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Effects of spin fluctuations on the tunneling spectroscopy in high-. superconductors
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We investigate the effects of spin fluctuations on the tunneling spectra of the normal-metal—superconductor
junction. In the high junction resistance limit, the dip/hump structure observed in ARPES data for the, high
superconductors is reproduced in a random-phase approximation treatment-of-thmodel. It is shown that
the dip/hump structure weakens as doping increases as reflected in the data. In the other limit, we predict that
the zero bias Andreev peak can coexist with the dip/hump structure. Furthermocegttsetunneling spectra
is found to be very similar to recent scanning tunnel microscope data once these fluctuations are included.
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While a great many details about the spectral function forcurrents due to difference tunneling processes. Therefore, to
high-T. superconductoréHTS'’s) have been revealed by the investigate the other limit when the subgap is dominated by
angle-resolved photoemission spectroscdyRPES,! a  the Andreev reflection, we define timptimum matchings
complete description of the superconducting state requirethe condition when the zero-bias Andreev conductance peak
knowledge of the anomalous Green’s function. Conventionreaches maximum. This corresponds to Zve0 case in the
ally the tunneling spectroscopy has been considered as oK theory. Under this condition, we show that the Andreev
of the tools which can probe the anomalous Green's funcpeak can coexist with the dip/hump structure, which should
tion. In particular, measuring the subgap conductance of ge observable in the recent future. Base on our analysis, we
junction consisting of a normal metal and a superconductoyj| also give a possible explanation on recently observed

(NS is the most convenient configuration for such a PUr- avis STM datd® which show an unexpected steplike fea-

pose. To calculate the conductance in 8 configuration, : . L » )
Blonder, Tinkham, and Klapwifk (BTK) developed a for- ;L::Sclﬂr;he negative bias in addition to the peak/dip/hump

malism using Bogoliubov—de Gennd8dG) mean-field L . . .
equations. The BTK theory has been phenomenologically . We §tart by considering a junction consisting of a two-
extended to investigate the tunneling phenomena in varioudimensional(2D) normal metal on the leftl()-hand side
N'S junctions® On the experimental side, even though the(~%<X=<0) and a 2D superconductoatx<=, ais the
d-wave BCS mean-field theory captures some features of thittice constanton the right )-hand side, governed by the
superconducting state, the recent high-resolution data frorhlamiltonianH, andHg, respectively. The tunneling Hamil-
both ARPES and STM give a more delicate picture. A dis-tonian that connects the surface pointxat0 andx=a is
tinct feature is the appearance of so called peak/dip/humgiven by Hr=3t(ly.—yg|)(c[cr+chel), where the sum-
structure, which is most clearly seen along fa60] direc-  mation is over lattice points along the interface, chosen to be
tion in the superconducting state for ARPE®efs. 4 and 5  in they direction. We consider the simplest case when the
and for scanning tunnel microscogTM).® It has been lattice points along the interfaces are equally spaced and
suggestefithat it stems from the coupling of electrons to the match the bulk lattice of the metal and the superconductor.
m resonance observed in neutron-scattering stifdiéisis  The superconductor is assumed to have a square lattice with
idea has been further explored both qualitativegnd one of the axes parallel to thedirection. The total grand
quantitatively*® confirming its validity. In addition to the Hamiltonian is then given by<=H —u N +Hr— urNg
peak/dip/hump structure, there are also indications that the-Hy, where i, and ur are the chemical potentials and
quasiparticle peak seems not to be resolution limifed. their differencew — g is fixed to be the voltage dropV
These features indicate the need for a tunneling theory thatcross the junction.
includes the effect of fluctuations. The tunneling current can be calculated perturbatively by
In this work, we investigate the effects of the spin fluc- using the Keldysh formalisrtf. This approach was previ-
tuations on the tunneling conductance spectra along theusly applied successfully to study a number of tunneling
[100] and[001] (c-axis) directions™ By using the Keldysh problems'’*#We shall follow Ref. 17 and neglect the vertex
formulation, we first demonstrate that in the high junctioncorrections oHy. The perturbation series iy can be then
resistance limit, the dominant contribution comes from thesummed exactly. The contribution to the differential conduc-
spectral function and the peak/dip/hump structure exists itance G=dIl/dV can be classified into four terms due to
this limit. This structure results from collective spin fluctua- different tunneling processé$:G, is due to particle to par-
tions and weakens as the dopiAgncreases as reflected in ticle tunneling; G, is due to particle to particle tunneling
some of the recent data, such as in Ref. 14. Since spin exaivith pair creation/annihilation as the intermediate sté&g;
tations are gapped, they induce little qualitative change in thés due to particle to hole tunneling; ar@l, is the Andreev
subgap region. Instead, their main effect is to redistribute theonductance. Becaudé; is a tight-binding model, all the
spectral weight and thus changes the relative strength amorigreen’s functions have to be replaced by the surface Green’s
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functions that connect different points on the junction. Thus — ©+ ©©+ cee

there is an extra integration oviey and associated with each (@)
surface Green'’s function, there ig(,) factor. The function ‘.

t(ky) characterizes the spread of the electron wave function I(q.0) — | |

along they direction when hopping across the junction and 15 1 (b)
can be generally expanded in a cosine Fourier series. Note

that the bare surface Green’s function, without being "

renormalized by Hy, is a 2xX2 matrix {:]O(w,ky) @0 = ! (©)
in Nambu’s notatiort/ and its relation to the bare bulk AT

Green's function Go(w,ky,ky) is given by go(w,k,)
=(2/m)[5dk, sinz(kx)éo(w,kx,ky), where the momenturis
in unit 1/a.

The relations of conductane¢g, to the Green’s functions
can be best demonstrated in the limit when the metal is ap- . : . .
proximated by its bandwidth, with a constant density of rj"”? the charge and ferm|orf$g representlr?g the SPITi,
state, i.e.,0, (,k,)=—i/t_ x|, where| is a unit matrix. =b;"f;,. The mean-fieldl-wave SC state is characterized
This avoids complications due to the band structure from th®Y ~ the order  parametersAo=(fi;f;,—fi/f;)),  xo
metal side. In this case, whe(k,) =t is a constant, the only =Z2,(f;,f;,) and the condensate of bosobs—(b;)=/é.
dimensionless parameter l=t%/(t,tg), wheretg is the  Equation (1) is then the Hamiltonian for the spinonfs
hopping scale of the superconducting side. The junction corwith  dispersion  €,=—2(dtg+J’ xo)[ cosk,)+cosk,)]
ductance is then of ordexe?/4. For smallx, Gy(V) is —48tgcosk)cosky) —ug and Ag=2J'A,, whereJ'=3J/8.
O(M\) and is simply proportional to the single particle density We shall adopt the following numerical valugs=2J, tg
of state!® Similarly, G,(V) is of orderO(\?) and probes = —0.48g, andJ=0.13 eV'>?The mean-field parameters
fd ky[lm(g[)Rﬂ)]z, G3(V) is of the ordetO(A®) and probes  x,, A, and the chemical potentialg for different dopingd
Jdkypr2dGhr 142 Here 1 and 2 are indices for Nambu no- are obtained from a self-consistent calculatidrNext we
tations, Green'’s functions with the indexare retarded, and include the spin fluctuations by perturbing around the mean-
p is the spectral function. Sinc&; is subdominant to field HamiltonianHR, i.e., we writeKg=HR+H’, and treat
G,(V), Go(V)+G3(V) is negative. Finally, the Andreev H’ as a perturbation. In order to account for the
conductance i©(\?) and probes/d ky[(g{)Rﬂ)]z. Overall resonanckas well as many other effects of spin fluctuations,
speaking, for smalk, the total conductance is dominated by we calculate the spin susceptibility in a renormalized
G,, corresponding to the larg&limit of the BTK theory. In ~ random-phase approximatidiRPA) as defined in Refs. 10
the other limit wherG, dominates in the subgap region, the and 20. The usual RPA sums over selected sets of graphs for
situation is more subtle. Faswave BCS superconductors, the spin susceptibility as shown in Fig. (8) and gives rise
the analytic mapping fronZ to A was obtained in Ref. 17. 10 x(d,®) = xo(d,®)/[1+ aJ(q) xo(d, w)] with a=1. Here,

The optimum matchingZ=0) does not occur at large  J(g)=J(cosqg,+cosq,), xo(d,w) is the unperturbedspin
because the mapping is not monotonic. In general, such angusceptibility due to the spinon bubbles and theesonance
lytic mapping does not exist, we shall resort to numerics teemerges as the pole of the denominator. In the current ap-

FIG. 1. Feynman diagrams féa) the spin susceptibility antb)
and (c) the lowest order contributions to the self-energy from spin
fluctuations.

find the optimum matching condition. proach,a is not one and is considered as a phenomenologi-
We first consider a simpld-wave BCS superconductor cal parameter whose value is chosen such that the AF insta-
described by bility occurs right at the experimental observed valde

=0.02. For the material parameters we adapts 0.341°
m N N The inelastic scattering of electrons off the spin fluctua-
HR:% Ekangg—Ek‘, Ag(cyc +H.c), (1) tions is taken into account by incorporatinginto the self-
energy of the spinons in the lowest-order approximation. In
where the dispersior,= — 2tg[ cosk,)+cosk)], and the the SC state, there are two different self-energigandz,,
gap A(k)=Ag[cosk)—cosk,)]. The metal side has the as shown in Figs. (b) and 1c).!! The Green’s function
same Hamiltonian witth| =0. Under the optimum matching for spinons is calculated by G¢(k,»)=[Gg(k,w)
condition, one obtains a single peéke Andreev peakin + (At 202G (—k,— )]t with Gio(k,w)=[iw— ¢
the total conductance nedl=0."*3The Andreev peak ob- -3 (k,®)] . Since bosons condense, the physical electron
tained here is a result of subtle balance betwBeft G, and  Green’s function can be simply obtained b$(k,w)
G,+Gs. In fact, the effect 0fG,+ G; is to bring down the = §G;(q,w), i.e., only the dynamics of spins is considered.
quasiparticle peaks i;(V) so that a single peak is mani- Following previous prescriptions, one then obtains the sur-
fested. As we shall see, such simple realization of the Anface Green’s functions and thus the various conductance.
dreev peak does not always happen in real Higtsystems The truncation to the lowest order cannot really be justified
due to spin fluctuations. rigorously so far. Its merit rests mainly upon its simplicity
To include the spin fluctuations, we shall work with the and its usefulness in previous applications to problems re-
2D t-t'-J model. In the slave-boson method, the physicallated to spin fluctuation¥ These studies indicate that it has
electron operators;,, are expressed by slave bosdnscar-  captured the main features of ARPES data along[118€)
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FIG. 2. The total conductance with RPA correction in the tun-  FiG. 4. The optimal manifestation of the Andreev peak with

neling limit. Here the metal is modeled by a constant density of,nstant density of state, (= 1.0) for the metal side.
state withA =0.05.

direction and for other directions it also reproduces the ob- . _We now numerically _identify the optimum matching con-
served cos(8) deviation from the purel wavel® Here we dition so that the zero-bias Andreev conductance peak can be
shall examine its validity against tunneling data. Note alsgn@nifested best. For eaé), we compute the optimal value
that we had neglected the spatial dependence of the pair péspt SUch that the Andreev conductance \&&0 reaches
tential, which is generally considered not important in themaximum. The resulting, (k) can be approximated by
[100] and[001] directions. _

We first analyze smalk limit. Figure 2 shows the total topi(ky) =a0+a; cogky) +a, cog 2ky). @)
conductance with RPA correction for various dopings. Therhis implies that including next-nearest-neighbor hopping
positions of the peak and hump are seen to scale weakly Withiong the junction is necessary. However, the forward hop-

dqping. Wher) doping increas_es, the h_eight of peak increasepcmg a, still dominates(for instance, whe=0.12, we ob-
with doping, in consistent with experimeritsat the same tain a,=2.41, a;=—0.44, anda,=0.34). In Fig. 3, we

timg, the width of the pea}k increases a”‘?' tends into the humgy,,y, the optimal manifestation of the Andreev peak for dif-
region so that the hump is smeared out in slightly overdope¢, ant doping. The metal side is modeled by a simple tight-

region. Another feature which can also be observed in th%inding model on the square lattice. We see that the dip/
data is that the dip/hump feature at positive bias is alwayg, mp “structure coexists with the Andreev peak. Figure 4
weaker. The precise reason behind them can be traced bagq,ys a similar plot but now the density of state of the metal
to the underlying structure o In fact, detailed analysi3  gge is 4 constant. In this case, the Andreev peak never out
shows that the band edge extends to higher positive bias §ging the quasiparticle peaks resulted fr@g(V) so that a
that the dip/hump is smeared, while the band edge for nega;|aieay is observed. In both cases, the trend of the dip/hump

tive bias essentially stays at small bias, leaving the dip/numRy,ctyre with doping is consistent with what is found in Fig.
unsmeared.
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FIG. 3. The optimal manifestation of the Andreev peak with a

square latticet{ =1.0) for the metal side.
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FIG. 5. The density of state far-axis tunneling for6=0.12.
Inset: The STM tunneling curve observed by Rdral. (Ref. 15.
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2. All these qualitative features should be experimentallyand a renormalized random-phase approximation. The peak/

verified in the future as a test of the mechanism of the spimlip/hump structure is reproduced and we show that it disap-

fluctuations. pears gradually as one goes to slightly overdoped region.
To further test this particular RPA approach, we computeUsing the same formulation, we predict that the dip/hump

the c-axis tunneling spectrum. Figure 5 shows our numericaktructure can coexist with the zero-bias Andreev peak in op-

results, in comparison to the recent STM curve by Panimal matching conditions. Our analysis on thexis tunnel-

et al’® It is quite encouraging that two curves are very simi—ing shows good qualitative agreement between this approach

lar in shape. In particular, the step around 45 mV is reproyng the recently observed STM tunneling curve.
duced in the RPA approach at slightly larger bias. This step

results from the band edge, which, as we mentioned, essen- It is our pleasure to thank Professor N. C. Yeh, Professor

tially stays at small bias as one changes doping. C. R. Hu, and Professor T. K. Lee for useful discussions.
To summarize, we have analyzed the effects of spin flucD.C. also wishes to thank the SLAC Theory Group for hos-

tuations on theSN junction using the Keldysh formulation pitality. This research was supported by NSC of Taiwan.
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