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Symmetry-general least-squares extraction of elastic coefficients
from ab initio total energy calculations
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A symmetry-general scheme for the simultaneous least-squares extraction of the elastic coefficients and of
the residual strain components fromab initio total energy calculations on crystal structure models of materials
is proposed. It is quite efficient and avoids error propagation. An appropriate, but usually singular, set of
normal equations is first formulated in a triclinic framework, with 21 stiffness coefficients and 6 residual strain
components. Rank reduction of this 27327 least-squares system of normal equations is then performed
through systematic implementation of the constraints corresponding to the known symmetry of the material. A
regularp3p matrix is obtained through this process, wherep is the total number of independent coefficients
and components. This computationally robust approach to the extraction of elastic coefficients and their
standard deviations can be used to analyze any number of adequately selected and weighted values of the total
energy that is larger than the number of independent parameters. It also provides values for the minimum
energy and for the corresponding cell data, again with standard errors. The present work enables the automated
calculation of elastic coefficients from crystals with any symmetry through a single logical flow. Examples are
given for a few cubic, hexagonal, rhombohedral, tetragonal, and orthorhombic materials with known experi-
mental stiffness values. It would be difficult to exaggerate the convenience of the automated implementation of
this symmetry-general approach based on total energy calculations.

DOI: 10.1103/PhysRevB.63.174103 PACS number~s!: 61.50.Ah, 62.20.Dc, 03.67.Lx, 61.68.1n
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I. INTRODUCTION

Numerous results of experimental studies of elastic co
ficients of elements and compounds with a variety of crys
symmetries have been reported over the years. Indepen
studies usually report values that are consistent within 1
2%. Many such numerical results and hundreds of co
sponding references can be found in books or handbook1–4

Extraction of stiffness coefficientsCi j from ab initio total
energy calculations has been commonly performed s
about 1990. A sample of printed reports for such calculati
can be found in Refs. 5–12, but many more results have b
presented at conferences. Where reported, the methodo
is usually as follows. The minimum-energy cell data are fi
derived. The system is then strained, preserving as m
crystal symmetry as possible, in order to extract correspo
ing stiffness values. Several strain magnitudes are applied
each strain type, giving an energy parabola. The magnit
of stiffness appropriate for the type of strain is then deriv
from the curvature of the parabola. Some strains are rel
to a single coefficient of the stiffness matrix, while othe
lead to a linear combination of coefficients, from which i
dividual coefficients are finally calculated.

In most cases, the materials inab initio literature studies
are cubic or hcp elements, and less frequently cubic or h
agonal binary compounds. A few studies report on tetrago
UIr or UIr-type compounds.5,6,8 For cubic symmetry, the
minimum-energy conformation requires about four simu
tions. The derivation of coefficients requires an additio
three or four simulations per independent coefficient. Fo
cubic compound, 15 energy calculations are required, fr
0163-1829/2001/63~17!/174103~8!/$20.00 63 1741
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which the three independent coefficientsC11, C12, C44 are
derived. For an hcp material, about 20 simulations prod
the 5 independent elastic coefficients. The task of reach
the minimum energy in a hexagonal case can also requi
comparable number of additional simulations. It is difficu
to assess the numerical accuracy of the results both bec
of the propagation of errors in the combinations of coe
cients, and also because the calculations for the strains
involve different conditions. Because the symmetries
each type of strain are different, the numerical grids, e
common to theab initio programs often differ, leading to
e.g., different energies for the unstrained system calcula
in that symmetry. Thus it is difficult to relate the energ
curves for the various strains to each other.

Anotherab initio method for the extraction of elastic co
efficients uses the radically different stress-strain approac18

whereby the stress resulting from an applied strain is dire
calculated. This more recent method is also commonly us
See, for example, Ref. 19 and the references it contain
would be premature to perform any comparisons between
computing efforts and the relative accuracies of the numb
obtained through the total-energy approach and through
stress-strain approach to the extraction of elastic coefficie
We will therefore not be concerned with this other approa
in the remainder of the present study.

We know of no example of calculation of the elastic c
efficients of a triclinic compound. The fact that there are fe
both technologically important and computationally feasib
compounds with that symmetry may explain this obser
tion. It is, nevertheless, worth examining whether the
clinic case, with its 21 independent elastic coefficients, co
©2001 The American Physical Society03-1
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be the starting point for a symmetry-general method of
tracting elastic coefficients.

II. LEAST-SQUARES EXTRACTION OF ELASTIC
COEFFICIENTS IN THE TRICLINIC CASE

Using the matrix notation for elasticity, the well-know
relationship

2U~«!52U01(
i

(
j

Ci j « i« j ~1!

describes the energyU of strained states of a crystalline com
poundin the harmonic approximation. In this equation,U0
is the minimum energy for the relaxed material,Ci j are the
elastic coefficients of the material, and« i is the i th compo-
nent (i 51,6) of the strain«. At first glance, Eq.~1! appears
to be a linear equation involving the 21 unknownsCi j .

In order to avoid the high computational cost of ful
relaxing the cell data under the exact conditions used for
energy simulations, we usually perform this optimizati
much faster, using less stringent execution parameters.
result, theapplied strain e is only an approximation of the
total strain « that is used in the description of the tens
behavior of the material in Eq.~1!. We accordingly need to
introduce a small unknown residual strainS5«2e, that we
will also need to evaluate. Taking into account that resid
strain, Eq.~1! can then be rewritten in matrix form as

2U~e!52U01~e1S!TC~e1S!. ~2!

When written in this form, it is obvious that there is not
linear relationship between the unknowns because Eq.~2!
contains products of the unknown quantitiesCi j , Si , andSj .

We wish to produce a tractable set of equations that
approximate a linear system for values of the variables
are close to the correct solutions. We accordingly cons
that the values of elastic coefficients are approximated by
current valueci j , with Ci j 5ci j 1d(ci j ), i.e.,C5c1dc. We
also consider that the initial strainS is approximated by the
value s with an errords, i.e., S5s1ds. Equation~2! can
then be rewritten as

2U~e!52U01~e1s1ds!T~c1dc!~e1s1ds!. ~3!

Strictly speaking, Eq.~3! is not linear because it still contain
products of its variablesdc andds. However, for values ofc
ands which approximate very well the correct valuesC and
S, the corresponding values of variablesdc and ds become
very small. Under this condition, the products of the va
ablesdc and ds then become infinitesimal and will be ne
glected. In order to implement this approximation, Eq.~3!
can be rewritten as follows:

2U~e!52U01~e1s!Tc~e1s!1~e1s!Tdc~e1s!

1dsTc~e1s!1~e1s!Tcds1higher-order terms.

~4!

Equation~4! decomposes 2U(e) into the sum of six terms
The first two terms are constant. The third term is a lin
17410
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function ofdc, while the fourth and the fifth terms are linea
functions ofds. The last term regroups higher-order terms
variablesdc andds that are not spelled out here because th
will not be used in the successive approximationsc ands of
the true valuesC and S through the following full-matrix
linear least-squares procedure.

An adequate number of samples ofU values is calculated
by ab initio simulation of strained statesek (k50,n) of the
material. Instead of giving the exact valueU(ek), those
simulations give the ‘‘experimental’’ valuesu(k), where the
quantity du(k)52U(ek)22u(k) is a random quantity with
expected average value zero and known estimated stan
deviations(k). Under those conditions, for each observati
k, Eq. ~3! can then be rewritten as

du~k!52U022u~k!1~ek1s1ds!T~c1dc!~ek1s1ds!,
~5!

where

2U051/~n11!

3 (
h50,n

@2u~h!1du~h!2~eh1s1ds!T

3~c1dc!~eh1s1ds!#. ~6!

After decomposing Eq.~6! similar to Eq.~3!, Eq. ~4! finally
becomes

du~k!522u~k!1~ek1s!Tc~ek1s!

11/~n11! (
h50,n

@2u~h!2~eh1s!Tc~eh1s!#

1~ek1s!Tdc~ek1s!21/~n11!

3 (
h50,n

@~eh1s!Tdc~eh1s!#12dsTc~ek1s!

22/~n11! (
h50,n

@dsTc~eh1s!#11/~n11!

3 (
h50,n

du~h!1higher-order terms. ~7!

Equation~7! decomposesdu(k) into the sum of nine terms
The first three terms are constant. The fourth and fifth ter
are linear combinations of the changedc in the coefficients
Ci j . The sixth and seventh terms are linear combinations
the changeds in the initial strains. The eighth term has zero
expected value and the last term is made of higher-or
products ofdc and ds that will be vanishingly small for
values ofc and s that approach their true valuesC and S.
This will be achieved iteratively, adding the predicte
change to the previous approximation, giving a better
proximation for the next cycle.

The least-squares solution for the redundant quasilin
system of Eqs.~7! is extracted through the well-know
27327 system of normal equations. The resulting values oc
and s minimize the sum(k50,nW(k)du(k)2, where W(k)
51/s2(k) is called the weight of the observation. The pr
3-2
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SYMMETRY-GENERAL LEAST-SQUARES EXTRACTION . . . PHYSICAL REVIEW B63 174103
cess can also give the standard errorss(c) ands(s) on all
refined parameters through the standard assumption thax2

is equal to 1 at convergence.

III. EXTENSION TO NONTRICLINIC CRYSTALS

There are two obvious ways for adapting the above c
siderations to symmetrical crystals. We implemented both
order to ensure the soundness of the concepts and the
rectness of the algorithms and calculations. The first wa
to operate with crystal symmetry on the applied strain, c
ating symmetry-related energy data points, and then pro
the problem as a triclinic problem. The second way is
constrain the matrix of normal equations for the well-know
constraints on stiffness coefficients and initial strain impo
by the crystal symmetry.

A. ‘‘Triclinic’’ formulation through symmetry-related strains

In this paragraph, we use the tensor notation for stra
ei j , i , j 51,3 rather than the single-index matrix notation
the previous and following paragraphs. Strains are ran
symmetrical tensors, meaning that a point-group symm
operation which transforms the Cartesian unit vectors i
new vectors with direction cosinesai j , will transform a
given strainei j into a strainekl according to the expressio
ekl5akial j ei j ~with implicit summation oni and j!. Direct-
space and reciprocal-space grids used commonly byab initio
methods for symmetry-related strained states are usually
lected to be symmetry related. As a result, the total ener
that are calculated for such symmetry-related deforma
states are numerically equal down to the last digit. It is th
not necessary to actually perform the duplicate simulatio
Instead, we can create several triclinic energy data po
from the result of a single simulation for a symmetrical cry
tal, laying out the problem and analyzing it as if it were
triclinic problem. This provided a check that the lea
squares formulation for the triclinic case is correct. Howev
we preferred the next method, using constraints, becau
provides a cleaner interpretation of the standard deviatio

B. Constraint of the matrix of normal equations

We assume that we have a selection of energy data th
sufficient to solve for the independent elastic coefficients
any given method, say by the standard method explaine
the introduction. We build the matrix of normal equatio
with this scant data as explained above, but without con
ering the symmetry-related strains. Unless the crystal is
tually triclinic, that matrix will usually be singular, implying
that it cannot be solved by plain inversion of the 27327
matrix. This is because the data is aimed at the extractio
just the independent coefficients, and not of the coefficie
that are related to them by symmetry. A frequent reason
singularity will be that the number of data points is less th
the number of variables~27! in the normal equations.

In order to raise this singularity, we then implement t
well-known constraints on stiffness coefficients13,14 for the
various crystal symmetries, producing in this way an equi
lent system of normal equations with lower rank. In the ca
17410
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of a parameter which is dependent on one other param
~e.g., equal, opposite, half etc.!, a column with zero values is
first created at the dependent parameter through factoriza
of the coefficient attached to the dependent parameter
the column corresponding to the independent parameter.
ordering of the parameters in the equations is then altered
order to move that zero column to the last position each t
such a condition is processed. In parallel with this operati
the row with same rank also gets moved to the last posit
Processing of a linear combination of parameters~e.g.,
2C665C112C12, etc.! is a simple adaptation of the abov
process, while processing a parameter constrained to be
is obvious.

All constraints, including those on initial residual strai
are handled one at a time through the same simple ab
process. This approach has no symmetry-specific detail
cases, and so is symmetry general. If it works for one sy
metry, it will work for all symmetries. At the end of the
elimination of constrained variables, an equivalent system
p equations with p unknowns involving only the
p-independent parameters is stored in the top-left corne
the 27327 matrix. Thatp3p system is solved by matrix
inversion for the independent parameters and their stan
errors. A check is then performed that this is indeed
correct solution of the full set of equations by ensuring th
all components of the normal vector become zero wit
numerical accuracy~not just within experimental error! at
convergence.

This straightforward algorithm, which processes all cry
tal symmetries through the same logical path is theref
symmetry general. It also includes a built-in safegua
against a deficient application of the scheme of constrain

IV. SELECTION OF SIMULATIONS

Assuming exact knowledge of the cell data correspond
to minimum energyU0, the diagonal elastic coefficientsCii
can be determined from just the energyU(«) of the state
deformed with the single-component strain« i using the rela-
tionship Cii 52@U(«)2U0#/« i

2. The nondiagonal coeffi-
cientsCi j can then be determined using the expressionU
5Cii « i

21Cj j « j
212Ci j « i« j for the energy of the state de

formed with the two-component strain«5« i1« j . It follows
that a number of observationschosen in this way, and equal
to the number of independent nonconstrained coefficie
plus one observation properly chosen to fix the minimu
energy, is then sufficient to determine the elastic coefficie
It is obvious that, as that selection of data would be adequ
to perform the calculation of independent stiffness coe
cients by hand, it will also be adequate for solving
21321 least-squares system not involving residual strain,
ter rank reduction to boil down the problem to its indepe
dent parameters.

The i th component of the residual strain corresponding
the point of zeroapplied deformation can be extracted b
considering the opposite of the strain used to determine
Cii terms. For example, a cubic cell has only one varia
parameter, namely the length of its edge. This is modele
Eq. ~2! through theS1 component of the residual strainS.
3-3
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The invariance of the cubic symmetry of the model impl
the existence of the constraintsS15S25S3 , S45S55S6

50. TheC11 term was obtained by considering the energy
a state deformed by just a positiveapplied e1 strain compo-
nent, i.e., an extension alonga. If the original cell were com-
pletely relaxed, a strain2e1 , i.e., a compressive strain b
the same amount alonga, should have the same energyfor
suitably small strain moduli, like a percent or so. In th
harmonic approximation, if those two energies are observe
to be different, then the point of zeroapplied deformations
was not in fact the point of minimum energy. The offset c
then be calculated from the energy data because the t
data pointsU(0), U(e1), andU(2e1) allow one to calcu-
late the coefficientsA, B, andC of the parabola describing
the total energyU5Ae21Be1C through them, hence th
location2s1 and valueU0 of its minimum.

If we proceed in the above way, it then follows that t
three independent elastic coefficients of a cubic material
well as the cell data offset between minimum energy a
zero applied strain can be extracted by the above le
squares process with calculation of just five energies
properly chosen strain states. Our goal is not to save
calculation time, but to calculate better values of elastic
efficients with the same computing effort. With the 15 or
simulations performed using other methods, the problem
therefore overdetermined by a factor 3 in the cubic case
acceptable situation for the least-squares extraction of
variables and their standard deviations. This least-square
sessment of the precision of the extracted stiffness co
cients and the concomitant extraction of the residual on
processed energy differences constitute valuable impro
ments over the straight arithmetic extraction of the ela
numbers.

The above reasoning for the triclinic and the cubic ca
can be extended to all symmetries, giving the minimu
number of adequately selected simulations in the vari
cases shown in Table I. This minimum number of simu
tions is sufficient to extract numerical values for the indep
dent parameters from the data provided they are selecte
indicated above. Any desired number of observations
then be added, but in most cases about three times that m
mum number of simulations should adequately balance
conflicting requirements of obtaining reliable least-squa
results by overdetermining the problem without undu
straining the computing resources. That number is a
roughly the minimum number of simulations required
other current methods.

We do not claim that the above way of selecting the sim
lations is necessarily optimal for all symmetries, but that i
symmetry general and fairly efficient. Marginally bett
schemes can be devised for specific symmetries, for exam
through a rhombohedral distortion of cubic symmetry12

while the above scheme generates an orthorhombic disto
in the same case. However, whatever the adopted disto
scheme, if its total energies can be analyzed for the ela
coefficients by any method, then the symmetry-general le
squares approach developed here could also analyze the
energies of the same distortionscalculated as detailed in
Sec. V C below. This is because feasibility boils down to
17410
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matter of singularity or not of the constrained least-squa
matrix, not to a matter of difficulty to process given disto
tion symmetries.

V. EXPERIMENT

A. Exact artificial data, triclinic processing

We programmed the least-squares methods and ex
mented first with exact artificial data generated with Eq.~2!
for a perfectly harmonic cubic system. The energy data w
used to find the elastic coefficients and initial strain assum
triclinic symmetry. Convergence is fast, and the calculat
takes less than a second on a 233-MHZ PC. We started
zero as the initial guess for the elastic constants and resi
strains and used three phases in the refinement. First
refined the elastic constants while holding the residual stra
fixed. Then we refined the residual strains while fixing t
elastic constants to their previously refined values. Fina
we refined all 27 parameters simultaneously. The first t
steps converged in one iteration each; the last step, in a
more cycles. Parameters that would have been constraine
an analysis assuming cubic symmetry were indeed consis
with the ~nonimplemented! constraints down to numerica
accuracy. This test shows the soundness of the approach
the correctness of the set of normal equations before im
menting constraints.

TABLE I. Minimum number of energy data points required b
the present method for the various point groups. It should be no
that under the IRE~1949! rules ~Ref. 15!, two orientations are al-
lowed for the monoclinic point groups and the hexagonal po
groups 32, 3m, and232/m, but not for the equivalent rhombohe
dral ones. They correspond to the same number of coefficients
to different constraints. This leads to a total of 11 distinguisha
sets of constraints for elastic coefficients rather than the 9 c
listed here. It should be noted that, although there is no unique
for choosing the strained systems, they must appropriately span
strain space. See the first paragraph of Sec. IV in the text.
column ‘‘Total11’’ is then the minimum number ofab initio en-
ergy calculations required to extract the elastic coefficients for
corresponding point-group symmetry.

Crystal system
1 point group

Independent

Elastic
coefficients

Residual
strains Total1 1

Triclinic 21 6 28
Monoclinic 13 4 18
Orthorhombic 9 3 13
Tetragonal
4, 24, and 4/m

7 2 10

422, 4mm, 242/m, 4/mmm 6 2 9
Hexagonal & rhombohedral
3, 23

7 2 10

32, 3m, and232/m 6 2 9
Hexagonal
6, 26, 6/m, 622, 6mm,

262m, and 6/mmm

5 2 8

Cubic 3 1 5
3-4
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TABLE II. Example of elastic coefficients for Si,Fd-3m. The simulation for calculation ofC44 hasImma
space-group symmetry, with Si in Wyckoff position 4e: 0, 1

4, z, requiring relaxation of thez coordinate of Si.
If no relaxation is performed, aC44 value of 103 GPa is obtained. A 53535 reciprocal-space mesh wa
used.S1 is the predicted residual strain relative to the experimental structure.

C11 C12 C44 ~GPa! S1 ~no units!

Strain
0.5% 162 66 69 20.00149 5 energy diffs
1.0% 161 65 74 20.00152 5 energy diffs
1.5% 160 64 74 20.00156 5 energy diffs
All 16 data
R51.0%

161 64 76 20.00154 15 energy diffs

Expt. ~Ref. 3!
~77 K!

168 65 80
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B. Exact artificial data, cubic processing

Five symmetry-unrelated artificial energy datau(k) cal-
culated using Eq.~2! above were created. The correspondi
sparse system of normal equations was produced. Ran
duction of the normal matrix from 27 to 4 unique variabl
was then performed assuming cubic symmetry. Using
same refinement strategy as above~1 cycle ofCi j refinement
only starting from zero values for all parameters, 1 cycle
s1 refinement, retaining the previousCi j values, and then a
refinement on all four variablesS1 , C11, C12, and C44)
converged for all practical purposes in three cycles. At
end of the refinement, the magnitude of the ratio of the c
stant term divided byC11 was less than 10213 for all 27
normal equations. This indicates that the 23 additional
clinic equations that were not included in the above ma
inversion had indeed the same solution as the 434 system
from which the independent parameters were derived. Th
23 additional equations were then consistent with zero sh
at convergence for all 27 change variables.

C. Real ‘‘experimental’’ data

We then proceeded with realab initio energy data through
automated generation of conventional crystallographic d
for unstrained and then strained models as explained ab
within SciCo’s MedeAdata preparation and submission e
vironment, using the full-potential linear muffin-tin orbita
LMTO code ORESTES.16 All calculations reported employe
the local-density approximation~LDA ! in the Kohn-Sham
approximation, except for the calculations on Al2O3, where
because of the cost of the calculation we used the non-
consistent Harris functional. We used a single modified H
kel function per angular momentum to represent the ato
orbitals outside the LMTO spheres. In this minimal basis,
allowed s and p functions for Be and C, ands, p, and d
functions for all other elements. Testing showed that the
sults were surprisingly insensitive to details of the ba
used, with nothing being gained using e.g., a double-k basis.
The same held for the real-space mesh used for the sm
part of the density between the atoms. We therefore us
grid spacing of 0.2 Å for all calculations. The muffin-ti
radius for the atoms was chosen to be about 5–10% less
the contact radius to allow for the changes of the cell dur
17410
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both optimization and also the subsequent distortions.
atom positions were optimized in all distortions where th
had any degrees of freedom, except in Al2O3 because of the
cost of the calculation.

The results can be quite sensitive to the reciprocal-sp
mesh used to integrate over the Brillouin zone. As expec
a coarse mesh was sufficient for insulators, where we ty
cally used a mesh spacing of 0.5 Å21. However, for metals a
considerably finer mesh was required. We ran a series
calculations with finer spacings until the calculated elas
constants converged to within a few percent. This w
achieved for all systems except Mg, where due to limitatio
in the program, we were unable to ensure convergenc
perhaps about 10%. It is important to note that the mes
were held constant for all the strained structures. The siz
the reciprocal-space mesh used for the primitive cell is no
in the following tables. The stiffness calculations rely on
consistent set of energies for all the structures, and the va
tion of the energy due to the distortions is on the order o
meV. Thus it was crucial to converge the calculations to
least 1026 eV, to keep the real- and reciprocal-space mes
identical; to hold the muffin-tin radii fixed; and to ensure th
distorted cells were as similar as possible to the undisto
cell. For the last condition, we were careful to automatica
retain the origin and selection of the primitive lattice vecto
and grids of the undistorted structure throughout the vari
distortions. We retained in this way the starting primitiv
fractional coordinates of the atoms and their placement w
respect to grid points,thus ensuring a same value of UO fo
all simulations.

We first performed an analysis of 16 Si data points o
tained by implementing five strain types (1/2«1 , «11/
2«2 , and«4) at each of three strain magnitudes for« ~0.5,
1.0, and 1.5%!, plus the unstrained model. Least-squa
analysis of each strain magnitude separately, and then o
magnitudes together, produced essentially the same el
numbers four times~Table II!, indicating that anharmonic
effects are negligible. The residual on the 16 observation
was about 1% and the standard errors on final values
variables were of about 2% of their refined values. The
sults for Si closely match the experimental numbers, but
should nevertheless not confuse the standard errors, i.e.
fit of the energy numbers to the predicted parabolic and t
3-5
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sor behavior, with the accuracy of the calculated elastic d
relative to the experimental results.

In order to ensure the soundness of the approach and
reliability of the calculations, we then performed addition
ab initio simulations starting from the refined cell read o
the least-squares analysis. The simulations correspondin
the application of opposite strains gave virtually equal en
gies, as predicted by Eq.~1!, confirming that the cell was
indeed accurately relaxed. Simple-minded finite differen
for the elastic coefficients based on Eq.~1!, and implemented
with a pocket calculator, gave elastic coefficients that w
equivalent to the previously refined ones, usually within o
esd. We accordingly conclude that the discrepancies betw
the observed and the experimental numbers are attribut
to imperfections in either the simulation or the experime
but not to the present analysis of the energy numbers.

The constancy of elastic numbers vs strain magnitude
the low global residual indicate that the maximum stra
used of 1.5% was within the linear elastic region,or in other
words, in the harmonic approximation. On other elements
we made the same observation at 3% strain levels, whic
quite sufficient to get substantial energy differences from
minimum.

We then processed other cubic elements~C, Al, and Cu!
and a cubic compound~GaAs! with results reported in Table
III. We then tackled two hcp elements~Mg and Be! and one
rhombohedral compound (Al2O3), with results in Table IV.
We then produced numbers for tetragonal In, with results
Table V. We fully report elsewhere17 on an orthorhombic
element calculated by the above method~Ga!. All these cases
gave residuals comparable with Si, but some of the refi
elasticity numbers do not compare quite as well with
experiment. Using the x-ray cell volume in place of theab
initio cell volume would have improved the fit in the mo
17410
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discrepant cases. We could find no element or simple bin
compound with symmetry lower than orthorhombic f
which experimental elastic data is known, and for whi
the calculation would have been tractable with PC-ty
computing.

VI. SUMMARY AND CONCLUSIONS

The present paper details a different symmetry-gen
least-squaresapproach to the calculation of elastic coef
cients for known crystal structure models of materials.
demonstrates the soundness of the approach and it pre
results showing that elastic coefficients calculated in t
way can quite convincingly match experimental results fo
number of elements and compounds spanning a rang
crystal symmetries. Compounds with lower symmetry a
known experimental elastic coefficients would have be

TABLE III. Cubic system: three elements and a binary co
pound~experimental data from Ref. 3! The residuals were 1, 4, 4
and 3%, using reciprocal-space meshes of 73737, 29329329,
25325325, and 53535, respectively.

C11 C12 C44 ~GPa! a ~Å!

C 1013 174 603 3.51331 Calc.
1079 124 578 3.56691 Expt.

Al 120 61 34 3.9912 Calc.
114 62 32 4.0494 Expt.

Cu 214 155 99 3.55947 Calc.
168 121 75 3.61465 Expt.

GaAs 112 55 51 Calc.
119 53 60 5.6533 Expt.
TABLE IV. Hexagonal system. Two hcp elements and a rhombohedral compound.

Mg, ~hcp, P63 /mmc)
Nine energy differences at each of three strain magnitudes: 1, 2, and 3%. Residual 1% using a reciprocal-space mesh of 25325325.

C11 C12 C13 C33 C44 ~GPa! a c ~Å!

27 diffs 70 31 24 74 22 3.1354 5.0909
Expt. ~Ref. 3! 59 26 21 61 17 3.2089 5.2101

Be, hcp
Nine energy differences at each of two strain magnitudes: 2 and 4%. Residual 2% using a reciprocal-space mesh of 17317311.

C11 C12 C13 C33 C44 ~GPa! a c ~Å!

18 diffs 336 81 21 443 181 2.1851 3.4710
Expt. ~Ref. 16! 299 27 11 342 166 2.2826 3.5836
~OK extrapolation!

Al2O3, R-3c
11 energy differences at 3% magnitude. Residual 0.2% using a reciprocal space mesh of 53535, the Harris functional, and not
optimizing the atomic positions.

C11 C12 C13 C14 C33 C44 ~GPa! a c ~Å!

11 diffs 518 131 92 17 475 128 4.7040 12.7055
Expt. ~Ref. 3! 500 162 111 223 502 151 4.754 12.982
3-6
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TABLE V. Tetragonal element, In,I4/mmm. Eight energy differences at each of 0.5, 1, and 2% mag
tude. Residual 3%, using a reciprocal-space mesh of 11311311.

C11 C12 C13 C33 C44 C66 ~GPa! a c ~Å!

24 diffs 71 36 46 58 11 17 3.0971 5.1905
Expt. ~Ref. 4! 45 40 41 45 7 12 3.2523 4.9461
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computationally too expensive for the purpose of the pres
contribution, which is to detail the method and demonstr
its general applicability.

The observed numerical precision~as distinguished from
accuracy! of the energies for strained states is such that
resulting precision of the minimum-energy cell data that
produced as a by-product of the least-squares refinement
cess is quite highas expected from the statistical conside
ations at the basis of the least-squares method.20 Table II
shows an example where the minimum-energy cell data
three strain levels is constant to better than one par
10 000. This was not among the reasons for implemen
the present procedure, but it works so well that the pres
least-squares process might become an efficient way to
curately locate the minimum-energy cell.

The least-squares refinement outlined in this paper
been implemented within theMEDEA environment, where it
can drive any of a number of total-energy quantum engin
such asORESTES, which was used in this work. Since th
environment includes structural databases such
CRYSTMET® andICSD®, it is then a simple matter to pull on
or more structures from the databases and submit the ca
lation of the elastic constants. The code automatically p
pares the set of strained structures, runs each of the cal
tions and gathers the resulting energies from which it sets
and solves the least-squares problem. If desired, the cel
rameters and atom positions can be optimized using the s
quantum engine before starting the calculation of elastic c
stants. This may be necessary in cases where the calcu
structure is somewhat different from the experimental o
Such differences arise both because the quantum met
have systematic errors and because structure-determin
experiments are conducted at finite temperatures, etc.

The computational effort involved in preparing th
strained structures and solving the least-squares prob
amounts to only a few seconds. The quantum calculation
each of the strained structures takes the vast majority of
time. The required time for this step depends strongly on
code used, the nature of the compound, and the accurac
the calculation. On the other hand, the amount of time
takes a user to prepare and run the calculation using
r
g
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current scheme is negligible compared to the traditional
proach of working out by hand the necessary strained st
tures and their symmetries. We are currently working,
collaboration, to perform through tests of the present met
with the purpose of validating various widespreadab initio
software packages, based on their ability to reproduce
perimental elastic data for a variety of reference materi
Results of those extensive tests will be reported in fut
studies. The automation and robustness of the cur
method could open the way to the practical and credi
calculation of stiffness data for phases where experime
data is difficult to obtain.

The present method seems to be currently quite con
nient for elements and for binary compounds with up to
few atoms per asymmetric unit. Due to then3 dependence of
the time needed forab initio simulations, and also to the
need to relax most atom positions for complex compoun
the computing time quickly becomes prohibitive with th
numbern of independent atoms. With PC-cluster-type co
puting, elastic coefficients for compounds with up to abo
ten atoms per primitive cell can currently be tackled, brin
ing materials likea-Al2O3 and low quartz within the range
of currently tractable compounds. Steady progress in sp
and accuracy ofab initio algorithms, and expectable progre
in the speed of inexpensive PC-type CPU’s at the rate p
dicted by Moore’s law, will increase the tractable number
atoms by a factor of about 2 every five years. This is e
pected to gradually transform the current startup efforts i
a very effective tool for the useful and inexpensive pred
tion of elastic coefficients of technologically important m
terials from crystal structure databases.
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