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Magnetoelastic excitations in spin-Peierls systems
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From the random-phase approximation to the spin-Peierls transition, two parameter regimes of phonon
softening and hardening are present. Magnetoelastic excitations are discussed in detail for phonons coupled to
the exactly solvable model ofY spin chains for both regimes, leading to a modified interpretation of the
30-cm ! mode in CuGe@ Frustrated Heisenberg chains coupled to phonons satisfactorily describe the pre-
transitional quasielastic scattering in CuGef real-space interpretation of the quasielastic scattering is given
justifying effective Ising-model approaches.
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I. INTRODUCTION
He=320 §:Si2+ 022 S-Sz &)
The combined approach of the random-phase approxima-

tion (RPA) for the spin-phonon coupling, and bosonizationwith the superexchange integralsand J, between nearest-
for the spin dynamics applied by Cross and Fishterde-  neighbor and next-nearest-neighihiNN) Cu d orbitals, re-
scribe the spin Peierls-transition, is consistent not only withspectively, and spin 1/2 operatoBs at the Cu sitd in the
the phonon softening in materials as TTFCuBDT as initiallythree-dimensional latticez is a unit vector along the spin-
believed but also with the hardening of the Peierls-activechain direction. The harmonic phonon part
phonon modes in CuGeQ3? The applicability of RPA is
supported by the good agreement of mean-field results with _ T 1
experiment$® and the Ginzburg criteriorr.’ A qSZ il oDy gbrat2) @

In the parametgr regime yvhere phonon hardening OCCur%i'ontains the dispersion3, , for the relevant phonon modes
the RPA calculations predict the appearance of spectr .

+
weight in the center of the phonon spectrum~0) as a f?ﬁ'ﬁﬂ;ﬁéﬁfoig.f;?e?moﬁi gip\)/irr?tg)r/lsvvq ANdBug- The
precursor of the phase transition. The precursor has beerP

observed experimentally in CuGg(and its temperature- 1

dependent intensity in neutrdhiand x-ray®** scattering ex- Hsp:\/—_ 2 Y g2 9uq(bl _4+b,g). )
periments has been shown to be satisfactorily reproduced N q v

within RPA? We discuss in this paper the details of the N is the number of unit cells in the lattice. The coupling
precursor such as its momentum-space dependéicehe constanty, 4 depend on the polarization vectors of phonon

extracted correlation lengtis;* its frequency dependence, mode » and the Fourier-transformed dimer operator is de-
and its real-space interpretation. fined as

The relevant magnetic-correlation function in the RPA
approach is the dynamic dimer-dimer correlation

= igR|q . “

function}?!® The determination of dynamic correlation Yq 2, eSSz @)
functions is not evident even for exactly solvable one-

dimensional model¥**® The XY model is an exceptidfi To compare with neutron or x-ray scattering data the pho-

and since there are similarities to the Heisenbergion dynamic structure fact@(q,w) has to be determined. It

model*’~*°%2jt is an appropriate model to derive qualitative is given via the imaginary part of the retarded normal coor-

results exactly. Our studies of the coupling of phonon¥Yo  dinate propagatod!*(q, ),

spin chains show that the quasielastic scattering is the pre-

cursor of a new magnetoelastic excitation appearing at the 2 Im D'*{(q, )

phase transition. In the regime of phonon softening the 15 v

mixed magnetoelastic nature of the “soft phonon” also be- S(Gw)=—— T_exg—fha) ()

comes apparent.
The spin-phonon coupled Hamiltoniatd=Hs+H,  We introduced the inverse temperaty#e-1/(kgT). The re-

+Hs, relevant for spin-Peierls systems has been derived exarded normal-coordinate propagator is obtained through

plicitly for CuGeQ,.° It consists of three parts. One is the analytical continuation of the Matsubara propagator onto the

Heisenberg spin-chain Hamiltonian real frequency axis
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D'*(q,w)=lim D (q,ioy—fiw+ie), (6) cu!t. However, within the RPA(mgan-fieId approach, the
€0 spin-phonon-coupling results obtained for a purely 1D pho-
non system will be the same as those for a 3D phonon

where the latter is given in RPMRef. 13 b o ) -
g fRef. 13 by systen’,* whose polarization vectors satis®, q .;2= 5,1

D,(q,iw,)=D(q,iw,) and whose dispersion along the chain is
: ; 202 .=102r1—
1-X(Ghiwn) 2 Gurq@sr, D (i o) Q=0 ,;= 2051~ cosq)], (3
X i i.e., only one acoustic-phonon branch couples to the mag-

netic system. In Eq(1l), the longitudinal wave numbeg

1_ ,i ! p! = D(q) ,i
x(d “’“)g 9v.a@,—al, (Gl wn) =q, is given in units of the reciprocal lattice spacing.1/

(7)
with bosonic Matsubara frequencies,=2mn/B%. The un- ] o o )
perturbed propagator is In solving the mggnetostncnvﬁY model it is convenle_nt
to transform the spin operator§{( <) to operators of spin-
210, 4 less fermions @{") via the Jordan-Wigner transformatiéh.
m- (8  Then, in the uniform phase abovRsp, we start from the
n v,q following (Fourier-transformedHamiltonian

A. Uniform phase

DS»O)(qviwn): -

The dimer-dimer correlation function
H=H,+Hs+ Hsp=% qugqur; E,did,

, 178
X(azion=— g | ‘drenvgay o) @

r=c

1
. . . + = Y _q(bg+b' 12
depends only on momentg along the spin chains. Since the JN zq: 9aY-q(Pq o (12
exact determination of(q,,i w,) in the case of the Heisen-
berg model is impossible, we first study the case ofhe  With
model in Sec. II. In Sec. Il we then turn to the application of _
the RPA results on CuGeOwhere a combination of ana- Ey=cogk), (13
lytical and numerical results is used to determine the dimer- N Q2| 12
i i i i p—r .
dimer correlation function as accurately as possible. gq=( - ) (1—el), (14)
q
IIl. MAGNETOSTRICTIVE XY MODEL
2
It is commonly accepted that the basic features of the = g_, = E , (15)
spin-Peierls transition are well described by a one- ZWmeT dr

dimensional(1D) spin model coupled magnetoelastically to o i

the three-dimensional phonon system. The neglect of magndd.ke]— ] (in this section, we drop the factofs kg
netic interchain coupling and frustration effects is certainly2nd define all energies in units 8f. The dimer operatof4)
justified if the spin-phonon interaction dominates these spirS NOW

interactions and causes thea?limerization. Concerning the spin

system, Caron and Moukodrishowed that the simplXY _ iql XX y

spin chain model withl,=0, V-a E| SUSS 1t HH )

N
= X QX Y QY :%E (ei(k—q)+e—ik)d1'dk_ . (16)
Ho=d X (S5 550, (10 k e o

contains the relevant physics of a spin-Peierls system mainly Inserting Eq.(11) we see that the ground-state and ther-
because its excitation spectrum exhibits the requisite degemodynamic properties of the mod€l2) are governed by
eracy with the ground stafé.Furthermore, renormalization- two independent control paramete($} the dimensionless
group studies show that th&Y model is the fixed point coupling constanh and (ii) the ratio of phononic to mag-
towards which the interaction flows in a bosonized represennetic energy scal€),.. \ is independent of the ion mass
tation of the Heisenberg modEl'® We thus expect thXY  because?~1/m. It will turn out that the transition tem-
model to yield qualitatively the correct results with renor- perature and the static dimerization is a functior\cdlone.
malizations from theS” term in the Heisenberg model. This For a constank, (). is a measure for the mass of the ions;
line of argumentation also holds for frustrated Heisenbergmall values of(} . describe the adiabatic regime and large
chains, at least for undercriticdh<J,=0.2411 182223 values describes the antiadiabatic regime.

In general, the mixed dimensionality of magnetic and For the model12), the RPA Matsubara Green'’s function
spin-phonon interactions makes a theoretical treatment diffi¢7) becomes
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FIG. 1. Inverse spin-Peierls transition temperat@eg vs cou-
pling constani (solid line). The dot-dasheashed curve denotes
the high-(low-) temperature approximation.

1

D(q,iw,)=D(q,iw,) :
(en) =BG o) B0 g P i)

17
where the self energy is defined as
P(a,iwn)=0q9-qx(a,iwy). (18)
The dimer-dimer correlation functiof®) is
. 1 (~ .
X(@ion)= 5= | " aK1+cos2k+ @Ky (i)
(19
with the Lindhard kernel
. frrq—fi
Kiqliwn) = ———=" , (20

i(,()n+ Ek+q_ Ek

wheref,=1/(e’Ex+1) is the Fermi distribution function.

Having calculated the Matsubara propagator we can eas-
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1
BSPZE, A1, (22
=1.19 ! A<l 23
ﬁSP_ . ex ﬁ ] ’ ( )

respectively.

B. Dimerized phase

Below the transition temperatuiBsp the system is in a
less-symmetric but lower-energy configuration. The lattice is
dimerized, which causes the unit cell to double up in size,
which in reciprocal space means thipke] — #/2,7/2]. To
include a static dimerizatios in our Hamiltonian explicitly,
we perform a unitary transformation

H=eSHe S, (24)

with
3—15\/ N b,—b! 25
=2 7T_Q7T( == b). (25

In a next step, we redefine the Fourier-transformed fermion
operator§’

N/2

2 )
Ck=\/\ > e @=Dkd, 4, (26)
N =1
N/2
%= NN 21 e '(@kdy (27)

and remove the nondiagonaEcross terms by a canonical
(Bogoliuboy transformation

1 — 1 )
Ck=ﬁ(7k+,3k), Cy= E(?’k‘ﬁk)e'@k, (29)

ily obtain the retarded Green'’s function on the real frequency
axis according to Eq(6). A structural instability is always where

connected to a pole @"Y(q,w) atw=0, leading to a spon-
taneous transition to a broken-symmetry ground stat€ at
=0. At finite temperature, the instability condition for a lat-

tice distortion with wave numbeg is

1 [
ﬁ:chjk[lqucos{2k+q)]Kk,q(o), (21

which is the same result as derived by Lima and T<4llis
the adiabatic limit fn—o0). It turns out that ther mode is

0, =arctar] VA stan(k)].

For the phonon part, we now have two modes denoted, by
an acoustical 4=0) and an optical ¥=1), where in the
reduced Brillouin zone the phonon operators are

(29

the first (and only one that gets unstable. Therefore, theand the dispersion is

lattice will dimerize below a transition temperatufiesp,

which can be obtained from the numerical solution of Eq.
(21) atq= . The inverse-transition temperature is shown in

b g<o0
_ q+vm:
bqu_ bq—vwv q>0, (30)
Qv,q:Qq+v7r' (31)

Fig. 1 together with the results obtained from high- and low-Finally the Hamiltonian describing the dimerized phase takes

temperature expansions

the form
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FIG. 2. Fermion band structure in the dimerized phésé

pane). The dashed arrows indicate the processes described byy the
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The parametebd is not yet defined. Due to the invariance
of the trace under canonical transformations the following
relation holds for all values of

J 1 ~
= — — —BH
0 aéﬂln(Tre )

S N
=§k: E—k(ﬂ)’k—ﬁlﬁkm— 16, Prot b 0¥
No [0 s
*gr 75 39

To determines, we demand that the phonon coordinates
have expectation value zero with respecttp

(byot bl,&ﬁ;o- (39

andZ operators. The right panel shows the temperature dependence

of the dimerizations for A=0.1.
H = Hp+ HS+ Hdp+ Helast+ HSp

=q2 Qy,qbi,qby,ﬁEk Ex(7ivk— BLBY)
5 INQ, b 4! N5
_1677( 10T 1'°)+16_7r

1
— B _ —_ 778 B
+ \/N VZ’q gV,q(YV,—q YZ,—q ZZ,—Q—FZV,V—Q)
+
X (b, qtb, _g), (32

with the operators

YZ,_q=§ [(-1)"®D+e ™ T, Yy q, (33

2 = (-1 Ve Ty g viBicg,
(34

and

ANQ2 7\ 12 )
gv,q:( QW ) [1_(_1)Velq]i (35)
v,q

E = Vcog (k) + X 8%sirP(k)=E}=—Ef, (36)

Tk,v,q:Tll[ei(akﬂH'ak—q(_l)ye_mk]- (37

The phase factory_ is 1 for normal (k—q|<#/2) and

—1 for umklapp (k—q|>m/2) processes. Accordingly, in-
stead of one fermion band as in the uniform case, we now
have two bands separated by a gap proportional.tdhe
operatorsY and Z describe intraband and interband transi-

tions, respectivelysee Fig. 2

This means that we have generated a Hamiltoamith
g=0, »=1 modes shifted by in a way that the expectation
value of theb operators under the new Hamiltonian is zero.
Therefores is the equilibrium position of ther mode under
the original HamiltoniarH (the static dimerization

Soc(b,+bl)y. (40)

If the calculations are not done in Fourier but in real
space, it can easily be shoffirthat thes determined by this
prescription is directly proportional to the magnetic order
parameter used by other authéts,

1
5OC<N§|: (_l)l(SXSXJrl"'Sy y+1)> . (41

H

From Eq.(38), besides the trivial solutiod= 0, finite-6 so-
lutions can be obtained from the gap equation

o B
fﬂ'/Z an 2
1=4\| ——=1
-ar2 Eg

which shows the typical behavior of an order parameter for a
second-order phase transiti¢ef. inset of Fig. 2.

As the Y and Z operators depend on the phonon-band
index v, Eq. (7) for the phonon Green’s function must be
modified. An additional ternC(q,iw,) in the denominator
appears. The RPA propagator becomes

sirf(k)dk, (42

D,(q,iw,)=D{"(q,iw,)

1- g P, (0,iwn)D(q,iw,)
HFV
X

1- > PL(aiwy)D(q,iw,) +C(q,iwy)
o

(43
with
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C(a,iwn) =D(q,i 0,)D(q,iwy)
X[P1(d,iwn)Po(d,iwy)

_Ql(Qyiwn)QO(Qviwn)]v (44)
P(0iwn) =0, —q0,q X2(Aiwn)+x5(d,iw,)
+87(qiw) + {2P(q i wp)], (45)

Qu(Aiwn) =0, — 01— v o X (Aiwn) + XP(a,i wp)
+2P(qiwg) + 0791 wp)]. (46)

Here

) @2 dk
x2(0,iw,)= J_le E[l+ ayiq(—1)"cod O+ 0, q)]

X[1+(=1)"cod2k+a) K y(iwn),  (47)
. =2 dk
Vlaion=— [ Tisine0, ey
X sin(2k+q) K% (i wp) (48)
denoteY-Y (intraband and
w12 dk
£Z”(q,iwn)=f_ﬂ2E[l—amq(—l)” cog 0+ 0y, )]
X[1+(=1)" cog2k+q) K% (iwy), (49
o= [ Trsin0,+ 0
R 4 q q
X sin(2k+q) K% (i wp) (50)

denoteZ-Z (interband correlation functions, respectively,

both depending on a generalized Lindhard kernel

flz-%—q_ff

K (1) = ——d K
T gt EL, —Ef

(51)

Note that Eq.(43) simplifies substantially for thg=0, »
=1 mode as forw,#0, g—0, all terms containing
D{(q,iwy) vanish.

C. Numerical results

PHYSICAL REVIEW B 63 174417

S(r,w) [arb. units]

S(r,w) [arb. units]

08

FIG. 3. Dynamical structure factdB(7,w) in the soft-mode
regime (,=0.5,A=0.1). In the uniform phase the high-
temperature peak softens until it reaches zerd atTgp (upper
pane). In the dimerized phase it gets harder agdinver panel.

is a gap in the electronic spectruef. Fig. 2 so that damped
excitations exist only in the energy interva\R < w<2.

On the other hand, sharp peaks in the structure factor corre-
spond either to thoséare phonon modes that are outside
the fermionic band and thus excluded from scattering pro-
cesses by energy conservation omiw quasiparticle exci-
tations of the coupled spin-phonon system.

In the high-temperature limit {—<), the correlation
function y(7,w) vanishes. Therefore we get a sharp peak at
=) . corresponding to the noninteracting phonon. As the
temperature is lowered, two distinct regimes appear depend-
ing on the frequency of ther phonon. For low values of
Q ., i.e., in theadiabatic regimethe high-temperature peak
moves towards lower energies and substantially broadens un-
til it reaches zero, where it stays and gets larger in magnitude
until a divergence appears Bt Tgp (Fig. 3). This is called a
soft-mode scenarioBelow the transition, the peak moves
towards higher energies.

For large values of) ., i.e., in theantiadiabatic regime
we found a completely different behavior usually termed the
central-peak scenarioHere the high-temperature peak does
not soften, it gets even harder. However, with lowering the
temperature a maximum i8(,w) arises atw=0 related to
quasielastic scattering processes. The height of this peak
structure increases with decreasing temperature until it di-
verges atT=Tgp, Where S(m,w)xw 2 (Fig. 4. For T

The mechanism driving the spin-Peierls phase transition<Tgpthe structure factor consists of three parts: a delta peak
is best understood by examining the phonon dynamicaslightly above Q. that can be attributed to the original

structure factor. Here we concentrate on the unstabisode

m-phonon mode, the scattering continuum in the range

(which is folded back to thg=0, »=1 mode in the reduced 2\ §<w<2, and a pronounced peak below the continuum,

Brillouin zone. When we calculat&(w, ) for an interact-

which is the central peak that moved froe=0 to higher

ing electron- (spin) phonon system, we typically find a energies. Let us point out that the magnetostrictive Heisen-
broad distribution of spectral weight. It is clear that a phononberg model shows the same qualitative behavior. This model
can only be absorbed by the fermion system if its energy andill be studied in more detail in Sec. Ill, also in relation to
momentum equal the ones of a fermionic excitation. Therethe experimental findings for CuGg@t T>Tgp.

fore, in the uniform phase fog=7 we found a band of

Here we complete our study of the magnetostricti{é

damped excitations fow<<2. In the dimerized phase, there model by examining the pole structure of the retarded propa-
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FIG. 5. Real and imaginary part of the pole of the retarded
Green’s function in the soft-mode regim@ (=0.5,A=0.1).

FIG. 4. Dynamical structure fact@®(w,w) in the central-peak
regime ,=2.1,A=0.1). The high-temperature peak does notining the pole structure still gives a qualitative understanding
soften, it gets even slightly harder. A peakat=0 appears in the of the mechanism driving the phase transition. Most notably,
uniform phase that becomes a singularityTat Tsp (upper panel  the purely imaginary structure factor just abovgs signals
In the dimerized phase, it moves towards higher energies correquasielastic scattering, i.e., the existence of diffusive modes
sponding to a second excitati¢lower panel. in both, the adiabatic and antiadiabatic regimes. Of course, to

get a complete picture, it is also necessary to take into ac-

gator (for =) in the whole complex» plane. The pre- count the spectral weight of the continuum seen in the struc-
scription(6) can easily be generalized for a complexn the  ture factor.
upper half plane. In the lower complex plane, however, we
are faced with the problem thg{q,w) has a branch cut on
the real axis atwe[—2;2] (in the uniform phase This ) )
means that there are two possibilities to contii& ana- As discussed above we expect K& model to qualita-
lytically to the lower half plane, i.e., there exist two tively, correctly describe the effects on CuGga@lbeit with
branches. The first branch is analytical everywhere on th@uantitative corrections. To make contact with the experi-
complex plane, except abe[—2;2], the second every- mentally observed magnetoelastic excitation spectrum of
where exceptwe]—;—2]U[2;%[. They are both of CuGeQ, in the numerical calculations we fix .the energy
course identical in the upper half plane. The first branch i$cale byJ=150 K and us@'sp=14 K together with a pho-
directly obtained by evaluating the integral in Eg9) fora  non frequency of), /2w=6.53 THz, which corresponds to
o with Im @w<0. We get the second by extrapolation from the dominant Peierls-activé&, -phonon modé. This gives
the upper half plane for Ree[—2;2] (this is done by a the control parameteiQ .=2.09 and\ =0.057. For the spin
fourth-order power serigslt turns out that the first branch
will yield purely real poles with Re&>2, the second branch 0.7
corresponds to poles with negative imaginary parts and
Rew<2.

When lowering the temperature in tiseft-mode regime
(see Fig. % the real part of the high-temperature pole de-
creases fronf) . to O at a temperature larger thagp. The
modulus of the imaginary part grows with decreasing tem- e o2l

D. Application to CuGeOs

24
— Reo,

peratures and reaches a maximum at the temperature where m,
the real part becomes zero for the first time. Then it de-
creases again. AT=Tgp we havew=0 as expected. For
lower temperatures the pole is real and its value increases S~
until it saturates aT =0. TS~
In the central-peak regime(see Fig. & the high- 03 ‘ ‘ TS~
temperature pole, gets harder. A second pol&,, which is 08 1.0 T/1'I:2 14 18

purely imaginary fofT >Tgpappears and causes the instabil-
ity at T=Tsp. For T<Tgpthis pole is real and increasing as  FiG. 6. Poles of the retarded Green’s function in the central-
T—0. peak regime Q,.=2.1,A=0.1). The(rea) high-temperature pole

Although the interpretation of the real and imaginary party,, does not soften, as shown in the inset. Instead a secondspole
of a complex singularity as energy and damping of a quasiappears, which is purely imaginary in the uniform phase and gets
particle is doubtful in the presence of a branch€gxam-  real in the dimerized phase.
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40 - ‘ hardening of the Peierls-active phonon modes observed in
CuGeQ (Ref. 3 is qualitatively well described within the
RPA schemé&?i.e., those initially elastic excitations also
have a magnetic character.

To summarize, in this section we have performed a com-
prehensive study of the magnetostrictX® model, which is
the minimal model capable of describing the spin-Peierls
scenario in the whole phonon-frequency range. The focus
was on the antiadiabatic central-peak regime being relevant
for CuGeQ.

30 |

shift [cm™]
b

IIl. QUASIELASTIC SCATTERING IN CuGeO ;

In order to describe experimental results on Cugefore
, ‘ accurately, the spin system to include is the frustrated
0 5 TK 10 15 Heisenberg modef?23"38 which is coupled to the four

Peierls-active phonon modes. Frequencies and coupling con-

FIG. 7. Temperature dependence of the energy of the secorgtants of the Peierls-activE, phonons are discussed in de-
magnetoelastic excitation obtained from the magnetostrictive  tail in Refs. 3 and 5. The CuGe®@amples used for compari-
model (solid line) compared to experimental data for the 30-¢m  son with experiment in this section undergo the spin-Peierls
mode of CuGe@ (symbols (Ref. 31. The inset shows the rescaled transition at T=14.3 K, the theoretical calculations are
spectral weight of this excitation vs temperatyselid line) com-  adapted to match via the coupling constants. The wave vec-
pared to experimertsymbols (Ref. 32. tor of the modulation in the ordered phase i

_ _ - =(m/a,0,m/c), wherea andc are the lattice constants along
gap afT=0 we get 2 =2\ 6]=4.422 meV compared 0 ¢ crystallographic and z direction, respectively. We set

an experimental value of2=4.2 meV>! The ground-state Jlkg=150 K, which is together with a value of,/J
exchange alternation i$;= A 6=0.1645. Other methods = 24 among those discussed as valid for Cuget
give values from 0.01 to 0.2. Quasielastic scattering has been observed in neutron-
As expected for CuGeQ we are in the central-peak re- scattering experimert8 up to 16 K and in x-ray scatteriny
gime. Thus we have a second excitation Tok Tsp. In re-  up to 40 K orkgT~0.3]. The constantkg and# are explic-
cent inelastic-light scatterindLS) experiments a peak in the tly given in this section for a more transparent unit conver-
spectrum at 30 cm' was observed and interpreted as a sin-sjon.
glet bound state of two antiparallel magndn<One could The dimer-dimer correlation function as given in H8)
now speculate that the excitation below the scattering corhas been calculated for Heisenberg chains in the uniform
tinuum we found in the structure factor, is the phonon conphase by Cross and Fishevith bosonization techniques. In
tribution of this new magnetoelastic excitation. A compari-the analytically continued form one has
son of the theoretical and experimenrftalata for the position

and intensity of this peak is given in Fig. 7. Theory and _ kgT _ o
experiment show the same overall behavior, although the Xo| 73~ @TUs b7 ¢
decrease of the peak position is much more pronounced in XcHdz, w)= 0.35KgT Iy 2m(kg/h)T
the theory.

Here the spin-phonon coupling gives rise to an effective ™
spin-spin interactior’> which in the dimerized phase, leads CRILE L Ey
to a phonon-induced bound state in the magnetic-excitation X1q W (52

spectrum just below the fermionic scattering continuum. A
signature of this bound state appears in the phonon structuth the spin-wave velocif{) v=c(J—1.12),)/(7%) and
factor as shown in Fig. 4 proving iteagnetoelasticharac-  the functionsl ;(k) = (87) "Y' (% — 2ik)I' (3 — }ik). The

ter. In the case of dimerized Heisenberg chains the Jordanesult has the general form of spin correlation functions ob-
Wigner transformation of the spin part gives directly a four-tained from conformal field theof/=** The choice of the
fermion interaction terdf leading to a peak in the dimer- yajue of J,=0.241<J, allows for the application of the
dimer correlation function at/3/2 times the band gai:*® field-theoretical results. Fal,>J, the spectrum of the spin
Due to the phonon-induced effective spin-sgiiermion-  system is gappetf.

fermion) interaction, the energy of this bound state will be ~ The prefactoryo(kgT/J) is assumed constant in field
shifted in the order oF,|g,, ¢ |*/(2, 4,)~0.13,** which s theory but has been shown by Raupatfal. using density-

a 10% effect. Analogous to theY case, this bound state will matrix renormalization-group studies to be temperature de-
appear in the phononic-structure factor. This supports theendent in the static case and fpe= 7/c.** Recent numeri-
interpretation of the peak at 30 crh observed with cal studies suggest that the approximate result @)
inelastic-light scattering as the singlet bound state withdescribes the exact dimer-dimer correlation function better
slightly shifted energy as shown in Fig. 7. The quasielastiavhen rescaling the energy ag(q,,®)=xcHd,.97w),
scattering is the precursor of this excitation. Moreover, thevhere the scaling functiogr depends on the NNN coupling
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FIG. 8. Frequency dependence of the structure factor from Eq.
(5) appropriate for CuGep As the temperature approaches the FIG. 9. Quasielastic scattering from neutraisgmbols, back-
spin-Peierls transition, quasielastic scattering appears. Inset: largeground subtracted, scaled with a unique factor for all temperatures
scale representation. The phonon is the lowest of the four Peierlsompared with theory from Ed53) (full lines) for different tem-
active modes, see Refs. 3 and 5. peratures(a) Due to critical fluctuations the experimental intensity
does not diverge at the transition and reaches the value of the the-

J.,. We use in this work. th as given in Ref. 12 for oretical results only somewhat below the transition(dntempera-
JZI/J—O 24 Pl not 'th f[ng] n gf the r It. resent tyre is still in the critical region(c) and (d) show excellent agree-
2!J=0.24. €ase note that none ot the resulls present§iian: The experimental scans run alopg/a(l+2p),w/b(8

herein depend qualitatively on the i_nclusiongqf. _  —2p),wlc(1+2p)], see Sec. Il B.
The approaches to the dimer-dimer correlation function
are limited to undercritically frustrated, unifortnondimer- 1 -
ized) Heisenberg chains. This section is thus limited to over- 1(d;,w)= mf do’
™ (q, —®

critical temperature3 > Tgp.

xexd — (o' — )% (202 f dd
A. Frequency dependence (0"~ w)(20,)] BZ1 g

The frequency dependence of the dynamical structure fac- xexd — (q,—a,)% (202 )]18(ay— wla)
tor Eq. (5) for the parameters relevant for CuGe® shown 2 9 X
in Fig. 8. Below T~3Tgp spectral weight appears in the X 8(0y)S(q",0"). (53

center of the spectrum. Expanding the compiex(/c, )
to second ordé? in w in Eq. (7), the dynamical structure

factor can be determined fok w<<kgTgp to diverge as ) h | di
S(qo, @) |_1..~w 2 at the phase transition. _ Figure 9 shows plots df(q,,0) for. ifferent temperatures
B | SP hexY model di din th . in comparison with neutron scattering data from Ref. 8. Pa-
y analogy to t model discussed in the previous ., meters are chosen appropriately for Cug@® discussed

section (compare Figs. 4 and.6 and Sec. "D“S is the above, the resolutions afer,~0.08) andoy ~0.06t. The
precursor of the magnetoelastic mode appearing at the phase z

transition. The Peierls-active phonosnly the lowest is vaflue ofo, is given by.the .ex.perimental setfipr, is ob-
shown in Fig. 8 harden as the temperature is lowered andained from the resolution-limited Bragg peak at # Rhe
the temperature dependence of the intensity of the quasielaggreement with experiment is satisfactory. Note that the criti-

tic scattering is consistent with neutron- and x-ray-scatteringal region has been estimated via the Ginzburg critérion
experiment§.2 beTgp+ 0.4 K. Within this region the theoretical divergence

of the intensity? is suppressed by critical fluctuations.
The experimental scans run alopg/a(1+2p),w/b(8
B. Momentum dependence —2p),m/c(1+2p)]. pis the running parameteq, = 8/b
The momentum-dependent scattering rate of inelastic nei@ssures that there is no significant magnetic contribution to
trons or x-rays can be obtained by convoluting the dynamicathe signaf® Sincec<a<b and since the correlations along
structure factor, Eq(5), with a Gaussian of the width of the 0 are clearly dominarit!°the data are still eligible for com-
experimental energy resolutiom, and a Gaussian of the parison with the theoretical data along.
width of the experimental momentum resolutiofaz. The
limitation to the chain direction is imposed since the dimer-
dimer correlation function, Eq52), only introduces a-axis When correcting the momentum-dependent quasielastic
dispersion, scattering shown in Fig. 9 for experimental resolution the

The first Brillouin zone(BZ1) is that in the disordered high-
temperature phase.

C. Correlation length
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(i) The large energy integration makes the x-ray results
sensitive to phonon-dispersion effects. The results in Ref. 3
suggest a small dispersion for the lowest Peierls-active pho-
non that we model by2,(q,)~Q;4 (1+0.7cq,— |?) for
lcg,— m[<1 with 7Q,4~J. While for a resolution of
ho,=0.08] the correlation length is basically independent
of the dispersioridash-dotted line in Fig. 18)], the o,
=0.50 data clearly are alterefidash-dotted line in Fig.
10(b)].

(iv) The coupling constantg, 4 in Eq. (3) depend on the
polarization vectors of the phonon modeBephasation ef-

= O experiment (X-ray) fects suggest a suppressiongef, away fromq,. We model
i ‘h_e;’lré( ) this suppression in the normal-coordinate propagator, Eq.
—-— wit q, 1 .
——— with Qi(qz) and 5,60 (7), by a Lorentzian along,,
00 1 1 1 1 1 I 1 1
15 20 25 30 35 _1—codq,C) (c/k)? g0 2
T[K] gv,qu,—q 2 gv,qo .

(C/K)2+(qZC—’7T)2

FIG. 10. Inverse correlation length along the magnetic chains (54

from RPA compared with experimental data from Refs. 10

(squaresand 9(circles. The lower resolution curve®) are lower limit ¢/ k— . Settingc/x=0.5 yields the dashed curves in

than those with larger modehng the x-ray experimerib). Thg Figs. 1Ga) and 1@b). The saturation of the correlation length
larger o values are sensitive to the inclusion of the phonon disper-

sion into theory(dash-dotted linesIncluding a Lorentzian shape of at higher temperatures suggests a valuech<0.5 for

the spin-phonon coupling constants as a functiorigpfleads to a CuGeQ. . . .
saturation of 14 at lower valuegdashed lines (v) Close to the phase transition, neither the phonon dis-

persion nor the coupling constants dependence are im-
portant. The RPA results yielg.~ (T— Tsp *° in agreement
data can be fitted nicely by Lorentziah§: For T—Tsp  with detailed x-ray investigations by Harrit al“5
=<0.1 K a second length scale appears that can be fitted by (vi) The curves obtained far,=0 (not shown lie about
an additional Lorentzian squared contribution. It is attributed30% below those fod,/J=0.24 (Fig. 10 suggesting that
to surface-strain effects* not included in the RPA treat- o=J,/J=0.24 for CuGe@.53°
ment. The overall agreement of the description of the experi-
From the width of the fits the correlation length can bemental data on the quasielastic scattering in CugGis@uite
extracted. The corresponding theoretical correlation length isatisfactory. This suggests that indeed it is the precursor of
obtained accordingly from E@53) settingoq =0. Figure 10  the magnetoelastic mode discussed in the previous section.
shows the importance of the energy resolution when discuss-
ing the temperature dependence of the extracted correlation
length. The symbols mark the experimental data, open
squares are from x-ray data in Ref. 10, full circles are neu- An open question is the appropriate real-space interpreta-
tron data in Ref. 9. The neutron data are shifted &y  tion of the quasielastic scattering, especially in the central-
=1 Kin order to match the different critical temperatures of peak regime. To obtain a qualitative picture we consider the
the samples. effective action in RPA as was derived, for example, in Ref.
The energy resolution in neutron scattering is of the orded3. We limit ourselves here to a single phonon mode and
of a few meV while x rays integrate over a much largeronly consider the physics within a chain of magnetic-Cu
energy intervalZ o ,~0.05) simulates the resolution of dif- ions. The action then reads in the static limit
fracted neutrorfsandzo,~0.5) is relevant for x-ray scat-

The full and dash-dotted curves in Fig. 10 are obtained in the

IV. REAL-SPACE INTERPRETATION

tering. The x-ray resolution is probably even larger, but the Jq 9-q
interval —0.5)<7%»<0.5) covers the full width of the rel- Srpa= B2 1 | dq |2+ B2 22 z
evant magnetic spectrutf. a ro a
The following conclusions can be drawn from the results * 2
X — + .
oresented. XcH — A0 6% o + g | (55

(i) The energy integration in x-ray scattering allows for i . .
the determination of the correlation to much higher temperad & phonon fieldsp,, and ¢ are directly related to the
tures than neutron scatterifg. Bose operatorb, andbg in the minimal model discussed in
(ii) The momentum and frequency dependenc8(af w) Sec. Il
cannot be factorized yielding the different magnitude of the The first term of Eq(55) simply corresponds to the pho-
theoretical results fofio,=0.08) and %o ,=0.5J, shown  non HamiltonianH, in Eq. (12) of the minimal model. The
by the full lines in Figs. 1) and 1Qb), respectively. second term of Eq(55) is the relevant correction term.
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Within the approximations made and neglecting the momen- 10
tum dependence of the polarization vector the coupling con-

stants are given by

94,9 4, L, h
5 —[1—005{012C)](9c:u)m].

(56)

gg, is the change of with the Cu elongation anthg, is the
Cu mass.

The appropriate transformation of the reciprocal-space

fields ¢§Z to real-space elongation fie|d$z is

ZQquCu _
Vot bom N 2 &, 67
the conjugated momenta are given by
1 1 ‘
* o _ = _ - —iqycl,
P 0 %= TN ZﬁqumCuL% e, (58

V(1,0) [(g°,) /M

FIG. 11. Spin-phonon-coupling induced dimerization potential
as given in Eqs(62) and (63) for different temperatures antj/J
=0.24. The inset shows the inverse dimer-correlation length as in
Eq. (60), dashed line, in comparison with the spin-Peierls correla-

The g, dependence of the dimer-dimer correlation functiontjon length, full line, identical to the full line in Fig. 18).

xce(q,,0) is satisfactorily approximated by a Lorentzian

—Xo 2
J (c/ép)
,0)~ . (59
XA (e (o m
The dimer length scale was defined as
&1=05 2m keT (60)
p =0. Sh_vs Bl

Introducing the dispersion as given in E1) and apply-
ing Egs.(56)—(60) to Eq. (55) the action becomes

2 2

pl Q’JTmC
SRPA”,BIEZ mﬁ 8 “(U = Uy )2
—B2 V(. lu . (61)
(N
The dimer-dimer correlation-induced potential
5'#'; ,
V(I5.17)=Vo| 8-y +—5— (= 1)
c
xexg —c(l,—1))/&p] 1+cosh§—> (62
D
with amplitude
, ,1.06mc  [KkgT
Vo=(9cu) Ty X0\ T3 (63

=0.241. The potentiaV/(l,,0) is plotted for different tem-
peratures forJ,/J=0.24 in Fig. 11. Note thav(l,,l}) is
translational invariant.

This potential enhances local dimerization on the length
scaleép . Itis crucial to distinguisté.# &p (see inset of Fig.
11). The correlation length of the spin-Peierls transité&n
describes fluctuations to be associated with the coherent
three-dimensional ordering of the local dimerized areas of
scaleép . This coherent dimer ordering in CuGg@as been
described very successfully via effective Ising-based mean-
field modelst®®7%®|n this sense the spin-Peierls transition in
CuGeQ can be considered as a order-disorder transition
where the objects that order are only induced by the spin
system as the temperature is lowered substantially below
J/kg. The coherent ordering leads to tricritical beha%ior
with a tricritical to mean-field crossover temperature of
Tcr— Tsp~0.1 K coinciding with the appearance of large
length-scale fluctuation's.

A straightforward determination of the magnetic dimer
correlation length in Eq.(60) with the parameters for
CuGeQ as discussed above yieldg(Tsp~0.7c. Consid-
ering the momentum dependence of the coupling constants
as discussed in Ed54) rescales the magnetic dimer corre-

lation length roughly ang \/§2D+ k°. Forc/k=0.5 one has

&p(Tsp=~2c, which then is basically temperature indepen-
dent. The order of magnitude is reasonable.

Note that this real-space interpretation is consistent with
the pretransitional pseudogap behavior discussed in the con-
text of Peierls transition¥’~*°

V. CONCLUSIONS

is alternating in space and decaying on the length scale of

ép~T7 1. The amplitude of the potential is determined by We discussed in detail magnetoelastic excitations in sys-
xo(kgT/J) of which the temperature dependence is shown irtems of phonons coupled to spin chains within the random-
Ref. 44. It is enhanced far<J/kg and appears to vanish for phase approximation. Th&Y model allowed for an exact
T—0 for J,=0 while it might even diverge forJ,/J determination of the temperature dependence of the poles of
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the dynamical structure factor in the disordered as well as i qualitatively modified explanation of this signal.

the dimerized phase in both the soft-phonon and the central- The real-space interpretation of a spin-phonon-induced,
peak regime. The model of frustrated Heisenberg chainalternating elastic potential supports the applicability of
coupled to phonons applied to the spin-Peierls systensing-like approaches to the spin-Peierls transition. The spin-
CuGeQ correctly describes the details of the quasielastigphonon-induced, alternating elastic potential driving the tran-

scattering such as its frequency dependence, momentursition underlines the mixed magnetoelastic character of
space dependence, and the extracted correlation lengths. Thgasielastic scattering.

importance of the experimental energy resolution is empha-
sized.

The quasielastic scattering can be interpreted as the pre-
cursor of a new magnetoelastic excitation in the dynamical
phonon structure factor fof <Tgp that increasingly splits We are indebted to M. Braden for furnishing the neutron-
off from the scattering continuum as the temperature is lowscattering data files and instructive discussions. We thank P.
ered. In alternating Heisenberg chains relevant for CuGeOLemmens for providing ILS data for the 30-crhmode and
this leads to a renormalization of the singlet bound state byliscussions. We thank V. J. Emery, A. P. Kampf, A. WeiR3e,
about 10%. In alternatingXY chains the position and tem- and A. Zheludev for stimulating discussions. The work per-
perature dependence of this excitation can be calculated efermed in Bayreuth and in Wuppertal was supported by the
plicitty and compares favorably with the 30-cth mode DFG program “Schwerpunkt 1073,” the work at BNL was
found in inelastic-light scattering experiments, thus yieldingsupported by the DOE Contract No. DE-AC02-98CH10886.
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