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Localized spin excitations in an anisotropic Heisenberg ferromagnet
with Dzyaloshinskii-Moriya interactions

M. Danielf and L. Kavitha
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India
(Received 1 May 2000; published 12 April 2001

We investigate the nonlinear spin dynamics of an anisotropic Heisenberg ferromagnetic spin chain with
Dzyaloshinskii-Moriya interactions in the semiclassical limit. We have identified four completely integrable
spin models with soliton spin excitations for specific parametric choices and also constructed perturbed soli-
tons. We also obtain solitary spin excitations for a linearly perturbed integrable model at higher order.
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In addition to dominant magnetic interactions, such as
exchangel, anisptropyz etc.,. W_hich involve ﬁntegrab_le spin —i;{D+[§f§{+l—§(§+l]+D*[AS,“,ZH—ASLlASIZ]
models with soliton spin excitations, there exist certain mag-
netic interactions that are less spoken about in the literature
of nonlinear dynamics due to the mathematical complexity ~ +D45 §,,-§'5,,1}-A(8)2-A(&)*, (2.0
of their representations in the Hamiltonian and in the gov-
erning dynamical equations. Notable among them, which hagnere 5~ &+i8Y | §=5/#, and S=(S',9,S). Here
been reexamined by several authors in recent tf‘r_ﬁ"es,the J, andJ, are the exchange integrals due to spin-spin cou-
Dzyaloshinskii-Moriya (DM) interaction, which is essen- pling and the terms proportional thy correspond to the DM
tially an antisymmetric spin coupling that occurs when thejnieraction p*=D*+iDY). AandA’ are anisotropy param-
symmetry around the magnetic ions is not high enough, thugters. For treating the problem semiclassically at sufficiently
leading to the mechanism of weak ferromagnetism which igow temperature we use the following truncated
due to the combined effect of spin-orbit coupling and spin-Holstein-Primakoff expansion for the spin operators in
spin exchange interactions. Weak ferromagnetism plays agerms of the bosonic operators. After introducing Glauber's
important role in describing insulators, spin glasses, low-coherent-state representatiofor the Bose operators, the
temperature phases of copper oxide superconductors, phadeisenberg equation of motion is written in the form
transitions, eté:* In spite of these developments, not much is
known about nonlinear excitations in weak ferromagnets. iu;+ €I Uy + 28, |U|Pu—i\235(DTu* +D " u)u,}
Under small-angle approximations certain specific isotropic

. . . ) . ) J1
and anisotropic one-dimensional weak-ferromagnetic models — 1 €%{2008,(Uyxx— 6]Ul?Uy)} + €% 25 [ Uyxx— BU* UZ
and an inhomogeneous radially symmetric weak ferromagnet 12
with specific mhomogen@ty in the classical cpntlnuqm I|m|F + 85(URUE + 2| Uy |2U) + 84| U|2Uy— i 85{D T (U* Uy
have been found to be integrable and to exhibit soliton spin
excitations: In the present paper, we investigate the nonlin- + 3u, Uk, + 3U5 Uyy) + D (Juy2uut+ uu,,)}
ear spin dynamics of weak ferromagnets in the general case
using a semiclassical approach. We identify a few integrable + Sglul*u] | —ie58,{u +..1+0(%)=0, (2.2
XXXXX 1 .

spin models which exhibit nonlinear spin excitations in the

for.m of s_ollt_ons(Sec. 1) and also.constrgct perFurped soliton whereu corresponds to the coherent amplitude and the coef-
spin excitationgSec. Il) and solitary spin excitation&Sec. ficients 6,,8,, ....0; are given by &y=(J,—J;—A
V). —3A"), 8y~ £3.D%  53=6(2),—I))/Iy, S4=54—6,
85=22J313;, and 5=T72A"/J;.
While writing Eq. (2.2) we have introduced a dimension-
Il. NONLINEAR DYNAMICS OF ANISOTROPIC less time and transformed away linear terms proportional to
FERROMAGNETS WITH DM INTERACTION u and u, using the transformationa— u exg2i(J,—J;+A
+A’)t] andx— x+2J3;D%€t, respectively. A close inspection
The Heisenberg model of the Hamiltonian for an aniso-of Eq. (2.2) reveals that it contains several well-known com-
tropic (both exchange and crystal figlferromagnetic spin pletely integrable models admitting soliton solutions for spe-
system with DM interaction in dimensionless form is given cific choices of parameters at different orderseofFor ex-
by ample, atO(€?), we have
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iU+ €X{IqUyet+ 28, |u|?u—i 235 D u* u+D " uu,]} =0. nonlinear Sch"rdipger family of equations. Therefore it is

natural to investigate the complete nonlinear dynamics of
(2.3 spins under perturbation.

After rescalingx andt asx— (1/6;/J;)x andt— &;€’t and

by assuming that the DM interaction is restricted to the Ill. EFFECT OF THE DM INTERACTION AS

direction @ *=D~=0), Eq.(2.3 becomes the well-known PERTURBATION ON INTEGRABLE SPIN MODELS

completely integrable cubic nonlinear Sctimger (NLS)

equationiu,+ uy,+ 2|u|?u=0, for which theN-soliton solu-

tions can be found in more than one why? It is worth

pointing out at this point the limits of isotropic and aniso-

tropic continuum Heisenberg models. Though in the classic ».4) separately* We first consider Eq(2.3), and after res-

limit the isotropic continuum Heisenberg model can be'™ 5 V313, .
mapped onto the completely integrable cubic NLS equationC&lingt andx ast— e“4;t andx— (yd;/J1)x, respectively,

under the semiclassical approximation, the contribution toW& 9€t the following perturbed cubic NLS equation:
wards the nonlinear term vanishes. However, this nonlinear

term (u|?u) is generated from the single-ion uniaxial aniso-

We now investigate the nature of nonlinear spin excita-
tions at different orders of in the more general cagwith-
out imposing restrictions on parameter valubyg carrying
ut a multiple-scale perturbation analysis on E@s3 and

iUg+ Uyyt 2|u|?u+iN DT u*u+D uu]=0, (3.1)

tropic energy. AtO(€%), we have where the perturbation parametey=—J;y2/J;6,. When
_ . N1=0, Eq.(3.1) reduces to the completely integrable cubic
iU+ €I Uy 28, |Uu|2u—i2J5[ DT u* u e+ D "uu,J} NLS equation which possesshissoliton solutions. The ex-
201 €26,{ Uy 6|U|2U ) = 0. 2.4 Eillcn form of the corresponding one soliton solution is given

We assume that;<J,, so that the spins point along the _ _ Cen i
& direction andD*=D"=0. Now, upon choosingA = 7 Sechn( 6= 60)exHi&(0= o) +i(o = o), 3.2
+3A’=J,—J,, EqQ. (2.4 for real u can be written asi,  where Jo/at=—2¢, 90ldx=1, doldt=n*+¢% and
+ Uyyx— 6U%u,= 0, which is the completely integrable modi- do/dx=0. Heren and¢ are related to the scattering param-
fied Korteweg—de VriesMKdV) equation which also pos- eter of the inverse scattering analysis. Now we treat the con-
sessed\-soliton solutions-3 However, if we relax two of the  tribution due to the DM interaction proportional te-D*
above conditions, namely];<J, and u: real, it leads to andD", i.e., terms proportional td; as a weak perturba-
another completely integrable model given by,+3u,, tion, and introduce a slow time variable=\;t. The enve-
—[ul?u—i87[ uyyy—6|ul?u]=0, where §,=J;D%/6J,. lope soliton solution of Eq.(3.1) is now given byu
The N-soliton solutions for the above equation were found=u(6,T;\,)exdi&(0— 6p)+i(c—ao)], Where 5, &, 6,, and
by Hirota using a direct method after bilinearizing4tHow- &, are now functions of the new time scale Under the

ever, atO(e"), from Eq. (2.2, we obtain a generalized assumption of quasistationarity, E@.1) takes the form
fourth-order NLS equation only when the DM interaction is

completely absent: — 72U+ Ugy+ 2020% =\, F(U), (3.3

iU+ €I Uyt 261 u|2u} + €*{(I1/12)[ Uyyyy— BU* U2 where  F(U)=i[—Ur+ D U*U,+D Ul,]+[(6— o)t
— &0gr— oor—DTU*E—DUEJU. Making the first-order
perturbationu(8,T;\1)=Uq(6,T)+X\,U;(6,T) and substi-

29 tuting 0y, = ¢+ (b, and s, are real in Eq. (3.3 we get
On choosingl,=J,/3, A=A"=J,/12, Eq.(2.5) reduces to

+ S3(UPuf, + 2|u)?u) + 84 ulPuy+ Sglul*ul}=0.

the completely integrable fourth-order NLS equation which Lidi=—172h1+ d14p+6Up1=Re F1(Ug), (3.9
admits N-soliton solutions, iU+ Uy, +2|u|2u+ ¥4 Uyexx A o o A
+8|ul?ugy + 202Uk, + 4|u,|?u+ 6u* U2+ 6|ul*u]=0, where Loth=— 9?4+ dge+ 20501 =IMF1(Ug), (3.5

v1=€26,/12);. Among the models only in Eq2.4) does . -
the contribution due to the DM interaction enters into theWhereLs and L, are self-adjoint operators and Rg(uo)
integrable model. Though Eq2.4) can be derived from a = [(0 — 6o)ér — &0t — oor + D Usé — D™ Ué] Ug,
simple _Hamiltonian, '_[he purpose for starting from a morelm F1(Ug) =[ — Ugr+ Dﬂ]éc Uoy+ D ~Uglge]. As Uy, and Uy
generalized Hamiltonian is to analyze the nature of nonlineaare solutions of the homogeneous parts of Bs4) and
exc¢at|ons gt different orders of dlsgreteness and due to th%_5), respectively, we have fofxl:log ReF,d#=0,
DM interaction even under perturbation. From the above, we.,, "~ - -
observe that, though the higher-order discreteness effect ir{-*“uo Im F}d¢9=0. On §ubstltutlng the values gy,
troduces higher degrees of nonlinearity into the spin dynamto, ReF;(up), and InF;(uo) and after evaluating the inte-
ics of the system, interestingly at each higher ordee,dbr ~ grals we obtainit= 7r=0 which implies that the velocity

a specific choice of parameters, still the nonlinear dynamicgnd amplitude of the soliton remain unchanged during propa-
is governed by the completely integrable hierarchy of modelgation under perturbation.

in the NLS family. Nevertheless, in general at each order of The perturbed solutionu; can be constructed by sol-

e the nonlinear spin dynamics is governed by the perturbeding Egs. (3.4 and (3.5. The homogeneous part of
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Eqg. (3.4 admits two particular solutionshy; and ¢,

given by ¢,=sechy(6— p)tanhn(6— 6;), 1= (—1/7)

X[sechn(8 — 6o)—37(0 — 6o)sechn(8 — 6p)tanhz(

— 6p) — 3tanhz(6— ) sinhy(6— 6,)]. Knowing two particu- 3
lar solutions, the general solution can be constructed using .5
the form  ¢;=Ci¢11+Codro— d1uf’ .o ReF,d6’
+ fblzf”ix&snReFld 0', whereC, andC, are arbitrary con- .
stants. We substitutéb;;, ¢1,, and ReF; in the above ex- — 0
pression forc}ﬁl and evaluate the integrals. We remove the
secular terms which make the solution unbounded, by choos-
ing the arbitrary constar€, asC,= 5[ £6yr+ oo7]. Imple-
menting the boundary conditionsy(0)| 5,—0= ¢14(0)/ 4,0

=0, we obtain C;=0, C,=Dé&7%/3(1— %) where D,
=(D*—D"7). Thus, the final form of the general solution  FIG. 1. The soliton [{iy+\,04|) of Eq. (2.4) representing spin
(},l becomes excitations with fluctuations in the tail due to the DM interaction.

b1= le(—(s(l?z 7 HG
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20

for Eq. (3.8, ReFy(Ug)=[(6—6o)ér—Efor—oor+
+3wélggyt2€[UglPuy  —wé3UglUp, IMFy(Ug)=—{Ugr

9
—+2
n

+ wlggpe— 3wEUg,+ 2|Ug|2Ug,}. The secularity conditions
—27 seclf 5(6— 6o) | sechn( 06— 6) +37(6— 6o) in this case also lead to the same conclusion that the velocity

and amplitude of the soliton remain unchanged. We con-
X[2—13 sectt 5(6— 6,) |sechy(6— 6,) struct the perturbed solution, following the same proce-

dure. Finally, the first-order perturbed soliton solution for

x tanhz( 6— 00)] —[2—(2+ p)sectp( 6 6;) Eq. (3.8 takes the form

+37(0— ) sect (68— 6y)tanhn(6— 6,)] ﬁfg{%[ 7(6— Gp)tanhn(6— ) — 1]sechn(6— o)
« sectP( 6 00)). 3.6 +in(3w—1)[tanhn(6— 6o)— (8- 69)]
xXsechn(6—6,)}. (3.9

In a similar way, Eq(3.5) can also be solved angh can The results of the perturbation analysis show that the DM
be construgted. The hom(?geneous pgrt of &p) adn:nts interaction introducgs a small fluctugtion in the tail of the
the following two particular solutions namelyJ.;  ggliton, Further the elementary spin excitations are intact and
=sechn(6— 6y) and ¢y,=(1/2n)[ n(6— 6y)sechn(6—6,)  the perturbation due to the DM interaction does not alter the
+sinh7(6— 6y)]. Following the same procedure we constructvelocity and amplitude of the soliton. To illustrate this we
the general solution which, after removing the secular term$ave plotted the perturbed solitgwith fluctuations in the
and applying the boundary conditions, becomes tail) |Ug+\,U;| by choosingh,=0.002, 7= w=0.9, and&
=1.5in Fig. 1. A similar perturbation analysis for a gener-

g —1
Y1=(D7/3) { n(6— bo)[sect’ (60— 6p) —tan alized fourth-order NLS equatiofsimilar to Eq.(2.5)] can

X [sinhyp(6— 6,)]—6]sechy(6— ;) be found in Ref. 9.
+[sechn(6— o) —3]sechy(6— bo)tanhy(6— bo)}, IV. SOLITARY-WAVE-LIKE SPIN EXCITATIONS
3.7) Even though perturbed solutions over unperturbed soli-

— (Nt - P 5 tons can be constructed, it is always useful to construct ex-
whergD% (Q +.DA ). Knowing ¢ and th.e perturbed plicit localized solutions if possiblésee, e.g., Ref. 215We
solution u, =, +i4; can be constructed using Eqs.6) therefore, following the procedure of Grimshaw and
and(3.7). . Pavlov!® construct a solitary-wave solution to a linearly per-

Next,. we try to construct the perturbeq soliton for Eq‘turbed MKdV equation that describes the spin excitations of
(2.4) using the same procedure. Aftgr making the same r'®She weak ferromagnet which we obtain from H@.2) at
caling fort andx, Eq. (2.4) can be written as O(€®) by considering only terms proportional i@,yyy.

iU+ Ut 2|U|2U+ i o[ @l 2|U2u]=0, (3.9 ChoosingJ;<J, and J,—J;=A+3A’ and assuming that
the DM interaction is restricted to the direction O™

where w=(J;—J,+A+3A")/3J; and A\, =e€J3D? =D =0) whenuis real, Eq.(2.2) becomes
VI1(J,—J;—A—3A’) is the perturbation parameter. Fol- .
lowing the same procedure used in the previous case, we get, Ug+ Uyt BUZU, + EUyyyo= 0, 4.7
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lecting the coefficients of different powers of gives on
solving them A%=—2¢g/45¢, B=—1/5¢, AC=2al9¢
+8/2252, D= —10y/3+5€eC?/12, and B=3eAD+2C/5.
In order that the above two parameter énd B8) families of

\\\\
AR \\\\\\\\\\kk\\\\\i\

N S
N . o :
\\Q\\@\“\\\\\\\\\‘\\t\\\‘k\&@ solutions exist,oce<0. On choosingB=y=0, C=D=0,
305} \\\\\k\\\\\\\\\\@“&\\‘;\\“ ~ U2 AR — 2 ; .
\\\\\\\\\\\\\\\\‘‘\g\“\::\*‘\::&?\\Qs and a= —4/25¢ we obtainu;=Au’— eu</5, which whene
\\\\%\\\\Qg\;“gﬁ;“ =—1 gives the localized solitary-wave solution=
0 e (+3/Y10)secR(x/2\/5), which is plotted for the upper sign

in Fig. 2.

10 > V. CONCLUSIONS

x

In this paper, we investigated the nonlinear spin dynamics

FIG. 2. Localized solitary wave solution of E¢t.1) (for spe-  of one-dimensional anisotropic continuum Heisenberg weak-
cific parametric choicegrepresenting spin excitations. ferromagnetic spin chains in the semiclassical limit using the
Holstein-Primakoff transformation combined with Glauber’'s

where e= €2/20. The perturbed MKdV equatiof#.1) pos-  coherent-state representation. The spin dynamics is then

sesses the Hamiltonian structure described by the Hamifound to be governed by a generalized nonlinear model con-
tonian H=f[%u§—u4/12— %Eufx]dx. The traveling-wave talnl_ng at least four complete_ly integrable no_nlmea_r models

solutions for the perturbed soliton equation can be obtainefit different ord_elrs OF for part|cular. parametric chchs. In
from the Lax-Novikov(LN) equations(H— aP— 8Q)=0, all these specific cases, the nonlinear spin excitations are

where the momentum integrBland CasimiiQ for Eq. (4.1 governed byN solit.qns. In t.he more general case it was
YR g - Q , a. (4.1 found that the addition of discreteness and DM interaction
take the formP = [;u“dx andQ= fudx, respectively. Here e not alter the velocity and amplitude of the envelope

a is the speed of the wave arilis the integration constant. sgjiton. We also constructed perturbed soliton solutions at
Now the LN equation corresponding to our perturbed MKdV o (¢2) and O(€3) using a multiple-scale perturbation analy-
equation (4.1) can be written as— eUyy,— Uy— oU®/3  sis. The results show that the perturbation due to discreteness
—au—B=0, wherec=*1. The Hamiltonian structure of effect and DM interaction adds only a fluctuation in the tail
the equation helps us to rewrite the LN equation asof the soliton without affecting the coherent structure of it.
E[uxuxxx— %u)z(x] + %u§+ ou?/12+ 3 au?+ Bu+ y=0 where At O(€°) we constructed localized solitary-wave solutions to

y is a new constant of integration. Assuming=y(u), the @ linearly perturbed equation of the system.

LN equation can be written as

elyy' —y'44]+y+u*/6+ au®+2Bu+2y=0. (4.2 ACKNOWLEDGMENT
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