¹⁷¹Yb and ⁶³Cu magnetic resonance studies on the fluctuating valent compound YbInCu₄

T. Koyama, M. Matsumoto, and S. Wada

Department of Material Science, Graduate School of Science & Technology and Department of Physics, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan

J. L. Sarrao

Los Alamos National Laboratory, Mail Stop K 764, Los Alamos, New Mexico 87545

(Received 26 October 2000; published 5 April 2001)

We report a nuclear magnetic resonance (NMR) investigation on the fluctuating valent compound YbInCu₄, which exhibits the first-order isostructural valence transition at $T_V=45-50$ K. ¹⁷¹Yb NMR was observed in the range between $1.9-4.2$ K in the low-temperature (LT) phase with the Knight shift of 101.3%. The hyperfine coupling constant of 0.88×10^6 Oe/ μ_B is about 24% smaller than the value expected for the $J = \frac{7}{2}$ state of free Yb^{3+} ions. The strongly enhanced paramagnetic behavior with large Korringa-like relaxation rate, $(T_1T)^{-1}$ $\approx 1.1 \times 10^4$ (s K)⁻¹, is consistent with the formation of *s*-*f* resonance bands. ⁶³Cu Knight shift *K*(⁶³Cu) shows a Curie-Weiss-type behavior in high-temperature (HT) phase, and a temperature-independent behavior in the LT phase. It is found that $K({}^{63}Cu)$ vs $\nu({}^{63}Cu)$ (electric-quadrupole frequency) plots in the HT phase are on a straight line for the most part, and deviate slightly from the line as the temperature approaches T_V . In the LT phase, on the other hand, the plots exhibit a small deviation from the line in the opposite direction. As the increase in $v(^{63}Cu)$ for YbInCu₄ is caused by the decrease in the cell volume, it is concluded that the Kondo volume collapse (expansion) model may describe the physics of YbInCu₄ associated with the valence fluctuations. The deviation from the line is thought to be due to the variation of the coupling J_{af} between the conduction electron density and Yb's 4f electrons.

DOI: 10.1103/PhysRevB.63.172410 PACS number(s): 75.30.Mb, 71.27.+a, 76.60.-k

The physical properties associated with valence fluctuations of Yb ions in the face-centered-cubic $YbXCu₄$ series with $X = Ag$, Au, Cd, In, Mg, Tl, and Zn have drawn much attention.¹ Among Yb*X*Cu₄ compounds, YbInCu₄ has been rather well studied and represents the most extreme limit of mixed-valence behavior of $Yb^{3+}(f^{13})$ and $Yb^{2+}(f^{14})$.^{2–10} At high temperatures, the magnetic susceptibility⁷ follows the Curie-Weiss law with nearly the fully free Yb ion moment and antiferromagnetic Weiss temperature of -15 K. At low temperatures below the first-order isostructural valence transition at T_V =40–50 K where a volume expansion of 0.5% occurs, the magnetic susceptibility χ was found to exhibit the paramagnetic behavior. The Kondo temperature is estimated from χ as T_K^H = 25 K for the high-temperature (HT) phase and T_K^L =400 K for the low-temperature (LT) phase,^{6,10} within the single-impurity theory in the Kondo limit (Coqblin-Schrieffer model).¹¹ The enhanced coefficient γ of the electronic specific heat in the LT phase is 50 mJ/mol $K^{2,10}$

The Yb $XCu₄$ compounds (C15*b*-type structure) are appropriate for a nuclear magnetic-resonance (NMR) study, since it is in principle possible to observe almost all the constituent nuclear species.^{12–18} Several authors have reported the results of rather easily observable purequadrupole-resonance (PQR) of Cu nuclei^{12–15} (δ ³Cu, nuclear spin $I = \frac{3}{2}$; ⁶⁵Cu, $I = \frac{3}{2}$), and NMR of ¹¹⁵In (Refs. 16–18) and 205 Tl (Ref. 12) on the *nonmagnetic* 4*c* and 16*e* sites. On the other hand, there has been no report on the NMR of Yb nuclei (171 Yb, $I = \frac{1}{2}$; 172 Yb, $I = \frac{5}{2}$) on the *magnetic* 4*a* site. In an unstable *f*-electron system, the nuclear spin-lattice relaxation is expected to be strongly enhanced, which gives rise to difficulties in observing the spin-echo NMR signal of Yb.

In this paper, we briefly report the result of the first NMR measurement of ^{171}Yb in YbInCu₄ at low temperatures. These data provide direct information on the ground state of the $4f$ electrons. We also measured the Knight shift and the quadrupole frequency of ${}^{63}Cu$ in high field. The former is a measure of the local susceptibilities and provides information on the magnetic state of Yb ions through the transferred hyperfine interactions, and the latter the local electron distribution around Cu nuclei.

We used a single-crystal specimen of $YblnCu₄$ and crushed it into powder with grain size smaller than the skin depth. The NMR experiment was carried out utilizing a wide-band phase-coherent spin-echo spectrometer. The NMR spectrum was obtained in a field-sweeping procedure at constant frequencies utilizing a boxcar integrator.

At 75 MHz, as is shown in Fig. 1(a), we first found a small 171Yb spin-echo signal at the field just below the satellite line for $\theta=0$ of the quadrupole-split ⁶³CuNMR described below. The time interval between the $\pi/2$ and π rf pulses was 10 μ s. The spectrum at a higher frequency of 115 MHz is shown in Fig. $1(b)$, which is well separated from the satellite line of the $\frac{63}{C}$ Cu NMR. The resonance field was directly proportional to the frequency, and the Knight shift of 101.3% defined at the peak intensity is independent of the temperature in the range between 1.9 and 4.2 K. The full width at half maximum is about 2.9 kOe. Taking the values of the Knight shift and the susceptibility $\chi(0)=6.37$ $\times 10^{-3}$ emu/mol (Ref. 6), the hyperfine field of 1^{71} Yb in the LT phase is estimated as 0.88×10^6 Oe/ μ_B . The ¹⁷¹Yb spinlattice relaxation time T_1 was too short to measure directly with the usual saturation rf-comb-pulse method. Therefore

FIG. 1. NMR spectra of 171 Yb in YbInCu₄ at 4.2 K, observed at constant frequencies of 75 MHz (a) and 110 MHz; (b) . In (a) , the satellite lines of the electric-quadrupole split ⁶³Cu NMR at $\theta=0$ and $\pi/2$ are indicated by open and closed arrows, respectively. FIG. 2. Temperature dependence of the electric-quadrupole fre-

we measured the transverse relaxation time T_2 , which is composed of a temperature-independent spin-spin relaxation term T_2^* and a temperature-dependent longitudinal relaxation term T_1 as^{19,20}

$$
\frac{1}{T_2} = \frac{1}{T_2^*} + \frac{\alpha}{T_1},\tag{1}
$$

where α for ¹⁷¹Yb is $(I + \frac{1}{2})^2 = 1$. When T_1^{-1} is sufficiently larger than $(T_2^*)^{-1}$, T_2^{-1} gives a measure of T_1^{-1} . We determined T_1 from the decay curve of the spin-echo intensity focused at 2τ after $\pi/2$ - π rf pulses separated by the time τ . Here we used a digital signal averager to improve satisfactorily the signal-to-noise ratio. In the temperature range between 1.9 and 4.2 K, T_2^{-1} for ¹⁷¹Yb is directly proportional to the temperature, and we obtained a Korringa-like relaxation rate, $(T_2T)^{-1} = (T_1T)^{-1} \approx 1.1 \times 10^4 \text{ (s K)}^{-1}$, which is four orders of magnitude larger than the value of $(T_1T)^{-1}$ for ⁶³Cu (Ref. 14). The strongly enhanced T_1T =const behavior of 171 Yb in the LT phase is consistent with the formation of a quasiparticle Fermi liquid with enhanced mass.

The 63 Cu spin-echo signal in YbInCu₄ was observed in a temperature range between 4.2 and 170 K. The ${}^{63}Cu$ NMR spectrum has the general quadrupole powder pattern with zero anisotropy factor η of the electric-field gradient:²¹ a second-order split central line with maxima at ν_I ($\theta = \pi/2$) and ν_{II} ($\theta = \cos^{-1} \sqrt{\frac{5}{9}}$); and equally split satellite lines with maximum at $\theta = \pi/2$ and shoulder at $\theta = 0$. Here θ is the angle of the applied field *H* with respect to the principal *Z* axis of the electric field gradient *q*.

The values of the electric-quadrupole frequency, v_O ⁽⁶³Cu)= $e²qQ/2\hbar$, and the isotropic Knight shift, $K(\tilde{C}^{63}Cu)$, deduced from the spectrum analysis of the central line, are plotted in Figs. 2 and 3, respectively, as a function of the temperature. The temperature dependence of v_0 ⁽⁶³Cu) is similar in shape to that reported previously in the PQR measurement for the polycrystalline specimen.¹⁴ We found, however, that the value of v_0 ⁽⁶³Cu) just above T_V depends

quency of ${}^{63}Cu$ in YbInCu₄. The inset of the figure shows the dependence of v_Q at 55 K on the external magnetic field.

on the external magnetic field *H* as is shown in the inset of Fig. 2. The data can be reproduced by the following formula:

$$
\nu_Q(^{63}\text{Cu}) = 15.0 + 0.0255H^2 \text{ MHz},\tag{2}
$$

as is drawn in the inset by the solid curve.

The temperature-independent $K({}^{63}Cu)$ of 0.22% at the LT phase is consistent with the high Kondo temperature, T_K^L \approx 400 K. On the other hand, the temperature-dependent $K({}^{63}Cu)$ in the HT phase can be fitted by the following formula:

$$
K(^{63}\text{Cu}) = 0.14 - \frac{14.5}{T + 21.2}\,\%,\tag{3}
$$

as is drawn in the figure by the solid curve.

FIG. 3. Temperature dependence of the ⁶³Cu Knight shift in YbInCu₄.

In rare-earth ions with nonvanishing orbital momentum, the principal contribution to the hyperfine field H_{hf} is the large magnetic field $H_{\text{hf}}(\text{orb})$ set up by the orbital motion of 4f electrons.¹⁹ The Hartree-Fock value of $\langle 1/r^3 \rangle$ = 13.83 a.u. for a free Yb³⁺ ion²² gives $H_{\text{hf}}(\text{orb}) = 5.194$ $\times 10^6$ Oe. There is also a spin-dipolar field *H*_{hf}(sd) from the intrinsic spin moments of $4f$ electrons. The $4f$ electron also contributes indirectly to the total hyperfine field by the mechanism known as core polarization field $H_{\text{hf}}(cp)$. Both $H_{\text{hf}}(sd)$ and $H_{\text{hf}}(cp)$ are an order of magnitude smaller than H_{hf} (orb). For the fluctuating valent compound YbAl₃ (Ref. 23) and the Kondo semiconductor YbB_{12} (Ref. 24), the values of the hyperfine field derived from the 171Yb Knight shift and the susceptibility were nearly equal to the calculated value (1.154 \times 10⁶ Oe) for the free Yb³⁺ ion with the saturation moment of $gJ=4 \mu_B$.²⁴

The present empirical value of 0.88×10^6 Oe/ μ_B at the LT phase of $YblnCu₄$ does not differ much from the value expected for the free Yb^{3+} ion. In YbInCu₄, a small change in the Yb valence by ~ 0.1 was observed in the x-ray absorption spectra¹⁰ below T_V : Yb³⁺ at the HT phase changes to Yb^{2.9+} in the LT phase. The valence change reduces the value of $\langle 1/r^3 \rangle$, which gives rise to a decrease in the value of $H_{\text{hf}}(\text{orb})$. The paramagnetic behavior of YbInCu₄ in the LT phase also suggests an additional reduction of $\langle 1/r^3 \rangle$, as is generally expected for metals.

The impurity nuclear relaxation at low temperatures is expected to follow a Korringa relation, $2³$

$$
T_1 T K^2 = \frac{C(2J+1)}{2\pi\hbar \gamma_n^2},\tag{4}
$$

where $C = g^2 \mu^2 J(J+1)/3k_B$ is the Curie constant. For the $J = \frac{7}{2}$ ground state of the Yb³⁺ ion, Eq. (4) gives $T_1 T K^2$ $=2.29\times10^{-4}$ s K. The Korringa constant derived from the experimental values of T_1T and *K* of ¹⁷¹Yb in YbInCu₄ is

$$
T_1 T K^2 \approx 0.92 \times 10^{-4} \text{ s K},\tag{5}
$$

which is about two times smaller than the calculated value, suggesting that the $4f$ spin fluctuations in the LT phase of the Kondo lattice are not well localized.

In the HT phase, the temperature-dependent second term of $K(^{63}Cu)$ in Eq. (3) originates from the negative transferred hyperfine coupling with the neighboring Yb ions. The Weiss temperature of -21.2 K does not differ much from the value deduced from the χ measurement.⁷ The positive value of the temperature-independent first term, 0.14%, in the HT phase is indicative of dominant Van Vleck orbital and conduction *s* electron contributions. The temperatureindependent $K({}^{63}Cu)$ increases by 0.08% in the LT phase. This is an indication that the negative contribution from the Yb spins almost vanishes, and the density of states $N(E_F)$ of the quasiparticle bands at the Fermi level significantly increases in the LT phase.

Shown in Fig. 4 is $K({}^{63}Cu)$ vs ν _O(${}^{63}Cu$) plots with temperature being the implicit parameter. The plots in the HT phase are on a straight line for the most part, and show a small deviation as the temperature approaches T_V . The plots in the LT phase are also close to the line, and the small

FIG. 4. Knight shift vs electric-quadrupole frequency plots for $63Cu$ in YbInCu₄ with temperature being the implicit parameter.

deviation is in the opposite direction to that observed near T_V in the HT phase. The electric-field gradient *q* consists of the contributions from the ionic charge on the lattice sites around the Cu nucleus, q_{lat} , and the intra-atomic electron distribution, q_{el} . Comparing the contrasting behavior of $v(^{63}Cu)$ (Fig. 2) with that of lattice constant,⁷ the increase in ν (⁶³Cu) in YbInCu₄ originates from the increase in q_{lat} and, therefore, the decrease in the cell volume, as was noted in Ref. 14. Thus, the present $K({}^{63}Cu)$ vs $\nu_{O}({}^{63}Cu)$ plots indicate that the physics of $YbInCu₄$ with the valence fluctuations is mainly controlled by the cell volume and, therefore, may be described by the Kondo volume collapse (expansion) model. The deviation of the $K({}^{63}Cu)$ vs $\nu_Q({}^{63}Cu)$ plots from the line is thought to be an indication of the changes in the coupling *J*ef between the conduction electron density and Yb's $4f$ electrons, as is illustrated in Fig. 4 by an arrow.

The thermodynamical analysis of the valence transition²⁵ indicates that the volume change at T_V is not enough for the Kondo volume collapse to work, emphasizing the importance of the carrier-density changes with the transition. Together the increases in $N(E_F)$ and J_{af} in the LT phase, deduced from the present ⁶⁵Cu NMR data, would allow to adequately describe the isostructural valence transition.

In summary, we have carried out ^{171}Yb and ^{63}Cu NMR investigation on the fluctuating valent compound YbInCu₄.
¹⁷¹Yb NMR was observed in the range 1.9–4.2 K in the LT phase with the Knight shift of 101.3%. The strongly enchanced paramagnetic behavior with large Korringa-like relaxation rate, $(T_1T)^{-1} \approx 1.1 \times 10^4$ (s K)⁻¹ is consistent with the formation of *s*-*f* resonance bands. 63Cu Knight shift shows a Curie-Weiss-type behavior in the HT phase, and a temperature-independent behavior in the LT phase. The $K({}^{63}Cu)$ vs $\nu({}^{63}Cu)$ plots are on a straight line for the most part, indicating that the physics of $YbInCu₄$ may be described by the Kondo volume collapse (expansion) model. The small deviation from the line is thought to be an indication of the changes in J_{sf} .

- ¹ J. L. Sarrao, C. D. Immer, Z. Fisk, C. H. Booth, E. Figueroa, J. M. Lawrence, R. Modler, A. L. Cornelius, M. F. Hundley, G. H. Kwei, J. D. Thompson, and F. Bridges, Phys. Rev. B **59**, 6855 (1999) , and references therein.
- 2 I. Felner and I. Nowik, Phys. Rev. B 33, 617 (1986); I. Felner *et al.*, *ibid.* **35**, 6956 ~1987!; I. Nowik *et al.*, *ibid.* **37**, 5633 $(1988).$
- 3B. Kindler, D. Finsterbusch, R. Graf, F. Ritter, W. Assmus, and B. Luthi, Phys. Rev. B 50, 704 (1994).
- ⁴ J. M. de Teresa, Z. Arnold, A. del Moral, M. R. Ibarra, J. Kamard, D. T. Adroja, and B. Rainford, Solid State Commun. **99**, 911 (1996).
- ⁵ J. M. Lawrence, G. H. Kwei, J. L. Sarrao, Z. Fisk, D. Mandrus, and J. D. Thompson, Phys. Rev. B 54, 6011 (1996).
- ⁶ J. L. Sarrao, C. D. Immer, C. L. Benton, Z. Fisk, J. M. Lawrence, D. Mandrus, and J. D. Thompson, Phys. Rev. B **54**, 12 207 (1996) .
- ⁷ J. L. Sarrao, C. L. Benton, Z. Fisk, J. M. Lawrence, D. Mandrus, and J. D. Thompson, Physica B 223-224, 366 (1996).
- ⁸ J. M. Lawrence, S. M. Shapiro, and Z. Fisk, Phys. Rev. B **55**, 14 467 (1997).
- ⁹C. D. Immer, J. L. Sarrao, Z. Fisk, A. Lacerda, C. Mielke, and J. D. Thompson, Phys. Rev. B **56**, 71 (1997).
- 10A. L. Cornelius, J. M. Lawrence, J. L. Sarrao, Z. Fisk, M. F. Hundley, G. H. Kwei, J. D. Thompson, C. H. Booth, and F. Bridges, Phys. Rev. B 56, 7993 (1997).
- 11 B. Coqblin and P. B. Schrieffer, Phys. Rev. **185**, 847 (1969).
- 12 K. Hiraoka, K. Kojima, T. Hihara, and T. Shinohara, J. Magn. Magn. Mater. 104-144, 1243 (1995).
- 13H. Nakamura, K. Nakajima, Y. Kitaoka, K. Asayama, K.

Yoshimura, and T. Nitta, Physica B 238-241, 128 (1990).

- 14H. Nakamura, K. Nakajima, Y. Kitaoka, K. Asayama, K. Yoshimura, and T. Nitta, J. Phys. Soc. Jpn. 59, 28 (1990); J. Magn. Magn. Mater. 90-91, 1581 (1990); Physica B 171, 238 (1990); H. Nakamura et al., *ibid.* 206-207, 364 (1995); J. Phys. Soc. Jpn. 65, Suppl. B, 168 (1996).
- 15K. Hiraoka, K. Murakami, S. Tomiyoshi, T. Hihara, and K. Kojima, Physica B 281-282, 173 (2000).
- 16E. V. SampathKumaran, N. Nambudripad, S. K. Dhar, R. Vijavaraghavan, and R. Kuentzler, Phys. Rev. B 35, 2035 (1987).
- ¹⁷K. Kojima, H. Hayashi, A. Minami, Y. Kasamatsu, and T. Hihara, J. Magn. Magn. Mater. **81**, 267 (1989).
- 18K. Yoshimura, T. Nitta, T. Shimizu, M. Mekata, H. Yasuoka, and K. Kosuge, J. Magn. Magn. Mater. **90-91**, 466 (1990).
- 19M. A. H. MaCausland and I. S. Mackenzie, in *Nuclear Magnetic Resonance in Rare Earth Metals*, edited by B. R. Coles (Taylor & Fransis, London, 1979).
- ²⁰ R. E. Walstedt, Phys. Rev. Lett. **19**, 146 (1967).
- 21G. C. Carter, L. H. Bennett, and D. J. Kahan, *Metallic Shifts in NMR I* (Pergamon, Oxford, 1977).
- 22A. J. Freeman and R. E. Watson, *Magnetism*, edited by G. T. Rado and H. Suhl (Academic, New York, 1965), Vol. 2.
- 23T. Shimizu, M. Takigawa, and H. Yasuoka, J. Magn. Magn. Mater. 52, 187 (1985).
- 24K. Ikushima, Y. Kato, M. Takigawa, F. Iga, S. Hiura, and T. Takabatake, Physica B 281-282, 274 (2000).
- ²⁵ J. L. Sarrao, A. P. Ramirez, T. W. Darling, F. Freibert, A. Migliori, C. D. Immer, Z. Fisk, and T. Uwatoko, Phys. Rev. B **58**, 409 (1998).