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Quantum Heisenberg model with long-range ferromagnetic interactions:
A Green'’s function approach
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A Green-function method is employed within a random phase approximation to study the one-dimensional
qguantum Heisenberg model with long-range ferromagnetic interaction proportionaP toWe have shown
that for 1<p<2 there exists a phase transition at finite temperatures and estimate its critical temperature.
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I. INTRODUCTION .
H=2> JnmSiSm &)
The investigation of low-dimensional magnetism is an nm
important branch of modern solid state physics. Experimen- o ) )
tal interest in this problem is connected with the magneti¢Vhere the summation is over the nearest-neighbor pais of
properties of copper oxide high-temperature superconducgPins{nm) denotes a pair of nearest-neighbor sites ang
ors, organic compounds, films, and surfaces. Recently, lows the exchange coupling between neighboring spins with
dimensional magnetic systems have received a great deal of
attention. Several theoretical techniques have been employed Jom=J|n—m|~P=Jr7", 2
to understand the magnetic properties of these systems. ’

High-temperature series expansions combined with th?Ne consider the Green function
Pade approximant method, spin wave theory,® Monte
Carlo simulations;® renormalization groupl® and the
Green’s function formalisht'? are some of the methods Gy =—160(1){(Sy (1);S)). 3
used in these studies. Recently the method of double-time
spin Green’s function has been extensively used in the litera- . : . -
ture for the investigation of the ferromagnetic and antiferro- Th? Founer t_ransform of this Green function, safisfies the
magnetic Heisenberg model with nearest-neighbor interacgguation of motion
tion. The method is valid even in dimension less than three.
Yablonskiy*? used it to study the static properties of the one- 1 . -
and two-dimensional quantum system described by the EGg(E)= E([Sg S D+ ISy (D,HLES (0)])e,
Heisenberg model. The theory predicts correctly the absence (4)
of long-range order in finite temperature, produced an expo-
nentially divergent correlation length when the temperature . . . .
approaches absolute zero, and gave good qualitative agre\g_hereg andl are two Ia',[tlce sﬂgs anfig,,(Eg Is the Fourier
ment over the wide temperature range with both the modified@nsform of the Green's functiof{S; (1),S,'))-
spin-wave theory of Takahaghiand the Schwinger bosonic [N order to solve the system of equation generated by Eq.
and fermionic representation of Arovas and Auerb¥ch. (4), we need to break the chain of the Green’s functions. In
Also the method combined with the so-called random phasthis paper we consider the simplest decoupling scheme, the
approximation (RPA) has been extended successfully torandom phase approximatidRPA), where the longitudinal
study the charge and spin correlation functions in the oneand transversal components of the spin operators at different
dimensional Hubbard modé&l.In this paper, we show that, sites of the lattice are uncorrelatétthat is,
with the aid of Green’s function formalism, we are able to
show that there exists a phase transition from ferromagnetic Zot.a\\_/cZ +.q-
to paramagnetic phase for some ferromagnetic low- (5SS N=(SHUST5))- ©
dimensional system with long-range interactiorgs=(1,2)

described by the Heisenberg model. Taking into account the translation symmetry of the lattice

we can write that
II. CALCULATIONS

. . I 1 .
~We .conS|de.r the following Hamlltoman of a one- Gg,I(E):_E G(E)exdik(g—D], (6)
dimensional Heisenberg ferromagnetic model: N %
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where the summation is over the setkofectors inside the
first Brillouin zone. In this way we find that

K 7 [E-E]’
where
Ex=2(S")[Jo— ] (8)

is the magnon energy spectrum, ahdis the Fourier trans-
form of the exchange integral defined by

3= JInmexpik(n—m) )

with the help of the spectral density functithdefined as

G(E+ie)—G(E—ie)

= 1
ke

we can find the equilibrium correlation function, through

A(E)=i lim

e—0

(10

+o E
(S‘S+)=f A(E)ex;{—)dE. (17
o kT
As for spinS=3 we can write that
1
(S)=5-(s78"), (12

and using the fact that

1
E+tie—E, E—ie—E

lim
e—~0"

}z — 27 S(E—E,)
(13

we finally arrive at the following expression for the magne-
tization:

1 1 =
75w 3 oot ] e
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1 v J dk 17
Te 2728l 30— 3]
and
a-ll J dk 1
= 232n ZB[JO_Jk] : (18
with
Jo— =23, n"P[1—cogkn)]. (19)
n=1
For smallk and 1<p<3 we have front
22, n~P[1-cogkn)]=w(p)k", (20
n=1
wherew(p) is defined by
= il 21
I'(p)sin —

andI’(p) is the Gamma function. Approximating the sum in
Eq.(17) by an integral and using expressi1) we find the
critical temperature

We see that the Green'’s function method predicts the exis-
tence of an ordering transition when<p<2. Using the
low-k expression in two dimensions given in Ref. 13, we can
show that the Green’s function method correctly predicts the
condition 2<p<4 for the existence of phase transition in
two dimensions.

Using the standard asymptotic behavior of the Gamma
function nearp=1,"" i.e., for p~1+a, where |a|<3
x 10", we have

T (2-pa?
(p—Dm

2

2I'(p)sin

(22

I'(p)=p'=1+ap. (23

By replacing the summation by an integral over the one-Therefore the critical temperature can be estimated as

dimensional Brillouin zone, we can write that

f B ) gk
260" 2T/ 4%

wherev is the volume of the unitary cell. This equation gives

1 v

2AS) 2= o

Te 1
J a(l—ba)’

whereb=0.57719.
To conclude, it would be interesting to compare the criti-

(24)

us the magnetization as a function of the temperature and cé&®! temperature given by E?2) with other theoretical val-

be solved self-consistently. On the other hand, near the critit€S 9!

cal temperature, wheréS?) goes to zero, we expand the
argument into the integral, in Eq15), because it is very
small. In this case, it is easy to show that

=

LT
T

3KgT
A

(8)= (16)

where

ven in the literature. Fgr= 2 the numerical value of
the critical temperature found from E¢2) is T.=2.23J.
By performing the sum given by E17) numerically, we
obtain this same value of the critical temperature.

Using the simulation of the one-dimensional plane rotator,
Romano¥® found that T,=(2.16+0.01)J. For the one-
dimensional spherical model of Joyte,we have T,
=2.5128783. In conclusion, we have calculated the critical
temperature in one-dimensional spins Heisenberg ferro-
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magnetic chain, with long-range interactions using thequantum and thermal fluctuatiofSWhen there is some in-
Green’s function technique. For finite temperature, in conteraction between spins decayingrad, these fluctuations
trast with the well-known Mermin-Wagner Theorem which may be depressed to a certain extent and the system may

cannot achieve long-range orddi.RO) in pure one-

realize LRO. The transition temperature can then be esti-

dimensional Heisenberg systems because of the effect ofiated as a function gd.
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