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Dipole ordering effects and reentrant dipolar glass state in KTaQ:Li,Nb
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Dielectric permittivity and Raman-scattering studies reveal unconventional dipole ordering and structural
effects that arise in the incipient ferroelectric KTaue to the simultaneous presence of off-centér amnd
Nb®" ions. A soft-mode-driven transition into a ferroelectric phase accompanied by the formation of a dipole
glass in the Lt subsystem was identified at 39 K in a sample of compositiggulli o go14T 8 98dNBo 0103 A
second soft-mode transition was found at 30 K, whereas a transition into a phase identified as a “reentrant
dipolar glasslike state” was observed at 15 K. Such a sequence of phases, diordered—long range ordered—
reentrant glass, already known for disordered ferromagnets, is here reported for a highly polarizable matrix
with soft modes.
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Ordering effects in systems of randomly distributed di- In KTN, there is evidence for a soft-mode-dominated
poles with orientational degrees of freedom in a polarizabldransition to an ordered rhombohedral phase above a concen-
matrix are an important topic in the physics of dielectric tration ofy=0.01*® A sequence of three ferroelectric phase
materials, the consideration of which goes back to Langevtransitions(from tetragonal to orthorhombic to rhombohe-
in's and Debye’s works. In the past several years, new atterdral) is detected whery>0.03* These manifestations are
tion has been given to this subject due to the discovery thascribed to an instability of the Ta-O ferroelectric chain,
substitutional ions may induce ordering and even lead tavhich is usually attributed to the presence of fast-relaxing
ferroelectric instability in a highly polarizable matrix. A (111 displacements of substitutional Ribions. An under-
paradigmatic case is that of Lior Nb®* off-center ions sub- standing of the situation in which the two impurities are
stituting for K or T&" in the incipient ferroelectric Simultaneously present is not as well developed. This is the
KTa0, (KTO),1 8 where the effective moment of the dipole ca@se for K_,Li,Ta;_,Nb,TaO; (KLTN) where there is the

centers is greatly increased with respect to other systenf¥Ssibility of interplay between theé%'_iand. NE* dipolar
(e.g., alkali halide8, owing to the large value of the dielec- SuPsSystems. Prater, Chase, and Boatrstudied depolariza-

: e tion of light and Raman spectra in order to monitor the ef-
tric susceptibility at low temperature. : . :
Actually the individual effects of the two impurities, Nb fects of Li additions withx=0.0025 on the soft-mode phase

. . . transition(PT) of KTN, and they proposed a phase diagram
2221 L(I)’uirjsrelatlli/ie'lgav(;se(l:(e&t?t:lns; ?(qrfromNLh%S?ljgl—ch))f thefor KLTN. At x<0.004, all the essential features of the Nb-
P lifx X a-yNDyHs ' induced PT were evident, with the exception that the sym-

At concentrations of Li and Nb less than critical ongg,

N R 9,10 metry of the ferroelectric phase was found to be tetragonal
~0.01 ’for KTL (Ref. 8 andy.,~0.008 for KTN,"" the oihar than rhombohedral. Such a possibility was considered
system’s behavior is close to that of KTgQvhere ferroelec-  heoretically by Glinchuk® With increasing Li content, the

tric ordering at low temperatures is prevented by quantunpT character turns to order-disorder, and its transition tem-
fluctuations. Above these thresholds, distinct manifestationﬁerature is progressively raised.

take place in these two compounds. In KLT short-range or- |n this work we present results from a dielectric permit-
dering begins to develop with increasing Li concentration tivity and Raman spectroscopy study for KLTN with
giving rise to a dipole glass or mixed ferro-dipole glass state~0.0012, i.e., with a smaller Li content than was used in
with tetragonal microdomairfs>°~** At concentrationsx  Ref. 17. It appears that the phenomena induced in KLTN by
>0.05 long-range ferroelectric order develdpdhese phe- a very small Li co-doping are quite complex, including a
nomena are specifically connected with the presence afequence of soft-mode driven transitions, the enhancement
slowly relaxing Li" off-center dipoles, which are character- of dipolar relaxation, and the formation, at low temperature,
ized by large(~1.2 A) (100 displacements and by indirect of a phase that displays characteristic properties of a “reen-
interaction via TO soft phonons in the highly polarizable trant dipole glass” phase. The behavior of the realand
perovskite-type matrix. imaginarye” parts of the permittivity is studied in the 100-
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FIG. 1. Temperature dependence of the dielectric permittivity  F|G, 2. Arrhenius plot for the temperature dependence of mean
&' I Ko.eesd-10.0014T 80.989ND0.00103 for several frequencies. The rejaxation time in K gogd-i 0014 @0.08dNb0.001 05 EXperimental
inset shows the behavior ef for successive cooling and heating in points (crossek are determined from the position of the/(T)

a 100-Hz reference ac electric field. maxima at different ac frequencies. The straight line presents an

Hz—1-MHz frequency range and in the 9-300-K temperatur?f‘"h?n'us fit with 7o~3x 10 s andA%S_%.ZB meV. The dashed
range with approach described in Ref. 19. Low-energy Ra—'ni‘ IS a Vogel'.FmCher fit withro~1.3<10"*"s, A~55meV arfd
. o T:=11K. The inset shows the temperature dependence of the
man spectra, taken in a 90° geometry were used to study tI}% atin ¢ d aft oo
. . g run performed after specimen’s cooldown to 10 K under 10
TO, soft-phonon mode in the range of 15-100 K, using thekV/cm of dc electric bias field
methods described in Ref. 20. Observations were performed '
at different temperatures, after cooling the sample to about
15 K, at a rate of 1 K/min and then heating to the successivéaxation time determined from the positions of th&(T)
points of measurement. KLTN single crystals were providednaxima at different frequencies, was satisfactorily described
by Oak Ridge National Laboratory. About 0.012 wt % of Cuby an Arrhenius law 7=7yexp@/kgT), with 74~3
was added to facilitate the crystal growth. From the concenx 10~ **s and an activation energy~89.3meV, that are
tration in the melt, and using empirical rul@sthe estimated Well-known relaxation parameters for 90°-orientation
Li concentration in the samples was=0.0014. The esti- “hops”of Li * centers’ However, a Vogel-FulcheiVF) law
mated concentration of Nb, according to the phase diagram= 7o €X{{A/kg(T—Tp)], with 7o~1.3<10"*?s, A~55meV
of KTN,?2 wasy=2.4%. A direct determination performed and a freezing temperatufg;= 11K, provided a better fit
by electron microprobe analysis, supported by the compariconsistent with the deviation from behavior typical of non-
son to reference KLTN specimens in which the Nb conceninteracting relaxators. Below 45 K, the relaxation tin(@)
tration was accurately determined using microprobe and phds slowing down abruptly and ceases to fit the VF law.
tometry methods, gave a valuey# 1.2+0.6%. Specimens, Coincidently, it is remarkable that foF>50K, the total
in the form of thin, polished, and electroded slabs were prepermittivity, defined ag’ (100 H2 obeys a Curie-Weiss law
pared for dielectric measurements, and a rectangular paravith Tc=39-40K andC=1.25x< 10° K, suggesting a ferro-
lelepiped was used for Raman experiments. The sampleglectric PT in the same temperature region where the dielec-
were oriented along100 cubic axes. tric relaxation freezes. The inset of Fig. 2 presentssth@)
Figure 1 shows the temperature dependence’ ait dif- behavior for a heating run performed after a successive
ferent frequencies, as recorded in cooling runs. Two promispecimen cooldown to 10 K in a dc field of 10 kv/cm, re-
nent features are apparefit: a pronounced dielectric relax- moving the dc field, and then shorting and opening the elec-
ation developing in the 40—-90-K region; afit) an intense trodes. The dc field depresses the low-temperature cusp en-
cusp-shaped’(T) maximum at 15.3 K, with a small disper- tirely. The nonrelaxing part of the permittivitg) has a
sion and strong temperature hystergéiset of Fig. 2. At maximum, and the Ui off-center related relaxation de-
T>50K relaxation indicates characteristics of a Debye typecreases at the same temperature 39 K. Therefore the experi-
The magnitudes of’(T) and respective”(T) maxima de- ments suggest that 39 K is both the critical temperature of a
crease, and their position shifts to higher temperatures witferroelectric PT mainly of the second ord@ro hysteresis
ac frequency. At a given temperature, the positions"@f ) and the point of condensation of a dipole glass state. Such a
maxima and the:’ inflection point coincide. The dielectric coincidence implies a coupling of the soft lattice and the Li
relaxation is usually analyzed by the relation between theelated relaxation modes. The dynamics of such a PT can be
monitoring frequencyw and the temperatur&,, at which ~ of a central-peak type, as was considered in Ref. 23 for a
¢"(T) is at its maximum. Assuming that ai, the charac- System of relaxators in small concentration, coupled with the
teristic macroscopic mean relaxation time ig=1/w, an  TO soft mode. At the same time, in a plot 0£1/(1 MHz) vs
“Arrhenius plot” (In 7versus 1T) is then employed. Figure T, &,(T) is easily identified as a baseline that can be fit by a
2 gives the respective Arrhenius plot, which shows that, aCurie-Weiss law withT.~30-31K, which suggests the
least down to 45 K, the temperature dependence of the rgsossible presence of another soft-mode driven PT.
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It is remarkable that in past work on KLTN of similar E
composition$’ only a ferroelectric PT, at about the same L l
temperature, was reported. Ordering in thé kubsystem, at
such a small concentration of Li as observed here can be
explained by considering that the presence of Nb enhances L
the permittivity e’ and the corresponding correlation radius
'12 of indirect dipole-dipole interactioh? Moreover,
our dielectric experiments indicate that a second ferroelectric
PT takes place at30 K and a further transformation occurs,
accompanied by a permittivity maximum around 15 K.

The outstanding feature of this peak is its cusplike shape.
In heating runs, it was shifted to about 22 K, evidencing a
marked temperature hysteregsee the inset of Fig.)1Dis-
persion in this region was negligible, but relaxation occurred L
on very long time scales. A stretched exponenti&bhl-
rausch law &’ ~gg-exg —C-t*"(1—n)] satisfactorily de-
scribes the relaxation process in this region. This behavior is 0 2040 60 80
typical for glasse¥ evidencing the presence of a hierarchy Frequency shift (cm ")
of states and that the relaxing system goes through a set of FIG 3 Low-f R ; .
the intermediate potential barriers. Furthermore, the magniy P ) ow-requency aman specta "
tude and the relaxation rate appeared to be sensitive to thO'ggsd'l°'°°1Ja°'98d\lb°'°1p3 at different temperatures. The arrows
specimen history. After cooling from 36 to 15 K, the param-

etern in the Kohlraush law at 15 K appeared to be 0.64 anchom the dielectric results. Additionally, the two frequencies

0.82 for cooling rates of 0.4 K/min and 4 K/min, respec- : .

. . ) follow a different evolution. As temperature decreases Athe

tively. These facts clearly evidence the system’s nonergod- hard . | bilizi h b

icity in the cusp temperature region. At25K the long- component hardens continuously, stabilizing somewhere be-
' tween 27 and 30 K. In the same range, thecomponent

time dielectric relaxation vanishes. undergoes a marked variation, inverting its trend from soft-

The presence of the cgsp-shaped peak sheds new light %'?ﬂng to hardening. This is consistent with the dielectric re-
the structural processes in KLTN at low temperature. Its pe-

culiar shapé together with the characteristics of tem eraturesur[S and clearly indicates that at30 K a second stage of
ape, loget i emp the structural transformation takes place, following that oc-
hysteresis, long-time relaxation, and suppression by a d

. T . . . curring at higher temperature. On further cooling, both fre-
field, indicate a transformation to another glasslike orderlnqquencies become nearly constant, with a final splitting of

at~15 K. A5|m|l_ar sequence with a rfaent.rant glass state about 12 cm®. Notice, however, that a kink is present
succeeding to higher temperature PT’s with long-range or-

dering is known for disordered ferromagnets with competing
interactiong(see, e.g., Refs. 24 and)2%owever, in order to
confirm this unexpected observation of a transition into a
reentrant glass state for a dipole system with soft modes, Wr o o o o *
additional evidence in favor of the presence of a long-range
order PT(at least aff ~39 K) should be found.

Figure 3 shows the Raman spectra in the low-frequency
region, that is of concern for the TGoft mode. The weak
structureless spectrum, observed above 40 K, is identified
with soft-mode scattering, activated by polar disorder in the
paraelectric phase. This is usual for KTa€bntaining low
Li concentrationg? Below that point, a well-identified TO
spectrum emerges rather quickly from the background, 20 L
showing a clear separation in two components. These appear o
to arise in succession below 40 K, growing rapidly as tem-
perature decreases. In analogy with past indications, we iden-
tify them as theA andE species of the TPmode, although
a direct determination of their symmetry was not carried out. 10 L
For T<35K, this spectrum was successfully analyzed as a 1
sum of two damped oscillators, and the best-fit values of
oscillator frequencies are plotted in Fig. 4. The two compo-
nents are clearly split below 35 K, indicating that the system F|G. 4. Temperature dependence of the oscillator frequencies
is in a long-range-ordered, ferroelectric phase. From thesgr the soft-mode components: (open symbolsand A (full sym-
facts it follows that the phase-transition point locates a fewbols). The data have been obtained by fitting the spectra to a sum of
degrees higher, in agreement with the indication of 39—40 Kdamped oscillators.

I

(ﬁ’entify the positions of the soft-mode components.
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around 20 K, i.e., in the same region where the low temperamode and the relaxation mode of Li dipoles leads to the
ture ¢’ maximum is observed in heating runs. simultaneous appearance of ferroelectric order and of a
The Raman-scattering results prove the soft-mode charadipole-glass phase. The instability with respect to long-range
ter for the PT at 39 K, and give additional evidence for theordering of different symmetries, which is typical for KTN,
observation of a PT into a reentrant glass state in dipolaPlus frustration and competition with the coexisting
systems with soft modes, i.e., into a collective dipole glasd-i " -center-related dipole glass subsystem lead, on further
state occurring, on cooldown, not from the paraelectricC00|d0W”- to another PT transition into a phase with charac-
phase, but from a ferroelectric one. A complex sequence deristic properties of a glassllke state, i.e., into a reentrant
PT's has also been observed in (PH a)(Zr,Ti;_,)O dipole glass state. The experimental results presented here
(PLZT) ceramic€® but the presence éf aylolrwlqy-rar:;’ge- clearly manifest the formation of several phases on
ordered state in ceramics cannot be proven. The transitiof0ldown of the present KLTN composition. In fact, we ob-
observed in order-disorder-type  ferroelectrics Iikeserved a soft-mode-driven PT from the paraelectric phase to

a long-range ferroelectric one and then to a dipolar noner-
Rblix(NH“)XHZASQ“ (RADA) (Ref. 27 also have very godic glasslike phase at lower temperatures, which can be
little in common with the present case.

T . . interpreted as a reentrant dipole glass state.
In conclusion, it is shown that in KLTN, on approaching
the Nb-induced ferroelectric PT with a correspondingly high  Support of grants RFBR 99-02-18074, 00-02-16875,
magnitude ofe’, the Li-related dipolar ordering is strongly Czech 202/00/1425, LNOOAO15 of the MSMT CR, and
enhanced with respect to the case of KLT having a similar LiCzech-Italian 069/P. 3878, 03.14.1997 projects is acknowl-
content. Eventually, the coupling between the soft TO latticeedged.
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