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Localized spin excitations in an anisotropic Heisenberg ferromagnet
with Dzyaloshinskii-Moriya interactions

M. Daniel* and L. Kavitha
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~Received 1 May 2000; published 12 April 2001!

We investigate the nonlinear spin dynamics of an anisotropic Heisenberg ferromagnetic spin chain with
Dzyaloshinskii-Moriya interactions in the semiclassical limit. We have identified four completely integrable
spin models with soliton spin excitations for specific parametric choices and also constructed perturbed soli-
tons. We also obtain solitary spin excitations for a linearly perturbed integrable model at higher order.
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I. INTRODUCTION

In addition to dominant magnetic interactions, such
exchange, anisotropy, etc., which involve integrable s
models with soliton spin excitations, there exist certain m
netic interactions that are less spoken about in the litera
of nonlinear dynamics due to the mathematical complex
of their representations in the Hamiltonian and in the g
erning dynamical equations. Notable among them, which
been reexamined by several authors in recent times,1–4 is the
Dzyaloshinskii-Moriya ~DM! interaction, which is essen
tially an antisymmetric spin coupling that occurs when t
symmetry around the magnetic ions is not high enough, t
leading to the mechanism of weak ferromagnetism which
due to the combined effect of spin-orbit coupling and sp
spin exchange interactions. Weak ferromagnetism plays
important role in describing insulators, spin glasses, lo
temperature phases of copper oxide superconductors, p
transitions, etc.3,4 In spite of these developments, not much
known about nonlinear excitations in weak ferromagne
Under small-angle approximations certain specific isotro
and anisotropic one-dimensional weak-ferromagnetic mo
and an inhomogeneous radially symmetric weak ferromag
with specific inhomogeneity in the classical continuum lim
have been found to be integrable and to exhibit soliton s
excitations.5 In the present paper, we investigate the nonl
ear spin dynamics of weak ferromagnets in the general c
using a semiclassical approach. We identify a few integra
spin models which exhibit nonlinear spin excitations in t
form of solitons~Sec. II! and also construct perturbed solito
spin excitations~Sec. III! and solitary spin excitations~Sec.
IV !.

II. NONLINEAR DYNAMICS OF ANISOTROPIC
FERROMAGNETS WITH DM INTERACTION

The Heisenberg model of the Hamiltonian for an anis
tropic ~both exchange and crystal field! ferromagnetic spin
system with DM interaction in dimensionless form is giv
by
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where Ŝi
65Ŝi

x6 iŜi
y , Ŝi5Si /\, and Si5(Si

x ,Si
y ,Si

z). Here
J1 and J2 are the exchange integrals due to spin-spin co
pling and the terms proportional toJ3 correspond to the DM
interaction (D65Dx6 iD y). A andA8 are anisotropy param-
eters. For treating the problem semiclassically at sufficien
low temperature we use the following truncate
Holstein-Primakoff6 expansion for the spin operators in
terms of the bosonic operators. After introducing Glaube
coherent-state representation7 for the Bose operators, the
Heisenberg equation of motion is written in the form

iut1e2$J1uxx12d1uuu2u2 iA2J3~D1u* 1D2u!ux%

2 i e3$20d2~uxxx26uuu2ux!%1e4H J1

12
@uxxxx26u* ux

2

1d3~u2uxx* 12uuxu2u!1d4uuu2uxx2 id5$D
1~u* uxxx

13uxuxx* 13ux* uxx!1D2~ uuxu2uux1uuxxx!%

1d6uuu4u#J 2 i e5d2$uxxxxx1•••%1O~e6!50, ~2.2!

whereu corresponds to the coherent amplitude and the co
ficients d1 ,d2 , . . . ,d6 are given by d15(J22J12A
23A8), d25 1

30 J3Dz, d356(2J22J1)/J1 , d45d326,
d552A2J3 /J1, andd6572A8/J1.

While writing Eq. ~2.2! we have introduced a dimension
less time and transformed away linear terms proportional
u and ux using the transformationsu→u exp@2i(J22J11A
1A8)t# andx→x12J3Dzet, respectively. A close inspection
of Eq. ~2.2! reveals that it contains several well-known com
pletely integrable models admitting soliton solutions for sp
cific choices of parameters at different orders ofe. For ex-
ample, atO(e2), we have
©2001 The American Physical Society02-1
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iut1e2$J1uxx12d1uuu2u2 iA2J3@D1u* ux1D2uux#%50.

~2.3!

After rescalingx and t asx→(Ad1 /J1)x and t→d1e2t and
by assuming that the DM interaction is restricted to thez
direction (D15D250), Eq.~2.3! becomes the well-known
completely integrable cubic nonlinear Schro¨dinger ~NLS!
equationiut1uxx12uuu2u50, for which theN-soliton solu-
tions can be found in more than one way.8–12 It is worth
pointing out at this point the limits of isotropic and anis
tropic continuum Heisenberg models. Though in the class
limit the isotropic continuum Heisenberg model can
mapped onto the completely integrable cubic NLS equat
under the semiclassical approximation, the contribution
wards the nonlinear term vanishes. However, this nonlin
term (uuu2u) is generated from the single-ion uniaxial anis
tropic energy. AtO(e3), we have

iut1e2$J1uxx12d1uuu2u2 iA2J3@D1u* ux1D2uux#%

220i e3d2$uxxx26uuu2ux%50. ~2.4!

We assume thatJ1!J2, so that the spins point along th
Sz direction and D15D250. Now, upon choosingA
13A85J22J1, Eq. ~2.4! for real u can be written asut
1uxxx26u2ux50, which is the completely integrable mod
fied Korteweg–de Vries~MKdV ! equation which also pos
sessesN-soliton solutions.13 However, if we relax two of the
above conditions, namely,J1!J2 and u: real, it leads to
another completely integrable model given byiut1

1
2 uxx

2uuu2u2 id7@uxxx26uuu2ux#50, where d75J3Dze/6J1.
The N-soliton solutions for the above equation were fou
by Hirota using a direct method after bilinearizing it.12 How-
ever, at O(e4), from Eq. ~2.2!, we obtain a generalized
fourth-order NLS equation only when the DM interaction
completely absent:

iut1e2$J1uxx12d1uuu2u%1e4$~J1/12!@uxxxx26u* ux
2

1d3~u2uxx* 12uuxu2u!1d4uuu2uxx1d6uuu4u#%50.

~2.5!

On choosingJ25J1 /3, A5A85J1 /12, Eq.~2.5! reduces to
the completely integrable fourth-order NLS equation wh
admits N-soliton solutions,9 iut1uxx12uuu2u1g1@uxxxx

18uuu2uxx12u2uxx* 14uuxu2u16u* ux
216uuu4u#50, where

g15e2d1/12J1. Among the models only in Eq.~2.4! does
the contribution due to the DM interaction enters into t
integrable model. Though Eq.~2.4! can be derived from a
simple Hamiltonian, the purpose for starting from a mo
generalized Hamiltonian is to analyze the nature of nonlin
excitations at different orders of discreteness and due to
DM interaction even under perturbation. From the above,
observe that, though the higher-order discreteness effec
troduces higher degrees of nonlinearity into the spin dyna
ics of the system, interestingly at each higher order ofe, for
a specific choice of parameters, still the nonlinear dynam
is governed by the completely integrable hierarchy of mod
in the NLS family. Nevertheless, in general at each orde
e the nonlinear spin dynamics is governed by the pertur
17230
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nonlinear Schro¨dinger family of equations. Therefore it i
natural to investigate the complete nonlinear dynamics
spins under perturbation.

III. EFFECT OF THE DM INTERACTION AS
PERTURBATION ON INTEGRABLE SPIN MODELS

We now investigate the nature of nonlinear spin exci
tions at different orders ofe in the more general case~with-
out imposing restrictions on parameter values! by carrying
out a multiple-scale perturbation analysis on Eqs.~2.3! and
~2.4! separately.14 We first consider Eq.~2.3!, and after res-
caling t andx as t→e2d1t andx→(Ad1 /J1)x, respectively,
we get the following perturbed cubic NLS equation:

iut1uxx12uuu2u1 il1@D1u* ux1D2uux#50, ~3.1!

where the perturbation parameterl152J3A2/J1d1. When
l150, Eq. ~3.1! reduces to the completely integrable cub
NLS equation which possessesN-soliton solutions. The ex-
plicit form of the corresponding one soliton solution is give
by

u5h sechh~u2u0!exp@ i j~u2u0!1 i ~s2s0!#, ~3.2!

where ]u/]t522j, ]u/]x51, ]s/]t5h21j2, and
]s/]x50. Hereh andj are related to the scattering param
eter of the inverse scattering analysis. Now we treat the c
tribution due to the DM interaction proportional to→D1

and D2, i.e., terms proportional tol1 as a weak perturba
tion, and introduce a slow time variableT5l1t. The enve-
lope soliton solution of Eq.~3.1! is now given by u

5û(u,T;l1)exp@ij(u2u0)1i(s2s0)#, whereh, j, u0, and
s0 are now functions of the new time scaleT. Under the
assumption of quasistationarity, Eq.~3.1! takes the form

2h2û1ûuu12û2û* 5l1F~ û!, ~3.3!

where F(û)5 i @2ûT1D1û* ûu1D2ûûu#1@(u2u0)jT

2ju0T2s0T2D1û* j2D2ûj#û. Making the first-order
perturbation û(u,T;l1)5û0(u,T)1l1û1(u,T) and substi-
tuting û15f̂11 i ĉ1 (f̂1 andĉ1 are real! in Eq. ~3.3! we get

L1f̂1[2h2f̂11f̂1uu16û0
2f̂15Re F1~ û0!, ~3.4!

L2ĉ1[2h2ĉ11ĉ1uu12û0
2ĉ15Im F1~ û0!, ~3.5!

where L1 and L2 are self-adjoint operators and ReF1(û0)
5 @(u 2 u0)jT 2 ju0T 2 s0T 1 D1û0* j 2 D2û0j# û0 ,

Im F1(û0)5@2û0T1D1û0* û0u1D2û0û0u#. As û0u and û0

are solutions of the homogeneous parts of Eqs.~3.4! and
~3.5!, respectively, we have *2`

` û0u ReF1du50,

*2`
` û0 Im F1du50. On substituting the values ofû0u ,

û0 , ReF1(û0), and ImF1(û0) and after evaluating the inte
grals we obtainjT5hT50 which implies that the velocity
and amplitude of the soliton remain unchanged during pro
gation under perturbation.

The perturbed solutionû1 can be constructed by so
ving Eqs. ~3.4! and ~3.5!. The homogeneous part o
2-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 172302
Eq. ~3.4! admits two particular solutionsf̂11 and f̂12

given by f̂115sechh(u2u0)tanhh(u2u0), f̂125(21/h)
3@sechh(u 2 u0)2 3

2 h(u 2 u0)sechh(u 2 u0)tanhh(u
2u0)2 1

2 tanhh(u2u0)sinhh(u2u0)#. Knowing two particu-
lar solutions, the general solution can be constructed u
the form f̂15C1f̂111C2f̂122f̂11*2`

u f̂12ReF1du8

1f̂12*2`
u f̂11ReF1du8, whereC1 andC2 are arbitrary con-

stants. We substitutef̂11, f̂12, and ReF1 in the above ex-
pression forf̂1 and evaluate the integrals. We remove t
secular terms which make the solution unbounded, by cho
ing the arbitrary constantC2 asC25 1

2 @ju0T1s0T#. Imple-
menting the boundary conditionsf̂1(0)uu0505f̂1u(0)uu050

50, we obtain C150, C25Djh2/3(12h) where D1
5(D12D2). Thus, the final form of the general solutio
f̂1 becomes

f̂15D1jS h

6~12h! H F6S 9

h
12D

227 sech2h~u2u0!Gsechh~u2u0!13h~u2u0!

3@223 sech2h~u2u0!#sechh~u2u0!

3tanhh~u2u0!J 2@22~21h!sech2h~u2u0!

13h~u2u0!sech2h~u2u0!tanhh~u2u0!#

3sech2h~u2u0! D . ~3.6!

In a similar way, Eq.~3.5! can also be solved andc1 can
be constructed. The homogeneous part of Eq.~3.5! admits
the following two particular solutions namelyĉ11

5sechh(u2u0) and ĉ125(1/2h)@h(u2u0)sechh(u2u0)
1sinhh(u2u0)#. Following the same procedure we constru
the general solution which, after removing the secular te
and applying the boundary conditions, becomes

ĉ15~D2h/3! $h~u2u0!†sech3h~u2u0!2tan21

3@sinhh~u2u0!‡26#sechh~u2u0!

1@sechh~u2u0!23#sechh~u2u0!tanhh~u2u0!%,

~3.7!

whereD25(D11D2). Knowing f̂1 and ĉ1 the perturbed
solution û15f̂11 i ĉ1 can be constructed using Eqs.~3.6!
and ~3.7!.

Next, we try to construct the perturbed soliton for E
~2.4! using the same procedure. After making the same
caling for t andx, Eq. ~2.4! can be written as

iut1uxx12uuu2u1 il2@vuxxx12uuu2ux#50, ~3.8!

where v5(J12J21A13A8)/3J1 and l2 5eJ3Dz/
AJ1(J22J12A23A8) is the perturbation parameter. Fo
lowing the same procedure used in the previous case, we
17230
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for Eq. ~3.8!, ReF1(û0)5@(u2u0)jT2ju0T2s0T1

13vjû0uu12juû0u2û0 2vj3û0] û0 , Im F1(û0)52$û0T

1vû0uuu23vj2û0u12uû0u2û0u%. The secularity conditions
in this case also lead to the same conclusion that the velo
and amplitude of the soliton remain unchanged. We c
struct the perturbed solutionu1 following the same proce-
dure. Finally, the first-order perturbed soliton solution f
Eq. ~3.8! takes the form

û15
h

2
$j@h~u2u0!tanhh~u2u0!21#sechh~u2u0!

1 ih~3v21!@ tanhh~u2u0!2~u2u0!#

3sechh~u2u0!%. ~3.9!

The results of the perturbation analysis show that the D
interaction introduces a small fluctuation in the tail of t
soliton. Further the elementary spin excitations are intact
the perturbation due to the DM interaction does not alter
velocity and amplitude of the soliton. To illustrate this w
have plotted the perturbed soliton~with fluctuations in the
tail! uû01l2û1u by choosingl250.002, h5v50.9, andj
51.5 in Fig. 1. A similar perturbation analysis for a gene
alized fourth-order NLS equation@similar to Eq.~2.5!# can
be found in Ref. 9.

IV. SOLITARY-WAVE-LIKE SPIN EXCITATIONS

Even though perturbed solutions over unperturbed s
tons can be constructed, it is always useful to construct
plicit localized solutions if possible~see, e.g., Ref. 15!. We
therefore, following the procedure of Grimshaw an
Pavlov,15 construct a solitary-wave solution to a linearly pe
turbed MKdV equation that describes the spin excitations
the weak ferromagnet which we obtain from Eq.~2.2! at
O(e5) by considering only terms proportional touxxxxx.
ChoosingJ1!J2 and J22J15A13A8 and assuming tha
the DM interaction is restricted to thez direction (D1

5D250) whenu is real, Eq.~2.2! becomes

ut1uxxx16u2ux1 êuxxxxx50, ~4.1!

FIG. 1. The soliton (uû01l2û1u) of Eq. ~2.4! representing spin
excitations with fluctuations in the tail due to the DM interaction
2-3
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where ê5e2/20. The perturbed MKdV equation~4.1! pos-
sesses the Hamiltonian structure described by the Ha

tonian H5*@ 1
2 ux

22u4/122 1
2 êuxx

2 #dx. The traveling-wave
solutions for the perturbed soliton equation can be obtai
from the Lax-Novikov~LN! equationd(H2aP2bQ)50,
where the momentum integralP and CasimirQ for Eq. ~4.1!

take the formP5* 1
2 u2dx andQ5*udx, respectively. Here

a is the speed of the wave andb is the integration constant
Now the LN equation corresponding to our perturbed MKd
equation ~4.1! can be written as2 êuxxxx2uxx2su3/3
2au2b50, wheres561. The Hamiltonian structure o
the equation helps us to rewrite the LN equation
ê@uxuxxx2

1
2 uxx

2 #1 1
2 ux

21su4/121 1
2 au21bu1g50 where

g is a new constant of integration. Assumingux
25y(u), the

LN equation can be written as

ê@yy92y82/4#1y1u4/61au212bu12g50. ~4.2!

Now we seek a solution15 for y in the formy(u)5ux
25Au3

1Bu21Cu1D, which on substituting in Eq.~4.2! and col-

FIG. 2. Localized solitary wave solution of Eq.~4.1! ~for spe-
cific parametric choices! representing spin excitations.
17230
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lecting the coefficients of different powers ofu gives on
solving them A2522s/45ê, B521/5ê, AC52a/9ê

18/225ê2, D5210g/315êC2/12, andb53êAD12C/5.
In order that the above two parameter (a andb) families of
solutions exist,sê,0. On choosingb5g50, C5D50,
anda524/25ê we obtainux

25Au32 êu2/5, which whenê
521 gives the localized solitary-wave solutionu5
(63/A10)sech2(x/2A5), which is plotted for the upper sign
in Fig. 2.

V. CONCLUSIONS

In this paper, we investigated the nonlinear spin dynam
of one-dimensional anisotropic continuum Heisenberg we
ferromagnetic spin chains in the semiclassical limit using
Holstein-Primakoff transformation combined with Glaube
coherent-state representation. The spin dynamics is
found to be governed by a generalized nonlinear model c
taining at least four completely integrable nonlinear mod
at different orders ofe for particular parametric choices. I
all these specific cases, the nonlinear spin excitations
governed byN solitons. In the more general case it w
found that the addition of discreteness and DM interact
does not alter the velocity and amplitude of the envelo
soliton. We also constructed perturbed soliton solutions
O(e2) andO(e3) using a multiple-scale perturbation anal
sis. The results show that the perturbation due to discrete
effect and DM interaction adds only a fluctuation in the t
of the soliton without affecting the coherent structure of
At O(e5) we constructed localized solitary-wave solutions
a linearly perturbed equation of the system.
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