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Symmetry-general least-squares extraction of elastic coefficients
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A symmetry-general scheme for the simultaneous least-squares extraction of the elastic coefficients and of
the residual strain components frah initio total energy calculations on crystal structure models of materials
is proposed. It is quite efficient and avoids error propagation. An appropriate, but usually singular, set of
normal equations is first formulated in a triclinic framework, with 21 stiffness coefficients and 6 residual strain
components. Rank reduction of this 227 least-squares system of normal equations is then performed
through systematic implementation of the constraints corresponding to the known symmetry of the material. A
regularpX p matrix is obtained through this process, whpris the total number of independent coefficients
and components. This computationally robust approach to the extraction of elastic coefficients and their
standard deviations can be used to analyze any number of adequately selected and weighted values of the total
energy that is larger than the number of independent parameters. It also provides values for the minimum
energy and for the corresponding cell data, again with standard errors. The present work enables the automated
calculation of elastic coefficients from crystals with any symmetry through a single logical flow. Examples are
given for a few cubic, hexagonal, rhombohedral, tetragonal, and orthorhombic materials with known experi-
mental stiffness values. It would be difficult to exaggerate the convenience of the automated implementation of
this symmetry-general approach based on total energy calculations.
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[. INTRODUCTION which the three independent coefficiefils;, C,,, Ca, are
derived. For an hcp material, about 20 simulations produce

Numerous results of experimental studies of elastic coefthe 5 independent elastic coefficients. The task of reaching
ficients of elements and compounds with a variety of crystathe minimum energy in a hexagonal case can also require a
symmetries have been reported over the years. Independerimparable number of additional simulations. It is difficult
studies usually report values that are consistent within 1 oto assess the numerical accuracy of the results both because
2%. Many such numerical results and hundreds of correef the propagation of errors in the combinations of coeffi-
sponding references can be found in books or handbbdks. cients, and also because the calculations for the strains may

Extraction of stiffness coefficients;; from ab initio total  involve different conditions. Because the symmetries for
energy calculations has been commonly performed sinceach type of strain are different, the numerical grids, etc,
about 1990. A sample of printed reports for such calculation€ommon to theab initio programs often differ, leading to
can be found in Refs. 5—12, but many more results have beeng., different energies for the unstrained system calculated
presented at conferences. Where reported, the methodologly that symmetry. Thus it is difficult to relate the energy
is usually as follows. The minimum-energy cell data are firstcurves for the various strains to each other.
derived. The system is then strained, preserving as much Anotherab initio method for the extraction of elastic co-
crystal symmetry as possible, in order to extract correspondefficients uses the radically different stress-strain apprdach,
ing stiffness values. Several strain magnitudes are applied fovhereby the stress resulting from an applied strain is directly
each strain type, giving an energy parabola. The magnitudealculated. This more recent method is also commonly used.
of stiffness appropriate for the type of strain is then derivedSee, for example, Ref. 19 and the references it contains. It
from the curvature of the parabola. Some strains are relatedould be premature to perform any comparisons between the
to a single coefficient of the stiffness matrix, while otherscomputing efforts and the relative accuracies of the numbers
lead to a linear combination of coefficients, from which in- obtained through the total-energy approach and through the
dividual coefficients are finally calculated. stress-strain approach to the extraction of elastic coefficients.

In most cases, the materials ab initio literature studies We will therefore not be concerned with this other approach
are cubic or hcp elements, and less frequently cubic or hexn the remainder of the present study.
agonal binary compounds. A few studies report on tetragonal We know of no example of calculation of the elastic co-
Ulr or Ulr-type compounds®® For cubic symmetry, the efficients of a triclinic compound. The fact that there are few
minimum-energy conformation requires about four simula-both technologically important and computationally feasible
tions. The derivation of coefficients requires an additionalcompounds with that symmetry may explain this observa-
three or four simulations per independent coefficient. For dion. It is, nevertheless, worth examining whether the tri-
cubic compound, 15 energy calculations are required, fronelinic case, with its 21 independent elastic coefficients, could

0163-1829/2001/637)/1741038)/$20.00 63174103-1 ©2001 The American Physical Society



Y. Le PAGE AND PAUL SAXE PHYSICAL REVIEW B63 174103

be the starting point for a symmetry-general method of exfunction of sc, while the fourth and the fifth terms are linear
tracting elastic coefficients. functions ofSs. The last term regroups higher-order terms of
variablessc and §s that are not spelled out here because they
will not be used in the successive approximatiorands of

the true value<C and S through the following full-matrix
linear least-squares procedure.

An adequate number of samplesléfvalues is calculated
by ab initio simulation of strained states (k=0,n) of the
material. Instead of giving the exact valug(g), those
simulations give the “experimental” valuag k), where the
quantity su(k) =2U(g) —2u(k) is a random quantity with
expected average value zero and known estimated standard
deviationa (k). Under those conditions, for each observation
k, Eg. (3) can then be rewritten as

II. LEAST-SQUARES EXTRACTION OF ELASTIC
COEFFICIENTS IN THE TRICLINIC CASE

Using the matrix notation for elasticity, the well-known
relationship

2U(e)=2U0+ 2, X, Cjjsie; (1)
i

describes the enerdy of strained states of a crystalline com-

poundin the harmonic approximatiorin this equationJ0

is the minimum energy for the relaxed materi@; are the

elastic coefficients of the material, asa¢ is theith compo- su(k)=2U0—2u(K) + (& + s+ 89 T(c+ 6¢) (&, + 5+ 59)

nent (=1,6) of the straire. At first glance, Eq(1) appears (5)
to be a linear equation involving the 21 unknow@s .
In order to avoid the high computational cost of fully Where
relaxing the cell data under the exact conditions used for the , ; _ 1U(n+1)
energy simulations, we usually perform this optimization
much faster, using less stringent execution parameters. As a .
result, theapplied strain e is only an approximation of the Xh;;n [2u(h)+éu(h) — (e, +s+65)
total strain ¢ that is used in the description of the tensor '
behavior of the material in Eq1). We accordingly need to X (c+ 8c)(ey+s+69)]. (6)
introduce a small unknown residual stré@s ¢ —e, that we . - '
will also need to evaluate. Taking into account that residua fter decomposing Eq(6) similar to Eq.(3), Eq. (4) finally
strain, Eq.(1) can then be rewritten in matrix form as ecomes
2U(e)=2U0+ (e+9)TC(e+9). @ du(k)=—2u(k)+ (8t ) 'c(ec+s)
When written in this form, it is obvious that there is not a +1/(n+1) >, [2u(h)—(&,+9) Tc(g,+9)]
linear relationship between the unknowns because (Eq. h=0n
contains products of the unknown quantit@s, S;, andsS; .
We wish to produce a tractable set of e%uations thJat will +(acts)Tdc(gcts) — Un+1)
approximate a linear system for values of the variables that
are close to the correct solutions. We accordingly consider X > [(ey+9)Tdc(ey+9)]+2355 c(g+9)
that the values of elastic coefficients are approximated by the h=0n
current valuec;; , with Cj;=cj;+ 6(cj;), i.e., C=c+ c. We
also consider that the initial straBis approximated by the —2/(n+1) > [8s'c(e+9)]+1U(n+1)
value s with an errorés, i.e., S=s+ §s. Equation(2) can h=0n
then be rewritten as
X hEO du(h)+ higher-order terms. (7)
=0,n

2U(e)=2U0+ (e+s+s) T(c+ éc)(e+s+8s). ()

Strictly speaking, Eq(3) is not linear because it still contains
products of its variablesc and §s. However, for values of
ands which approximate very well the correct valuésand

S, the corresponding values of variablés and §s become
very small. Under this condition, the products of the vari-
ables éc and &s then become infinitesimal and will be ne-
glected. In order to implement this approximation, E8).
can be rewritten as follows:

Equation(7) decomposesu(k) into the sum of nine terms.
The first three terms are constant. The fourth and fifth terms
are linear combinations of the changde in the coefficients
Cij. The sixth and seventh terms are linear combinations of
the change’s in the initial strains. The eighth term has zero
expected value and the last term is made of higher-order
products of sc and ds that will be vanishingly small for
values ofc ands that approach their true valu&s and S.

This will be achieved iteratively, adding the predicted
change to the previous approximation, giving a better ap-

2U(e)=2U0+ (e+9)Tc(e+s)+(e+s) sc(ets)
+ 8s'c(e+s) + (e+s) 'cds+ higher-order terms.

(4)

proximation for the next cycle.

The least-squares solution for the redundant quasilinear
system of Eqgs.(7) is extracted through the well-known
27x 27 system of normal equations. The resulting values of

Equation(4) decomposes @(e) into the sum of six terms. and s minimize the sum=,_q,W(K) su(k)?, where W(k)
The first two terms are constant. The third term is a linear=1/0?(k) is called the weight of the observation. The pro-
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cess can also give the standard errafs) and o(s) on all ~ of a parameter which is dependent on one other parameter

refined parameters through the standard assumptionythat (€.9., equal, opposite, half etca column with zero values is
is equal to 1 at convergence. first created at the dependent parameter through factorization

of the coefficient attached to the dependent parameter into
the column corresponding to the independent parameter. The
ordering of the parameters in the equations is then altered, in
There are two obvious ways for adapting the above conerder to move that zero column to the last position each time
siderations to symmetrical crystals. We implemented both irsuch a condition is processed. In parallel with this operation,
order to ensure the soundness of the concepts and the cdhe row with same rank also gets moved to the last position.
rectness of the algorithms and calculations. The first way i$rocessing of a linear combination of parametéesy.,
to operate with crystal symmetry on the applied strain, cre2Cg=C4,— Cy5, €tc) is a simple adaptation of the above
ating symmetry-related energy data points, and then procegsocess, while processing a parameter constrained to be zero
the problem as a triclinic problem. The second way is tois obvious.
constrain the matrix of normal equations for the well-known  All constraints, including those on initial residual strain,
constraints on stiffness coefficients and initial strain imposedire handled one at a time through the same simple above

IIl. EXTENSION TO NONTRICLINIC CRYSTALS

by the crystal symmetry. process. This approach has no symmetry-specific details or
cases, and so is symmetry general. If it works for one sym-
A. “Triclinic” formulation through symmetry-related strains metry, it will work for all symmetries. At the end of the

elimination of constrained variables, an equivalent system of
equations with p unknowns involving only the
-independent parameters is stored in the top-left corner of
e 27X 27 matrix. ThatpXp system is solved by matrix
version for the independent parameters and their standard
Qrrors. A check is then performed that this is indeed the
correct solution of the full set of equations by ensuring that
all components of the normal vector become zero within

In this paragraph, we use the tensor notation for strain
&, i,j=1,3 rather than the single-index matrix notation of
the previous and following paragraphs. Strains are rank-
symmetrical tensors, meaning that a point-group symmetry
operation which transforms the Cartesian unit vectors int
new vectors with direction cosines;;, will transform a
given straing;; into a strainey; according to the expression

€ =2a,a;&; (with implicit summation oni andj). Direct-  \\merical accuracynot just within experimental errprat
space and reciprocal-space grids used commonBbhipitio convergence

methods for symmetry-related strained states are usually se- ¢ straightforward algorithm, which processes all crys-

lected to be symmetry related. As a result, the total energie[sa| symmetries through the same logical path is therefore
that are calculated for such symmetry-related deforma'uor%ymmetry general. It also includes a built-in safeguard

states are numerically equal down to the last digit. Itis thenyyqingt 4 deficient application of the scheme of constraints.
not necessary to actually perform the duplicate simulations.

Instead, we can create several triclinic energy data points
from the result of a single simulation for a symmetrical crys- IV. SELECTION OF SIMULATIONS

tza_l,l_lay|ng Og'lt the 1;_)rr]c_>blem a}gddanalyﬁmgklt r"’]‘s i r']t wlere & Assuming exact knowledge of the cell data corresponding
triclinic ?ro eIm._ f's Erov[ FT a cnec that the least-y, minimym energyJ0, the diagonal elastic coefficient;
squares formulation for the triclinic case is correct. Howeverope determined from just the energys) of the state

we p(rjeferreo: the ”@‘tt meti:otql, usifnt%] cor:strgin;s, dbe_ce:_use deformed with the single-component strainusing the rela-
provides a cleaner interpretation of the standard devia 'onstionship Cii=2[U(s)—U0]/e?. The nondiagonal coeffi-

cientsC;; can then be determined using the expressibn 2
=Cjief+Cjje’+2C;je;e; for the energy of the state de-
We assume that we have a selection of energy data that fermed with the two-component strain=e;+¢; . It follows
sufficient to solve for the independent elastic coefficients bythat a number of observatiorhosen in this wayand equal
any given method, say by the standard method explained ito the number of independent nonconstrained coefficients,
the introduction. We build the matrix of normal equationsplus one observation properly chosen to fix the minimum
with this scant data as explained above, but without considenergy, is then sufficient to determine the elastic coefficients.
ering the symmetry-related strains. Unless the crystal is adt is obvious that, as that selection of data would be adequate
tually triclinic, that matrix will usually be singular, implying to perform the calculation of independent stiffness coeffi-
that it cannot be solved by plain inversion of thex2Z7  cients by hand, it will also be adequate for solving a
matrix. This is because the data is aimed at the extraction d¥1x 21 least-squares system not involving residual strain, af-
just the independent coefficients, and not of the coefficientser rank reduction to boil down the problem to its indepen-
that are related to them by symmetry. A frequent reason fodent parameters.
singularity will be that the number of data points is less than Theith component of the residual strain corresponding to
the number of variable®7) in the normal equations. the point of zeroapplied deformation can be extracted by
In order to raise this singularity, we then implement theconsidering the opposite of the strain used to determine the
well-known constraints on stiffness coefficielit¥ for the ~ C;; terms. For example, a cubic cell has only one variable
various crystal symmetries, producing in this way an equivaparameter, namely the length of its edge. This is modeled in
lent system of normal equations with lower rank. In the caseEq. (2) through theS; component of the residual straf

B. Constraint of the matrix of normal equations
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The invariance of the cubic symmetry of the model implies TABLE I. Minimum number of energy data points required by
the existence of the constrain®=S,=S;, S;=Ss=Sg the present method for the various point groups. It should be noted
=0. TheC,, term was obtained by considering the energy ofthat under the IRE1949 rules (Ref. 15, two orientations are al-
; " ; ; lowed for the monoclinic point groups and the hexagonal point

a state deformed by just a positiapplied g strain compo- .
nent, i.e., an extens)ilojn alomg If the original cell were com- groups 32, &, and —32/m, but not for the equivalent rhombohe-

T . . . . dral ones. They correspond to the same number of coefficients, but
pletely relaxed, a strair-e;, i.e., a compressive strain by

to different constraints. This leads to a total of 11 distinguishable
the same amount alorgy should have the same enerigy sets of constraints for elastic coefficients rather than the 9 cases

suitably small strain moduli, like a percent or so. In the i here. It should be noted that, although there is no unique way
harmonic approximationif those two energies are observed fo choosing the strained systems, they must appropriately span the
to be different, then the point of zempplied deformations  sirain space. See the first paragraph of Sec. IV in the text. The
was not in fact the point of minimum energy. The offset cancolumn “Total+1” is then the minimum number odb initio en-

then be calculated from the energy data because the threggy calculations required to extract the elastic coefficients for the

data pointsU(0), U(e;), andU(—e,) allow one to calcu- corresponding point-group symmetry.

late the coefficient®\, B, and C of the parabola describing
the total energy =Ae’+Be+C through them, hence the Independent
location —s; and valueU0 of its minimum.

If we proceed in the above way, it then follows that the C’VSt.a' system E?s_nc Resm_:lual Total+ 1
three independent elastic coefficients of a cubic material, as * point group coeflicients _strains _ Tota
well as the cell data offset between minimum energy and Triclinic 21 6 28
zero applied strain can be extracted by the above least-Mmonoclinic 13 4 18
squares process with calculation of just five energies for orthorhombic 9 3 13
properly chosen strain states. Our goal is not to save ONTggragonal 7 2 10

calculation time, but to calculate better values of elastic co- 4 —4, and 4m

efficients with the same computing effort. With the 15 or S0 422 4nmm, —42/m, 4lmmm 6 2 9
simulations performed using other methods, the problem is Hexagonal & rhombohedral 7 2 10
therefore overdetermined by a factor 3 in the cubic case, ang 3

acceptable situation for the least-squares extraction of the32, 3m, and — 32/m 6 2 9
variables and their standard deviations. This least-squares 8Sfjexagonal 5 2 8
sessment of the precision of the extracted stiffness coeffi—6’ ~6, 6/m, 622, &Nm,

cients and the concomitant extraction of the residual on the ~ _gom and 6mmm

processed energy differences constitute valuable improve-c pic 3 1 5
ments over the straight arithmetic extraction of the elastic

numbers.

The above reasoning for the triclinic and the cubic casesnatter of singularity or not of the constrained least-squares
can be extended to all symmetries, giving the minimummatrix, not to a matter of difficulty to process given distor-
number of adequately selected simulations in the variouton symmetries.
cases shown in Table I. This minimum number of simula-
tions is sufficient to extract numerical values for the indepen- V. EXPERIMENT
dent parameters from the data provided they are selected as
indicated above. Any desired number of observations can
then be added, but in most cases about three times that mini- We programmed the least-squares methods and experi-
mum number of simulations should adequately balance theented first with exact artificial data generated with Ej.
conflicting requirements of obtaining reliable least-squaresor a perfectly harmonic cubic system. The energy data were
results by overdetermining the problem without undulyused to find the elastic coefficients and initial strain assuming
straining the computing resources. That number is alsdriclinic symmetry. Convergence is fast, and the calculation
roughly the minimum number of simulations required by takes less than a second on a 233-MHZ PC. We started with
other current methods. zero as the initial guess for the elastic constants and residual

We do not claim that the above way of selecting the simustrains and used three phases in the refinement. First, we
lations is necessarily optimal for all symmetries, but that it isrefined the elastic constants while holding the residual strains
symmetry general and fairly efficient. Marginally better fixed. Then we refined the residual strains while fixing the
schemes can be devised for specific symmetries, for examplgastic constants to their previously refined values. Finally,
through a rhombohedral distortion of cubic symméfry, we refined all 27 parameters simultaneously. The first two
while the above scheme generates an orthorhombic distorticsteps converged in one iteration each; the last step, in a few
in the same case. However, whatever the adopted distortiomore cycles. Parameters that would have been constrained in
scheme, if its total energies can be analyzed for the elastian analysis assuming cubic symmetry were indeed consistent
coefficients by any method, then the symmetry-general leastvith the (nonimplemented constraints down to numerical
squares approach developed here could also analyze the totadcuracy. This test shows the soundness of the approach and
energies of the same distortiomslculated as detailed in the correctness of the set of normal equations before imple-
Sec. V C belowThis is because feasibility boils down to a menting constraints.

A. Exact artificial data, triclinic processing
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TABLE Il. Example of elastic coefficients for S,d-3m. The simulation for calculation ¢4, hasimma
space-group symmetry, with Si in Wyckoff positioe:40, % z, requiring relaxation of the coordinate of Si.
If no relaxation is performed, &4, value of 103 GPa is obtained. A5 X5 reciprocal-space mesh was
used.S; is the predicted residual strain relative to the experimental structure.

Cyy Ci C44 (GP3 S, (no unity
Strain
0.5% 162 66 69 —0.00149 5 energy diffs
1.0% 161 65 74 —0.00152 5 energy diffs
1.5% 160 64 74 —0.00156 5 energy diffs
All 16 data 161 64 76 —0.00154 15 energy diffs
R=1.0%
Expt. (Ref. 3 168 65 80
(77 K)
B. Exact artificial data, cubic processing both optimization and also the subsequent distortions. The

atom positions were optimized in all distortions where they

Five symmetry-unrelated artificial energy daték) cal-
y y gy datek) had any degrees of freedom, except in@J because of the

culated using Eq(2) above were created. The corresponding X
sparse system of normal equations was produced. Rank rE0St of the calculation. » _

duction of the normal matrix from 27 to 4 unique variables 1he results can be quite sensitive to the reciprocal-space
was then performed assuming cubic symmetry. Using thdnesh used to integrate over the Brillouin zone. As expected,

same refinement strategy as ab¢veycle ofC;; refinement a coarse mesh was sufficient for insulators, where we typi-

only starting from zero values for all parameters, 1 cycle ofcally _Lésedb? n]l.eSh spauhng of 0.5A Ho(\j/vever, for metals a f
s, refinement, retaining the previo&;; values, and then a considerably Tinér mesh was required. We ran a SEeries o
refinement on all four variableS;, Cyy, Cip, and Cyy) calculations with finer spacings until the calculated elastic

converged for all practical purposes in three cycles. At theeonstants converged to within a few percent. This was

end of the refinement, the magnitude of the ratio of the con_fiChieVed for all systems except Mg, where due to limitations

stant term divided byC,; was less than I0° for all 27 in the program, we were unable to ensure convergence to

normal equations. This indicates that the 23 additional m_perhaps about 10%. It is important to note that the meshes

clinic equations that were not included in the above matrixVere held constant for all the strained structures. The size of

inversion had indeed the same solution as thed4system the reciprocal-space mesh used for the primitive cell is noted

from which the independent parameters were derived. Thoé-gI the following tables. The stifness calculations rely on a

23 additional equations were then consistent with zero shift§OnSiStent set of energies for a!l the_struqtures, and the varia-
at convergence for all 27 change variables tion of the energy due to the distortions is on the order of 1

meV. Thus it was crucial to converge the calculations to at
. , . least 10 ® eV, to keep the real- and reciprocal-space meshes
C. Real “experimental” data identical; to hold the muffin-tin radii fixed; and to ensure that
We then proceeded with reab initio energy data through distorted cells were as similar as possible to the undistorted
automated generation of conventional crystallographic dataell. For the last condition, we were careful to automatically
for unstrained and then strained models as explained abovegtain the origin and selection of the primitive lattice vectors
within SciCo’s MedeAdata preparation and submission en-and grids of the undistorted structure throughout the various
vironment, using the full-potential linear muffin-tin orbital distortions. We retained in this way the starting primitive
LMTO code orResTES™ All calculations reported employed fractional coordinates of the atoms and their placement with
the local-density approximatiofLDA) in the Kohn-Sham respect to grid pointghus ensuring a same value of UO for
approximation, except for the calculations on,@d, where  all simulations
because of the cost of the calculation we used the non-self- We first performed an analysis of 16 Si data points ob-
consistent Harris functional. We used a single modified Hantained by implementing five strain typest(—e;, & +/
kel function per angular momentum to represent the atomic- €,, andg,) at each of three strain magnitudes #©£0.5,
orbitals outside the LMTO spheres. In this minimal basis, wel.0, and 1.5% plus the unstrained model. Least-squares
allowed s and p functions for Be and C, and, p, andd  analysis of each strain magnitude separately, and then of all
functions for all other elements. Testing showed that the remagnitudes together, produced essentially the same elastic
sults were surprisingly insensitive to details of the basisnumbers four timegTable ll), indicating that anharmonic
used, with nothing being gained using e.g., a doublemsis.  effects are negligibleThe residual on the 16 observations
The same held for the real-space mesh used for the smoottias about 1% and the standard errors on final values of
part of the density between the atoms. We therefore used\ariables were of about 2% of their refined values. The re-
grid spacing of 0.2 A for all calculations. The muffin-tin sults for Si closely match the experimental numbers, but one
radius for the atoms was chosen to be about 5-10% less thahould nevertheless not confuse the standard errors, i.e., the
the contact radius to allow for the changes of the cell durindit of the energy numbers to the predicted parabolic and ten-
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sor behavior, with the accuracy of the calculated elastic data TABLE Ill. Cubic system: three elements and a binary com-

relative to the experimental results. pound (experimental data from Ref)3he residuals were 1, 4, 4,
In order to ensure the soundness of the approach and tig&d 3%, using reciprocal-space meshes Bf7%7, 29x 29X 29,

reliability of the calculations, we then performed additional 25X 25X 25, and 5<5x5, respectively.

ab initio simulations starting from the refined cell read off

the least-squares analysis. The simulations corresponding to Cu Cio Caq (GPa a(A)
the application of opposite straing gave virtually equal enery 1013 174 603 3.51331 Calc.
gies, as predicted by Edl), gonﬂrmlr)g that_the cgll was 1079 124 578 3.56691 Expt.
indeed accurately relaxed. Simple-minded finite difference 120 61 34 3.9912 calc.
for the elastic coefficients based on Et), and implemented 114 62 32 4.0494 Expt
with a pocket calculator, gave elastic coefficients that wer 214 155 99 3'55947 CaI(;
equivalent to the previously refined ones, usually within one 168 121 75 3'61465 Ex t.
esd We accordingly conclude that the discrepancies between : Pt
the observed and the experimental numbers are attributabfg®?S 112 55 51 Calc.
119 53 60 5.6533 Expt.

to imperfections in either the simulation or the experiment,
but not to the present analysis of the energy numbers.

The constancy of elastic numbers vs strain magnitude and, ) ) )
the low global residual indicate that the maximum straindiScrepant cases. We could find no element or simple binary
used of 1.5% was within the linear elastic regionjn other ~ compound with symmetry lower than orthorhombic for
words, in the harmonic approximatio®n other elements, which exper_lmental elastic data is known, anq for which
we made the same observation at 3% strain levels, which &€ calculation would have been tractable with PC-type
quite sufficient to get substantial energy differences from th&omputing.
minimum.

We then processed other cubic elemei@sAl, and Cy
and a cubic compoun@aAs with results reported in Table
[ll. We then tackled two hcp elemenf§lg and Be and one The present paper details a different symmetry-general
rhombohedral compound (XD3), with results in Table IV. least-squaresapproach to the calculation of elastic coeffi-
We then produced numbers for tetragonal In, with results ircients for known crystal structure models of materials. It
Table V. We fully report elsewhetéon an orthorhombic demonstrates the soundness of the approach and it presents
element calculated by the above metli@d). All these cases results showing that elastic coefficients calculated in this
gave residuals comparable with Si, but some of the refinetvay can quite convincingly match experimental results for a
elasticity numbers do not compare quite as well with thenumber of elements and compounds spanning a range of
experiment. Using the x-ray cell volume in place of tde  crystal symmetries. Compounds with lower symmetry and
initio cell volume would have improved the fit in the most known experimental elastic coefficients would have been

VI. SUMMARY AND CONCLUSIONS

TABLE IV. Hexagonal system. Two hcp elements and a rhombohedral compound.

Mg, (hcp, P65/mmg
Nine energy differences at each of three strain magnitudes: 1, 2, and 3%. Residual 1% using a reciprocal-space me&xa@b25

Cu Ci2 Cis Cas C.4 (GPa a c(A)
27 diffs 70 31 24 74 22 3.1354 5.0909
Expt. (Ref. 3 59 26 21 61 17 3.2089 5.2101
Be, hcp
Nine energy differences at each of two strain magnitudes: 2 and 4%. Residual 2% using a reciprocal-space mesixof1.7

Cu Ci2 Cis Cas C4 (GP3 a c(A)
18 diffs 336 81 21 443 181 2.1851 3.4710
Expt. (Ref. 16 299 27 11 342 166 2.2826 3.5836

(OK extrapolation

Al,O3, R-3c
11 energy differences at 3% magnitude. Residual 0.2% using a reciprocal space mesh>ob5the Harris functional, and not
optimizing the atomic positions.

Cu Cyp Cis Cua Cass C.4 (GP3 a c(A)
11 diffs 518 131 92 17 475 128 4.7040 12.7055
Expt. (Ref. 3 500 162 111 -23 502 151 4,754 12.982
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TABLE V. Tetragonal element, In4/mmm Eight energy differences at each of 0.5, 1, and 2% magni-
tude. Residual 3%, using a reciprocal-space mesh sfllik 11.

Cu Cp Cis Cas Cas Ces (GP3 a c(R)
24 diffs 71 36 46 58 11 17 3.0971 5.1905
Expt. (Ref. 4 45 40 41 45 7 12 3.2523 4.9461

computationally too expensive for the purpose of the presenturrent scheme is negligible compared to the traditional ap-
contribution, which is to detail the method and demonstratgoroach of working out by hand the necessary strained struc-
its general applicability. tures and their symmetries. We are currently working, in

The observed numerical precisidas distinguished from collaboration, to perform through tests of the present method
accuracy of the energies for strained states is such that thevith the purpose of validating various widespreaul initio
resulting precision of the minimum-energy cell data that issoftware packages, based on their ability to reproduce ex-
produced as a by-product of the least-squares refinement prperimental elastic data for a variety of reference materials.
cess is quite higlas expected from the statistical consider- Results of those extensive tests will be reported in future
ations at the basis of the least-squares metffodiable Il studies. The automation and robustness of the current
shows an example where the minimum-energy cell data fomethod could open the way to the practical and credible
three strain levels is constant to better than one part iralculation of stiffness data for phases where experimental
10000. This was not among the reasons for implementinglata is difficult to obtain.
the present procedure, but it works so well that the present The present method seems to be currently quite conve-
least-squares process might become an efficient way to acient for elements and for binary compounds with up to a
curately locate the minimum-energy cell. few atoms per asymmetric unit. Due to thédependence of

The least-squares refinement outlined in this paper hathe time needed foab initio simulations, and also to the
been implemented within thkeDEA environment, where it need to relax most atom positions for complex compounds,
can drive any of a number of total-energy quantum engineshe computing time quickly becomes prohibitive with the
such asorResTES which was used in this work. Since the numbern of independent atoms. With PC-cluster-type com-
environment includes structural databases such aguting, elastic coefficients for compounds with up to about
CRYSTMET® andICSD®, it is then a simple matter to pull one ten atoms per primitive cell can currently be tackled, bring-
or more structures from the databases and submit the calcirg materials likea-Al,O5 and low quartz within the range
lation of the elastic constants. The code automatically preef currently tractable compounds. Steady progress in speed
pares the set of strained structures, runs each of the calculand accuracy adb initio algorithms, and expectable progress
tions and gathers the resulting energies from which it sets ujm the speed of inexpensive PC-type CPU’s at the rate pre-
and solves the least-squares problem. If desired, the cell palicted by Moore’s law, will increase the tractable number of
rameters and atom positions can be optimized using the sanaoms by a factor of about 2 every five years. This is ex-
guantum engine before starting the calculation of elastic conpected to gradually transform the current startup efforts into
stants. This may be necessary in cases where the calculatadvery effective tool for the useful and inexpensive predic-
structure is somewhat different from the experimental onetion of elastic coefficients of technologically important ma-
Such differences arise both because the quantum methotkrials from crystal structure databases.
have systematic errors and because structure-determination
experiments are conducted at finite temperatures, etc. ACKNOWLEDGMENTS
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