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Effects of spin fluctuations on the tunneling spectroscopy in high-Tc superconductors
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We investigate the effects of spin fluctuations on the tunneling spectra of the normal-metal–superconductor
junction. In the high junction resistance limit, the dip/hump structure observed in ARPES data for the highTc

superconductors is reproduced in a random-phase approximation treatment of thet-t8-J model. It is shown that
the dip/hump structure weakens as doping increases as reflected in the data. In the other limit, we predict that
the zero bias Andreev peak can coexist with the dip/hump structure. Furthermore, thec-axis tunneling spectra
is found to be very similar to recent scanning tunnel microscope data once these fluctuations are included.
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While a great many details about the spectral function
high-Tc superconductors~HTS’s! have been revealed by th
angle-resolved photoemission spectroscopy~ARPES!,1 a
complete description of the superconducting state requ
knowledge of the anomalous Green’s function. Conventi
ally the tunneling spectroscopy has been considered as
of the tools which can probe the anomalous Green’s fu
tion. In particular, measuring the subgap conductance o
junction consisting of a normal metal and a supercondu
(NS) is the most convenient configuration for such a p
pose. To calculate the conductance in theNS configuration,
Blonder, Tinkham, and Klapwijk2 ~BTK! developed a for-
malism using Bogoliubov–de Gennes~BdG! mean-field
equations. The BTK theory has been phenomenologic
extended to investigate the tunneling phenomena in var
NS junctions.3 On the experimental side, even though t
d-wave BCS mean-field theory captures some features o
superconducting state, the recent high-resolution data f
both ARPES and STM give a more delicate picture. A d
tinct feature is the appearance of so called peak/dip/hu
structure, which is most clearly seen along the@100# direc-
tion in the superconducting state for ARPES~Refs. 4 and 5!
and for scanning tunnel microscopy~STM!.6 It has been
suggested7 that it stems from the coupling of electrons to t
p resonance observed in neutron-scattering studies.8 This
idea has been further explored both qualitatively9 and
quantitatively,10 confirming its validity. In addition to the
peak/dip/hump structure, there are also indications that
quasiparticle peak seems not to be resolution limite12

These features indicate the need for a tunneling theory
includes the effect of fluctuations.

In this work, we investigate the effects of the spin flu
tuations on the tunneling conductance spectra along
@100# and @001# (c-axis! directions.13 By using the Keldysh
formulation, we first demonstrate that in the high juncti
resistance limit, the dominant contribution comes from
spectral function and the peak/dip/hump structure exists
this limit. This structure results from collective spin fluctu
tions and weakens as the dopingd increases as reflected i
some of the recent data, such as in Ref. 14. Since spin e
tations are gapped, they induce little qualitative change in
subgap region. Instead, their main effect is to redistribute
spectral weight and thus changes the relative strength am
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currents due to difference tunneling processes. Therefore
investigate the other limit when the subgap is dominated
the Andreev reflection, we define theoptimum matchingas
the condition when the zero-bias Andreev conductance p
reaches maximum. This corresponds to theZ50 case in the
BTK theory. Under this condition, we show that the Andre
peak can coexist with the dip/hump structure, which sho
be observable in the recent future. Base on our analysis
will also give a possible explanation on recently observ

c-axis STM data,15 which show an unexpected steplike fe
ture in the negative bias in addition to the peak/dip/hu
structure.

We start by considering a junction consisting of a tw
dimensional~2D! normal metal on the left (L)-hand side
(2`,x<0) and a 2D superconductor (a<x,`, a is the
lattice constant! on the right (R)-hand side, governed by th
HamiltonianHL andHR , respectively. The tunneling Hamil
tonian that connects the surface points atx50 andx5a is
given byHT5(yt(uyL2yRu)(cL

†cR1cR
†cL), where the sum-

mation is over lattice points along the interface, chosen to
in the y direction. We consider the simplest case when
lattice points along the interfaces are equally spaced
match the bulk lattice of the metal and the superconduc
The superconductor is assumed to have a square lattice
one of the axes parallel to thex direction. The total grand
Hamiltonian is then given byK5HL2mLNL1HR2mRNR
1HT , where mL and mR are the chemical potentials an
their differencemL2mR is fixed to be the voltage dropeV
across the junction.

The tunneling current can be calculated perturbatively
using the Keldysh formalism.16 This approach was previ
ously applied successfully to study a number of tunnel
problems.17,18We shall follow Ref. 17 and neglect the verte
corrections ofHT . The perturbation series inHT can be then
summed exactly. The contribution to the differential condu
tance G5dI/dV can be classified into four terms due
different tunneling processes:17 G1 is due to particle to par-
ticle tunneling;G2 is due to particle to particle tunnelin
with pair creation/annihilation as the intermediate state;G3
is due to particle to hole tunneling; andGA is the Andreev
conductance. BecauseHT is a tight-binding model, all the
Green’s functions have to be replaced by the surface Gre
©2001 The American Physical Society03-1
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BRIEF REPORTS PHYSICAL REVIEW B 63 172503
functions that connect different points on the junction. Th
there is an extra integration overky and associated with eac
surface Green’s function, there is at(ky) factor. The function
t(ky) characterizes the spread of the electron wave func
along they direction when hopping across the junction a
can be generally expanded in a cosine Fourier series. N
that the bare surface Green’s function, without be
renormalized by HT , is a 232 matrix ĝ0(v,ky)
in Nambu’s notation,17 and its relation to the bare bul
Green’s function Ĝ0(v,kx ,ky) is given by ĝ0(v,ky)
5(2/p)*0

pdkx sin2(kx)Ĝ0(v,kx ,ky), where the momentumk is
in unit 1/a.

The relations of conductanceGa to the Green’s functions
can be best demonstrated in the limit when the metal is
proximated by its bandwidthtL with a constant density o
state, i.e.,gL(v,ky)52 i /tL3I , where I is a unit matrix.
This avoids complications due to the band structure from
metal side. In this case, whent(ky)5t is a constant, the only
dimensionless parameter isl[t2/(tLtR), where tR is the
hopping scale of the superconducting side. The junction c
ductance is then of orderle2/\. For small l, G1(V) is
O(l) and is simply proportional to the single particle dens
of state.19 Similarly, G2(V) is of order O(l2) and probes
*dky@ Im(g0R,12

r )#2, G3(V) is of the orderO(l3) and probes
*dkyrR,22ug0R,12

r u2. Here 1 and 2 are indices for Nambu n
tations, Green’s functions with the indexr are retarded, and
r is the spectral function. SinceG3 is subdominant to
G2(V), G2(V)1G3(V) is negative. Finally, the Andree
conductance isO(l2) and probes*dky@(g0R,12

r )#2. Overall
speaking, for smalll, the total conductance is dominated b
G1, corresponding to the largeZ limit of the BTK theory. In
the other limit whenGA dominates in the subgap region, th
situation is more subtle. Fors-wave BCS superconductors
the analytic mapping fromZ to l was obtained in Ref. 17
The optimum matching (Z50) does not occur at largel
because the mapping is not monotonic. In general, such
lytic mapping does not exist, we shall resort to numerics
find the optimum matching condition.

We first consider a simpled-wave BCS superconducto
described by

HR
m5(

ks
ekcks

1 cks2(
k

Dk~ck↑
1 c2k↓1H.c.!, ~1!

where the dispersionek522tR@cos(kx)1cos(ky)#, and the
gap D(k)5DR@cos(kx)2cos(ky)#. The metal side has th
same Hamiltonian withDL50. Under the optimum matching
condition, one obtains a single peak~the Andreev peak! in
the total conductance nearV50.18,13 The Andreev peak ob
tained here is a result of subtle balance betweenG11GA and
G21G3. In fact, the effect ofG21G3 is to bring down the
quasiparticle peaks inG1(V) so that a single peak is man
fested. As we shall see, such simple realization of the
dreev peak does not always happen in real high-Tc systems
due to spin fluctuations.

To include the spin fluctuations, we shall work with th
2D t-t8-J model. In the slave-boson method, the physi
electron operatorscis are expressed by slave bosonsbi car-
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rying the charge and fermionsf is representing the spin;cis

5bi
1 f is . The mean-fieldd-wave SC state is characterize

by the order parametersD05^ f i↑ f j↓2 f i↓ f j↓&, x0

5(s^ f is
1 f j s& and the condensate of bosonsbi→^bi&5Ad.

Equation ~1! is then the Hamiltonian for the spinonsf i
with dispersion ek522(dtR1J8x0)@cos(kx)1cos(ky)#
24dtR8 cos(kx)cos(ky)2mR and DR52J8D0, whereJ853J/8.
We shall adopt the following numerical valuestR52J, tR8
520.45tR , andJ50.13 eV.10,20The mean-field parameter
x0 , D0 and the chemical potentialmR for different dopingd
are obtained from a self-consistent calculation.10 Next we
include the spin fluctuations by perturbing around the me
field HamiltonianHR

m , i.e., we writeKR5HR
m1H8, and treat

H8 as a perturbation. In order to account for thep
resonance8 as well as many other effects of spin fluctuation
we calculate the spin susceptibility in a renormaliz
random-phase approximation~RPA! as defined in Refs. 10
and 20. The usual RPA sums over selected sets of graph
the spin susceptibilityx as shown in Fig. 1~a! and gives rise
to x(q,v)5x0(q,v)/@11aJ(q)x0(q,v)# with a51. Here,
J(q)5J(cosqx1cosqy), x0(q,v) is the unperturbedspin
susceptibility due to the spinon bubbles and thep resonance
emerges as the pole of the denominator. In the current
proach,a is not one and is considered as a phenomenolo
cal parameter whose value is chosen such that the AF in
bility occurs right at the experimental observed valued
50.02. For the material parameters we adopt,a is 0.34.10

The inelastic scattering of electrons off the spin fluctu
tions is taken into account by incorporatingx into the self-
energy of the spinons in the lowest-order approximation.
the SC state, there are two different self-energiesSs andSw
as shown in Figs. 1~b! and 1~c!.11 The Green’s function
for spinons is calculated byGf(k,v)5@Gf 0

21(k,v)
1(Dk1Sw)2Gf 0

21(2k,2v)#21 with Gf 0(k,v)5@ iv2ek

2Ss(k,v)#21. Since bosons condense, the physical elect
Green’s function can be simply obtained byG(k,v)
5dGf(q,v), i.e., only the dynamics of spins is considere
Following previous prescriptions, one then obtains the s
face Green’s functions and thus the various conductan
The truncation to the lowest order cannot really be justifi
rigorously so far. Its merit rests mainly upon its simplici
and its usefulness in previous applications to problems
lated to spin fluctuations.10 These studies indicate that it ha
captured the main features of ARPES data along the@100#

FIG. 1. Feynman diagrams for~a! the spin susceptibility and~b!
and ~c! the lowest order contributions to the self-energy from sp
fluctuations.
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BRIEF REPORTS PHYSICAL REVIEW B 63 172503
direction and for other directions it also reproduces the
served cos(6u) deviation from the pured wave.10 Here we
shall examine its validity against tunneling data. Note a
that we had neglected the spatial dependence of the pai
tential, which is generally considered not important in t
@100# and @001# directions.

We first analyze smalll limit. Figure 2 shows the tota
conductance with RPA correction for various dopings. T
positions of the peak and hump are seen to scale weakly
doping. When doping increases, the height of peak incre
with doping, in consistent with experiments,14 at the same
time, the width of the peak increases and tends into the hu
region so that the hump is smeared out in slightly overdo
region. Another feature which can also be observed in
data is that the dip/hump feature at positive bias is alw
weaker. The precise reason behind them can be traced
to the underlying structure ofek . In fact, detailed analysis13

shows that the band edge extends to higher positive bia
that the dip/hump is smeared, while the band edge for ne
tive bias essentially stays at small bias, leaving the dip/hu
unsmeared.

FIG. 3. The optimal manifestation of the Andreev peak with
square lattice (tL51.0) for the metal side.

FIG. 2. The total conductance with RPA correction in the tu
neling limit. Here the metal is modeled by a constant density
state withl50.05.
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We now numerically identify the optimum matching co
dition so that the zero-bias Andreev conductance peak ca
manifested best. For eachky , we compute the optimal value
topt such that the Andreev conductance atV50 reaches
maximum. The resultingtopt(ky) can be approximated by

topt~ky!5a01a1 cos~ky!1a2 cos~2ky!. ~2!

This implies that including next-nearest-neighbor hopp
along the junction is necessary. However, the forward h
ping a0 still dominates~for instance, whend50.12, we ob-
tain a052.41, a1520.44, anda250.34). In Fig. 3, we
show the optimal manifestation of the Andreev peak for d
ferent doping. The metal side is modeled by a simple tig
binding model on the square lattice. We see that the d
hump structure coexists with the Andreev peak. Figure
shows a similar plot but now the density of state of the me
side is a constant. In this case, the Andreev peak never
wins the quasiparticle peaks resulted fromG1(V) so that a
plateau is observed. In both cases, the trend of the dip/h
structure with doping is consistent with what is found in F

FIG. 4. The optimal manifestation of the Andreev peak w
constant density of state (tL51.0) for the metal side.

FIG. 5. The density of state forc-axis tunneling ford50.12.
Inset: The STM tunneling curve observed by Panet al. ~Ref. 15!.
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BRIEF REPORTS PHYSICAL REVIEW B 63 172503
2. All these qualitative features should be experimenta
verified in the future as a test of the mechanism of the s
fluctuations.

To further test this particular RPA approach, we comp
thec-axis tunneling spectrum. Figure 5 shows our numeri
results, in comparison to the recent STM curve by P
et al.15 It is quite encouraging that two curves are very sim
lar in shape. In particular, the step around 45 mV is rep
duced in the RPA approach at slightly larger bias. This s
results from the band edge, which, as we mentioned, es
tially stays at small bias as one changes doping.

To summarize, we have analyzed the effects of spin fl
tuations on theSN junction using the Keldysh formulation
an
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and a renormalized random-phase approximation. The p
dip/hump structure is reproduced and we show that it dis
pears gradually as one goes to slightly overdoped reg
Using the same formulation, we predict that the dip/hum
structure can coexist with the zero-bias Andreev peak in
timal matching conditions. Our analysis on thec-axis tunnel-
ing shows good qualitative agreement between this appro
and the recently observed STM tunneling curve.
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