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Micromagnetic model of noncollective magnetization reversal in ultrathin magnetic dots
with in-plane uniaxial anisotropy

O. Fruchart,* B. Kevorkian, and J. C. Toussaint
Laboratoire Louis Ne´el (CNRS), BP166, 38042 Grenoble Cedex 9, France

~Received 1 August 2000; revised manuscript received 15 November 2000; published 6 April 2001!

In most magnetic systems the magnetization reversal is nonuniform, and is initiated in a so-called ‘‘nucle-
ation volume,’’ whose dimensions are by far smaller than the total system volume. For simplicity reasons
magnetization reversal theories are usually based on the assumption that coherent rotation occurs in this
‘‘nucleation volume.’’ In this approach, self-dipolar fields and exchange forces are obviously not well de-
scribed, because in reality the nucleation volume is coupled with the rest of the system. In the case of ultrathin
dots with in-plane uniaxial anisotropy, we could take into account dipolar fields and the exchange stiffness
explicitly. The approximations used to derive analytical equations were suggested by experimental results on
real dots. The model yields the nonuniform micromagnetic configuration of nucleation volumes. It predicts
nucleation and reversal field values, as well as the field dependence of the energy barrier to be overcome to
reverse the dot at finite temperature. The~negative! reversal field is found to increase with the dot thicknessT
and the volume magnetizationM s, and to decrease with the material anisotropyK. In the low-thickness limit,
the reversal fieldH r approaches the Stoner-Wohlfarth reversal fieldHa with a law close to 12uH r /Hau
;M s

7/2A23/4K21T3/2, whereA is the exchange constant. The relevance of the approximations used is discussed
and demonstrated by the good agreement found for all predictions between experiment and/or numerical
calculations on the one hand and the model on the other hand.

DOI: 10.1103/PhysRevB.63.174418 PACS number~s!: 75.60.2d, 75.40.Mg, 75.90.1w
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I. INTRODUCTION

In the past two decades intense work has been devote
the fabrication and study of magnetic thin and ultrathin film
New fundamental phenomena associated with well-defi
two-dimensional ~2D! structures ~films! have been
observed.1–4 The attention is now focused as well on th
study of systems of reduced lateral dimensions, ie.,
~stripes!5–9 and 0D~dots!.10–17Several studies of fundamen
tal interest arise from this further decrease of dimensiona
~1! The above-mentioned new phenomena also occur in
and 0D ~and can even be enhanced!, but with a different
geometry, namely, with interfaces lying in the plane.18,19 ~2!
New fundamental phenomena may arise, as observed
magnetoresistance enhancement due to Coulomb blocka20

~3! Qualitative or quantitative changes of micromagnetic
havior happen, the same way dipolar fields favor the in-pl
alignment of magnetization for continuous thin films. The
studies are also of importance for applications in the tech
logical context of the ever-increasing integration demand
the fabrication of small devices and components.

The scope of the present paper lies in magnetic system
reduced dimensions, more precisely in magnetization re
sal processes in ultrathin flat dots with in-plane magnet
tion. On the one hand this study is of fundamental interes
it is related to the 50-year-old experimental search for coh
ent rotation~CR! of magnetization in small systems. On th
other hand this study addresses an application concern
devices like spin valves21 and prospective topological bit re
cording media22,11 require the use of such thin flat magne
components. Studying the effect of the reduction of the
thickness is of particular interest for spin valves. This is tr
0163-1829/2001/63~17!/174418~15!/$20.00 63 1744
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for magnetic random access memories~MRAM’s ! as the in-
tegration via lateral size reduction requires the decreas
thickness of the magnetic layers in order to keep a reason
thin-film-like aspect ratio. This is also of true for giant ma
netoresistance ~GMR! or tunneling magnetoresistanc
~TMR! magnetic head sensors, so that it may probe the s
fields arising from ever-narrower magnetic bits.

We recently reported experimental results demonstra
correlation between the decrease of the dot thickness and
increase of the ratio of coercive field over anisotro
field.23–25 Here we propose an analytical model describi
magnetization reversal in thin dots with in-plane uniax
anisotropy. We explain below our motivation for proposing
new model by briefly reviewing available theories of magn
tization reversal and showing that none of them are capa
of describing the case of ultrathin dots with in-plane uniax
anisotropy. The simplest model of magnetization reversa
CR, which was first proposed by Ne´el26 and Stoner and
Wohlfarth.27 In this framework the reversal fieldH r along
the easy axis of magnetization is predicted to equal the
isotropy fieldHa, whereHa includes the microscopic aniso
ropy ~magnetocrystalline, magnetoelastic, interface! plus the
shape anisotropy~aspect ratio!. However, in real systems th
most favorable magnetization configuration is generally
uniform ~except for extremely small systems as was sho
recently17! and H r is considerably smaller thanHa, so that
later on numerous nonuniform magnetization reversal p
cesses have been proposed to account for the experim
small value ofH r . To this point it must be noted that eve
for one-dimensional problems there exists no general s
tion to micromagnetic equations, due to the long-range
nonlocal character of dipolar fields. Therefore, solutions c
©2001 The American Physical Society18-1
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be found only by introducing approximations or test fun
tions. Many models had to be proposed to describe diffe
types of systems, because the approximations introduced
valid in a limited range of parameters only.

Two types of theories were introduced. In the first ty
one assumes that some defects can be found in the sam
These defects are assumed to alter anisotropy and/or
change constant values, or geometry. The defects may
crease the nucleation field as compared to the anisot
field ~‘‘soft’’ defects! or explain the value of propagatio
fields ~pinning defects!. We do not consider such process
in the present paper, as we are interested in systems ha
no significant defects. To the contrary, we wonder what
trinsic magnetization reversal mechanisms may occur a
from coherent rotation that may lead to a reversal fi
smaller than the anisotropy field. We therefore turn to
other type of theories, assuming no defects. Due to the c
plexity of micromagnetic equations, only highly symmetric
collective reversal modes could be investigated analytica
These processes may be relevant for systems of very s
size or, more generally, for soft-material systems with
shape of high symmetry.28 Such theories include curling29–32

and buckling30 or extensions made to investiga
zero-field33,34and field-dependant35 states of more or less fla
dots made of a soft material. More recently a variatio
method was introduced by Cowburn and Welland in the c
of square dots made of soft material.36 These authors de
scribe a nonuniform magnetization configuration in a dot
the superposition of a uniform magnetization state and lo
order perturbations with ‘‘leaf’’ or ‘‘flower’’ symmetry. For
reasonably small dots a remarkable agreement between
model and numerical calculations is found.36,37The resulting
magnetization configuration is, however, still collective
only perturbations of high symmetry are considered. T
model may therefore be relevant only to describe flat d
made of soft material and with negligible thermal activatio
which we know from theory and experiments to adopt su
collective static modes.33–35 Finally, no external fields are
taken into account in these models in their present state
that only remanent static magnetization configurations
predicted, and hysteretic effects can only be extrapola
We finally mention an attempt to derive a theory for anis
tropic flat dots. Chui and Ryzhov38 proposed a trial micro-
magnetic configuration for a flat rectangular dot under z
applied field. The edge conditionm•n50 mimics dipolar
energy minimization, whereas the configuration in the b
of the dot satisfies exactly micromagnetic equations with
dipolar fields. The authors show that the trial configuration
close to the one issued from numerical calculation perform
on a dotwith a certain thickness. In fact the proposed tria
configuration is thickness independent, and therefore sh
be neither adequate for ‘‘large’’ thickness~the edge condi-
tion m•n50 is correct but volume charges should then
taken into account! nor for ‘‘small’’ thickness~the m•n50
edge condition is too strong; the dot configuration is rat
close to uniform!.

To our knowledge there exists no realistic analytical
versal model in flat dots with in-plane uniaxial anisotro
and with dimensions well abovelex and lBl . By in-plane
17441
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uniaxial anisotropy, we mean in-plane magnetization an
uniaxial anisotropy of microscopic origin between two i
plane directions. Indeed, in the presence of anisotropy
magnetization is expected to reverse by a nucleati
propagation process. This is confirmed experimentally
nucleation volumes, as determined by aftereffect meas
ments, are by far smaller than the system size.6,39 Therefore,
highly symmetrical collective modes should not account
the observedH r reduction. How does one describe magne
zation reversal in such dots? One sometimes assumes
coherent rotation occurs in a small nucleation volume, a
the aspect ratio of the dot is then invoked to estimate
dipolar contribution to an effective magnetic anisotropy
the nucleation volume. This approach may be very misle
ing as~i! the exchange is not taken into account whereas
magnetization configuration is obviously nonuniform and~ii !
dipolar fields are generally nonuniform in samples, so t
the relevance of the aspect ratio that is related to themean
value of Hd over the dot volume is doubtful. The latter a
gument is particularly acute in the present case of thin
dots as the magnetic poles are then located on edges o
dot only. Therefore self-dipolar fields are very intense in t
vicinity of edges and very weak in the center of the d
because of the short range of dipolar fields in 2D system23

To the contrary, the approach followed in the present mo
is to take into account the exchange contribution and
local dipolar fields, and to derive explicitly the microma
netic configuration of a nucleation volume growing near
edge, for any applied field and up to the reversal field.

The principle of the model and the approximations intr
duced are given in Sec. II. The equations are explicitly
rived and solved in Sec. III. We show that the model predi
the reversal field value, the reversible contribution before
reversal, and the micromagnetic configuration of nucleat
volumes, as well as the field dependence of the energy
rier preventing the reversal. Some examples of the mo
outputs are given in Sec. IV. Finally, Sec. V is devoted
comparing the model with numerical calculations and exp
ments. The approximations used, the relevance of the mo
and its micromagnetic consequences are finally discusse

II. DESCRIPTION OF THE MODEL

A. Dimensionless units

In the following we will use dimensionless units for th
sake of concision. Uppercase letters stand for dimensio
variables whereas lowercase letters stand for dimension
variables. First, all lengths are expressed in terms ofAA/K
where A is the exchange constant, andK is the in-plane
second-order anisotropy constant of the dot material, incl
ing all microscopic anisotropy sources~magnetocrystalline,
magnetoelastic, and interface!. Any dimensionless lengthl is
related to the real lengthL like l 5LAK/A. If we use the
definitions of the Bloch wall widthlBl5pAA/K and the
exchange lengthlex5pA2A/m0M s

2, we have in dimension-
less units:lBl5p andlex5pA2/m. Second, there are two
ways of reducing magnetic fieldsH and the volume magne
tization M s. The symmetrical way consists in reducing bo
8-2



le

y

is
s
io
en
op
as

e
o

-

a
a

n
m
-
th

ox
p
ith
n-
ic

le
th
a-
x-
vo
ot
, d

e
a

ar
tio
ni

io
o

s
e
lt

dy
the
e

be-
are

he
the

cale
of
lat-
ent
ial.
n,
the
r to
etry

om
en-

-
n
his
s is
oc-
oles

ms,
ap-
re
of
tion
d
ller
the
ly

i-
ade.
ase
of

i-

by

nal
axis
etic

eti-

MICROMAGNETIC MODEL OF NONCOLLECTIVE . . . PHYSICAL REVIEW B 63 174418
variables withAK/m0. We will denoteh5HAm0 /K andm
5M sAm0 /K as the corresponding dimensionless variab
The nonsymmetrical way consists in reducingH with the
anisotropy fieldHa52K/m0M s and M s with M s itself. We
will denote h̃5Hm0M s/2K as the field reduced in this wa
~and m̃51 does not appear anymore!. The symmetrical re-
duction is more explicit for dipolar field calculations asm
still shows up explicitly. The nonsymmetrical reduction
more convenient for analyzing magnetization reversal, ah̃
521 means coherent rotation. However, in both reduct
systems, the characteristic magnetic length scales are id
cal. Finally, the energy density of a second-order anisotr
system under an external field applied parallel to the e
axis of magnetization is written

eV5sin2v1~¹v!22mhcosv ~1!

5sin2v1~¹v!222h̃ cosv, ~2!

wherev is the angle betweenM and the easy axis. Along th
entire paper we will often refer to the experimental case
1-nm-thick (110)Fe dots,25 for which M s51.73
3106 A m21, K54.763105 J m23, A52310211 J m21,
lBl520.4 nm, andlex510.2 nm. To give an order of mag
nitude to the reader,m52.81 andlex51.58 in this case.

B. Approximations used

In the model, we make use of both power series exp
sion and micromagnetic approximations. The expansion
proximation consists of an exact power series expansio
microscopic magnetic torques up to the fifth order, in ter
of the magnetization anglev. The choice and the conse
quences of the order of expansion will be discussed in
last section. Here, we focus on the micromagnetic appr
mations, which are based on the analysis of experiments
formed on ultrathin dots 200 nm wide made of Fe films w
in-plane anisotropy.40 The present section is devoted to i
troducing these approximations and discussing the phys
ground of their relevance.

We showed experimentally that for such dots the nuc
ation volumes are approximately 100 times smaller than
total volume of the dot.24 This demonstrated that magnetiz
tion reversal isnot coherent. The reversal is therefore e
pected to proceed in two steps: First, a small nucleation
ume reverses. Second, the magnetization of the entire d
reversed by a fast domain wall motion process. Besides
polar fields are short ranged in 2D systems23 so that self-
demagnetizing fieldshd are strongly nonuniform inside th
dot. These fields nearly vanish near the center of the dot
are strong only in the close vicinity of the edges that
perpendicular to the magnetization direction. The nuclea
volumes are therefore expected to be located in the vici
of these edges. In micromagnetics corners may help
hinder magnetization reversal, depending on the situat
We assume that corners hinder magnetization reversal in
case, so that the reversal should be triggered near edge
away from corners. The proof for this assumption com
from numerical micromagnetic simulations, whose resu
17441
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will be detailed in the discussion section. As we alrea
mentioned above, dipolar fields are short ranged so that
micromagnetic configuration of the nucleation volum
should be characteristic of the neighboring edge only,
cause the influence of corners and of the opposite edge
comparatively very weak. It should finally be added that t
influence of corners and other edges is not mediated to
nucleation volume via exchange, as the in-plane length s
of the exchange length, the domain-wall width, and that
the nucleation volume are small as compared to the dot
eral size. In this respect, the present situation is very differ
from that commonly encountered in the case of soft mater
All this leads to the first micromagnetic approximatio
which is of a geometrical nature: the dot is replaced in
model by a half-infinite slab whose edge is perpendicula
the easy axis of magnetization, and a translation symm
along this edge is assumed~Fig. 1!.

The second micromagnetic approximation is derived fr
the observation that the experimental in-plane angular dep
dence of the reversal fieldhr(u) is very close to the predic
tions of CR.40 This indicates that even in the vicinity of a
edge, the influence of demagnetizing fields is weak. T
implies that the magnetization state of nucleation volume
close to uniform, even just before the nucleation event
curs. We accordingly assumed that only edge magnetic p
contributed to self-dipolar fields, not volume poles¹•m.
Then, as dipolar effects are very short ranged in 2D syste
dipolar fields coming from the neighboring edge charges
ply only to a small fraction of the nucleation volume, mo
precisely to the fraction that is in the immediate vicinity
the edge. Let us recall that the length scale of a nuclea
volume in our case is at leastlex as exchange forces forbi
any rapid magnetization rotation on a length scale sma
thanlex, whereas the range of dipolar fields is related to
dot thickness (t). The demagnetizing effect was according
taken into account as a demagnetizing torqueGd acting on
the edge spin of the half-infinite slab, andGd is estimated by
integrating the microscopic self-dipolar torquegd5mÃhd
from the edge to infinity. This is the second important m
cromagnetic approximation. Several remarks must be m
First, integrals of torques converge rapidly even in the c
of infinite lines of charges, instead of diverging in the case
energy integrals. Second,t!lex appears naturally as the cr
teria of validity for this ‘‘torque approximation.’’ Third, the
relevance of the concept of the edge torque is supported

FIG. 1. Schematic cross-section view of the slab with exter
field applied perpendicular to the edge and parallel to the easy
of magnetization. In this geometry the so-called surface magn
poles are located on the edge (1). The field is positive in the
figure. Negative values will be applied to reverse the dot magn
zation.
8-3
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the results of Raveet al. These authors recently discuss
and simulated the relevance of edge torques to accoun
the effect of demagnetizing fields acting on a length sc
smaller thanlex.41

Finally a third micromagnetic approximation is intro
duced. This approximation is also derived from the fact t
t!lex: the magnetization cannot be reoriented away from
plane in the vicinity of edges. Besides, the magnetization
be considered as uniform along the thickness of the dot
causet!lex and t!lBl . As a result, the magnetization i
the half-infinite slab can be written as

m~u!5m@ i cosv~u!1 j sinv~u!#. ~3!

uP@2`;0# is the distance between the considered point
the edge.v(u) is the in-plane angle between the magneti
tion vector and the easy axis of magnetization~see Fig. 1!.

Let us summarize the three micromagnetic approxima
that we introduced

~i! The magnetization lies in the plane and does not v
along the thickness of the film.

~ii ! The geometry is restricted to a half-infinite slab who
edge is perpendicular to the easy axis of magnetization,
a translation symmetry along the edge is assumed.

~iii ! The dot self-dipolar fields are taken into account
an edge torque, whose value is calculated by integrating
microscopic dipolar torque from the edge of the slab to
finity.

Let us also recall that, in addition to these approxim
tions, we will in the following proceed to a series expansi
of microscopic magnetic torques, including all terms up
the fifth order.

C. Principle of the model

Let us now briefly describe the principle of the model
the framework of the three micromagnetic approximatio
described above. The micromagnetic configuration inside
slab is determined by the minimization of the anisotrop
Zeeman, and exchange energies~Euler’s equation!. This con-
figuration can be described analytically using a wall-ty
expression,42,43 provided that we set the magnetization ro
tion at the edge to a value fixeda priori, v05v(u50). The
edge magnetic pole is then cos(v0), from which hd(u) is
calculated, leading to the evaluation ofGd . Finally, Euler’s
equation is applied at the edge~Brown’s condition!; namely,
the exchange-induced torqueGex and the dipolar torqueGd
must compensate each other, so that the spin at the ed
under equilibrium:

Gex1Gd50. ~4!

The possible equilibrium values ofv0 are finally determined
self-consistently, by solving Eq.~4!.

III. MODEL SOLVING

A. Wall profile

We restrict ourselves to dots with a second-order mic
scopic in-plane anisotropy energy; i.e., we use Eq.~2!. The
procedure is the following. The dot is first saturated w
17441
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high positive values ofh̃. Then smaller positive and finally
negative values ofh̃ are applied to reverse the magnetizati
of the dot. Equation~2! can be written

ev54~11h̃!F S du

dh D 2

1sin2u1k2 sin4uG , ~5!

with k2521/(11h̃), u5v/2, andh5uA11h̃. The solu-
tion to Eq. ~5! is the equation of a wall in a fourth-orde
anisotropy material, which was solved analytically.42,43 Us-
ing this expression and switching back to variablesu andv
one finds

v5p22arctanHA 2h̃

11h̃
cosh@A11h̃~u2u1!#J . ~6!

Here ‘‘cosh’’ is the hyperbolic cosine function, andu1 is a
positive integration constant which determines the locat
of the wall (u1@1 for a small edge rotation!. Besides, we
have broken arbitrarily the left-right symmetry by choosing
nonuniform solution withv0.0. The single-domain state i
obtained in the limitu1→1`, in which casev050, and
thusv(u)50,;u.

B. Exchange-induced torque

The exchange-induced torque acting on the edge spi
expressed as

Gex522
dv

du U
u50

. ~7!

To this point, it is useful to go back to Euler equation, rath
than to use directly Eq.~6!. Indeed, the bulk Euler condition
connects the microscopic torque with the anisotropylike m
croscopic energy density:

du

dh
5Aea~u!, ~8!

where the integration constants vanish in the case of the h
infinite slab,ea(2`)50 anddu/dh(2`)50, and with the
notation of Eq.~5!, ea(u) varies like sin2u1k2 sin4u. Switch-
ing back to the variablesv andu, the right-hand side of Eq
~8! can be straightforwardly expanded in a power series a
function ofv. Performing the exact expansion up to the fif
order and using Eq.~7!, one finally finds

Gex522v0A11h̃H 12
1

2 S 1

3
1

1

11h̃
D S v0

2 D 2

1
1

23 F 1

15
1

2

11h̃
2

1

~11h̃!2G S v0

2 D 4

1O~v0
6!J .

~9!

C. Demagnetizing torque

Let us recall that we neglect volume magnetic charges
that the demagnetizing fields arise from surface magn
8-4
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charges only~i.e., from the edges!. Besides, for simplicity
the average demagnetizing field over the dot thicknesst was
approximated by the demagnetizing field value calculated
the center of the film (z5t/2), namely,

hd~u!5
m cos~v0!

p
arctanS t

2uD . ~10!

Using this expression, the microscopic~i.e., local! demagne-
tizing torque can be expressed as

gd~u!52
m2

p
cos~v0!sin~v!arctanS t

2uD . ~11!

The edge demagnetizing torque is finally given by

Gd5E
2`

0

gd~u!du. ~12!

Note thatu,0 in Eqs.~10!–~12!, so that we indeed have
demagnetizing field (hd,0) and demagnetizing torqu
@gd(u).0#.

In order to get a series expansion ofGd as a function of
v0, we first expand sinv as a function of v0 with
u-dependent coefficients, and then proceed to the integra
of these coefficients following Eqs.~11! and ~12!. The sim-
plest way to do this is to perform, as an intermediate step,
expansion of sinv as a function of the small quantityeh2h1,

with h15u1A11h̃ @see also Eq.~6!#. As a second step, th
integration of Eq.~12! is performed, yielding an expressio
with integral powers ofe2h1. Finally, e2h1 is in turn ex-
panded in terms ofv0. This two-step expansion is releva
becausee2h1 is of the order ofv0.

Reversing Eq.~6!, one finds

sinv5
2a cosh~h2h1!

11a2 cosh2~h2h1!
, ~13!

wherea5A2h̃/(11h̃). The exact expansion of Eq.~13! to
the fifth order is

sinv5
4

a
ehe2h1F12S 11

4

a2D e2he22h1

1S 11
12

a2
1

16

a4D e4he24h11O~e6he26h1!G .

~14!

With a view to proceeding to the integration in Eq.~12!, it
is now necessary to evaluate the series of integrals

I k~ h̃!52E
2`

0

ekh arctanS t

2uDdu ~15!

wherek has positive integral values among$1,3,5%. For clar-
ity, we will in the following omit to write the dependence o

I k uponh̃. Using the variablesb5t/2 andmk5kA11h̃, the
I k function is expressed as
17441
in
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1

mk
S p

2
2bE

0

1` e2umk

u21b2
duD ~16!

and evaluated using the following expression of t
integral44:

E
0

1` e2umk

u21b2
du5

1

b
@ci~bmk!sin~bmk!

2si~bmk!cos~bmk!#. ~17!

ci and si are sine and cosine integral functions, respectiv
These functions can be evaluated numerically using the
lowing expansions44:

ci~x!5C1 ln x1 (
k51

`

~21!k
x2k

2k~2k!!
, ~18!

si~x!52
p

2
1 (

k51

`

~21!k11
x2k21

~2k21!~2k21!!
. ~19!

After this integration, the demagnetizing torque is writt
the following way, after Eqs.~12! and ~14!:

Gd5
4m2

ap
cos~v0!3Fe2h1I 12e23h1S 11

4

a2D I 3

1e25h1S 11
12

a2
1

16

a4D I 5G . ~20!

The final step is to expresse2h1 as a series expansion o
v0. Equation~6! yieldsv0 as a function ofh1. This relation
can be reversed, yielding a binomial relation, with two po
tive rootse2h1 andeh1. The smaller root must be connecte
with e2h1 becauseh1.0, and one finds

e2h15
1

a
cot

v0

2
2A 1

a2
cot2

v0

2
21. ~21!

Finally, after evaluation of the series expansions of E
~21!, cosv0, I 1 , I 3 and I 5 as a function ofv0, Eq. ~20! can
be fully exactly expanded to the fifth order:

Gd5H I 1

2 S v0

2 D1F2
1

6
~5I 113I 3!1

a2

8
~ I 12I 3!G S v0

2 D 3

1F 1

30
~2I 1115I 3115I 5!1

a2

8
~2I 122I 313I 5!

1
a4

32
~2I 123I 31I 5!G S v0

2 D 5

1O~v0
7!J 4m2

p
. ~22!

D. Equilibrium states

The equilibrium states are determined by equilibrium
the spin at the edge@Eqs.~4!, ~9!, and~22!#. Apart from the
trivial solution v050 ~single-domain state!, the equilibrium
positions are the roots of binomial
8-5
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AS v0

2 D 4

1BS v0

2 D 2

1C50, ~23!

with the following expression of the coefficients:

A5
m2

p F 2

15
~2I 1115I 3115I 5!1

a2

2
~2I 122I 313I 5!

1
a4

8
~2I 123I 31I 5!G2

1

2
A11h̃

3F 1

15
1

2

11h̃
2

1

~11h̃!2G ,

B5
m2

p F2
2

3
~5I 113I 3!1

a2

2
~ I 12I 3!G

12A11h̃S 1

3
1

1

11h̃
D ,

C5
2m2

p
I 124A11h̃. ~24!

The two roots are

S v0
6

2 D 2

5
2B6AD

2A
, ~25!

with

D5B224AC. ~26!

As by conventionv0.0 and including the single-domai
solutionv050, there exists at most three equilibrium sol
tions for the nonreversed state~either stable or unstable!,
depending on the external field valueh̃. The state with the
largestv0 is associated with the barrier to be overcome
reverse the magnetization, so that it is unstable. Besi
Gex2Gd is a continuous function versusv, so that succes
sive equilibrium states are successively stable and unsta
with decreasing values ofv0. This allows us to describe
qualitatively the three different situations that can be enco
tered.

~i! There are three positive solutions, namely,v050,
v0

2.0, andv0
1.v0

2 . The only stable equilibrium state i
thenv0

2 and the magnetization configuration is nonunifo
~NU! near the edge. This occurs forD.0 and (v0

2)2.0.
~ii ! There are two positive solutions only, namely,v0

50 andv0
1.0. The only stable equilibrium state then co

responds tov050 @single-domain~SD! state#. This occurs
for D.0, (v0

2)2<0, and (v0
1)2.0.

~iii ! The only solution isv050 and is unstable. This
means that the magnetization has already reversed. This
curs in two cases, eitherD,0 or D>0 and (v0

1)2<0.
We observe that there is at most one stable equilibr

solution. The reversal fieldh̃r is the field at which this single
stable solution vanishes. Depending on the situation~NU or
SD; see above! h̃r is determined by v0

1(unstable)
17441
s,

le,

-

oc-

5v0
2(stable) orv0

1(unstable)50(stable), respectively. In
the NU case,hn is found by solving the equationv0

150.

E. Energy barriers

In this section we calculate the height of the energy b
rier preventing magnetization reversal. This might be of u
to gain insight into the thermal activation behavior of the d

As explained above, the model was solved based
torque equations. One can also use the picture of a sys
with a single degree of freedomv0 in a @0;p# energy land-
scape. In this picture, the bottom of the energy well sta
for the stable state, whereas the top of the barrier preven
magnetization reversal stands for the unstable state.
height of the barrier equals the work produced by an oper
applying a torqueGop on the spin at the edge, in order t
drive it from the stable positionv0

s to the unstable position
v0

1 , under quasistatic conditions:Gd1Gex1Gop50. The
barrier height is therefore

Wop52E
v0

s

v0
1

~Gd1Gex!dv0 . ~27!

v0
s stands for the stable equilibrium solution, eitherv0

2 ~NU!
or 0 ~SD!. One finds after straightforward integration of E
~23!

Wop5@j~v0!#
v

0
s

v0
1

, ~28!

with

j~v0!52
A

3 S v0

2 D 6

2
B

2 S v0

2 D 4

2CS v0

2 D 2

. ~29!

For the stable state of the SD casev0
s50, so thatj(v0

s)
50. For the stable state of the NU casev0 is a root of
binomial ~23!, so thatj(v05v0

6) can be expressed in term
of A, B, andC only. It is now necessary to treat the NU an
SD cases separately.

In the NU case Eq.~28! boils down to the following exact
expression:

Wop5
D3/2

6A2
. ~30!

Magnetization reversal occurs whenD vanishes~see NU
statein the previous paragraph!. D can be expanded to firs
order, as the first derivative ofD generally does not vanish in
h̃5h̃r : D;h̃2h̃r . Then, we get from Eq.~30! the first-order
expansionWop;(h̃2h̃r)

3/2. This shows that thea exponent
used in thermal activation theory equals 1.5 in the case
nonuniform state withh applied exactly perpendicular to th
edge.
8-6
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In the SD case, magnetization reversal occurs whenv0
1

vanishes~seeSD-statein the previous paragraph!. Equation
~28! can be expanded in terms ofv0

1 . The leading order of
the expansion is

Wop'
B

2
~v0

1!4. ~31!

h̃5h̃r is reached whenC changes of sign@see Eq.~25! and
the discussion below#. In generalB does not vanish inh̃
5h̃r , so that Eqs.~25! and~26! can be expanded straightfo
wardly, showing that (v0

1)2 varies linearly withh̃2h̃r just

before the reversal, and thusWop;(h̃2h̃r)
2. From this and

from Eq. ~31! we infer that the exponenta equals 2 in the
SD case.

IV. MODEL QUANTITATIVE RESULTS

A. Numerical application to 1-nm-thick dots

Theory is more flexible than experiment as each para
eter can be varied one at a time to evaluate its influence
magnetization reversal. Such a step-by-step compariso
not possible with real samples, where, for instance, thickn
and anisotropy cannot be chosen independently becaus
the interplay of interface, magnetoelastic, and volu
anisotropies. The primary purpose of the torque model is
investigate the intrinsic influence of thickness, so that
examples given below were computed for different thic
nesses but for fixed anisotropy. An advantage of not pres
ing the model’s results in a (t,h̃) graph using an experimen
tal Ha(t) law is that the results presented here do not dep
on a particular sample and are therefore more general.
reader should, however, keep in mind that a comparison
such a graph computed in units reduced with respect to
given anisotropy is in principle possible for one thickne
only, because of the thickness-anisotropy experimental in
play.

The equationsD50, v0
250, and v0

150 were solved
numerically, using the experimental valuesHa50.55 T and
M s51.733106 A m21.25 Stable and unstable equilibrium
state curves for different thicknesses are displayed o
(h̃,v0) plot in Fig. 2. For a givenh̃ the number and numeri
cal values of equilibrium states are determined graphic
by the intersection of these curves with a vertical line. T
nucleation field valueh̃n and the reversal field valuehr were
determined numerically using this type of diagram. Bo
fields are plotted versus thickness on Fig. 3. Note that h
‘‘nucleation field’’ h̃n bears a micromagnetic meaning; i.e
hn is the field at which the SD state becomes a NU state.45 It
should not be confused with the reversal fieldh̃r , at which a
‘‘nucleation event’’ ~in the viscosity measurement meanin
i.e., the thermally activated reversal of a small volume! trig-
gers magnetization reversal. We see in Fig. 3 that belo
critical thicknesstc the magnetization configuration is alway
SD up to h̃r ~in that caseh̃n5h̃r), whereas fort.tc the
magnetization configuration is successively SD, NU, a
17441
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then reversed, ash̃ is decreased towards21 ~in the latter
caseh̃n.h̃r). The transition from a SD state to a NU state
of second order; i.e.,v0 switches continuously and revers
ibly from zero to positive values ath̃n . On further decrease
of h̃, v0 monotonously increases up tov0

r at h̃r . Although
results concerning one (Ha,m) set only are given here, th
same qualitativet dependence was found for any values ofm
andHa. We found, in accordance with intuition, thattc and
v0

r u t5Cte increase ifM s increases orHa decreases, and tha

dv0
r /dt.0 for t.tc .

B. Comparison with numerical calculations

Our numerical approach is based on solving dissipat
Landau-Lifschitz-Gilbert micromagnetic equations and us
a fast Fourier transform~FFT! procedure to evaluate dipola
fields.46,47 Special care was devoted to track numerical a
facts and to simulate model systems to validate the appro

FIG. 2. Stable (s) and unstable (1) equilibrium states in a

(h̃,v0) plot, as predicted by the model form52.81 and for thick-
nesses ranging from 0.05 to 0.4~dimensionless units!. v0 is the
rotation of the spin located at the very edge of the half-infinite sl

FIG. 3. Micromagnetic state of a half-infinite slab as predict
by the model. Open dots stand for reversal fields and solid
monds stand for nucleation fields. An enlargement of the sm
thickness area is shown in the inset.
8-7
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so that we are confident that the error bars of numer
calculations are smaller than those induced by the appr
mations used in the model. Accordingly, any discrepan
between calculations and the torque model will be ascri
to the latter in the following. The calculations were pe
formed using the parameters of experimental 1-nm-th
dots:Ha50.55 T andM s51.733106 A m21.25

Two major approximations were used in the model. T
first one is the torque approximation. The second one is
geometric approximation, namely, the replacement o
finite-size dot by a half-infinite slab. Numerical calculatio
allowed us to probe the relevance of each approxima
independently, as reported below.

In a first step, we assess the relevance of the edge to
approximation. For doing this, we numerically simulated t
magnetization reversal process in a half-infinite slab wit
translation symmetry parallel to the edge, the magnetiza
being a 3D vector. For each value of the external app
field we used the following procedure in order to get rid
the numerical left-right symmetry-breaking problem, but
the same time to be able to predict a value for the nuclea
field, i.e., the field at which a system ceases to be unifor
magnetized: in a first step the external field is misaligned
0.1° with respect to the easy axis of magnetization, and
equilibrium configuration is calculated. In this configuratio
v0 never exactly equals 0. In a second step we use
configuration as a starting point and calculate the equilibri
configuration under a perfectly aligned external field. T
nucleation field has not yet been reached if the solution
laxes towards uniform magnetization withv050. We found
that numerical calculations and the model yield identi
qualitativeresults~Fig. 4!: below a critical thickness the sys
tem is always uniformly magnetized under any applied fie
Above the critical thickness the system can be uniformly
nonuniformly magnetized, depending on the external fi
value. This leads to a distinct nucleation fieldh̃n and reversal

FIG. 4. Nucleation and reversal fields~diamonds and dots, re
spectively! vs slab thickness: predicted by the model~open sym-
bols! and yielded by numerical calculations of a half-infinite sl
~solid dots! (m52.81 in both cases!. Dimensionless units were con
verted into real units on both axes for the case of experime
1-nm-thick Fe dots~see parentheses: thickness in nm and field
T!. Error bars are related to the field step used in the calculatio
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field h̃r . The quantitativeagreement is very good in the u
trathin regime. However, the regime over which a NU ma
netization state can exist lies at the verge of the model
lidity domain, for the set of parameters used for t
comparison~a more detailed comparison will be found
Sec. V!. The slab geometry is identical in these numeric
calculations and in the analytical model. The difference l
in the fact that the numerical calculations do not make use
the torque approximation nor of power series expansio
This proves the relevance of the torque approximation
the low-order expansions used in the analytical model in
limit of ultrathin dots.

In a second step, we assess the relevance of the geom
cal approximation. For this purpose, we compared the sim
lations previously discussed, performed on a half-infin
slab, with simulations performed on a square-shaped
with a 200-nm edge, the edges being parallel to the in-pl
easy and hard axes of the film. In both cases the thickne
1 nm and the magnetization is described by a 3D vectorm.
The grid spacing was chosen equal to 3.125 nm, smaller
lex510.2 nm andlBl520.4 nm. Both calculations yield
very similar h̃r values as shown in Fig. 5, although the r
versal is slightly hindered in the case of square dots. T
similarity is better understood by looking at the static micr
magnetic configuration of the square dots just before the
versal @Fig. 6~a!# @the configuration of a 6-nm-thick dot i
also shown in Fig. 6~b! because the so-called nucleation vo
umes are clearly visible in this case, although the deviatio
the edge is obviously too strong for the model to be vali#.
Examination of Fig. 6~a! leads to the conclusion that th
reversal in the square dots is hindered by the corners, so
the nucleation volumes grow preferentially away from the
in a region which can be locally approximated by a ha
infinite slab. This result proves the relevance of the geom
ric approximation in the case of large square-shaped d
How large square dots need to be to behave like half-infin
slabs can be probed by repeating such simulations for sev
edge lengths~Fig. 7!. The grid spacing was maintained co
stant and equal to 3.125 nm for all simulations. This ensu
that the exchange field and the stray field were determi
with the same precision for each system, and allows us
compare unambiguously all results. Besides, we used

al
n
.

FIG. 5. Reversal field value vs thickness, yielded by numeri
calculations performed on half-infinite slabs~open symbols! and
square-shaped dots with a 200-nm edge~solid symbols!, both using
m52.81. Error bars correspond to the field step used in the ca
lation.
8-8
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FIG. 6. Near-edge detail of the
numerically calculated micromag
netic configuration of 200-nm-
square-shaped dots just before r
versal. The dot thickness is 1 nm
for ~a! and 6 nm for ~b!. The
parameters used arem0Ha50.55
T and M s51.733106 A m21,
which yields m52.81. The an-
isotropy field is exactly perpen
dicular to the edge, whereas a 0.1
misorientation of the applied field
was used to trigger symmetry
breaking. Areas where spins ar
rotated by more than 45° ar
shaded to visualize nucleation vo
umes.
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fftw library developed by Frigs and Johnson.47 This allowed
us to investigate more points than the usual 2n law with the
conventional FFT procedure permits. Indeed, the library
Ref. 47 works equally well for all products of integral pow
ers of prime integers. The results of these simulations are
following. The reversal field goes to the anisotropy field f
very small lateral size. This was indeed expected as a s
square dot is nearly single domain, and displays no in-pl
shape anisotropy. On the contrary, the reversal field o
square dot with a large edge length goes to the reversal
of the half-infinite slab. The crossover to the lateral fini
size effect is found to lie between 100 nm and 200 n
for the particular case of Ha50.55 T and M s
51.733106 A m21. The reader may note that this is we
above all conventional magnetic length scales, such as
exchange length and the domain wall width. We will n
discuss the reasons for this in the present article. Finally,
influence of the exact shape of the dot on the reversal fi
was investigated. This was done by performing simulatio
on disk-shaped dots 200nm in diameter, yielding results v
similar to the case of square dots with identical width a
thicknesst51 nm: h̃r520.9160.005 in the case of disk
shaped dots, to be compared withh̃r520.89260.002 in the
case of square-shaped dots discussed above. Therefor
shape of the dot, at least disk or square, does not seem
of prime importance in determining the value ofh̃r . This is
an indication that the geometric half-infinite approximati
may be relevant for different kinds of in-plane shapes. T
will be discussed in more detail in Sec. V.

C. Comparison with experiments

The reversible contribution to experimental hystere
loops of an array of dots is very weak and could not
measured accurately. We therefore restricted the compar
between the analytical model and the numerical calculati
to two scalar quantities: the reversal fieldh̃r and the exponen
a related to the field dependence of the energy barrier u
in the theory of thermal activation.17

Let us first discuss the case of the reversal fieldh̃r . For
2-nm-thick disk-shaped dots (Ha50.3 T, Ms51.73
17441
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Ms51.733106 A m21!, the experiments yieldedh̃r
expt5

20.6360.01 whereas the torque model yieldedh̃r
tm5

20.61260.001. The agreement is rather good in that ca
For 1-nm-thick dotsh̃r

expt520.73360.005 ~Ref. 40! and

h̃r
tm520.85760.001. Both results do not coincide. The di

crepancy is not very large in terms of reversal field valu
but as we pointed out in the introductionDh̃511h̃ is a
direct probe of self-demagnetizing effects in dots.Dh̃r

expt

50.26760.005 andDh̃ r
tm50.14360.001 are therefore the

relevant parameters to be compared. The agreement is w
viewed from this angle. We ascribed this discrepancy to
defects, which indeed are expected to have more dram
consequences in thinner dots for two reasons:

~i! A roughnesslike fluctuation of the number of F
atomic planes in the dot. Two physical effects are related
thickness fluctuations, and both effects add up. Indeed, if
dot thickness near an edge is locally increased, the an
ropy is decreased and the demagnetizing fields are increa
so that both effects tend to decreaseuh̃ ru. It should be noted
that this effect is more important for thinner dots in terms

FIG. 7. Numerically simulated dimensionless reversal field o
square dot, as a function of the side length. The line shows
numerically simulated reversal field of a half-infinite slab. The
mensionless parameters are magnetizationm52.81 and thickness
t50.15. Let us recall that the dimensionless unit length equals
nm for iron whenHa50.55 T.
8-9
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relative values.48 For instance, 1-nm dots contain on the a
erage 5 monolayers~ML ! of Fe, so that large relative thick
ness fluctuations are simply induced by the fluctuation of
position of atomic steps at both Mo/Fe interfaces, even in
case of an atomically flat and roughness-free sample,
cause of the substrate miscut. This may explain why
model reproduces well the reversal of 2-nm-thick dots a
poorly that of 1-nm-thick dots.

~ii ! h̃r is very close to21 so that the energy well is ver
shallow and narrow just before the reversal,25 and even small
defects are expected to play a considerable role.

Let us now discuss the case of exponenta. The analysis
of the experimental thermal activation data was perform
between 2 K and 300 K on 1-nm-thick dots. The procedu
was the following. In a first step, the value ofh̃r was mea-
sured in this temperature range. In a second step, the
crease ofh̃r with increasing temperature was ascribed
thermal activation, which helps overcoming the fiel
dependant energy barrierD(h̃r). An Arrhenius law was used
to describe thermal activation, and thus for each tempera
the height of the energy barrier ath̃ was estimated, yielding
D(h̃). As a third and final step, this experimentalD(h̃) curve
was fitted by the following expression:D0@ h̃r(T)2h̃r

(T50)]a. This procedure yieldeda51.6560.1.25 On the
other hand, given the dot parameters, the model predicts
the dot is single domain and therefore thataSD52. How-
ever,aSD cannot be compared directly with experiments a
arises from a lowest-order expansion of Eq.~28!, which is in
the limit of zero temperature. One must instead compare
exponent issued from experiments with the exponent iss
from a polynomial fit of Eq. ~28! over the field range

@ h̃r(300 K),h̃r(2 K)#. This field range is the one probed e
perimentally using the temperature range@2 K, 300 K#. The

fitting procedure is illustrated in Fig. 8 and yieldsaSD
2 –300 K

51.5660.02. The torque model is therefore in good agr
ment with experiment. Experimental determination of the

FIG. 8. Energy barrier height as a function of the applied fie
as predicted by the model. The example shown corresponds to
experimental parameters of 1-nm-thick dots. The curve was fi
with an adjustable activation volume and exponenta ~straight line!.
Open dots stand for the energy range taken into account in th
whereas solid diamonds stand for points excluded from the fit.
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ponentaNU in the case of thicker dots and its comparis
with the model would, however, be required to fully valida
the model. Besides, thermal activation theories are deri
from the effect of thermal noise on a single degree
freedom,49 i.e., are in principle applicable only to single
domain systems. The Arrhenius law and Brown equatio
may therefore not be directly applicable to the case o
functional degree of freedom, as it is the case in the tor
model and in the majority of magnetic systems, which a
not necessarily in a single domain state. One has therefo
keep in mind that there are no absolutely firm bases to m
such comparisons.

V. DISCUSSION

A. Validity domain of the model

Let us first discuss the limit of validity of the model i
terms of maximum tractable thickness. We showed in
previous section that in the low-thickness regime the mo
and numerical simulations predicted very similar values
11h̃ ~the reduction of the reversal field as compared to
anisotropy field!. Nevertheless, the value predicted by t
model saturates above approximatelyt50.5, whereas tha
yielded by numerical calculations still increases slowly. Th
can be understood as volume charges were neglected in
model so that only surface charges~i.e., on the edges! con-
tribute to demagnetizing effects. The higher the thickness
the largerv0

r is, so that surface charges and therefore
associated demagnetizing effects are smaller. In real dots
in numerical calculations, part of the demagnetizing effec
that case is still taken into account via volume charges. T
might explain why 11h̃ still increases slowly. Let us discus
the situation quantitatively. In the limit of large thicknes
v0

r →p/2, so that surface charges nearly vanish@due to
power expansion of cos(v0) function in Eq. ~20!, v0

r →
;1.59 in the model, instead ofp/2#. In this case the reversa
is hindered by the exchange torque only, whereas no m
demagnetizing torque applies. Thus, the reversal finally
curs forGex50, i.e.,h̃;20.62@this comes out of Eq.~9!#. It
is indeed checked in Fig. 4 that magnetization saturatio
related toh̃ approaching20.60. We also observe on thi
plot that this limit is obtained fort'0.5'0.3lex. This also
can be understood as we already mentioned that demagn
ing effects are significant only on a lateral length scale of
order of the dot thicknesst. Indeedlex is the length scale tha
arises when exchange (A) and demagnetizing effects due
two charged planes (m2/2) compete. In our caselex is obvi-
ously the minimum length scale of the activation volume
lex,lBl . As long ast!lex the mean demagnetizing energ
over the nucleation volume is well belowm2/2. In other
words the charged edge of the dot does not look like a pla
as viewed from the nucleation volume. In that case the
versal is mainly made possible by Zeeman energy only. T
crossover between Zeeman-driven reversal to dipolar-dri
reversal therefore logically occurs aroundt;lex. This
length scale is also the thickness over which the torq
model is no longer relevant.

,
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Let us now discuss the predicted size of nucleation v
umes. Below the crossover thickness mentioned above
influence of dipolar fields can be considered as pinpoint
as compared toVn . The characteristic length scale of nucl
ation volumes in the direction perpendicular to the edge
therefore determined by Eq.~6! and is not expected to de
pend much on the demagnetizing field magnitude. In ot
words, and provided that the thickness of the dot is reas
ably smaller than the exchange length, the relevant in-pl
length scale in the direction perpendicular to the edge is
the exchange length but is rather determined by a portio
a wall described by Eq.~6!. This length is somewhat large
than lex, but anyhow differs from the Bloch-wall width
This illustrates the fact that neither the maximum nor
minimum oflex andlBl is a universal magnetic characteri
tic length scale for all systems. However, it is clear from E
~6! that this length scale increases with decreasing ani
ropy. However, as long as the uniaxial anisotropy is stro
enough, the length scale of the nucleation volumes perp
dicular to the edge does not depend on the dot size. Th
the reason why we call the reversal ‘‘non-collective’’: th
effect of the demagnetizing fields is concentrated in ar
close to the edges, and the magnetization reversal doe
involve all the spins of the system. On the contrary, in
limit of zero microscopic anisotropy, i.e., for soft materia
this length scale diverges and the nonuniform volume fi
the entire dot. In that case the magnetization state of a
dot can be called ‘‘collective,’’ and can be accurately d
scribed using length variables scaled with dot size and l
order expansions performed from the center of the dot.36 To
this point, an important remark must be made. Figure
shows that, in the limit of small thickness,H r goes to the
value predicted for coherent reversal. However, as poin
out above, the magnetization reversal is not collective. Th
two statements do not contradict each other. They are
plained by the fact that, although the reversal is not coher
the conditions in the vicinity of the nucleation volume a
very similar to those needed for coherent reversal~in our
case, nearly vanishing dipolar fields!, so that the field at
which the nucleation volume reverses is close to that p
dicted by the Stoner-Wohlfarth theory. The fact that the
versal isnot coherent was checked directly by inspection
the dynamics of the numerically simulated reversal. The
versal is clearly initiated near the edge and propagates
the dot through domain-wall motion. This shows that, in t
case of a real systems, one cannot conclude that cohe
reversal occurs simply on account of the similarity of
experimentalH r(u) reversal law with the so-called Stone
Wohlfarth Astroı¨d. The definite proof must come from dy
namical measurements, which allows one to estimate the
of nucleation volumes.17

Let us finally discuss the influence of the dot shape
reversal. In the case of flat dots made of soft material it w
shown experimentally50,51 and numerically51,52 that the mi-
cromagnetic configuration and the reversal field va
strongly depend on the exact shape of the edges. Th
explained by the fact, explained above, that the nonunifo
magnetization state fills the entire dot for soft materia
Therefore, the influence of the edges is in this case l
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ranged. To the contrary, in dots made of hard materials
nucleation volumes are mainly influenced by thelocal shape
and orientation of the nearby edge. If all edge orientatio
are available as in the case of disks, the relevance of
geometric hypothesis indicates that the highest reversal
~speaking of negative values, ie., the smallest in abso
value! is associated with edges that are exactly perpendic
to the easy axis. This means that the torque model shoul
relevant to describe thin and flat dots made of hard mate
with in-plane anisotropy, and this for a large variety of i
plane geometry of dots, provided that a significant part
their edges is perpendicular to the easy axis. What a ‘‘s
nificant part’’ is was probed by numerical calculations
Sec. IV B, and is a length scale expected to increase w
decreasing anisotropy, Fig. 7. This lateral length scale
about 50–100 nm for 1-nm-thick dots, and was found to
about 1–2mm in dots with a much weaker bulk Fe fourth
order anisotropy.53

Following this discussion, it appears that the model
well suited to describe dots with in-plane uniaxial anis
ropy, of thickness smaller than about half the exchan
length, of lateral size much larger than the exchange len
and the domain-wall width, and with a significant portion
their edges perpendicular to the easy axis of magnetizat
To the contrary, the best suited method applicable to v
small dots would be a variational method as the one in
duced by Cowburn and Welland,36 used to describe a close
to-uniformly-magnetized state.

B. Compliance with general micromagnetic statements

General micromagnetic theorems or statements are o
invoked regarding some aspects of magnetization reve
Let us check in this section that the results of the pres
model comply with them. We discuss successively the
evance of a single-domain~SD! state and that of the numer
cal value of exponenta.

A key prediction of our model is that the magnetizatio
configuration is uniform above a given external applied fie
With the parameters of our Fe dots25 this field is negative,
which means that the magnetization configuration is unifo
for h50. Besides, the predicted configuration is always u
form below a critical thickness, whatever the external fie
is. These predictions were confirmed by numerical calcu
tions ~see Fig. 9!. The occurrence of a perfectly uniform
magnetization state in a half-infinite slab may be surpris
at first glance. Indeed it is well known that the only syste
that may be uniformly magnetized under a finite exter
field are those bounded by a surface with a polynomial eq
tion whose degree is at most equal to two54,55: ellipsoids,
paraboloids, hyperboloids, cylinders, and slabs. In particu
the magnetization is never uniform in the vicinity of edges
corners, because of the logarithmic divergence of dipo
fields.41 Despite the two sharp edges of a half-infinite sla
we can get a uniform magnetization in our model becaus
one hypothesis we made: the magnetization direction is
form throughout the thickness of the slab and is maintain
in the plane of the film. We are therefore put back to
perfectly 2D system, whose single edge is a line~the 2D
8-11
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analogy of a 3D surface! and is therefore of first order. Be
sides, the dipolar fields do not diverge in the vicinity of t
edge, due to their averaging over the slab thicknes41

Finally, as the edge is exactly perpendicular to the easy
of magnetization, the symmetry of the Brown condition~the
Euler equation at the very edge! and that of the anisotropy
plus Zeeman energy 2D dot are identical~the field is applied
exactly perpendicular to the edge!, so that the slab may b
uniformly magnetized. Therefore, the predictions of t
model do not contradict the micromagnetic theory of u
form magnetization. Note that, however, in the case of a
finite-size dot~even defect free!, it is most probable that no
component of the magnetization is uniform, because of c
ners and edge orientations other than parallel or perpend
lar to the external field and anisotropy axis.

Let us now discuss the predictions of the numerical val
of exponenta. Two statements can be inferred from th
model. First,aSD52 andaNU51.5 remind us of the expo
nents derived in the framework of coherent rotation:a52
when the external field is applied exactly along the easy a
i.e., whenm and h are always collinear, whereasa51.5
when the external applied field is applied at an angle aw
from the easy axis, i.e., whenm and h are not collinear.56

Second, our model emphasizes that the numerical value
a given above are relevant only for first-order expansio
and that the field dependence of the energy barrier is ge

FIG. 9. ~a! Detail of the numerically simulated hysteresis loo
m(h) and spin anglev0 at the edge of a half-infinite flat dot with
translation symmetry parallel to the edge. The parameters used
m52.81 ande54 nm ~points with the largest thickness in Fig. 4!.
~b! Squared inverse of susceptibilityx5dv0 /dh in the vicinity of
the reversal field, for the same sample.
17441
is

-
al

r-
u-

s

s,

y

of
s
er-

ally not a polynomial law. The law is polynomial for neithe
aSD nor aNU in the present model. Indeed these are ex
nents of the leading term of a series expansion of the ene
barrier, which is not an exact polynomial function ofh̃r

2h̃r(T50). In the theory of coherent rotation,26 for noncol-
linearm andh the law is also nonpolynomial, whereas in th
collinear case the energy barrier field dependence is exa
parabolic. Therefore, there is not a full analogy between
and the present model. The experimental consequence
twofold. First, it is not incorrect to find experimental exp
nents different from 2 or 1.5 for nucleation events, or even
find that the energy barrier dependence is not polynom
Second—and this is a direct corollary of the first statemen
the exponenta yielded by fitting the energy barrier depen
dence issued from experimental data depends on the inv
gated energy barrier range. Consequently one should
careful to comparea exponents issued from analyses carri
out over the same energy barrier range, as we did on
IV C.

C. Parallel with a Landau-like energy

Phase transitions are often described by expanding
free energy of a system in the vicinity of the transition, lea
ing to a so-called Landau energy. In the simplest case o
terms with even integral powers of the order parameterv0
are considered:

e5av0
21bv0

41cv0
6 . ~32!

This energy is obtained in our case by the torques given
Eqs. ~9! and ~22!. The link with Eqs.~23! and ~24! is a
5C, b5B/2, andc5A/3. We focus below on magnetiza
tion reversal processes atT50K, which means that metasta
bility is maximum, and the reversal is determined by t
disappearance of the local minimum. In this case and us
the Landau-energy framework, the reversal occurs whea
changes its sign. The variation of the ‘‘order parameter’’v0
across the reversal is discontinuous forb,0 and continuous
for b.0. The discontinuity is the signature of the nonr
versed SD state to reversed SD event, whereas the contin
is associated with the SD-to-NU state event. Therefore
our case the change of the sign ofb with the conditiona
50 determines the critical thicknesstc below which the dot
is always in a single-domain state. Besides, abovetc the
reversal fieldh̃r depends on the value ofc.

Some general features of a phase transition can be
dicted once the expansion of the free energy is perform
Systems described by similar expansions have identical c
cal exponents—they belong to the sameclass of universality.
It is straightforwardly derived from Eq.~32! that the order
parameterv0 grows with a power 1/2 after a second-ord
transition occurs. In the context of the model this is e
pressed asv0

2;hn2h. It can be shown that the critical ex
ponent is 1/2 beforehr as well, i.e., that (v02v0

max)2;h
2hr ~this can also be checked numerically from the data
Fig. 2!. The prediction of these exponents has been m
possible by the approximations of the model, which
stricted the problem to a self-consistent equation with o

ere
8-12
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parameter only. Without these approximations, the clas
universality of a real dot with nonuniform magnetizatio
cannot be predicted straightforwardly because of the la
number of degrees of freedom involved. We used numer
calculation to gain insight into the behavior of such mo
realistic dots. We derived critical exponents in the case o
simulated half-infinite slab with a translation symmetry p
allel to the edge~see Sec. IV B!. The simulated loops used t
derive these exponents are the same that were used to d
the simulated phase diagram in Fig. 4@see Fig. 9~a!#. From
these curves, we shall find forh̃r andh̃n the exponentb such
that v0(h)2v0(hc);(h2hc)

b (hc is hr or hn). In the case
of nucleation,v0(hn)50, so thatv0(h);(h2hn)

b. Be-
sides,v0 is close to zero in the vicinity ofhn , so thatm
;12v0

2/2;(h2hn)
2b. A close inspection of Fig. 9~a! re-

veals thatm varies linearly withh in the vicinity of hn . Thus,
we deduceb51/2 for nucleation. The case of reversal of
NU state is more difficult to handle, as the nonzero value
v0(hr)Þ0 has to be extrapolated from simulations just b
fore the reversal, which may induce errors in the evaluat
of b. Instead we used a procedure based on the evaluatio
the susceptibilitydm/dh̃. It can be shown straightforwardl
that 1/x2;(h2hc)

2(12b). We check in Fig. 9~b! that 1/x2

varies linearly withh in the vicinity of hr , which proves that
b51/2. Therefore, the critical exponentb equals exactly 1/2
in the vicinity of bothhn andhr , i.e., exactly the same valu
as in the simplified case of the torque model. This indica
that the hypotheses made in the framework of the analyt
model do not prevent the qualitative behavior of dots to
predicted. The simulated prediction of exponents 1/2 d
not seem to be related to the present restrictive geometry~1D
set of degrees of freedom! as an exponent 1/2 was also foun
during the onset of reversal in 3D ferromagnetic cubes.57

D. Simplified forms of the results

We shall now make use of the analogy developed in
previous paragraph, in order to derive an approaching sca
law for the nucleation field in the limit of low thickness. I
this limit, hn5hr is determined by the cancellation ofa,
which leads to the following equation@Eqs. ~15!–~19! and
~24!#:

2 lnS t

2
A11h̃D5C211

4p

m2t
A11h̃, ~33!

whereC is Euler’s constant. The above logarithm functio
prevents any exact polynomial scaling law from being d

rived for 11h̃n . However, asA11h̃ goes to zero whent
goes to zero, the left-hand side of Eq.~33! diverges, so thatt

is negligible beforeA11h̃. More precisely,A11h̃ is neg-
ligible before any functionta/2 for a/2,1, in the limit of t

→0. Phenomenologically, 11h̃ behaves locally liketa,
with a being smaller than 2, but closer and closer to 2 wh
t goes to zero. Plotting 11h̃ as a function oft in a log-log
scale reveals thata is very close to 1.5 in a broad range ofm

values, fort.0.02 andh̃r below approximately 0.2~Fig. 10!:
(11h̃);t3/2. As a matter of fact, (11h̃)/t3/2 slightly de-
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creases witht, as shown in the inset of Fig. 10. Taking int
account this slight slope, we could derive the following ph
nomenological expression from fits for variousm values:

11h̃n.0.0873m7/2t3/2~120.596mt! ~34!

or, expressed in SI units,

12U H

Ha
U.0.0873SAm0M s

2

A
D 7/2S A

K D 2

T3/2

3S 120.596TAm0M s
2

A
D . ~35!

Equation 35 is accurate within a few percent in the ran
mP@1.5,6# and h̃,20.75, and can be used for a quic
evaluation ofh̃n . Let us finally recall the reader that ver
often K originates mainly, in interface anisotropy in the u
trathin regime, following the phenomenological lawK
;Ks/T,58 so that 11uH/Hau is expected to scale withT5/2 in
that case.

We end the discussion by clarifying a discrepancy t
may appear with previously published results. Indeed,
shortly mentioned the principle and basic outputs of
present model in a Letter.25 The formulas given in Ref. 25
are much simpler than those given here. This is due to
fact that we previously did not make a full expansion of
equations up tov0

6. Instead, we considered for the coef
cients of each power only the leading terms, in the limit
small thickness. We shall not give the details of these
proximations here, but it can be checked in Fig. 11 that
crude version of Ref. 25 and the present model yield ide
cal results in a reasonable range of low thickness. The ag
ment is found to be better for smaller dimensionless mag
tization m.

FIG. 10. Log-log plot of 11h̃n as a function of dimensionles
thicknesst, for m52.81. The slope of the line is exactly 3/2. Inse

(11h̃n)/t
3/2 as a function of t, showing a weakly thickness

dependent value. The line is the result of a linear fit for thickn
above 0.03.
8-13
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VI. CONCLUSION

In the case of flat dots with in-plane uniaxial anisotrop
and lateral dimensions well above the exchange lengthlex
and the domain wall widthl wall , magnetization reversal oc
curs by a localized nucleation event followed by a fast w
propagation. In the literature the reversal field is often p
dicted by assuming that coherent rotation occurs in a p
nomenological nucleation volumeVn . The effect of the di-
polar field acting onVn is then often estimated by calculatin
the aspect ratio of an approaching geometry of the dot, wh
is related to the average dipolar energy over the whole d
This approach is not valid because~1! dipolar fields are
highly nonhomogeneous in a uniformly magnetized flat d
and ~2! exchange forces are neglected.

We proposed in this article an analytical model specific
ultrathin flat dots with in-plane uniaxial anisotropy, whic
takes into account these two aspects. The major approxi
tions of the model are the following:~1! The geometry is
simplified to a half-infinite slab with a linear infinite edg
perpendicular to the easy axis of magnetization.~2! The de-
magnetizing effects are taken into account as a pinpo
torque applied at the edge. Under these assumptions we
rived analytical equations for the field-dependent configu

FIG. 11. Predictions of the present model forh̃n ~solid dia-

monds! and h̃r ~open dots!. The lines show the values predicted b
the simplified formulas given in Ref. 25. We used magnetizat
m52.81 in the calculations.
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tion of the nucleation volume. The reversal fieldh̃r and
exponenta associated with the field dependence of
ergy barrier preventing reversal are predicted.uh̃ru is foun
decrease with either increasing thicknessT or increasing
ume magnetizationM s, or decreasing anisotropyK. Belo
critical thickness the static configuration of the slab
dicted to be always single domain~i.e., perfectly unifo
magnetized! whateverh̃ is, and a52. Above this cri
thickness a nucleation fieldh̃n is also derived with
,uh̃ru, anda51.5. In the limit of small thickness, th
lowing approached scaling law is found: 12uH r /
;M s

7/2A23/4K21T3/2, whereA is the exchange stiffnes
Ha is the anisotropy field, i.e., the reversal field predi
coherent reversal. It must be noted thatH r goes towar
although the reversal is demonstrated to be not c
This emphasizes that the measure of an experimenta
like H r(u) is not sufficient alone to conclude that co
reversal indeed occurs in a real system.

All model predictions are in good quantitative agr
with numerical calculations and/or experiments. Nu
calculations also showed thath̃r does not depend mu
the particle shape or size, contrary to what is usual
for dots made of soft material. It follows from this an
the more detailed discussion in the paper that thi
should be a simple and reliable tool to investigate and
characteristics of magnetization reversal processes i
dots with a uniaxial in-plane anisotropy, provided t
following conditions are simultaneously fulfilled:~1!
thickness of the dots is much smaller than the e
length,~2! the lateral size of the dots is well abovelex
lwall , and ~3! a significant part of the dot edge is ap
mately linear and roughly perpendicular to the easy
magnetization. A ‘‘significant part’’ is to be compare
several timeslex andlwall . Finally, ~4! the hysteresis lo
performed along the easy axis of magnetization.
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