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Size effects in the giant magnetoresistance of segmented nanowires
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We calculate the resistivity and giant magnetoresistance~GMR! of a segmented nanowire consisting of two
ferromagnetic segments separated by a thin paramagnetic spacer. Spin-dependent surface electron scattering is
taken into account. The quantization of the electron motion due to the small nanowire cross section leads to
oscillations of the resistivity and the GMR. The interplay between spin-dependent electron scattering in the
bulk and the surface results in a complex behavior of the GMR as a function of nanowire radius and surface-
potential strength. Both increase and decrease of the GMR can be obtained as the spin-dependent surface
scattering grows.
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I. INTRODUCTION

The giant magnetoresistance~GMR! has attracted consid
erable attention since its discovery1 ~various aspects of the
subject are, e.g., presented in Ref. 2!. The most extensively
studied objects of this type are multilayers~see Refs. 3–7 for
a theoretical analysis of the GMR!. Meanwhile, the succes
sive miniaturization of technical elements require the stu
of systems whose lateral extension is limited, too. It is the
fore natural to consider segmented nanowires consistin
two ferromagnetic parts separated by a thin paramagn
spacer. The recent development in the research of mag
nanowires has been reviewed in Ref. 8. In particular, exp
mental data concerning the GMR in multilayered~seg-
mented! nanowires of about 400-Å radius were discussed
the framework of the quasiclassical Valet-Fert model.3 In a
realistic treatment of the transport properties of nanow
the influence of the surface roughness on the electron tr
port must be taken into account. While this effect has b
included in quasiclassical theories,9 it has not yet been inves
tigated in detail in quantum-statistical calculations~cf., e.g.,
Ref. 10!.

In this paper we develop a quantum-statistical theory
the GMR in segmented cylindrical nanowires with sp
dependent electron scattering at the lateral interfaces.
cifically we investigate the electron transport along t
nanowire axis, in analogy to the current perpendicular
planes geometry in laterally infinite multilayers.

In the current literature on the theory of spin-depend
transport in spin valve structures two approaches are wid
presented. One of them uses the simple free-electron m
and is able to give a transparent description of the phys
phenomena; the other one relies on anab initio calculation of
the realistic band structure and gives the result in terms
numerical simulations. Both approaches are complemen
to each other. In the work presented in this paper, we fol
Refs. 6 and 7 and use the free-electron model, taking
account the exchange splitting of thed band. Thes-d scat-
tering leads to different values for the elastic mean free p
of ‘‘up-’’ and ‘‘down-’’ spin s electrons. Recen
calculations11–15 employing realistic band structure hav
shown that a correct description of GMR can be achieve
0163-1829/2001/63~17!/174409~7!/$20.00 63 1744
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sp-d scattering is allowed for. As in earlier work7 we assume
thats electrons give the main contribution to the current d
to their low effective mass if compared to the effective ma
of the almost localizedd states.16 The mean free path of the
conductions electrons depends on the spin due tos-d scat-
tering and the different density of states~DOS! of thed elec-
trons at the Fermi level. We calculate the mean free path
the framework of the coherent potential approximation,
ing the main conclusion of Ref. 17 that the effective me
free pathsl ↑,↓ of thes electrons are proportional to the DO
rd↑,↓ of the d electrons~the arrows indicate the spin direc
tion!.

As conventionally done in the calculation of bulk scatte
ing, we describe the surface spin-dependent electron sca
ing by a complex effective surface potential in full analo
with interface scattering in multilayers.18 The imaginary part
of the spin-dependent surface coherent potentialVs may be
defined as

2M Im Vs

\2
5kFa0 /ls,

wherea0 is the lattice constant,kF is the Fermi momentum
for electrons with spin projections, andls has the dimen-
sions of a length. Therefore in these units the strength of
diffusive surface scattering can be as large askF . It was
shown~though for a metal-metal interface!19 that under cer-
tain conditions the ratio (l↑/l↓) of surface spin-dependen
scattering may far exceed the one for bulk scattering.

In Sec. II we describe briefly the construction of th
Green function for a segmented nanowire with sp
dependent diffusive surface scattering of electrons. In S
III we calculate the conductivity and the GMR on the ba
of the Kubo formalism, and in Sec. IV the transport prop
ties of the segmented nanowire with special attention to
interplay between bulk and surface electron scattering is
cussed.

II. GREEN FUNCTION

The Kubo formalism will be used to calculate the condu
tivity of the segmented nanowire. Following the gene
©2001 The American Physical Society09-1
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scheme developed in Ref. 6 we start our consideration w
the calculation of the one-electron Green functionGs(rW,rW8)
for a segmented cylindrical nanowire of radiusR0 and seg-
ment lengthcj ( j 51,3 for the ferromagnetic segments a
j 52 for the paramagnetic spacer!. The Green function obey
the following equation in thej th segment:

S ]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]u2 1
]2

]z2 1Ej s2
2M

\2 Vj sd~r 2r 0! D
3Gs~rW,rW8!

5
2Ma0

\2

d~r 2r 8!

r
d~u2u8!d~z2z8! ~1!

and must fulfill the boundary condition

Gs~r 5R0 ,r 8,z,z8,u,u8!5Gs~r ,r 85R0 ,z,z8,u,u8!50.

We use cylindrical coordinates, withz pointing along the
nanowire axis.M is the mass of an electron,a0 is the lattice
constant, andr 05R02a0. The complex parameterEj s de-
pends on the segmentj; it is given by

Ej s5
2ME

\2 1~kF
j s!21 i

2kF
j s

l j s
, ~2!

whereE is the energy relative to the Fermi energy,l j s is the
mean free path, andkF

j s the Fermi momentum of electron
with spin projections in the j layer. The real part of the bulk
coherent potential is included in the Fermi energy. Both
d- and thes-electron Green functions obey Eq.~1!. We sup-
pose that the spin splitting of thes band is negligibly small.
The effective surface potentialVj s can be calculated in the
coherent-potential approximation similarly to the bulk coh
ent potential;6 thus it has a nonzero imaginary part that d
fines the diffusive scattering of the electrons. It depends
the segment and the electron-spin direction, but it is cons
within a given segment and for a given electron-spin proj
tion. The surface potential is positioned inside the wire a
distance of one lattice parameter from the nanowire surfa
An eigenfunction expansion is used to construct the Gr
function. Starting with the expansion inu variables,

Gs~rW,rW8!5(
n

Gn
s~r ,r 8,z,z8!ein(u2u8), ~3!

Gn
s(r ,r 8,z,z8) obeys the equation

S ]2

]r 2 1
1

r

]

]r
2

n2

r 2 1
]2

]z2 1
2M

\2 E2
2M

\2 Vj sd~r 2r 0! D
3Gn

s~r ,r 8,z,z8!

5
2Ma0

\2

d~r 2r 8!

r
d~z2z8!. ~4!

Since the imaginary part of the surface potentialVj s shall be
nonzero, we deal with a non-self-adjoint boundary proble
In that case one can use a biorthogonal expansion to
struct the solution of the corresponding problem.20 The
17440
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eigenfunctionsfnm
j s (r ) of the problem ~4! are expressed

through the Bessel function of the first and the second ki
These eigenfunctions are different in the different segme
The Green function then takes the form

Gs~rW,rW8!5(
nm

Gnm
s ~z,z8!

2pi•inm
fnm

j s ~r !fnm
j 8s* ~r 8!ein(u2u8)

~5!

with the norm

i•inm5E
0

R0
fnm

j s ~r !fnm
j s* ~r !r dr , ~6!

andGnm
s (z,z8) is the solution of the equation

F2S nnm
j s

R0
D 2

1
2M

\2 E1
]2

]z2GGnm
s ~z,z8!5

2Ma0

\2 d~z2z8!.

~7!

The complex numbersnnm
j s are specified by the condition o

the jump of the first derivative of the Green function atr
5r 0. For the case of weak surface scattering we get

nnm
j s 5nnm

(0)1knm
j s , ~8!

wherennm
(0) is themth root of the Bessel functionJn(r ) and

knm
j s '

2MVj sa0

\2

a0

R0
nnm

(0)S 11
2MVj sa0

\2 D . ~9!

The eigenfunctionsfnm
j s (r ) and fn,m8

j 8s* (r ) form the bior-
thogonal system only forj 5 j 8. Therefore, in the genera
case one obtains a more complicated structure of the G
function if compared with the case of an ideal surface.21

III. CONDUCTIVITY AND GMR

The expression for the current of electrons with spin p
jections along the wire axis takes the following form in th
framework of the Kubo formalism:

j z
s~r ,u,z!5

4

p

e2

\ S \2

2mD 2E @Gs~rW,rW8!2~Gs!* ~rW,rW8!#

3¹J z¹J z8@Gs~rW8,rW !2~Gs!* ~rW8,rW !#

3«~r 8,u8,z8!r 8dr8du8dz8, ~10!

where¹J z5
1
2 (¹W z2¹Q z). We need to add the so-called verte

corrections when calculating the conductivity. It was show
however,22 that this correction is equivalent to the introdu
tion of an effective internal coordinate-dependent electri
field « in such a way as to provide the nondivergence c
dition for the current, averaged over the wire cross sectio

Js~z!5E j z
s~r ,u,z!r dr du. ~11!

Whereas for a laterally infinite multilayer18 as well as for a
segmented nanowire with ideal surface in which the effect
fields can be chosen constant in each layer~respectively,
9-2
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segment!, the complexity of an exact Green function for
nanowire with rough surface would drastically hamper
construction of the corresponding effective fields. For
nately, however, it can be shown numerically that a cons
effective field in each segment still provides a rather go
approximation. Assuming thus constant fields« j s in each
segmentj we obtain the following expression for the curren

J1s~z!5(
nm

H «1s

dnm
1s

1e2dnm
1s zF2

«1s

dnm
1s

1
«3s

dnm
3s G J ,

J2s~z!5(
nm

H «2s

dnm
2s

1e2dnm
2s zF «3s

dnm
3s

2
«2s

dnm
2s G

1e22dnm
2s zF «1s

dnm
1s

2
«2s

dnm
2s G J , ~12!

J3s~z!5(
nm

H «3s

dnm
3s

1e22dnm
3s zF «1s

dnm
1s

2
«3s

dnm
3s G J .

If one chooses the effective fields as

« j s5«s(0)S (
nm

1

dnm
j s D 21

, ~13!

numerical calculations show that the deviation of the curr
J(z) from a constant is less then 1.5%. The quantity«s(0) is
given by the total voltage across the nanowire. It is cons
for all three segments but it depends on electron spin. O
the fields« j s are defined and the total voltage is fixed, t
currents and resistivities can be calculated

R~s1 ,s2!5
U↑U↓

U↑1U↓ , ~14!

where we put the current of spin-up electronsJ↑51 and

Us5 (
j 51,2,3

« j s.

Next, the GMR can be calculated from the resistivities
parallel@R(↑↑)# and antiparallel@R(↑↓)# magnetizations of
the ferromagnetic segments

DR

R
5

R~↑↓ !2R~↑↑ !

min$R~↑↑ !,R~↑↓ !%
. ~15!

In the case of weak scattering the difference to the cas
an ideal lateral interface (Vj s[0) is given by thez compo-
nent of the electron momentum that equals

Qnm
j s 5A~kF

j s!22S nnm
(0)1knm

j s

R0
D 2

1
2ikF

j s

l j s
. ~16!

Therefore the imaginary part of the momentum has the fo
17440
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dnm
j s 5Im Qnm

j s '

kF
j s

l j s
1

~ Im knm
j s !nnm

(0)

R0
2

A~kF
j s!22S nnm

(0)

R0
D 2

'

kF
j s

l j s
1

2M Im@Vj s#a0
2~nnm

(0)!2

\2R0
3

A~kF
j s!22S nnm

(0)

R0
D 2

; ~17!

evidently, for a given surface roughness its influence
creases for increasing wire radiusR0.

We can get the classical size effect for a nonsegmen
paramagnetic wire using Eq.~17!. It is seen from the expres
sion for the current~12! that the conductivity is proportiona
to the sum

(
nm

1

dnm
j s

.

For a large nanowire radiusR0 we can replace the sum b
the integral

E
x21y2,(kF

j s)2
g~x,y!A~kF

j s!22~x21y2!Y
3S kF

l
1

2M Im@Vj s#a0
2

\2R0

~x21y2!D dxdy, ~18!

where the functiong(x,y) is the density of the Bessel func
tions zerosnnm

(0) . For small values of the surface potential th
surface contribution to the resistivity decreases as 1/R0 in
accordance with the quasiclassical treatment of the surf
roughness problem.9

There is another source of the dependence of conduct
and GMR on the cross section, namely the necessary re
malization of the Fermi momenta.23 We equate the total (s
andd) electron concentrationn52ns1nd

↑1nd
↓ in an infinite

volume to the concentration of electrons in a finite-s
sample. Herens is the one-half concentration ofs electrons
andnd

s is the concentration ofd electrons with spins. The
electron concentrations are given by

ns,d
s 52Im

1

p

1

abcE E Gs~rW,rW,E!d3rdE. ~19!

The resultingkF
j s values are then used to calculate t

mean free path of thes electrons

l s~R0!

l s~R0→`!
5

rd
s~R0→`!

rd
s~R0!

.

9-3
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Note that both the density of statesrd
s and the mean free

paths ofs electrons oscillate with different periods as a fun
tion of nanowire cross section due to the different Fer
momenta ofd electrons with opposite spins.

Turning back to Eq.~17! we note that the interplay be
tween bulk and surface scattering is explicitly seen in t
formula. There are two limiting cases for which the effecti
fields can be estimated; in the case of specular surface re
tion Vj s[0, we see that

« j s;1/l j s, ~20!

while for the case of infinitely long mean free paths,

« j s;Im Vj s; ~21!

summarizing over indicesn,m such that

@nnm
(0)/R0#2,~kF

j s!2,

we see from Eq.~17! that the surface contribution to th
resistivity decreases asR0

21.

IV. RESULTS AND DISCUSSION

We constructed the exact one-electron Green function
the segmented nanowire based on Eq.~1!, but for the sake of
simplicity the numerical calculations were performed for t
case of weak surface scattering,

2M Im Vj sa0

\2
<1.

At sufficiently low temperatures we may neglect electro
phonon and electron-magnon scattering. The GMR is t
solely determined by the spin-dependent electron scatte
in the bulk and on the interfaces. In the present considera
we focus on the spin-dependent lateral~outer! surface scat-
tering and neglect the electron scattering on the~inner! inter-
faces between the segments of the wire. Figure 1 shows
GMR as a function of the segmented nanowire radiusR0 for
mean free pathsl ↑ and l ↓ obtained for Co and Py layere
wires8 and an ideal lateral surface. For small and decreas
nanowire cross section the GMR displays large and incre
ing oscillations. This can be easily explained if we take in
account that the GMR is controlled by the spin polarizat
of the current, which~for a negligibly small thickness of the
paramagnetic spacer! is proportional to the ratio (l ↑

2 l ↓)2/( l ↑l ↓). The mean free paths of thes electrons are
defined by the DOS ofd electrons vias-d scattering. Sincel ↑

and l ↓ oscillate with different periods this ratio oscillates
well and thus can produce high values, while forkF

↑ 'kF
↓ ~for

d electrons! the GMR would be almost constant. These d
pendencies have thus to be considered as a complicate
perposition of oscillating spin-up and spin-downd-electrons’
densities of states. As expected, the GMR oscillation
comes more pronounced for decreasing nanowire dim
sions. The interplay betweenbulk mean free pathsl ↑ and l ↓

defines the amplitude of the oscillations and the limiti
value of the GMR as the nanowire radius increases.
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Before further considering the interplay between the
fluence of bulk and surface scattering on the GMR,
present the calculations of the resistivity of a single param
netic nanowire. The size effect for the resistivity of the pa
magnetic wire is demonstrated in Fig. 2. Qualitatively
is similar to the size effect found in Ref. 10, although t

FIG. 1. GMR in a segmented cylindrical nanowire with ide
lateral surface as a function of the nanowire radius. Segment le
c15c35300.0, c257.0 Å; kF

↑ 51.40, kF
↓ 50.40, kF

s 51.20 Å21; l ↑

540.0, l ↓5120.0 Å ~solid line!, and l ↑513.0, l ↓5120.0 Å ~dotted
line!. The values for the curves refer to Co and Py segmented w
respectively. For the notations compare Ref. 23.

FIG. 2. Resistivity~arbitrary units! of a single paramagnetic
wire as a function of the nanowire radius,l ↑5 l ↓5600.0 Å, kF

s

51.20, 2M Im@V#/\250.5 Å21. In the panel the normalized resis
tivity of a single paramagnetic wire as a function of surface pot
tial is represented asl ↑5 l ↓5120.0 Å,kF

s 51.20 Å21 for R0520 Å
~upper curve!, andR05100 Å ~lower curve!.
9-4
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kF2 andr2 renormalization taken into account in our co
sideration results in a weakly oscillatingR dependence. On
the panel the dependencies of the resistivity of a nons
mented paramagnetic nanowire on the strength of the sur
scattering are shown. Not unexpectedly the resistivity
creases as the surface scattering grows and the increa
stronger for a smaller radius of the nanowire.

The GMR in a segmented nanowire with spin-depend
diffusive electron scattering on the surface displays a g
diversity in its behavior. The surface contribution to the sp
dependent scattering can either magnify the difference
tween the effective scattering rates of electrons with differ
spinsdnm

j↑ anddnm
j↓ or decrease it. Depending on the streng

of the surface scattering it can lead to both an increase
decrease of the GMR. Comparing the curves in Fig. 3
can see that if the spin asymmetry (l ↓/ l ↑21) of the bulk
scattering is much smaller than the asymme
(Im V1 /Im V321) of the surface scattering, the GMR in th
sample with surface scattering is much higher (;223
times! than in the sample with ideal lateral surface even
wire diameters comparable to the mean free path.

If the spin asymmetry is smaller for surface scattering a
the amplitude of the surface scattering rate is high eno
the average value of the GMR decreases~Fig. 4!. From this
figure we notice that the surface scattering can also sig
cantly decrease the amplitude of the oscillations of the GM

Finally, if the spin asymmetries of the surface and bu
scattering have different signs, the contribution of surfa
scattering tends to equalize the effective scattering rated↑

andd↓, and the GMR shows a pronounced drop in the reg
of small radii, where the surface influence is particula
strong~Fig. 5!.

Based on these results we conclude that surface scatt
provides an important contribution to the experimentally o

FIG. 3. Increase of the GMR in a segmented cylindrical nano
ire due to spin dependent surface scattering of the electr
c15c35300.0, c255.0 Å; l ↑5160, l ↓5240.0 Å; kF

↑ 51.40,
kF

↓ 50.40, kF
s 51.20 Å21: 2M Im@V1#/\252M Im@V2#/\2

52M Im@V3#/\250 ~solid line!; 2M Im@V1#/\250.6,
2M Im@V2#/\251.2, 2M Im@V3#/\250.12 Å21 ~dotted line!.
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served difference of the GMR in multilayers and segmen
nanowires.8 We may note that in a segmented nanowire co
sisting of homogeneous material with a low concentration
impurities ~like, e.g., Co! the spin asymmetry of the surfac
scattering may not differ too much from its value for bu
scattering, whereas in the case of the alloy Py a redistribu
of the atoms~constituents of the alloy! near the surface can
magnify the asymmetry. Correspondingly the GMR will d
crease in the first case and increases in the second case

-
s.

FIG. 4. Decrease of the GMR due to spin dependent surf
scattering of the electrons.c15c35300.0, c255.0 Å; l ↑540, l ↓

5120.0 Å; kF
↑ 51.40, kF

↓ 50.40, kF
s 51.20 Å21: 2M Im@V1#/\2

52M Im@V2#/\252M Im@V3#/\250 ~solid line!; 2M Im@V1#/\2

50.9, 2M Im@V2#/\250.7, 2M Im@V3#/\250.5 Å21 ~dotted line!.

FIG. 5. The suppression of the GMR in the case when the
face scattering tends to equalize the mean free paths for spin-up
spin-down electrons.c15c35300.0,c255.0 Å; l ↑540, l ↓5120.0
Å; kF

↑ 51.40, kF
↓ 50.40, kF

s 51.20 Å21: 2M Im@V1#/\2

52M Im@V2#/\252M Im@V3#/\250 ~solid line!; 2M Im@V1#/\2

50.15, 2M Im@V2#/\250.4, 2M Im@V3#/\250.5 Å21 ~dotted
line!.
9-5
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Finally, we present in Fig. 6 the dependence of the GM
on Vj s for a fixed radius (30 Å!. For each curve the ratio
between the spin components of the surface potentia
fixed. It can be seen from this figure that the GMR for t
fixed radius can increase as well as decrease or may
nonmonotonic function of the surface-potential strength. T
behavior of the curves is determined mainly by the diff
ence in the spin-up and spin-down surface potential.

V. CONCLUSION

We have developed a Green-function-based quantum
tistical approach to the GMR in segmented nanowir

FIG. 6. GMR as a function of the surface potential.c15c3

5700.0,c257.0 Å; kF
↑ 51.40, kF

↓ 50.40, kF
s 51.20 Å21; l ↑540.0,

l ↓5120.0 Å; R0530 Å; Im@V1#:Im@V2#:Im@V3#53:4:1.5 ~solid
line!, Im@V1#:Im@V2#:Im@V3#54:4:1.0 ~heavy dotted line!,
Im@V1#:Im@V2#:Im@V3#55:4:0.5~heavy broken line!.
17440
R
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e
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thereby including spin-dependent diffusive surface scat
ing. We have constructed the Green function and calcula
the resistivity and the GMR of the nanowire. The interpl
between the spin-dependent electron scattering in the
and in the surface leads to a complex behavior of the G
as a function of nanowire radius and surface poten
strength. Our approach reproduces the size effect obtaine
quasiclassical theories. The GMR has been found to osci
due to the quantization of the electron motion in the direct
perpendicular to the wire axis. The theory of the GMR d
veloped here suggests that the spin-dependent surface
tron scattering significantly changes the value of the GMR
segmented nanowires if compared with infinite multilaye
This change is caused by the interplay between the bulk
the surface spin-dependent electron scattering. In part
larly, the surface scattering reduces the amplitude of
GMR oscillations with the nanowire radius. Our analys
suggests that a high GMR may be obtained by using a
segmented nanowire of a ferromagnetic metal with high c
ductivity ~for example, iron!, coated by a thin layer of a
nonmagnetic metal~for example, Cr!, which produces a lat-
eral interface with large spin asymmetry of the interfac
scattering. Such a structure may be considered as a co
nation of structures with current in plane and current perp
dicular to the plane geometries. We restricted our consid
ation to the case of weak surface scattering, but qualitativ
our analysis is also correct for a wider range of surface
tential.
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