-a spin nematié’ Indeed, let us first introduce trecompo-
esyarnet al2 In particular, the presence of incommensurationnent of the spin current’ associated to thath spinS XY

in the system can be found by a direct mean-field analysis athain @=1,2):
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[2s field. As is well known, a magnetic field along the anisotropy
V=—v\/—00,, . (31 axis is a source of incommensuration but also leads to a
. renormalization of the compactification radius of the bosonic
The vacuum expectation value of this operator can then béeld. This last effect was not found in the previous approach
computed since one has in the ground state of the mean-fielks seen in thaniversalbehavior of the spin-spin correlations
Hamiltonian(27): (f9><®_+>= — wlv+0 and(ax(g,)=0. This (30. From a symmetry point of vieyicontinuous _l(Jl) sym-
latter result stems from the fact that the Hamiltoni&h () in _metry],. therg are no reasons to expect such gmversal behav-
Eq. (27) is a standard sine-Gordon model characterized by or. It is a first sign that higher-order terms in perturbation

ground state with zero topological charge. Using the redefi-S EO“I’I rr;ir?ht b.e imtplorta{n here. Qn the odtjk':srdhand_, asdseen in
nition (26), one finally obtains the following estimate: €c. 11, nere Is at ‘east a massive reg( merized or
Haldane phasésn the phase diagram when increasing the

s — S value of J; at fixed J,. It is therefore likely that a vertex
(J5)=(I59)=—v \ﬁ(ﬁx(m): \/:Kio. (320  operator, generated in the renormalization-group flow, in the
& ™ + channel will kil the critical phase at least for a critical
These spin currents can also be expressed in terms of thvalue J;/J,).
original spin degrees of freedom of the lattice Hamiltonian We shall now discuss the bosonic representation of the
(23) using the identificatiori24): different discrete lattice symmetries of the mo¢®3) to find
the nature of the operator that will be generated in the

> - , [T, = sector by the renormalization-group flow. Let us first con-
((San/\San+1)2)=—A\/75(¢:®+)#0, a=1.2, sider the one-step translatiomgi(), site parity P¥), and
(33 link parity (P{®) corresponding to the chain of index
whereas similarily theinterchain zigzag spin current along = 1,2 Using the definitior{7) of the diagonal bosonic field
the z axis reads as follows: that accounts for the criticality of théY1 spin fluid phase in
the decoupling limit §;=0) and the bosonic representations

. . [S — S (A8)—(A10) in the S=1/2 case described in Appendix A,
J1((S1p/\Spp)z)=—2 \/;g< sin( \/;®_> > ==2 \[;K one obtains the following identifications respectively for the
one-step translation, site parity, and link parity:
#0, (34

where EQ.(28) has been used. [7S [
The physical picture that emerges from this mean-field O, —D,, + 7+ Pa 59
analysis is therefore a spin nematic phase that preserves the
U(1) and time-reversal symmetries and displays long-range
chiral ordering in its ground sta{@3) and(34). In the clas- ,
sification of Ref. 31, this phase corresponds {@tgpe spin Oa:—0q + 257+ paV8TS, (39
nematic. At this point, it is important to stress that this chiral
ordering is different from the scalar chirality order

operator? (S, - (S;n/\S,n-1)) Which breaks parity and Dy (X)—— D (—X)+ /W_S+ s \/E

time reversal symmetries. In our case, the spin nematic phase 2 2S

does not break the time-reversal symmetry but spontaneously

breaks aZ, symmetry of the model which, as it will be

shown in the next section, is a tensor product of a site-parity 04: (X) =04, (—Xx)+0,V87S, (36)
and link-parity symmetries on the two chains. As a result, as

first discovered in th&=1/2 case in Ref. 3, this produces a

picture of local nonzero spin currer®2) and(34) polarized and
along thez-anistropy axis circulating around the triangular

plaquettes of the two-leg zigzag spin ladder. -
(I)a-%—(x)_> _q)a+(_x)+ Ng \/ Z_S’

B. Stability of the chiral critical phase

It is important to study further the stability of this critical
spin nematic phaséchiral critical phasgin the + channel 04: (X) =0, (—X)+ 275+ n;\/S_wS, (37)
with respect to various operators that will be generated in
higher orders of perturbation theory or equivalently terms
consistent with the symmetries of the original lattice model.where p,,p,,das.0,.Na.n, are integers. From these corre-
Indeed, on general grounds, one expects that some operatasondences, one can deduce the bosonic representations of
in the + sector should destroy the criticality of the phase atthe discrete symmetries of the Hamiltonié28). The trans-
least for some finite value df, /J,. First of all, in the mean- lation symmetry acts on the symmetric and antisymmetric
field approach, the twist term acts like a sort of magneticcombinations26) of the bosonic fieldsb,, as follows:
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— — a
O, —D, + 7S+ E(pl"'pz),
0.0, +\aSa+ JAmS(p,+p),
— — '
O_—P_+ 4_S(p1_p2),

O_—0_+\axS(p,—p)). (38)

A second type of discrete symmetry of the Hamilton{2B)

s, consists of a vertical axial symmetry combined by an

one-step translation symmen&;) along the lower chailfla-
beled 1 in the following

Sl,n_’Sl,—n-#l )

S2,n_’82,7nv (39
namely in the continuum limit:
nl(x)_)_ nl(_x)v
nz(X)an(—X), (40)

which corresponds to a tensor product of a link-parity trans-
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CD (X)—— (IJ( x)+—+\/ ( n,+dq,),

O_(x) =0 _(—x)—Sm+arS(—ny+q)). (43

There is a second family of discrete symmetries of the

Hamiltonian(23): s;= P12®tgt) or s,= P12®t(,2;0 which cor-

responds to an interchange of the chains combined with a

translation symmetry along the lower or upper chain.

terms of the original spin degrees of freedom, $heands,
symmetries respectively write:

Sl,n_’ SZ,n )
Sz,n—>51,n+1, (44)
Sl,n—> Sz,n— 11

SZ,n_> S1,n )

so that in the continuum limit, one has

(45

N1 (X) —N(X),

Na(X)— —Ny(X), (46)

formation on chain 1 and a site-parity transformation 0Ny

chain 2 6;=PMeP?)) when the model is viewed as a
zigzag Iaddel[Eq (20)]. The bosonic representation of this

discrete symmetry is thus

D, (X)—>—D,(—x )+—+\/ (n1+qz)

0, (X)— 0, (—X)+ S+ JA7S(n} +qp),

J7s -
X)—T+ 75 ( —d2),

G_),(x)—>(3,(—x)+ JSm+ VAmS(ni—a3).

In the same way, the Hamiltonid&3) is also invariant under
the transformationg, symmetry:

D (X)——D (-

(41)

Sl,n_’ Sl|— ns

§2,n_>§'2,7n711 (42)

which can be viewed as 8?®PY) transformation. In
terms of the bosonic fields of the bagi6), this latter sym-
metry is realized through

(5+(X)—>—q_) (— X)+—+ Vzs n2+q1)

0, (X)— 0 (—x)+ ST+ VArS(ny+a)),

N1 (X)— — Na(x),

No(X)—Ny(X).

(47)

In

The bosonic representation of these last discrete symmetries

of Eq. (23) is then respectively given by

— — y=@S T
(D+~>q)++7+ 4—Sp1,

+H++\/§+ VATSp,

— — VTS T

S R b=
O®_——0_—Sr—\4nSp,, (49)
- — \/_S P
(D+—>(I)++ 2 4_Sp2,

0.0, +\Sr+\4rSp,,

— — s [=

b —q),‘FT‘F 4—Sp2,
O_——O_+\Sr+\anSp, (49)

174426-7
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With all these identifications, one observes that the con- — . .
tinuum limit (25) of the lattice Hamiltonian23) is invariant operator cog®.) leading to a threshold above which the

under all discrete symmetrié88), (41), (43), (48), and(49) incommensuration.sc—:jttles in the system. One should note that
as it should be. However, the mean-field Hamiltoniam is the 'eX|stence of .thIS incommensurate gapful phase when the
invariant under Eqs(38), (48), and (49) but breaks thes, , cosine qperator in Eq50) becomes releva'nt'can also beep
symmetries(41) and (43). These latteZ,, discrete symrﬁe- seen using a I__uther-Emery or Toulouse_llmlt of t_he_: Hamil-
tries are spontaneously broken in the ground state of thfNian(50) as it has been used to explain the origin of the
critical spin nematic phase and account for the formation offcOmmensuration found in the phase diagram of the quan-
nonzero local spin currents polarized along #heis circu-  tUm axial next-nearest-neighbor Ising chin.

lating around the triangular plaquette of the two-leg zigzag The full characterization of the intermediate phéstairal

spin ladder. The operator, that occurs in thesector of the ~gapped phasedepends on whethe§ is integer or half-
mean-field Hamiltoniar(27), with the smallest scaling di- integer. Indeed, fod; /J,>(J;/J,)., the bosonic fieldD ,
mension and consistent with the symmetri@8), (48), and  of Eq. (50) is locked in one of the minima of the potential

49) without breaking the continuous(l) diagonal symme- —
49 g @ a y —Jeti COS\167SP ) which for g.;>0 Ref. 35 are lo-
try of the model turns out to be: cqs(167SP ), with u —

=1 (respectivelyu=2) if Sis integer (respectively half- cated at(®,)=p (m/4S/u, p being an integer. More-
intege). The stable effective field theory in the channel is ~ ©Ver. the value of the compactification radius of the bosonic
thus field @, is equal to:Rg=1/\/167S. This follows from the
redefinition(26) and the fact that the compactification radius
of the bosonic field that accounts for the critical properties of
the spinS XYchain isRg=1//8%S as it has been found in

g Sec. Il. From the precise knowledge R§, one deduces the

ae”cos(m/lewsq_m, (50)  following identification:
0

v — L, 1 =, —
H+2§ K(9,0 ) +E((9XCI)+) + k3,0 ¢

where the value of the Luttinger parameter$& cannot be

determined within this bosonization approach. For a small - - ™
value ofJ; /J, (i.e.,K=1), the cosine operator in E(50) is Q=P +27R= DL+ 75
a strongly irrelevant contribution and the system displays a

(51)

critical phase with incommensuration generated bydtlee
field. This chiral critical phase, predicted in te=1/2 case
in Ref. 3, is thus a generic phase in the laggeJ, limit of sponding to the pinning of the bosonic fiedel, , we thus

the model(1) in the general spirs case. In particular, it is conclude that in the integer spin case=1) the ground
worth stressing that, in the&s=1/2 case, the operator state of the massive phase is nondegenerate whereas for half-

cos( ’_8775+), which opens a mass gap in thechannel and integgzer spins =2) ther_e is a twofold degenerate ground
thus destroys the chiral critical phase found in Ref. 3, is noftate:” Therefore the chiral gapful phase corresponds to a

generated by the renormalization-group flow. Indeed, whilgnassive phase with a coexistence of incommensuration and a
this latter operator is permitted by the translation symmetryialdane phaserespectively dimerized phasin the integer

(38), it is odd under thes; ands, discrete symmetrie649) (respectlvely_haIf-lntegérspm case. From th_e identification
and (49) which forbid its presence in the low-energy ©f the massive phase found at larde/J; in the weak-
effective-field theory. This result leads us to expect that th&©upPling analysigsee Sec. )| we then expect an IsingZ¢)

chiral critical phase does exist in the certain range of thdransition between the chiral gapped phase and the Haldane
parameter of the lattice model f@=1/2 in full agreement ©F dimerized phases ak /J; is further increased. At this
with the very recent numerical stuflyAs J,/J, is further  Ising critical point, the total spin currefg,® . ) vanishes,
increased, it is natural to expect that the effective th€bfy i.e., the disappearance of the incommensurate behavior and
describes a phase transition of KT type from the chiral gapthe systems enters a commensurate massive phase: Haldane
less phase al.=0 to a chiral gapped phase. Indeed, thereor dimerized phases depending on the spin. At this point, one
will be a critical value (,/J,). [the Luttinger parameter at has to mention that the existence of this intermediate incom-
the transition being equal t.=1/(2Sx?)], which cannot mensurate massive phase, within our mean-field approach,
be obtained within this bosonization approach, above whichelies on the decouping of the degrees of freedom in the two

the cosine operator cq@p.) becomes relevant and a mass channels+ and — as in Eq.(27). We cannot rule out a

gap opens in the- sector(KT transition withoutkilling the diff_erent scenario that might oceur in th_e system nonpertur-
— batively due to the effect of the interactions in the two sec-

incommensuration stemming from thg® . operator. Inthis qs- 3 single phase transition between the chiral critical
respect, this mechanism of generation of incommensuratiophase and the Haldane or dimerized phases. At this critical
is different from the usual commensurate-mcommensuratsoint one hasimultaneouslythe appearance of a mass gap

- 3 - - . . o 1
scenarid” since, in this latter case, there iscampetition i the spectrum as well as the cancelation of the spin current
between the uniform spin density® , field and the cosine so that the chiral gapful phase shrinks to zero in this case.

From this equivalence and the position of the minima corre-
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IV. CONCLUDING REMARKS general spirs case in agreement with our work. Futhermore,
the prediction on the decay of the spin-spin correlation
)fll(SS)] in the chiral critical phase found within the

physjcs of the qne—dimensional SEiN-J —Jp XY modgl _bosonization approach has been numerically verified. Fi-
within the bosonization approach. Around the two limits nally, for integer spins $=1, 2), the authors of Ref. 39

(J2/31<1, J1/J;<1) where a field theoretical analysis can paye reported the existence of the chiral gapped phase in a
be performed, we have described the nature of the dlffereq;ery narrow region of the phase diagram whereas in the half-

phases that occurs as well as the determination of thgteger case$=1/2, 3/2) it has not been identified within
effective-field theories of the resulting phase transitions. Thgnhe numerical precision of the worR.

critical XY1 spin fluid phase ai,=0 is generically stable
upon switching on a nonzero value of the next-nearest-
neighbor interaction except for the very specta1 case
where the Haldane phase is immediately stabilized in full The authors would like to thank D. Allen, E. Boulat, A.
agreement with the DMRG study of Refs. 5 and 6. As theK. Kolezhuk, and A. A. Nersesyan for valuable discussions
exchange interactiod, is further varied, the model exhibits related to this work.

a KT phase transition described by a standard sine-Gordon

model between thXY1 Spin fluid phase and a fU”y massive APPENDIX A: XY CHAIN IN THE CONTINUUM LIMIT
dimerized or Haldane phases depending on the value of the

spin. In the zigzag ladder limitJg /J,<1), we have shown In this appendix, we shall recall some well-known facts
that, whatever the value of the spin, the chiral critical phasepn the continuum limit of theX'y chain to fix the notations
first predicted in th&S= 1/2 case by Nersesyaat al,> should  that will be used throughout this paper. The Hamiltonian of
exist in a certain range of the parameters of the model. Thighe antiferromagnetic spin-1/8Y chain is J;>0)

interesting spin nematic phase preserves thb ldnd time-
reversal symmetries but spontaneously breaks aymme-

try (PMe PP) resulting on the formation of nonzero local
spin currents in the ground state polarized along the anisot-

ropy z axis. Futhermore, the transverse spin-spin correlatioq\,hereén is a spin-1/2 operator at site As is well known
functions are incommensurate with a wave VECW¥  his model can be written in terms of lattice fermioas

—mlag~(31/3,)*1*>" Y and decay algebraically with the using the Jordan-Wigner transformation:
distance with an exponent 1/83 obtained within the mean-

field approach used here. As the interch&jrJ, is further 1
increased, one expects the existence of a KT phase transition Sﬁzcﬁcn— >
between the chiral critical spin nematic phase and an incom-
mensurate gapful phagehiral gapped phageln particular,

the effective-field theory corresponding to this transition has . ot ) nt +

been determined in this work. The nature of this chiral Sp=(=1)%cyex '77.21 CiCi |- (A2)
gapped phase corresponds to a coexistence of incommensu- :

ration stemming from the presence of nonzero spin current$he continuum limit of the mode{A1) can then be per-
in the ground state and a Haldane or dimerized phases degrmed with the introduction of right- and left-moving fer-
pending on whether the splis an integer or half-integer. mion fields R,L: c,/+ag— R(X)(i)¥20+L(x)(—i)*2, x
We then expect an Ising phase transition associated to they5 5. peing the lattice spacing. Using the fermion-
disappearance of the spin current between the chiral gappgghson correspondendsee, for instance, Refs. 37 anyl 4
phase and the standard Haldane or dimerized phases. The
phase diagram found in this work is consistent with the pre-

In the present work, we have investigated the low-energ

ACKNOWLEDGMENTS

Honlz (SiSh 1t SESh 1), (A1)

dictions of the largeS study of Kolezhuk' except for the R= ! expli VAmdp)

specialS=1 case where thEY1 spin fluid phase shrinks to V21a, ’

zero. It will be very interesting if some extended DMRG

studies can be performed in tf8&>1 case to further shed 1

light on the physical properties of the model as well as the L= exp—iVand,), (A3)
possibility to extract the Luttinger parameters of the V2ma,

effective-field theory50). The different phase transitions re- o ) )
ported in this work could also be investigated by means of 4he Hamiltonian(A1) can be expressed in terms of a bosonic
level spectroscopy analysis as in the one-dimensional spirfield ® and its dual field® in the continuum limit:
S XXZHeisenberg modétt

Note addedWhen this work was completed, we became
aware of a very recent work by Hikihaet al3® who have
investigated theS=1/2, 3/2, 2J,-J, XY chain using a
DMRG analysis. They have found that the chiral critical wherevy=J,a, is the spin velocity and we work with the
phase appears in a broad region of the phase diagram in tliellowing conventions:

Ho=2 | dH(5,8)7+(9,2)7), (Ad)
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O=P +dg, whereq,q’ are integers. The link parit?, (n—1—n) is a
combination of a site parity and a translation symmetry so
0=>0 —dy, that underP_ the bosonic fieldsb and® transform as

[Pr,PL]=i/4. (A5) D (X)— —P(—x)+nym,
This latter commutation relation is necessary to insure the
anticommutation between the right and left fermion opera- O(X)—O(—X)+ Jm+n' 4, (Al10)
tors [see EQ.(A3)]. The bosonic field is compactified with o
the radiusR=1/\/47: ®~® + /7 whereas the dual field is n,n’ being integers.

compactified with the radiuR=1/(27R): ®~0 +2\/7.
The spin density operator in the continuum limit decomposes ~ APPENDIX B: ONE-DIMENSIONAL S=1/2 J,-J,
into uniform and alternating parts: XY MODEL

> 2 > In this appendix, we derive the continuum limit of the

S=J+(=1)"%n, (AB) model (1) in the S=1/2 case in the weak-coupling limit,

which can also be expressed in terms of the bosonic fields asJi. This calculation has been done several tité8with

follows: different bosonized expressions. This discrepancy stems
from the fact that one has to be extremely careful when de-

, —1 riving the continuum limit and in particular for obtaining the
n —W—aOSII’]( Van®), (A7) correct velocity renormalization. We shall redo here this cal-

culation for completeness and also since it will be needed in
Sec. Il when deriving the bosonization approach ofihd,

n'= expi J70), spinS XY chain in theJ,<J; limit.
V&g The first step of the computation is to express the inter-
acting part of Hamiltoniarnl) in terms of the lattice fermions
1 using the Jordan-Wigner transformatioh2):
\]ZZ\/——ﬁX(D,
v

Hine==322 [Cp42(Chs1Cns1— 12CptHe]. (BD)

Jt= (exdi3Vm® +irdg)+exp —i3Vrdg
V8mag Using the continuum limit of the fermions and the bosoniza-
i \/;(I)L)], tion correspondenc@A3) described in Appendix A, one has
J,a :
1 Hin= s | dX(—i)¥%0:e7 7 ¥R: (x+ 2a,)
= exp(i V7 ®)sin( 47 d). It 2 f ' ' 0
\/27Ta0 F(
N 1
We end this appendix by giving the bosonic representa- +(i)¥30:eV47PL: (x+ 2a0) ]| —= 9, P (x+ag)
tion of the discrete symmetries of theY Hamiltonian(Al) \/;

that will be very useful when investigating the stability of the 1)¥/30
qhiral critical phase in Sec. Il B. Under a one-step transla- + —(_ ) 'sin( VA7) (x+ag)
tion symmetry, the bosonic fields transform according to: ™

o GJFN_ X[ (i)¥%:ATOR: (x) 4 (—i)¥/20: 0713701 ()]
— —_ T,
2 +H.c. (B2)

O— 0+ \7+p' Vi, (A8)  To derive the continuum expression of this Hamiltonian, we
need the following operator product expansions in a standard

, ) Gaussiarc=1 theory:
(n) of the spin density should be odd under the one-step

p,p’ being integers since from E¢A6) the alternating part

translation symmetry. Under the site paritag(éneé_n), aIVETDR ) - —IETDR- (\r) (i
the uniform and staggered parts of the spin density should be © H2) OB (W, W)~y P e (W, w)
even so that 1 _

_ - :efl\sﬁ%:(\,—v)

<D(x)—>—d>(—x)+g+q\/;, Vam(z-w)

1 —_ J—
— ——:9e VAR (W),

O(X)—O(—x)+q’ /4, (A9) N
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1€ T (2) 3, (W, ) ~ 1 G e L (w,w)
1 .
——¢
VaAT(Z—wW)

\fﬁ(I)L: (W)

_ 1 .aei\sﬁtbL.

Jin (w),

:e VTR (2):sin( AT D) (W, W)

Z—w o~ INTBTPR(W) = 170 ().
— :

+;:[1—i\/ﬂ(z—w)a®R
2(z—w)

—2m(z—wW)2(aDg)2]e L (w,w),
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VI (2):sin( A7 D) (W, W)

27 W, L T670 (w) gl FrdR(w)-

2

1
+m:[1+i¢ﬂ(z—w)a@L

—2m(z—w)2(ad,)2]e " F R (w,w) (B3
with the conventionw=uvy7+ix and d,=i(d—d). Using
these results and keeping only nonoscillatory contributions in
Eg. (B2), we finally obtain

) f dxcog /167d) —

4353,

ko

Hing=— —5— f dx(3,0)?
ar ao
(B4)
which is in perfect agreement with the earlier derivation
made by Haldanésee the erratujh and is in contradiction
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