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In most magnetic systems the magnetization reversal is nonuniform, and is initiated in a so-called “nucle-
ation volume,” whose dimensions are by far smaller than the total system volume. For simplicity reasons
magnetization reversal theories are usually based on the assumption that coherent rotation occurs in this
“nucleation volume.” In this approach, self-dipolar fields and exchange forces are obviously not well de-
scribed, because in reality the nucleation volume is coupled with the rest of the system. In the case of ultrathin
dots with in-plane uniaxial anisotropy, we could take into account dipolar fields and the exchange stiffness
explicitly. The approximations used to derive analytical equations were suggested by experimental results on
real dots. The model yields the nonuniform micromagnetic configuration of nucleation volumes. It predicts
nucleation and reversal field values, as well as the field dependence of the energy barrier to be overcome to
reverse the dot at finite temperature. Thegative reversal field is found to increase with the dot thickn€ss
and the volume magnetizatiovg, and to decrease with the material anisotrépyn the low-thickness limit,
the reversal fieldH, approaches the Stoner-Wohlfarth reversal fielg with a law close to +|H,/H,
~M{?A~34 ~1T32 whereA is the exchange constant. The relevance of the approximations used is discussed
and demonstrated by the good agreement found for all predictions between experiment and/or numerical
calculations on the one hand and the model on the other hand.
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I. INTRODUCTION for magnetic random access memoriBERAM’s) as the in-
tegration via lateral size reduction requires the decrease of
In the past two decades intense work has been devoted thickness of the magnetic layers in order to keep a reasonable
the fabrication and study of magnetic thin and ultrathin films.thin-film-like aspect ratio. This is also of true for giant mag-
New fundamental phenomena associated with well-definedetoresistance (GMR) or tunneling magnetoresistance
two-dimensional (2D) structures (flms) have been (TMR) magnetic head sensors, so that it may probe the stray
observed The attention is now focused as well on the fields arising from ever-narrower magnetic bits.
study of systems of reduced lateral dimensions, ie., 1D We recently reported experimental results demonstrating
(stripeg®°and 0D(dot9.1%~" Several studies of fundamen- correlation between the decrease of the dot thickness and the
tal interest arise from this further decrease of dimensionalityincrease of the ratio of coercive field over anisotropy
(1) The above-mentioned new phenomena also occur in 1Meld.?>~2° Here we propose an analytical model describing
and OD (and can even be enhangedut with a different magnetization reversal in thin dots with in-plane uniaxial
geometry, namely, with interfaces lying in the pldfig?® (2) anisotropy. We explain below our motivation for proposing a
New fundamental phenomena may arise, as observed farew model by briefly reviewing available theories of magne-
magnetoresistance enhancement due to Coulomb bloéRadetization reversal and showing that none of them are capable
(3) Qualitative or quantitative changes of micromagnetic be-of describing the case of ultrathin dots with in-plane uniaxial
havior happen, the same way dipolar fields favor the in-plan@anisotropy. The simplest model of magnetization reversal is
alignment of magnetization for continuous thin films. TheseCR, which was first proposed by '®WE® and Stoner and
studies are also of importance for applications in the technowohlfarth?’ In this framework the reversal field, along
logical context of the ever-increasing integration demand fothe easy axis of magnetization is predicted to equal the an-
the fabrication of small devices and components. isotropy fieldH,, whereH, includes the microscopic anisot-
The scope of the present paper lies in magnetic systems obpy (magnetocrystalline, magnetoelastic, interjagleis the
reduced dimensions, more precisely in magnetization reveishape anisotropfaspect ratin However, in real systems the
sal processes in ultrathin flat dots with in-plane magnetizamost favorable magnetization configuration is generally not
tion. On the one hand this study is of fundamental interest agniform (except for extremely small systems as was shown
it is related to the 50-year-old experimental search for coherrecently’) andH, is considerably smaller thaH,, so that
ent rotation(CR) of magnetization in small systems. On the later on numerous nonuniform magnetization reversal pro-
other hand this study addresses an application concern, assses have been proposed to account for the experimental
devices like spin valvé$ and prospective topological bit re- small value ofH,. To this point it must be noted that even
cording medi&'! require the use of such thin flat magnetic for one-dimensional problems there exists no general solu-
components. Studying the effect of the reduction of the dotion to micromagnetic equations, due to the long-range and
thickness is of particular interest for spin valves. This is truenonlocal character of dipolar fields. Therefore, solutions can
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be found only by introducing approximations or test func-uniaxial anisotropy, we mean in-plane magnetization and a
tions. Many models had to be proposed to describe differengniaxial anisotropy of microscopic origin between two in-
types of systems, because the approximations introduced apéane directions. Indeed, in the presence of anisotropy the
valid in a limited range of parameters only. magnetization is expected to reverse by a nucleation-
Two types of theories were introduced. In the first typepropagation process. This is confirmed experimentally as
one assumes that some defects can be found in the sampl@sicleation volumes, as determined by aftereffect measure-
These defects are assumed to alter anisotropy and/or ersents, are by far smaller than the system §iZ&Therefore,
change constant values, or geometry. The defects may dbighly symmetrical collective modes should not account for
crease the nucleation field as compared to the anisotropie observedd, reduction. How does one describe magneti-
field (“soft” defects) or explain the value of propagation zation reversal in such dots? One sometimes assumes that
fields (pinning defects We do not consider such processescoherent rotation occurs in a small nucleation volume, and
in the present paper, as we are interested in systems haviitige aspect ratio of the dot is then invoked to estimate the
no significant defects. To the contrary, we wonder what in-dipolar contribution to an effective magnetic anisotropy of
trinsic magnetization reversal mechanisms may occur apathe nucleation volume. This approach may be very mislead-
from coherent rotation that may lead to a reversal fielding as(i) the exchange is not taken into account whereas the
smaller than the anisotropy field. We therefore turn to themagnetization configuration is obviously nonuniform &iagd
other type of theories, assuming no defects. Due to the condipolar fields are generally nonuniform in samples, so that
plexity of micromagnetic equations, only highly symmetrical the relevance of the aspect ratio that is related tontiean
collective reversal modes could be investigated analyticallyvalue of Hy over the dot volume is doubtful. The latter ar-
These processes may be relevant for systems of very smajument is particularly acute in the present case of thin flat
size or, more generally, for soft-material systems with adots as the magnetic poles are then located on edges of the
shape of high symmetR? Such theories include curlifg®?  dot only. Therefore self-dipolar fields are very intense in the
and buckling® or extensions made to investigate vicinity of edges and very weak in the center of the dot,
zero-field®3*and field-dependafitstates of more or less flat because of the short range of dipolar fields in 2D syst€ms.
dots made of a soft material. More recently a variationalT© the contrary, the approach followed in the present model
method was introduced by Cowburn and Welland in the casé to take into account the exchange contribution and the
of square dots made of soft materfiThese authors de- local dipolar fields, and to derive explicitly the micromag-
scribe a nonuniform magnetization configuration in a dot agetic configuration of a nucleation volume growing near an
the superposition of a uniform magnetization state and low€dge, for any applied field and up to the reversal field.
order perturbations with “leaf’ or “flower” symmetry. For The principle of the model and the approximations intro-
reasonably small dots a remarkable agreement between thiced are given in Sec. Il. The equations are explicitly de-
model and numerical calculations is fOUﬁCf?The resumng rived and solved in Sec. Ill. We show that the model pl’ediCtS
magnetization configuration is, however, still collective asthe reversal field value, the reversible contribution before the
only perturbations of high symmetry are considered. Thigeversal, and the micromagnetic configuration of nucleation
model may therefore be relevant only to describe flat dot§olumes, as well as the field dependence of the energy bar-
made of soft material and with negligible thermal activation,i€r preventing the reversal. Some examples of the model
which we know from theory and experiments to adopt sucHUtputs are given in Sec. IV. Finally, Sec. V is devoted to
collective static mode¥~3° Finally, no external fields are Ccomparing the model with numerical calculations and experi-
taken into account in these models in their present state, g9€nts. The approximations used, the relevance of the model,
that only remanent static magnetization configurations ar&nd its micromagnetic consequences are finally discussed.
predicted, and hysteretic effects can only be extrapolated.
We finally mention an attempt to derive a theory for aniso-
tropic flat dots. Chui and Ryzhd¥proposed a trial micro- Il. DESCRIPTION OF THE MODEL
magnetic configuration for a flat rectangular dot under zero A. Dimensionless units
applied field. The edge conditiom-n=0 mimics dipolar . . ) . .
energy minimization, whereas the configuration in the bulk !N the following we will use dimensionless units for the

of the dot satisfies exactly micromagnetic equations with ngak€ Of concision. Uppercase letters stand for dimensional
variables whereas lowercase letters stand for dimensionless

dipolar fields. The authors show that the trial configuration is*® ) i
close to the one issued from numerical calculation performed@riables. First, all lengths are expressed in termg/AfK

on a dotwith a certain thicknessin fact the proposed trial Whereé A is the exchange constant, akdis the in-plane

configuration is thickness independent, and therefore shoufgecond-order anisotropy constant of the dot material, includ-
be neither adequate for “large” thicknegthe edge condi- N9 all microscopic anisotropy sourcésagnetocrystalline,

tion m-n=0 is correct but volume charges should then peMagnetoelastic, and interfagé\ny dimensionless lengthis
taken into accountnor for “small” thickness (the m-n=0 related to the real length like |=LK/A. If we use the
edge condition is too strong; the dot configuration is rathegefinitions of the Bloch wall widthg=myA/K and the
close to uniforn. exchange length .,= m/ZA/,uOMSZ, we have in dimension-
To our knowledge there exists no realistic analytical re-less units:\g =7 and\ = my2/m. Second, there are two
versal model in flat dots with in-plane uniaxial anisotropy ways of reducing magnetic fields and the volume magne-
and with dimensions well abovk, and \g. By in-plane tization M4. The symmetrical way consists in reducing both
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variables withyK/ug. We will denoteh=H \uq/K andm % 0
=M /uo/K as the corresponding dimensionless variables. _,?,‘5,?;!,‘;"/
The nonsymmetrical way consists in reducinigwith the *-;-;-P’—V,—;’
anisotropy fieldH ;= 2K/uoM¢ and Mg with My itself. We >>rrrwy
will denoteh=H uoMJ2K as the field reduced in this way < e >
~ . #—>—© #=0 #—>00
(andm=1 does not appear anymgrdhe symmetrical re-
duction is more explicit for dipolar field calculations as FIG. 1. Schematic cross-section view of the slab with external

still shows up explicitly. The nonsymmetrical reduction is field applied perpendicular to the edge and parallel to the easy axis

more convenient for ana'yzing magnetization reversaﬁ as of magnetization. In this geometry the so-called surface magnetic
=—1 means coherent rotation. However, in both reductiorPoles are located on the edge-X. The field is positive in the
systems, the characteristic magnetic length scales are idenfigure- Negative values will be applied to reverse the dot magneti-
cal. Finally, the energy density of a second-order anisotrop§!°"-
system under an external field applied parallel to the easy
axis of magnetization is written will be detailed in the discussion section. As we already
mentioned above, dipolar fields are short ranged so that the
micromagnetic configuration of the nucleation volume
- should be characteristic of the neighboring edge only, be-
=sirfw+(Vw)?-2h cosw, (2)  cause the influence of corners and of the opposite edge are
comparatively very weak. It should finally be added that the
entire paper we will often refer to the experimental case O]mfluenqe of corners and other edges IS not mediated to the
l-nm-thick (110)Fe do%® for which M=1.73 nucleation volume via exchange, as the m-plane length scale
1P Am-L K=476x10° Jm23 A=2x10"1Jm? of the exchange length, the domain-wall width, and that of
’ ! j the nucleation volume are small as compared to the dot lat-
eral size. In this respect, the present situation is very different
from that commonly encountered in the case of soft material.
All this leads to the first micromagnetic approximation,
which is of a geometrical nature: the dot is replaced in the

In the model, we make use of both power series expanmode| by a half-infinite slab whose edge is perpendicular to
sion and micromagnetic approximations. The expansion aghe easy axis of magnetization, and a translation symmetry
proximation consists of an exact power series expansion dilong this edge is assum¢giig. 1).
microscopic magnetic torques up to the fifth order, in terms The second micromagnetic approximation is derived from
of the magnetization angle. The choice and the conse- the observation that the experimental in-plane angular depen-
quences of the order of expansion will be discussed in théence of the reversal fiek(6) is very close to the predic-
last section. Here, we focus on the micromagnetic approxitions of CR* This indicates that even in the vicinity of an
mations, which are based on the analysis of experiments peedge, the influence of demagnetizing fields is weak. This
formed on ultrathin dots 200 nm wide made of Fe films withimplies that the magnetization state of nucleation volumes is
in-plane anisotrop§® The present section is devoted to in- close to uniform, even just before the nucleation event oc-
troducing these approximations and discussing the physicaurs. We accordingly assumed that only edge magnetic poles
ground of their relevance. contributed to self-dipolar fields, not volume pol&sm.

We showed experimentally that for such dots the nucleThen, as dipolar effects are very short ranged in 2D systems,
ation volumes are approximately 100 times smaller than theipolar fields coming from the neighboring edge charges ap-
total volume of the dot? This demonstrated that magnetiza- ply only to a small fraction of the nucleation volume, more
tion reversal isnot coherent. The reversal is therefore ex- precisely to the fraction that is in the immediate vicinity of
pected to proceed in two steps: First, a small nucleation volthe edge. Let us recall that the length scale of a nucleation
ume reverses. Second, the magnetization of the entire dot lume in our case is at least, as exchange forces forbid
reversed by a fast domain wall motion process. Besides, dany rapid magnetization rotation on a length scale smaller
polar fields are short ranged in 2D systéinso that self- than\.,, whereas the range of dipolar fields is related to the
demagnetizing fieldéy are strongly nonuniform inside the dot thicknesst). The demagnetizing effect was accordingly
dot. These fields nearly vanish near the center of the dot ani@ken into account as a demagnetizing tordyeacting on
are strong only in the close vicinity of the edges that arethe edge spin of the half-infinite slab, ahig is estimated by
perpendicular to the magnetization direction. The nucleationntegrating the microscopic self-dipolar torqug=mXhy
volumes are therefore expected to be located in the vicinitfrom the edge to infinity. This is the second important mi-
of these edges. In micromagnetics corners may help otromagnetic approximation. Several remarks must be made.
hinder magnetization reversal, depending on the situatiorFirst, integrals of torques converge rapidly even in the case
We assume that corners hinder magnetization reversal in owf infinite lines of charges, instead of diverging in the case of
case, so that the reversal should be triggered near edges lartergy integrals. Secontg\ ., appears naturally as the cri-
away from corners. The proof for this assumption comederia of validity for this “torque approximation.” Third, the
from numerical micromagnetic simulations, whose resultgelevance of the concept of the edge torque is supported by

ey=sirfw+(Vw)’—mhcosw (1)

wherew is the angle betweell and the easy axis. Along the

Ag=20.4 nm, and\o,=10.2 nm. To give an order of mag-
nitude to the readem=2.81 and\.,= 1.58 in this case.

B. Approximations used
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2

+sirf0+k, sint6|, (5)

the results of Ravet al. These authors recently discussed high positive values oh. Then smaller positive and finally
and simulated the reIeyapce .Of edge torques to account fq{egative values df are applied to reverse the magnetization
the effect of demagnetizing fields acting on a length scal%f the dot. Equation2) can be written
smaller than o,.** '

Finally a third micromagnetic approximation is intro- _[/de
duced. This approximation is also derived from the fact that e,=4(1+h) (d_
t<<Aqy: the magnetization cannot be reoriented away from in K
plane in the vicinity of edges. Besides, the magnetization cagjith k,= — 1/(1+F1), 6=wl/2, and = uvl+h. The solu-
be considered as uniform along the thickness of the dot bejon to Eq. (5) is the equation of a wall in a fourth-order
causet<A., andt<Ag;. As a result, the magnetization in anisotropy material, which was solved analyticéfly> Us-
the half-infinite slab can be written as ing this expression and switching back to variahlesnd o
one finds

m(u)=m[icosw(u)+j sinw(u)]. (3

ue[—=;0] is the distance between the considered point and —h \/—~
the edgew(u) is the in-plane angle between the magnetiza- @~ 7~ 2arcta mcosr[ 1+h(u=uy)]
tion vector and the easy axis of magnetizatisae Fig. 1L

Let us summarize the three micromagnetic approximatioriere “cosh” is the hyperbolic cosine function, ang is a

. (6

that we introduced positive integration constant which determines the location
(i) The magnetization lies in the plane and does not vanpf the wall (u;>1 for a small edge rotation Besides, we
along the thickness of the film. have broken arbitrarily the left-right symmetry by choosing a

(i) The geometry is restricted to a half-infinite slab whosenonuniform solution withwy>0. The single-domain state is
edge is perpendicular to the easy axis of magnetization, anabtained in the limitu;— +%, in which casew,=0, and

a translation symmetry along the edge is assumed. thusw(u)=0,Yu.

(i) The dot self-dipolar fields are taken into account as
an edge torque, whose value is calculated by integrating the B. Exchange-induced torque
microscopic dipolar torque from the edge of the slab to in-

The exchange-induced torque acting on the edge spin is

finity.
Let us also recall that, in addition to these approxima—eXpresseOI as

tions, we will in the following proceed to a series expansion de
of microscopic magnetic torques, including all terms up to INeyy=—2+— . 7

the fifth order. duj,_,

o To this point, it is useful to go back to Euler equation, rather
C. Principle of the model than to use directly Eq6). Indeed, the bulk Euler condition

Let us now briefly describe the principle of the model in connects the microscopic torque with the anisotropylike mi-
the framework of the three micromagnetic approximationscroscopic energy density:
described above. The micromagnetic configuration inside the
slab is determined by the minimization of the anisotropy, %zm (8)
Zeeman, and exchange enerdigsler’'s equatiop This con- dz s
flguratlo_n Cﬁg be Qescrlbed analytically using a \_Na”'typewhere the integration constants vanish in the case of the half-
gxpressmﬁ‘,' provided that. we sgt Fhe magnetization rota-; snite slab,e(—)=0 andd@/dy(—=)=0, and with the
tion at the edge to a value fixgdpriori, wo=w(U=0). The i iinn of Eq(5), e,(6) varies like siR6+k, sir6. Switch-
edge magnetic .pole is then C@@I.’ from W.h'Ch ha(W) ':5 ing back to the variable® andu, the right-hand side of Eq.
calculated, leading to the evaluation IBf. Finally, Euler’s (8) can be straightforwardly expanded in a power series as a

equation is applied at the edg@rown’s con_ditionj; namely, function of w. Performing the exact expansion up to the fifth
the exchange-induced torquig, and the dipolar torqué’y arder and using Eq7), one finally finds

must compensate each other, so that the spin at the edge is
under equilibrium: 1/1 1 a2
T o= — 2o\ 1+ h[ 1- E(§+ —) (70)

FextI'g=0. 4 1+h
The possible equilibrium values af, are finally determined 4
. . 1)1 2 1 g
self-consistently, by solving Ed4). t—|l=t——=———l 5| +O(wd);.
22|15 1+h (1+h)?]\ 2
IIl. MODEL SOLVING 9)
A. Wall profile
We restrict ourselves to dots with a second-order micro- C. Demagnetizing torque
scopic in-plane anisotropy energy; i.e., we use &j. The Let us recall that we neglect volume magnetic charges, so

procedure is the following. The dot is first saturated withthat the demagnetizing fields arise from surface magnetic
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charges only(i.e., from the edges Besides, for simplicity 1 b @ Unk
the average demagnetizing field over the dot thicknesas ly=— E_ﬁf ﬁdu) (16)
approximated by the demagnetizing field value calculated in Mk 0 utpg
the center of the filmz=1/2), namely, and evaluated using the following expression of the
integraf:
h ~ mcogwg) t 10
d(u)—Tarcta 20l (10

+o @~ Uk 1
———du=—[ci Si
Using this expression, the microscoji®., loca) demagne- fo u+ B2 ﬁ[ (B S B )

tizing torque can be expressed as

—Si(Buy)cog Buy) ] (17)

_ (11) ¢ and si are sine and cosine integral functions, respectively.
These functions can be evaluated numerically using the fol-
lowing expansiorf§;

m? . t
Ya(U)=— 7c05{ wo)Sin(w)arcta o

The edge demagnetizing torque is finally given by

* 2k
0 .
Fo= ﬁ Yo(u)du. (12 Ci(0)=Ctinx+ 2, (~1)*5 oy (18
Note thatu<0 in Egs.(10)—(12), so that we indeed have a T = 2k—1
demagnetizing field K;<0) and demagnetizing torque Si(x) = — §+k21 (—1)k+l(2k_ T(2k=1)1" (19
[ ya(u)>0]. _ . _ -
In order to get a series expansionIgf as a function of After this integration, the demagnetizing torque is written

wo, we first expand sim as a function of wg with 44 following way, after Eqé12) and (14):
u-dependent coefficients, and then proceed to the integration ’

of these coefficients following Eq$l1) and (12). The sim- Am?
plest way to do this is to perform, as an intermediate step, the I'y=——-—co0q wg) X
expansion of sim as a function of the small quantig/~ "1, am

with 7,=u;V1+h [see also Eq(6)]. As a second step, the
integration of Eq.(12) is performed, yielding an expression +e75%n
with integral powers ofe™ 71, Finally, e” "1 is in turn ex-
panded in terms ofy,. This two-step expansion is relevant
becausee™ "1 is of the order ofw,.

Reversing Eq(6), one finds

_ 3 4
e "ly—e | 1+ — |3
a2

. (20)

1+ 12+16 |
o o)’

The final step is to express 71 as a series expansion of
wo. Equation(6) yields wg as a function ofy,. This relation
can be reversed, yielding a binomial relation, with two posi-

1 -7 n
2a cosh 7— 7,) tive rootse” 7t ande”. The smaller root must be connected

sinw= , (13 with e~ "1 becausen;>0, and one finds
1+ a? costt(p— 7,)

~ ~ 1 1
wherea=\—h/(1+h). The exact expansion of E¢L3) to e M= —cot@ -1 /_20012% —1. (21)
o

the fifth order is a 2

4 Finally, after evaluation of the series expansions of Eg.
1+ —2> e?ng=2m (21), coswy, |1, I3 andl5 as a function ofw,, Eq.(20) can
ed be fully exactly expanded to the fifth order:

4
sinw=—e%7e M| 1—
o

o

2

1

+
2

12 16
+<1+ —+— e4’7e4’71+0(e6’7e6’71)]. Ty=

a a

1 o? wp\®
—gBlt3lg)+ (11— 13) 7)

2

1 a
+ %(2I1+ 1513+ 15l5) + g(—ll—2I3+3l5)

(14

With a view to proceeding to the integration in Eg2), it

is now necessary to evaluate the series of integrals ot wg)® . 4m?
) i t +35(211= 35+ 1) (7 +0(w0)]T (22)
l(h)=— f_mek" arctar(x)du (15)
D. Equilibrium states
wherek has positive integral values amofi3,5}. For clar- The equilibrium states are determined by equilibrium of

ity, we vi/ill in the following omit to write the depencience of the spin at the edgkEgs. (4), (9), and(22)]. Apart from the
I, uponh. Using the variableg=t/2 andu,=kvy1+h, the trivial solution wy=0 (single-domain stajethe equilibrium
I« function is expressed as positions are the roots of binomial

174418-5



O. FRUCHART, B. KEVORKIAN, AND J. C. TOUSSAINT PHYSICAL REVIEW B3 174418

2

= w, (stable) orw/ (unstable}0(stable), respectively. In
ic—o, g S “olstable) orag( ¥ O(stable), respectively

o
2 the NU caseh,, is found by solving the equatioag =0.

4
o
A(7

-

with the following expression of the coefficients:

E. Energy barriers

2 2

m<| 2 . . .
A= —|—(21,+15/3+1515) + a_(_ l,—215+3l5) ~ In this section we calculate the height of the energy bar-
m |15 2 rier preventing magnetization reversal. This might be of use
4 1 to gain insight into the thermal activation behavior of the dot.
+a_(2|1_3|3+|5) —ZJ1+h As explained above, the model was solved based on
8 2 torque equations. One can also use the picture of a system

with a single degree of freedom, in a[0;7] energy land-

scape. In this picture, the bottom of the energy well stands
for the stable state, whereas the top of the barrier preventing
magnetization reversal stands for the unstable state. The

1 2 1

X_+_~_—~
15 1+h (1+h)?

m2[ 2 a? height of the barrier equals the work produced by an operator
B=—|—306l1+3l5)+ 5 (l1—13) applying a torquel’,, on the spin at the edge, in order to
drive it from the stable positiomg to the unstable position
o JTo T 1 1 wg , under quasistatic conditiond?+ ', +T5,=0. The
+ +h| z+——=], i Rt
3 141 barrier height is therefore
2m? = ot
C= TI1_4 1+h. (24 Wop=— | (Fgt+Teday. (27
“o
The two roots are o ) o
o} stands for the stable equilibrium solution, eitgy (NU)
wy\? —BxyA or 0 (SD). One finds after straightforward integration of Eq.
> ST oA 25 (23
with ol
5 Wop=[&(w0)] ¢, (28)
A=B*—4AC. (26) “o

As by conventionw,>0 and including the single-domain i
solution wg=0, there exists at most three equilibrium solu-
tions for the nonreversed stateither stable or unstable 6 4 5
depending on the external field valbie The state with the E(wp) = — é(@) _ E(ﬁ) _C<ﬂ> )
largestwg is associated with the barrier to be overcome to 312 2

reverse the magnetization, so that it is unstable. Besides,

I'ex— T4 is a continuous function versus, so that succes- For the stable state of the SD casg=0, so thaté(wg)
sive equilibrium states are successively stable and unstable;0. For the stable state of the NU casg is a root of
with decreasing values ob,. This allows us to describe binomial (23), so thatg(wozwg) can be expressed in terms
qualitatively the three different situations that can be encounof A, B, andC only. It is now necessary to treat the NU and
tered. SD cases separately.

(i) There are three positive solutions, namedy;=0, In the NU case Eq(28) boils down to the following exact
wo >0, andwg >w, . The only stable equilibrium state is expression:
thenw, and the magnetization configuration is nonuniform
(NU) near the edge. This occurs far>0 and (@, )?>0.

(i) There are two positive solutions only, namebyg W, :A_S/z. (30)
=0 andwy >0. The only stable equilibrium state then cor- P 6A2
responds tawy=0 [single-domain(SD) statd. This occurs
for A>0, (wy)?<0, and (g)?>0. Magnetization reversal occurs whek vanishes(see NU

(i) The only solution iswy=0 and is unstable. This statein the previous paragraphA can be expanded to first
means that the magnetization has already reversed. This ogrder, as the first derivative df generally does not vanish in

curs in two cases, either<0 or A=0 and (,)*<0. h=h,: A~h—h,. Then, we get from Eq30) the first-order

We observe that there is at most one stable equ"ibriun%xpansionw ~(h—h,)%2 This shows that the: exponent
op r .

solution. The reversal fielll, is the field at which this single ysed in thermal activation theory equals 1.5 in the case of a
stable solution vanishes. Depending on the situathdd or  nonuniform state witt applied exactly perpendicular to the
SD; see above h, is determined by wg(unstable) edge.
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In the SD case, magnetization reversal occurs Wagn
vanishes(seeSD-statein the previous paragraphEquation
(28) can be expanded in terms @f, . The leading order of
the expansion is

B
W~ E(wg)“. (31
h="h, is reached whei€ changes of sigfisee Eq.(25) and
the discussion belojv In generalB does not vanish irh
=F1,, so that Egs(25) and(26) can be expanded straightfor-
wardly, showing that ¢ )? varies linearly withh—h, just

before the reversal, and thitg,,~(h—h,)2. From this and
from Eq. (31) we infer that the exponent equals 2 in the
SD case.

IV. MODEL QUANTITATIVE RESULTS

A. Numerical application to 1-nm-thick dots

Theory is more flexible than experiment as each param

PHYSICAL REVIEW B 63 174418
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FIG. 2. Stable ©O) and unstable {) equilibrium states in a
(ﬁ,wo) plot, as predicted by the model fan=2.81 and for thick-
nesses ranging from 0.05 to O(dimensionless unils wg is the
rotation of the spin located at the very edge of the half-infinite slab.

then reversed, aB is decreased towards 1 (in the latter

eter can be varied one at a time to evaluate its influence of@S€Mn>"y). The transition from a SD state to a NU state is

magnetization reversal. Such a step-by-step comparison

ff second order; i.e.pq switches continuously and revers-

not possible with real samples, where, for instance, thicknesily from zero to positive values &t,. On further decrease

and anisotropy cannot be chosen independently because

of h, », monotonously increases up i, at h,. Although

the interplay of interface, magnetoelastic, and volumeresults concerning oneH;,m) set only are given here, the
anisotropies. The primary purpose of the torque model is t@ame qualitativé dependence was found for any valuesrof
investigate the intrinsic influence of thickness, so that theandH,. We found, in accordance with intuition, thiatand

examples given below were computed for different thICk-wr0|t:Cte increase ifM increases oH, decreases, and that

nesses but for fixed anisotropy. An advantage of not presen&-w

ing the model’s results in a{h) graph using an experimen-

o/dt>0 for t>t..

tal H,(t) law is that the results presented here do not depend

on a particular sample and are therefore more general. The

B. Comparison with numerical calculations

reader should, however, keep in mind that a comparison of Our numerical approach is based on solving dissipating
such a graph computed in units reduced with respect to oneandau-Lifschitz-Gilbert micromagnetic equations and using
given anisotropy is in principle possible for one thicknessa fast Fourier transforFFT) procedure to evaluate dipolar
only, because of the thickness-anisotropy experimental inteffields*®*” Special care was devoted to track numerical arti-
play. facts and to simulate model systems to validate the approach,
The equationsA=0, w, =0, and w; =0 were solved
numerically, using the experimental valugg=0.55 T and
M=1.73x10° Am1.?° Stable and unstable equilibrium
state curves for different thicknesses are displayed on a

(h,wo) plot in Fig. 2. For a giverh the number and numeri-
cal values of equilibrium states are determined graphically
by the intersection of these curves with a vertical line. The

nucleation field valué,, and the reversal field value were

determined numerically using this type of diagram. Both
fields are plotted versus thickness on Fig. 3. Note that here

Direction

Dimensionless external field 4

v of applied |
“nucleation field” h,, bears a micromagnetic meaning; i.e., field

h, is the field at which the SD state becomes a NU state.

should not be confused with the reversal fijd at which a 1.0 ! -
“nucleation event” (in the viscosity measurement meaning, 00 01 02 03 04 05 06 07
i.e., the thermally activated reversal of a small volyrmi- Dimensionless thickness #

gers magnetlzatlon reversal._We_ See 'n_F'g' 3 th_at below a FIG. 3. Micromagnetic state of a half-infinite slab as predicted
critical thicknesg . the magnetization configuration is always by the model. Open dots stand for reversal fields and solid dia-

SD up toh, (in that caseh,=h,), whereas fort>t, the  monds stand for nucleation fields. An enlargement of the small
magnetization configuration is successively SD, NU, andhickness area is shown in the inset.
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FIG. 5. Reversal field value vs thickness, yielded by numerical
oo 02 04 06 calculations performed on half-infinite slaégspen symbols and
© (136) @72 (4.08) square-shaped dots with a 200-nm edgmlid symbol$, both using
Dimensionless thickness # m=2.81. Error bars correspond to the field step used in the calcu-

lation.
FIG. 4. Nucleation and reversal fielddiamonds and dots, re-

spectively vs slab thickness: predicted by the modepen sym- TR o reement is verv qood in the ul-
bols) and yielded by numerical calculations of a half-infinite slab field h,. The quantitativeag Y9

(solid dotg (m=2.81 in both casg@sDimensionless units were con- trat.hm regime. Howeve.r, the regime over which a NU mag-
) . . netization state can exist lies at the verge of the model va-
verted into real units on both axes for the case of experlmentall.d.t d in for th t of t d for th
1-nm-thick Fe dotgsee parentheses: thickness in nm and field in'©'y domain, for € set of parameters used for ine
T). Error bars are related to the field step used in the calculation. comparison(a more detalled_cqmpa_rlson will be found n
Sec. V). The slab geometry is identical in these numerical
so that we are confident that the error bars of numericatalculations and in the analytical model. The difference lies
calculations are smaller than those induced by the approxin the fact that the numerical calculations do not make use of
mations used in the model. Accordingly, any discrepancythe torque approximation nor of power series expansions.
between calculations and the torque model will be ascribed’his proves the relevance of the torque approximation and
to the latter in the following. The calculations were per-the low-order expansions used in the analytical model in the
formed using the parameters of experimental 1-nm-thickimit of ultrathin dots.
dots:H,=0.55 T andM=1.73x10° Am~*.2° In a second step, we assess the relevance of the geometri-
Two major approximations were used in the model. Thecal approximation. For this purpose, we compared the simu-
first one is the torque approximation. The second one is thiations previously discussed, performed on a half-infinite
geometric approximation, namely, the replacement of &lab, with simulations performed on a square-shaped dot
finite-size dot by a half-infinite slab. Numerical calculationswith a 200-nm edge, the edges being parallel to the in-plane
allowed us to probe the relevance of each approximatiomrasy and hard axes of the film. In both cases the thickness is
independently, as reported below. 1 nm and the magnetization is described by a 3D vegtor
In a first step, we assess the relevance of the edge torqlighe grid spacing was chosen equal to 3.125 nm, smaller than
approximation. For doing this, we numerically simulated thex,,=10.2 nm and\g=20.4 nm. Both calculations yield
magnetization reversal process in a half-infinite slab with aery similarh, values as shown in Fig. 5, although the re-
translation symmetry parallel to the edge, the magnetizatiogersa) is slightly hindered in the case of square dots. This
being a 3D vector. For each value of the external appliedimilarity is better understood by looking at the static micro-
field we used the following procedure in order to get rid of magnetic configuration of the square dots just before the re-
the numerical left-right symmetry-breaking problem, but atyersa|[Fig. 6(a)] [the configuration of a 6-nm-thick dot is
the same time to be able to predict a value for the nucleatiog|so shown in Fig. @) because the so-called nucleation vol-
field, i.e., the field at which a system ceases to be uniformly,;mes are clearly visible in this case, although the deviation at
magnetized: in a first step the external field is misaligned byhe edge is obviously too strong for the model to be valid
0.1° with respect to the easy axis of magnetization, and agyamination of Fig. ) leads to the conclusion that the
equilibrium configuration is calculated. In this configuration reversal in the square dots is hindered by the corners, so that
wo never exactly equals 0. In a second step we use thighe nucleation volumes grow preferentially away from them,
configuration as a starting point and calculate the equilibriump 3 region which can be locally approximated by a half-
configuration under a perfectly aligned external field. Thejnfinite slab. This result proves the relevance of the geomet-
nucleation field has not yet been reached if the solution reric approximation in the case of large square-shaped dots.
laxes towards uniform magnetization wighy=0. We found  How large square dots need to be to behave like half-infinite
that numerical calculations and the model yield identicalsjabs can be probed by repeating such simulations for several
qualitativeresultS(Fig. 4) below a critical thickness the Sys- edge |ength$F|g 7) The gnd spacing was maintained con-
tem is always uniformly magnetized under any applied fieldstant and equal to 3.125 nm for all simulations. This ensures
Above the critical thickness the system can be uniformly ofthat the exchange field and the stray field were determined
nonuniformly magnetized, depending on the external fieldwith the same precision for each system, and allows us to
value. This leads to a distinct nucleation fiélgand reversal compare unambiguously all results. Besides, we used the

174418-8



MICROMAGNETIC MODEL OF NONCOLLECTI\E.. .. PHYSICAL REVIEW B 63 174418
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=~ (b) == misorientation of the applied field

was used to trigger symmetry
breaking. Areas where spins are
rotated by more than 45° are
shaded to visualize nucleation vol-
umes.

fftw Iibrary developed by Fl’igS and JOhnSgnThiS allowed Ms=1.73x106 A m— 1), the experiments yie|de&1?Xpt:
us to investigate more points than the usual&@v with the —0.63+0.01 whereas the torque model yielddNrdmz
conventional FFT procedure permits. Indeed, the library of 0.612t(.) 001. The agreement is rather good in that case

Ref. 47 works equally well for all products of integral pow- ) Texpt_
ers of prime integers. The results of these simulations are tHg0" 1-nm-thick dotsh;™"=—0.733-0.005 (Ref. 40 and

following. The reversal field goes to the anisotropy field forh{"=—0.857+0.001. Both results do not coincide. The dis-
very small lateral size. This was indeed expected as a smatrepancy is not very large in terms of reversal field values
square dot is nearly single domain, and displays no in-plangut as we pointed out in the introductiokh=1+h is a

shape anisotropy. On the contrary, the reversal field of & probe of self-demagnetizing effects in doﬁ"]:}xpt

square dot with a large edge length goes to the reversal field ~tm_
of the half-infinite slab. The crossover to the lateral 1‘inite-_0‘267io'005 andAh,’=0.143-0.001 are therefore the

size effect is found to lie between 100 nm and 200 nm.€levant parameters to be compared. The agreement is worse
for the particular case of H,=055T and M viewed from this angle. We ascribed this discrepancy to dot
=1.73x10f Am~L. The reader ma&;/ n(.Jte that this is \7vell defects, which indeed are expected to have more dramatic

above all conventional magnetic length scales, such as tHePnSeduences in thinner dots for two reasons:

exchange length and the domain wall width. We will not ('). A Irough_neislllfje ﬂ_lIJ_Ctuat'r?n .Ofl thﬁe number IOf I;e
discuss the reasons for this in the present article. Finally, th@©MIC planes in the dot. Two physical effects are related to

influence of the exact shape of the dot on the reversal fiel ickness fluctuations, and both effects add up. Indeed, if the
. got thickness near an edge is locally increased, the anisot-
on disk-shaped dots 200nm in diameter, yielding results ver{/Opy is decreased and the demagnetizing fields are increased,

similar to the case of square dots with identical width andSO that both effects tend to decredel. It should be noted
thicknesst=1 nm: = —0.91+0.005 in the case of disk- that this effect is more important for thinner dots in terms of

shaped dots, to be compared witf= —0.892+0.002 in the : : : :
case of square-shaped dots discussed above. Therefore, the
shape of the dot, at least disk or square, does not seem to be

of prime importance in determining the valuetgf. This is

an indication that the geometric half-infinite approximation
may be relevant for different kinds of in-plane shapes. This
will be discussed in more detail in Sec. V.

e

o
0
(=)
T
(1]

-0.95 | 4

C. Comparison with experiments

Reversal field 4, (dimensionless)

The reversible contribution to experimental hysteresis 100 , . , ,
loops of an array of dots is very weak and could not be o 20 40 60 80
measured accurately. We therefore restricted the comparison Square edge length (dimensionless)
between the analytical model and the numerical calculations

to two scalar quantltles. the reversal fieloand the expopent sguare dot, as a function of the side length. The line shows the
a related to the field dependence of the energy barrier “Seﬁﬂmericany simulated reversal field of a half-infinite slab. The di-
in the theory of thermal activatio. ~ mensionless parameters are magnetization2.81 and thickness

Let us first discuss the case of the reversal figldFor  t=0.15. Let us recall that the dimensionless unit length equals 6.5
2-nm-thick  disk-shaped dots HE=0.3 T, Ms=1.73  nm for iron whenH,=0.55 T.

G. 7. Numerically simulated dimensionless reversal field of a
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T T T T T k4

o ponentayy in the case of thicker dots and its comparison
o with the model would, however, be required to fully validate
. the model. Besides, thermal activation theories are derived
from the effect of thermal noise on a single degree of
freedom?®® i.e., are in principle applicable only to single-
domain systems. The Arrhenius law and Brown equations
may therefore not be directly applicable to the case of a
functional degree of freedom, as it is the case in the torque
model and in the majority of magnetic systems, which are
not necessarily in a single domain state. One has therefore to
keep in mind that there are no absolutely firm bases to make
. such comparisons.

0.0 02
Dimensionless external field
FIG. 8. Energy barrier height as a function of the applied field, V. DISCUSSION
as prgdicted by the model. The example shown corresponds tp the A. Validity domain of the model
experimental parameters of 1-nm-thick dots. The curve was fitted . . o o )
with an adjustable activation volume and exponerstraight line. Let us first discuss the limit of validity of the model in

Open dots stand for the energy range taken into account in the fiferms of maximum tractable thickness. We showed in the
whereas solid diamonds stand for points excluded from the fit. ~ previous section that in the low-thickness regime the model
and numerical simulations predicted very similar values for
relative value$® For instance, 1-nm dots contain on the av-1+Hh (the reduction of the reversal field as compared to the
erage 5 monolayer@iL) of Fe, so that large relative thick- anisotropy field. Nevertheless, the value predicted by the
ness fluctuations are simply induced by the fluctuation of thenodel saturates above approximatély0.5, whereas that
position of atomic steps at both Mo/Fe interfaces, even in thgielded by numerical calculations still increases slowly. This
case of an atomically flat and roughness-free sample, b&an be understood as volume charges were neglected in the
cause of the substrate miscut. This may explain why thenodel so that only surface chargé., on the edgéscon-
model reproduces well the reversal of 2-nm-thick dots andribute to demagnetizing effects. The higher the thickness is,
poorly that of 1-nm-thick dots. the largerw} is, so that surface charges and therefore the
(i) h, is very close to—1 so that the energy well is very associated demagnetizing effects are smaller. In real dots and
shallow and narrow just before the reverSadnd even small  in numerical calculations, part of the demagnetizing effect in
defects are expected to play a considerable role. that case is still taken into account via volume charges. This
Let us now discuss the case of exponantThe analysis  might explain why %+ still increases slowly. Let us discuss

of the experimental thermal activation data was performedhe situation quantitatively. In the limit of large thickness
betwea 2 K and 300 K on 1-nm-thick dots. The procedure ,,0 ., /2 so that surface charges nearly van[stie to

was the following. In a first step, the value ~bg‘ was mea- power expansion of coef) function in Eq. (20), wy—
sured in this temperature range. In a second step, the de-1 59 in the model, instead af/2]. In this case the reversal
crease ofh, with increasing temperature was ascribed tois hindered by the exchange torque only, whereas no more
thermal activation, which helps overcoming the field-demagnetizing torque applies. Thus, the reversal finally oc-

dependant energy barriar(h,). An Arrhenius law was used curs forl's,=0, i.e.,h~ —0.62[this comes out of E¢(9)]. It
to describe thermal activation, and thus for each temperaturis indeed checked in Fig. 4 that magnetization saturation is

the height of the energy barrier Btwas estimated, yielding related toh approaching—0.60. We also observe on this

A(h). As a third and final step, this experimentefh) curve  plot that this limit is obtained fot~0.5~0.3\¢. This also
was fitted by the following expressionao[h(T)—h can be understood as we already mentioned that demagnetiz-
r r

(T=0)]%. This procedure yielded:—1.65+0.1%5 On the ing effects are significant only on a lateral length scale of the

. . order of the dot thicknedsIndeedh ., is the length scale that
other hand, given the dot parameters, the model predicts that. ex g
the dot is single domain and therefore thajo—2. How- ﬁ{lses when exchangd) and demagnetizing effects due to

. . . _two charged planesn?/2) compete. In our casee, is obvi-
ever, asp cannot be compared dlre_ctly with experiments as Itously the minimum length scale of the activatigxn volume as
arises from a lowest-order expansion of E2B), which is in

" : Aex<Apg - As long ast<<A, the mean demagnetizing ener
the limit of zero temperature. One must instead compare th8eX Bl g ast=Pex 9 9 9y

. ; . : ver the nucleation volume is well belom?/2. In other
exponent issued from experiments with the exponent 'Ssue\%ords the charged edge of the dot does not look like a plane
from a polynomial fit of Eq.(28) over the field range '

~ = o . as viewed from the nucleation volume. In that case the re-
[h«(300 K),h(2 K)]. This field range is the one probed ex- yersal is mainly made possible by Zeeman energy only. The
perimentally using the temperature rarj@eK, 300 K|. The  ¢rossover between Zeeman-driven reversal to dipolar-driven
fitting procedure is illustrated in Fig. 8 and yield$;>®°  reversal therefore logically occurs arourtd-\e,. This
=1.56+0.02. The torque model is therefore in good agreedength scale is also the thickness over which the torque
ment with experiment. Experimental determination of the ex4model is no longer relevant.
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Let us now discuss the predicted size of nucleation voltanged. To the contrary, in dots made of hard materials the
umes. Below the crossover thickness mentioned above, theucleation volumes are mainly influenced by tbeal shape
influence of dipolar fields can be considered as pinpointlikeand orientation of the nearby edge. If all edge orientations
as compared t¥,. The characteristic length scale of nucle- are available as in the case of disks, the relevance of the
ation volumes in the direction perpendicular to the edge igeometric hypothesis indicates that the highest reversal field
therefore determined by E@6) and is not expected to de- (Speaking of negative values, ie., the smallest in absolute
pend much on the demagnetizing field magnitude. In otheYalug is assoc_lated ywth edges that are exactly perpendicular
words, and provided that the thickness of the dot is reasorf® the easy axis. This means that the torque model should be
ably smaller than the exchange length, the relevant in-plantelévant to describe thin and flat dots made of hard material
length scale in the direction perpendicular to the edge is no#ith in-plane anisotropy, and this for a large variety of in-
the exchange length but is rather determined by a portion gfl@ne geometry of dots, provided that a significant part of
a wall described by Eq6). This length is somewhat larger their edges is perpendicular to the easy axis. What a "sig-
than \,, but anyhow differs from the Bloch-wall width. nificant part” is was probed by numerical callcula'uons in
This illustrates the fact that neither the maximum nor theS€c- IV B, and is a length scale expected to increase with
minimum of A, and\ g is a universal magnetic characteris- decreasing anisotropy, Fig. 7 This lateral length scale is
tic length scale for all systems. However, it is clear from Eg.2P0ut 50—100 nm for 1-nm-thick dots, and was found to be
(6) that this length scale increases with decreasing aniso@Pout 1—2um |n3dots with a much weaker bulk Fe fourth-
ropy. However, as long as the uniaxial anisotropy is strong"der an|§otrop}5. _ o _
enough, the length scale of the nucleation volumes perpen- Following this discussion, it appears that the model is
dicular to the edge does not depend on the dot size. This well suned_to describe dots with in-plane uniaxial anisot-
the reason why we call the reversal “non-collective”: the "OPY, Of thickness smaller than about half the exchange
effect of the demagnetizing fields is concentrated in areal€ngth, of lateral size much larger than the exchange length
close to the edges, and the magnetization reversal does rnRd the domain-wall width, and with a significant portion of
involve all the spins of the system. On the contrary, in thetheir edges perpendicular to _the easy axis of magnetization.
limit of zero microscopic anisotropy, i.e., for soft materials, T0 the contrary, the best suited method applicable to very
this length scale diverges and the nonuniform volume fillsSmall dots would be a variational method as the one intro-
the entire dot. In that case the magnetization state of a soffuced by Cowburn and Wellariflused to describe a close-
dot can be called “collective,” and can be accurately de-to-uniformly-magnetized state.
scribed using length variables scaled with dot size and low-
order expansions performed from the center of the*dd@o
this point, an important remark must be made. Figure 2
shows that, in the limit of small thickneski, goes to the General micromagnetic theorems or statements are often
value predicted for coherent reversal. However, as pointethvoked regarding some aspects of magnetization reversal.
out above, the magnetization reversal is not collective. Thesket us check in this section that the results of the present
two statements do not contradict each other. They are exnodel comply with them. We discuss successively the rel-
plained by the fact that, although the reversal is not coherengvance of a single-domaii$D) state and that of the numeri-
the conditions in the vicinity of the nucleation volume are cal value of exponent.
very similar to those needed for coherent reveisalour A key prediction of our model is that the magnetization
case, nearly vanishing dipolar fie)dsso that the field at configuration is uniform above a given external applied field.
which the nucleation volume reverses is close to that preWith the parameters of our Fe dftghis field is negative,
dicted by the Stoner-Wohlfarth theory. The fact that the reawhich means that the magnetization configuration is uniform
versal isnot coherent was checked directly by inspection offor h=0. Besides, the predicted configuration is always uni-
the dynamics of the numerically simulated reversal. The reform below a critical thickness, whatever the external field
versal is clearly initiated near the edge and propagates ints. These predictions were confirmed by numerical calcula-
the dot through domain-wall motion. This shows that, in thetions (see Fig. 9. The occurrence of a perfectly uniform
case of a real systems, one cannot conclude that coheremtagnetization state in a half-infinite slab may be surprising
reversal occurs simply on account of the similarity of anat first glance. Indeed it is well known that the only systems
experimentaH,(#) reversal law with the so-called Stoner- that may be uniformly magnetized under a finite external
Wohlfarth Astrod. The definite proof must come from dy- field are those bounded by a surface with a polynomial equa-
namical measurements, which allows one to estimate the siz®on whose degree is at most equal to e ellipsoids,
of nucleation volume$’ paraboloids, hyperboloids, cylinders, and slabs. In particular,

Let us finally discuss the influence of the dot shape orthe magnetization is never uniform in the vicinity of edges or
reversal. In the case of flat dots made of soft material it wagorners, because of the logarithmic divergence of dipolar
shown experimentalR}®* and numerically**? that the mi-  fields*! Despite the two sharp edges of a half-infinite slab,
cromagnetic configuration and the reversal field valuewe can get a uniform magnetization in our model because of
strongly depend on the exact shape of the edges. This @ne hypothesis we made: the magnetization direction is uni-
explained by the fact, explained above, that the nonunifornfiorm throughout the thickness of the slab and is maintained
magnetization state fills the entire dot for soft materials.in the plane of the film. We are therefore put back to a
Therefore, the influence of the edges is in this case longerfectly 2D system, whose single edge is a litlee 2D

B. Compliance with general micromagnetic statements

174418-11



O. FRUCHART, B. KEVORKIAN, AND J. C. TOUSSAINT PHYSICAL REVIEW B3 174418

h ‘ ally not a polynomial law. The law is polynomial for neither
100 o o agp Nor ayy in the present model. Indeed these are expo-
& 0 ° e o nents of the leading term of a series expansion of the energy
= . 0y barrier, which is not an exact polynomial function bf
E as8l o . 110 ~h(T=0). In the theory of coherent rotatiéhfor noncol-
? o . {20 @ linearm andh the law is also nonpolynomial, whereas in the
g h »° . o, 2 collinear case the energy barrier field dependence is exactly
g N . > w8 parabolic. Therefore, there is not a full analogy between CR
a] %L . 140 and the present model. The experimental consequences are
0 twofold. First, it is not incorrect to find experimental expo-
. 150 nents different from 2 or 1.5 for nucleation events, or even to
: / find that the energy barrier dependence is not polynomial.
058 056 054 . . ,
Dimensionless external field § Second—and thl_s is a dlrec_t c_:orollary of the first §tatement—
the exponentr yielded by fitting the energy barrier depen-
(@ dence issued from experimental data depends on the investi-
gated energy barrier range. Consequently one should be
a0’} . careful to comparer exponents issued from analyses carried
&, out over the same energy barrier range, as we did on Sec.
g 07 1 IV C.
T
. 2107
= 0’ C. Parallel with a Landau-like energy
0 . . . Phase transitions are often described by expanding the
0578 5T 056 0575 5T free energy of a system in the vicinity of the transition, lead-
Dimensionless external field 5 ing to a so-called Landau energy. In the simplest case only

() terms with even integral powers of the order parametgr

. . ) ] are considered:
FIG. 9. (a) Detail of the numerically simulated hysteresis loop

m(h) ar_ld spin anglev, at the edge of a half-infinite flat dot with e= aw§+ bw6‘+ ng. (32

translation symmetry parallel to the edge. The parameters used were

m=2.81 ande=4 nm (points with the largest thickness in Fig.4  This energy is obtained in our case by the torques given by

(b) Squared i_nverse of susceptibilige=dwy/dh in the vicinity of Egs. (9) and (22). The link with Egs.(23) and (24) is a

the reversal field, for the same sample. =C, b=B/2, andc=A/3. We focus below on magnetiza-

tion reversal processes Bt 0K, which means that metasta-

sides, the dipolar fields do not diverge in the vicinity of the b!l|ty is maximum, and the r_e\_/ersal IS de_termmed by the
disappearance of the local minimum. In this case and using

edge, due to their averaging over the slab thickfgss. L and > < th | i
Finally, as the edge is exactly perpendicular to the easy axig]e andau-energy framework, the r(?‘versa oceurs ”en
changes its sign. The variation of the “order parametey

of magnetization, the symmetry of the Brown conditigime th lis di " 6620 and i
Euler equation at the very edgand that of the anisotropy across the reversal IS discontinuous & and continuous
for b>0. The discontinuity is the signature of the nonre-

plus Zeeman energy 2D dot are identighle field is applied L
exactly perpendicular to the edaeso that the slab mav be versed SD state to reversed SD event, whereas the continuity
y Perp dg y is associated with the SD-to-NU state event. Therefore, in

uniformly magnetized. Therefore, the predictions of the . . -
model do not contradict the micromagnetic theory of uni-OUr case the change of the sign ofwith the conditiona
form magnetization. Note that, however, in the case of a rear 0 determines the critical thicknessbelow which the dot
finite-size dot(even defect freke it is most probable that no 'S @ways in a single-domain state. Besides, abtyvéhe
component of the magnetization is uniform, because of corteversal fieldh, depends on the value of
ners and edge orientations other than parallel or perpendicu- Some general features of a phase transition can be pre-
lar to the external field and anisotropy axis. dicted once the expansion of the free energy is performed.
Let us now discuss the predictions of the numerical value$ystems described by similar expansions have identical criti-
of exponenta. Two statements can be inferred from the cal exponents—they belong to the sactess of universality
model. First,asp=2 andayy=1.5 remind us of the expo- It is straightforwardly derived from Eq32) that the order
nents derived in the framework of coherent rotation=2  Parameterw, grows with a power 1/2 after a second-order
when the external field is applied exactly along the easy axigfansition occurs. In the context of the model this is ex-
i.e., whenm and h are always collinear, whereas=1.5 pressed amj~h,—h. It can be shown that the critical ex-

analogy of a 3D surfageand is therefore of first order. Be-

when the external applied field is applied at an angle awayponent is 1/2 beforé, as well, i.e., that ,— wg'>)?~h
from the easy axis, i.e., whem and h are not collinear®  —h, (this can also be checked numerically from the data of

Second, our model emphasizes that the numerical values &fig. 2. The prediction of these exponents has been made
a given above are relevant only for first-order expansiongossible by the approximations of the model, which re-
and that the field dependence of the energy barrier is genestricted the problem to a self-consistent equation with one
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parameter only. Without these approximations, the class of T
universality of a real dot with nonuniform magnetization
cannot be predicted straightforwardly because of the large

number of degrees of freedom involved. We used numerical o1
calculation to gain insight into the behavior of such more

realistic dots. We derived critical exponents in the case of a

simulated half-infinite slab with a translation symmetry par- ‘E' 0.01L

allel to the edgédsee Sec. IV B The simulated loops used to : 300
derive these exponents are the same that were used to derive ]

the simulated phase diagram in Fig[ske Fig. 9a)]. From 278

these curves, we shall find fof andh,, the exponeng such 183 20 L onless dhickness £
that wo(h) — wg(hd) ~(h—ho)# (h.is h, or h,). In the case YA , po o o0 o
of nucleation, wg(h,))=0, so thatwy(h)~(h—h.)?. Be- 001 _ 01
sides, wq is close to zero in the vicinity oh,, so thatm Dimensionless thickness #
2 2 ; H ; ~
~1-wg/2~(h—hy)?’. A close inspection of Fig. @) re- FIG. 10. Log-log plot of #h, as a function of dimensionless

veals tham varies linearly Wiﬂh in the vicinity ofh,. Thus,  thickness, for m=2.81. The slope of the line is exactly 3/2. Inset;
we deduceB=1/2 for nucleation. The case of reversal of @ (4, 1/t32 as a function oft, showing a weakly thickness-
NU state is more difficult to handle, as the nonzero value ofyependent value. The line is the result of a linear fit for thickness
wo(h)#0 has to be extrapolated from simulations just be-gpove 0.03.

fore the reversal, which may induce errors in the evaluation

of §. Instead we used a procedure based on the evaluation 8Feases witht, as shown in the inset of Fig. 10. Taking into

the susczzeptlbllltydﬂc_ih. It can be shown stra|ghtforwar2dly account this slight slope, we could derive the following phe-
that 1 “~(h—ho) (. P We check in Fig. &) that 1 nomenological expression from fits for variomsvalues:
varies linearly withh in the vicinity of h,, which proves that

B=1/2. Therefore, the critical expone@tequals exactly 1/2

in the vicinity of bothh,, andh,, i.e., exactly the same value 1+h,=0.0873n"%%71—0.596mt) (34

as in the simplified case of the torque model. This indicates

that the hypotheses made in the framework of the analytical . .
model do not prevent the qualitative behavior of dots to be’" expressed in Sl units,

predicted. The simulated prediction of exponents 1/2 does

not seem to be related to the present restrictive geonEry H woM? 720 62
set of degrees of freedgras an exponent 1/2 was also found 1- H—J :0.087< A 2 (R) T2
during the onset of reversal in 3D ferromagnetic cues.
cnlifi ,U«oMg
D. Simplified forms of the results x| 1—0.596r ik (35

We shall now make use of the analogy developed in the

previous paragraph, in order to derive an approaching scalin . . _ .
law for the nucleation field in the limit of low thickness. In gquatlon 35 Is accurate within a few percent in the range

this limit, h,=h, is determined by the cancellation af ~ Me€[1.5,6] and h<-0.75, and can be used for a quick
which leads to the following equatioiEgs. (15—(19) and  evaluation ofh,. Let us finally recall the reader that very

(29)]: often K originates mainly, in interface anisotropy in the ul-
trathin regime, following the phenomenological lat
t—= Am ——= ~K,/T,*® so that 1+ |H/H,| is expected to scale witi®?in
—In(i 1+h>—C—1+m 1+h, (33) that case.

. , . ) We end the discussion by clarifying a discrepancy that
where C is Euler’s constant. The ab.ove logarithm fgnctlon may appear with previously published results. Indeed, we
prevents any exact polynomial scNallng law from being de-ghortly mentioned the principle and basic outputs of the
rived for 1+h,. However, asy1+h goes to zero wheh  present model in a Lettér. The formulas given in Ref. 25
goes to zero, the left-hand side of E83) diverges, so that  are much simpler than those given here. This is due to the
is negligible beforey1+h. More precisely,y1+h is neg- fact that we previously did not make a full expansion of all
ligible before any functiort®? for @/2<1, in the limit oft ~ €quations up taw§. Instead, we considered for the coeffi-
—.0. Phenomenologically, £h behaves locally liket®, cients of each power only the leading terms, in the limit of

with a being smaller than 2, but closer and closer to 2 wherpMall thickness. We shall not give the details of these ap-
. -~ . : proximations here, but it can be checked in Fig. 11 that the
t goes to zero. Plotting th as a function ot in a log-log

| Is that i | t0 1.5 in a broad ; crude version of Ref. 25 and the present model yield identi-
scale reveals IS very close lo L.onabroad rangent .o resyits in a reasonable range of low thickness. The agree-

values, fort>0.02 anch, below approximately 0.2Fig. 10:  ment is found to be better for smaller dimensionless magne-
(1+h)~t32 As a matter of fact, (+h)/t*? slightly de- tizationm.
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04| tion of the nucleation volume. The reversal figidand the

exponenta associated with the field dependence of the en-

ergy barrier preventing reversal are predicll&;l. is found to
decrease with either increasing thickn&ssr increasing vol-
ume magnetizatioM ¢, or decreasing anisotrog¢. Below a
critical thickness the static configuration of the slab is pre-
dicted to be always single domaine., perfectly uniformly

magnetizedl whateverh is, and a=2. Above this critical
thickness a nucleation fielh, is also derived with|h,|

» . . . . . <|h, anda=1.5. In the limit of small thickness, the fol-
00 01 02 03 04 05 06 lowing approached scaling law is found: —1H,/H
Dimensionless thickness # ~M[?A~34% ~1T%72 whereA is the exchange stiffness and
- - o H,is the anisotropy field, i.e., the reversal field predicted for
FIG. 11.~ Predictions of the present model foy (solid dia-  herent reversal. It must be noted tivht goes towardH ,
monds andh, (open dots The lines show the values predicted by gjthough the reversal is demonstrated to be not coherent.
the simpl_ified formulas_given in Ref. 25. We used magnetizationTpig emphasizes that the measure of an experimentaldstrol
m=2.81 in the calculations. like H,(6) is not sufficient alone to conclude that coherent
VI. CONCLUSION reversal indeed occurs in a real system.
o o ) All model predictions are in good quantitative agreement
In the case of flat dots with in-plane uniaxial anisotropywijth numerical calculations and/or experiments. Numerical
and lateral dir_nensions_ well above the. ex;hange lengin calculations also showed thht does not depend much on
and the domam wall width wall, Magnetization reversal oc- the particle shape or size, contrary to what is usually found
curs by a localized nucleation event followed by a fast Wa”for dots made of soft material. It follows from this and from

p_ropagation. In the literature the revers_al field is often Pr'€he more detailed discussion in the paper that this model
dicted by assuming that coherent rotation occurs in a phesz

) . .M =should be a simple and reliable tool to investigate and predict
nomenological nucleation volumé,. The effect of the di-

. i . , . characteristics of magnetization reversal processes in thin flat
polar field acting oV, is then often estimated by calculating 45 with a uniaxial in-plane anisotropy, provided that the

Fhe aspect ratio of an appro_aching geometry of the dot, Whic'ﬂ)llowing conditions are simultaneously fulfilledl) the
is related to the average dipolar energy over the whole doyjckness of the dots is much smaller than the exchange

This approach is not vaI'id becgussm) dipolar f[elds are length, (2) the lateral size of the dots is well aboxg, and
highly nonhomogeneous in a uniformly magnetized flat dot)\wa", and (3) a significant part of the dot edge is approxi-

and (2) exchange forces are neglected. mately linear and roughly perpendicular to the easy axis of
We proposed in this article an analytical model specific to, Y gty perp y

. L [ ; .~ -magnetization. A “significant part” is to be compared with
uItrath_ln flat dots with in-plane uniaxial anisotropy, whlqh several times.,, and\,. Finally, (4) the hysteresis loop is
tgkes into account these two aspgcts. The major approXimac, o -mad along the easy axis of magnetization.

tions of the model are the followingl) The geometry is

simplified to a half-infinite slab with a linear infinite edge
perpendicular to the easy axis of magnetizati@.The de-
magnetizing effects are taken into account as a pinpoint We are grateful to Pr. GradmariMPI Halle, Germany
torque applied at the edge. Under these assumptions we dfer stimulating discussions and for a thorough and critical
rived analytical equations for the field-dependent configurareading of the manuscript.

Dimensionless applied field 5
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