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Quantum Heisenberg model with long-range ferromagnetic interactions:
A Green’s function approach

M. Hamedoun and Y. Cherriet
Laboratoire de Physique du Solide, Faculte´ des Sciences Dhar El Mehraz, Boıˆte Postale 1796 Fe´s-Atlas, 30 000 Morocco

A. Hourmatallah
Ecole Normale Supe´rieure, Bensouda, Fe´s, Morocco

N. Benzakour
Laboratoire de Physique du Solide, Faculte´ des Sciences Dhar El Mehraz, Boıˆte Postale 1796 Fe´s-Atlas, 30 000 Morocco

~Received 8 August 2000; published 28 March 2001!

A Green-function method is employed within a random phase approximation to study the one-dimensional
quantum Heisenberg model with long-range ferromagnetic interaction proportional tor 2p . We have shown
that for 1,p,2 there exists a phase transition at finite temperatures and estimate its critical temperature.
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I. INTRODUCTION

The investigation of low-dimensional magnetism is
important branch of modern solid state physics. Experim
tal interest in this problem is connected with the magne
properties of copper oxide high-temperature supercond
ors, organic compounds, films, and surfaces. Recently, l
dimensional magnetic systems have received a great de
attention. Several theoretical techniques have been empl
to understand the magnetic properties of these systems.

High-temperature series expansions combined with
Padé approximant method,1 spin wave theory,2–6 Monte
Carlo simulations,7,8 renormalization group,9,10 and the
Green’s function formalism11,12 are some of the method
used in these studies. Recently the method of double-t
spin Green’s function has been extensively used in the lit
ture for the investigation of the ferromagnetic and antifer
magnetic Heisenberg model with nearest-neighbor inte
tion. The method is valid even in dimension less than thr
Yablonskiy12 used it to study the static properties of the on
and two-dimensional quantum system described by
Heisenberg model. The theory predicts correctly the abse
of long-range order in finite temperature, produced an ex
nentially divergent correlation length when the temperat
approaches absolute zero, and gave good qualitative ag
ment over the wide temperature range with both the modi
spin-wave theory of Takahashi13 and the Schwinger bosoni
and fermionic representation of Arovas and Auerbach14

Also the method combined with the so-called random ph
approximation ~RPA! has been extended successfully
study the charge and spin correlation functions in the o
dimensional Hubbard model.15 In this paper, we show that
with the aid of Green’s function formalism, we are able
show that there exists a phase transition from ferromagn
to paramagnetic phase for some ferromagnetic lo
dimensional system with long-range interactions (d51,2)
described by the Heisenberg model.

II. CALCULATIONS

We consider the following Hamiltonian of a one
dimensional Heisenberg ferromagnetic model:
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H5 (
^nm&

Jn,mSW nSW m ~1!

where the summation is over the nearest-neighbor pairs1
2

spins,^nm& denotes a pair of nearest-neighbor sites andJn,m
is the exchange coupling between neighboring spins with

Jn,m5Jun2mu2p5Jr2p. ~2!

We consider the Green function

Gg,l[2 iu~ t !^^Sg
1~ t !;Sl

2&&. ~3!

The Fourier transform of this Green function, satisfies
equation of motion

EGg,l~E!5
1

2p
^@Sg

1 ,Sl
2#&1^^@@Sg

1~ t !,H#;Sl
2~0!#&&E ,

~4!

whereg and l are two lattice sites andGg,l(E) is the Fourier
transform of the Green’s function̂̂ Sg

1(t),Sl
2&&.

In order to solve the system of equation generated by
~4!, we need to break the chain of the Green’s functions
this paper we consider the simplest decoupling scheme,
random phase approximation~RPA!, where the longitudinal
and transversal components of the spin operators at diffe
sites of the lattice are uncorrelated,16 that is,

^^Sg
zSi

1 ;Sl
2&&5^Sg

z&^^Si
1 ;Sl

2&&. ~5!

Taking into account the translation symmetry of the latt
we can write that

Gg,l~E!5
1

N (
k

Gk~E!exp@ ik~g2 l !#, ~6!
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where the summation is over the set ofk vectors inside the
first Brillouin zone. In this way we find that

Gk~E!5
^Sz&
p

1

@E2Ek#
, ~7!

where

Ek52^Sz&@J02Jk# ~8!

is the magnon energy spectrum, andJk is the Fourier trans-
form of the exchange integral defined by

Jk5(
n,m

Jn,m expik~n2m! ~9!

with the help of the spectral density function,16 defined as

D~E!5 i lim
e→0

G~E1 i e!2G~E2 i e!

expS E

kBTD21

~10!

we can find the equilibrium correlation function, through

^S2S1&5E
2`

1`

D~E!expS E

kBTDdE. ~11!

As for spinS5 1
2 we can write that

^Sz&5
1

2
2^S2S1&, ~12!

and using the fact that

lim
e→01

F 1

E1 i e2Ek
2

1

E2 i e2Ek
G522p id~E2Ek!

~13!

we finally arrive at the following expression for the magn
tization:

1

2^Sz&
5

1

N (
k

cothS Ek

2kBTD . ~14!

By replacing the summation by an integral over the o
dimensional Brillouin zone, we can write that

1

2^Sz&
5

v
2pEZB

cothS Ek

2kBTDdk, ~15!

wherev is the volume of the unitary cell. This equation giv
us the magnetization as a function of the temperature and
be solved self-consistently. On the other hand, near the c
cal temperature, wherêSz& goes to zero, we expand th
argument into the integral, in Eq.~15!, because it is very
small. In this case, it is easy to show that

^Sz&5F3kBT

A F12
T

Tc
G G1/2

, ~16!

where
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Tc
5

v
2pEZB

dk

@J02Jk#
~17!

and

A5
1

zJ

v
2pEZB

@J02Jk#dk, ~18!

with

J02Jk5zJ(
n51

`

n2p@12cos~kn!#. ~19!

For smallk and 1,p,3 we have from13

2(
n51

`

n2p@12cos~kn!#5w~p!kp21, ~20!

wherew(p) is defined by

w~p!5
p

G~p!sinF ~p21!p

2 G ~21!

andG(p) is the Gamma function. Approximating the sum
Eq. ~17! by an integral and using expression~21! we find the
critical temperature

Tc

J
5

~22p!pp

2G~p!sinF ~p21!p

2 G . ~22!

We see that the Green’s function method predicts the e
tence of an ordering transition when 1,p,2. Using the
low-k expression in two dimensions given in Ref. 13, we c
show that the Green’s function method correctly predicts
condition 2,p,4 for the existence of phase transition
two dimensions.

Using the standard asymptotic behavior of the Gam
function near p51,17 i.e., for p'11a, where uau<3
31027, we have

G~p!5p!'11ap. ~23!

Therefore the critical temperature can be estimated as

Tc

J
5

1

a~12ba!
, ~24!

whereb50.57719.
To conclude, it would be interesting to compare the cr

cal temperature given by Eq.~22! with other theoretical val-
ues given in the literature. Forp5 3

2 the numerical value of
the critical temperature found from Eq.~22! is Tc52.23J.
By performing the sum given by Eq.~17! numerically, we
obtain this same value of the critical temperature.

Using the simulation of the one-dimensional plane rotat
Romanos18 found that Tc5(2.1610.01)J. For the one-
dimensional spherical model of Joyce,19 we have Tc
52.5128785J. In conclusion, we have calculated the critic
temperature in one-dimensional spin2 1

2 Heisenberg ferro-
2-2
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magnetic chain, with long-range interactions using
Green’s function technique. For finite temperature, in c
trast with the well-known Mermin-Wagner Theorem whic
cannot achieve long-range order~LRO! in pure one-
dimensional Heisenberg systems because of the effec
-

17240
e
-

of

quantum and thermal fluctuations.20 When there is some in
teraction between spins decaying asr 2p, these fluctuations
may be depressed to a certain extent and the system
realize LRO. The transition temperature can then be e
mated as a function ofp.
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