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Critical fluctuation effects near the normal-metal–superconductor phase transition
at low temperatures
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The effects of the fluctuations on the conductivity in the normal state near normal-metal–superconductor
phase transition for temperatures close to zero are studied. The generic phase diagram for the classical and
quantum critical fluctuation regime is derived.
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In recent years a variety of materials have been stud
where a normal-metal-to-superconductor transition occ
when parameters such as pressure or carrier concentr
are varied. These transitions can happen even at zero
perature where they are driven by quantum fluctuations
superconducting phase nuclei, i.e., quantum phase trans
The heavy fermion systems CePd2Si2 and CeIn3 that show
superconductivity in a narrow interval of high pressure clo
to a magnetic quantum critical point belong to this class
materials.1 Similar behavior with some distinctive dif
ferences are found in various low-dimensional orga
superconductors, such as the (TMTSF)2 X group (X
5PF6,AsF6, . . .!.2 A further example of a quantum phas
transition of a Fermi liquid to a superfluid for3He in an
aerogel has been discovered.3 The best-known case is foun
in overdoped high-temperature superconductors where
perconductivity disappears upon excessive carrier dopin

At finite temperatures the superconducting phase tra
tion is accompanied by the appearance of inhomogene
configurations of the superconducting order parameter,
thermal fluctuations of the superconducting order parame
The typical energies of the fluctuation modes are mu
smaller thanTc so that the classical statistics is appropria4

(kB5\51). The influence of thermal critical fluctuations o
the metallic properties such as the conductivity or diam
netic susceptibility has been investigated for a long tim5

Generally we expect that as zero temperature is approa
the energy of fluctuations becomes larger than the temp
ture. The configurational or thermal fluctuations play the
diminishing role giving way to the dynamical or quantu
fluctuations.4 Within the framework of a weak-coupling BC
model we analyze here the necessary conditions for
quantum critical fluctuations to gain importance and pres
the corresponding generalization of the Aslamazov-Lar
theory6 for fluctuation corrections to the dc conductivity. Th
problem of the normal-metal–superconductor quantum ph
transition has been studied recently also by Ramazas
and Coleman for exotic superconductors w
‘‘odd-pairing’’ 7 and for a quantum critical point driven b
pair-breaking disorder.8 Our study has the same startin
point as Ref. 8. We intend, however, to analyze critical
havior in the entire region around the phase transition.
the weak-coupling BCS limit in two-dimensional~2D! case
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in the ‘‘classical’’ region our results coincide with those
Ref. 8 under special conditions discussed below. In 3D c
our derivation leads to results different from theirs.

We begin our discussion by introducing the nonstation
Ginzburg-Landau equation

H a
]

]t
1j0

2~2 i¹!21eJ c~r ,t !50, ~1!

wherea, the coherence lengthj0, and the distancee from the
phase-transition line are the parameters that depend on
perature and purity. The term with~nondissipative! second-
order time derivatives that has been analyzed in Ref. 9
omitted here, and we take only the dissipative linear ti
derivative into account, which is most important in the low
frequency region. Note that in the absence of particle-h
symmetry at the Fermi level there is a propagative com
nent to the time derivative.10 Here we consider only the dis
sipative part, because its influence clearly dominates the c
ductivity behavior. The frequency of the order-parame
fluctuations is obtained immediately from the equation

ivk5
e1j0

2k2

a
, ~2!

which is equivalent to the inverse relaxation time for a giv
wave vectork. This frequency is the key quantity that dis
tinguishes between the classical and the quantum reg
The situation with final critical temperature studied usua
for the ordinary superconductors either clean or doped by
impurities not causing the depairing effects is characteri
by e5T2Tc /Tc and a5p/8Tc where Tc is the eventual
transition temperature. The basic frequency proportiona
(T2Tc) is much smaller than the temperatureT>Tc . Con-
sequently, the fluctuations of the order parameter can be
sidered as the quasistatic configurations with positive ene
uvku, that couple with the other degrees of freedom of t
thermodynamic system, fast fluctuating with frequencies
the order of temperatureT.

To see where and in which form the classical pictu
breaks down we consider now a superconductor close
quantum critical point with pressureP as the controlling pa-
rameter. This situation can be realized if the initial pressu
dependent critical temperatureTc0(P) is suppressed down to
©2001 The American Physical Society04-1
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Tc(P) by the scattering of the quasiparticles at magnetic
ordinary impurities~the latter is possible for unconvention
superconducting or superfluid states!. For strong enough im-
purity scattering at some critical pressure related to
mean-free time of the quasiparticle scatteringt
5g/pTc0(Pc), the superconducting transition temperature
suppressed completely and we have reached the qua
critical point (lng'0.577 . . . is theEuler constant!.9 To be
concrete let us assume thatTc0(P) is a monotonically de-
creasing function of pressure. At pressuresP,Pc where the
real transition temperatureTc(P)!Tc0(P), it can be shown
that the parameterse and j0 in Eq. ~1! behave like11 e
.t@T2Tc(P)#, j0.vFt, and a.t. The last relation and
the validity of the time-dependent Ginzburg-Landau eq
tion nearT50 in the presence of pair-breaking scattering h
been recently demonstrated by Herbut.12 Hence we find that
up to Tc(Pc)50 approaching the transition point by chan
ing temperature at fixed pressure,uvku!T and the classica
fluctuation regime is realized. For this reason the fluctuat
correction to the specific heat always originates from clas
thermal fluctuations and follows standard behavior.6

On the other hand, we may approach the transition
changing the pressure at a fixed temperature9 where we ob-
tain

e5
] lnTc0~P!

]P
@P2Pc~T!# ~3!

and as above,a.t. From this point of view the two regime
are more conveniently distinguished, asuvku.e/a can be
smaller as well as larger thanT. In the latter situation the
dynamics of the order-parameter fluctuations become im
tant in defining the quantum regime. It is worth noting he
that at uvku.T the equation based on the first-order tim
derivative ~1! is still valid as long as the inequalityuvkut
!1 holds. On the other hand, the scattering ratet21 pro-
vides the necessary cutoff in infrared singularities appea
in the theory forT→0.12 In Fig. 1 we give a schematic view
of the phase diagram where the dashed line represents
crossover between the classical and quantum regimes
eachPc(T)5Pc(0)(12At2T2) whereA is of order one.

FIG. 1. Schematic phase diagram of pressure versus temp
ture. The solid line indicates the superconducting phase trans
and the dashed line corresponds to the crossover between cla
and quantum regimes.
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We will now investigate the difference of the two regim
in the behavior of the paraconductivity. For this purpose
generalize the calculation of the Aslamazov-Larkin part
the paraconductivity6 to be valid both in the static and th
dynamic case. This can be done based on the formulatio
Aronov et al.10 and leads to

sfl
xx5~2ej0

2!2E kx
2ddk

~2p!dE2`

` dz

2p
@IL~z,k!#2

]

]z
coth

z

2T
,

~4!

where

L~z,k!5
1

e1j0
2k22 iaz

~5!

is the Green’s function of the Ginzburg-Landau Eq.~1!. The
expression above is valid when the current vertex correcti
~blocks containing three normal-metal Green functions!6,10

arev andk independent. Our calculations show that this
fulfilled under the conditionvt,1 and vFtk,1. We use
expression~4! to study the behavior of paraconductivity i
superconductors of different geometry: a bulk superc
ductor, a thin film of thicknessl !j5j0 /e1/2, and a wire of
cross sectionS!j2.

In the static limit corresponding toe!aT this equation
reduces to the known Aslamazov-Larkin form,6

sfl
xx52~2ej0

2!2aTE kx
2ddk

~2p!d~e1j0
2k2!3

, ~6!

from which we immediately obtain the standard results,

sfl5
e2aT

4pj0e1/2
~bulk!, ~7!

sfl5
e2aT

2pe l
~film!, ~8!

sfl5
e2aTj0

2e3/2S
~wire!, ~9!

representing the classical behavior.
In the dynamical or quantum limite.aT the evaluation

of Eq. ~4! is more difficult. However, we may obtain th
parametric dependence of the paraconductivity in leading
der by considering (aT/e)!1 as a small parameter. Then w
find, up to a numerical factor of order unity, the followin
behavior deep in the quantum regime~Fig. 1!:

sfl.
e2~aT!2

6p2j0e3/2
~bulk!, ~10!

sfl.
2e2~aT!2

3p2e2l
~film!, ~11!
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sfl.
2e2~aT!2j0

pe5/2S
~wire!. ~12!

We see that in the region of importance of dynamic fluct
tionsaT,e the Aslamazov-Larkin corrections to conducti
ity ~10!–~12! are aT/e times smaller than in the classic re
gion aT.e.

We may now discuss our result in comparison with t
work of Ramazashvili and Coleman.7,8 These authors studie
the low-temperature properties for the caseP5Pc(T50),
which lies within the classical regime in our phase diagra
Using Eq.~7! and~8! with e}T2 we get agreement with thei
weak-coupling result for the two dimensional (sfl}T21), but
we differ in the three-dimensional case~our sfl}const versus
their sfl}T1/2).
.
re

d
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In summary, we have studied the fluctuation correction
the conductivity near the phase transition to the superc
ducting state at low temperatures within the framework o
weak-coupling BCS theory. We determined the regim
where thermal and quantum order-parameter fluctuations
important. Finally we found that the dynamical or quantu
fluctuations are less efficient in the augmentation of the c
ductivity than thermal fluctuations.
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