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Alternative to the Shuttleworth formulation of solid surface stress
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We examine two derivations of the Shuttleworth equatishich is a relation between surface stregs
surface tensiory, and surface strajpand identify the flaws we perceive. Rectifying the perceived flaws leads
not to the Shuttleworth equation but gey equivalence. We conclude that surface stress is merely the gener-
alization of the concept of surface tension to an elastically anisotropic system; the surface free-energy density
is one-half of the trace of the surface stress tensor, to lowest order. In our opinion, our conclusions lead to a
more coherent and elegant form of surface thermodynamics which should prove useful in controlling and in
understanding nanometer-scale fabrication.
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A key component of future technology is expected to beshow that Eq.2) is not the only possible relation between
devices fabricated on the nanometer scale. The previous déiese quantities: an alternative relation exists which, in our
cade was one in which this idea motivated a great deal obpinion, leads to a more useful, coherent, and elegant form
research into the behavior of and fabrication of condensedsf surface thermodynamics.
matter structures on the nanometer scale. For example, car- In the year 2000, Sanfeld and Steinchen calculated the
bon nanotubes—hollow cylinders made of carbon atoms—surface energy, surface stress, capillary-elastic pressure, and
were fabricated, GaAs and Ge nanowires were grown chemical equilibrium constant in nanopartictédn the in-
epitaxially?® and quantum dots—three-dimensional islandstroduction to their paper, Sanfeld and Steinchen noted that
most notably of InGa, _,As on GaAs surfaces—were inves- the distinction between surface energy, surface tension, and
tigated for their promising optoelectronic properttes. surface stress is still a cause of controversy. For example,

The influence of surfaces and interfaces on device propthey stated that the interpretation of compressive and tensile
erties will increase as the device size decreases. A propergurface stress contributions remains controversial. Sanfeld
common to many of the nanoscale systems is the presence ahd Steinchen gave the perfectly reasonable view that these
facets on the surfaces of the nanostructures. For examplepntroversies arise from insufficiently rigorous distinctions
{133 B facets bound the surfaces of GaAs nanowires growrpetween the various terms. We tend to agree with this view,
on GaA$113A (Ref. 2; {159 facets bound the surfaces of but we would go further. We think that the existence of such
Ge nanowires grown on @i13 (Ref. 3; and the surfaces of a controversy half a century after Shuttleworth’s original pa-
InAs dots grown on GaA®801) are bounded by113A and  per is evidence that there could be something seriously amiss
{136/A facets®’ The presence of facets makes it clear thatwith the Shuttleworth equation itself.
one must use surface thermodynamics in order to understand We will begin by reviewing some elements of surface
the origin of the nanostructure shape. The equilibrium crystathermodynamics theory, principally following Zangwilin-
shape in the absence of external stress is given by minimizluding the surface, the differential of the internal enetgy
ing the integral is given by

dU=T dS—P dV+ dN+ y dA, 3)

f_
fsur_f Y(A)dA, @) whereS, BV, u, andN are the entropy, pressure, volume,

. . _ chemical potential, and number of atoms, respectiVe@ne
wherefsU"is the surface free energy,is the surface tension, has also the Euler equation

and the integral is taken over the entire surface #&3
Aside from Eq.(1), it is generally thought that the most U=TS-PV+uN+yA. 4

important equation in the domain of the equilibrium ShapesDifferentiating Eq.(4) and applying Eq(3), one obtains the
of surfaces is the Shuttleworth equation, given by Gibbs-Duhem equation

ady

A dy+S dT-V dP+N du=0. 5)
ij

T If we consider the surface free ener§3'" in isolation, by
Egs.(3) and(4) one has

where g;;, €;, and §;; are the surface stress tensor, the p

surface strain tensor, and the Kronecker delta, respectively, U= yA, (6a)

and the partial derivative is evaluated at a constant tempera- surf_

ture T.° This equation(or rather a more primitive version of df*™=y dA. (6b)

it) was first derived by Shuttleworth in 1950, and is under-Now let us consider the derivation of E@), but simplified

stood to define the relation between surface stress, surfate the case of uniaxial surface stress on a flat surface, in

tension, and surface straif\lt is the goal of this paper to order to clarify the physics involved, as in the work of Pimp-

gij=7vdi+

0163-1829/2001/636)/1654125)/$20.00 63 165412-1 ©2001 The American Physical Society



D. J. BOTTOMLEY AND T. OGINO PHYSICAL REVIEW B63 165412

inelli and Villain'® Let the direction of uniaxial surface Another problem with the above derivation of the Shuttle-
stress be tha direction, which results in a surface stregg  worth equation is that Eq11) does not follow automatically
and a surface straie,,. For f*U", Pimpinelli and Villain ~ for all systems from the more general E§). Equation(11)

wrote arises only iff"""is considered in isolation frotd. While it
is an acceptable approximation in many circumstances to
U= Ay(ex) = (Ag+ 5A) (yo+ 8) neglect surface effects in bulk thermodynamics, it is not per-
p missible to neglect bulk effects universally when calculating
=(Ay+ 5A)( Yo+ _7exx), (7) ~ surface thermodynamic phenomena. For example, in the
J€xx above derivation, in order to obtain a surface strgssby

where the zero subscript denotes the parameter value in i ternal mechanical perturbatior_1 itis necessary to change the
initial state, and the delta terms refer to the change in a give ulk stress tensor elemen, , which will in turn alterU and

parameter between the initial and final states. Usiifg ence VY'” '”f'“e”gﬁf some terms in B@). Since Fhe .above
— A€, one therefore has calculation treatd>"" in isolation fromU, the derivation of

Eqg. (2) does not follow, because such a treatment leads to
) Eqg. (11) which then forbids variation iny.

5=y  SA+ AgSy= 6A (8) A further criticism of the above Shuttleworth equation

derivation is that the differentialA (or 5A) is not used in the
Note that the non-numbered equation before @6.35 of ~ Standard sense. In Eq3) and (6b), dA is a surface area
Pimpinelli and Villain has a superfluoes, .* One may ob-  eléement to be integrated over in order to generate the whole
tain the change ii*"" due to reversible work-PdV, using ~ Surface area, where@# in Eq. (9) was taken in Ref. 13 to
the analogous term for the surface, i.e., from the mathematR€ the additional area generated through the action of surface

+
Yo 7€

cal transformation/— A and —P—g,,. This gives stress. These senses are mutually inconsistent. If the interpre-
tation is made consistent i.e., thd& (or 5A) is a surface
Sfsuri=g. A, (99  area element, the abowey equivalence follows. We will
return to this point later.
and hence Eqg8) and (9) give the result for thex tensor Zangwill gave a derivation of the Shuttleworth equation

element of Eq(2). (HereP andg, are taken to be opposite which differed from the derivation in Pimpinelli and Villain

in sign because a compressiPéds positive whereas a com- in that the termsS, T, V, P, u, andN are included*3 Here

pressivegy, is negative. Similar arguments lead to the other we show that Zangwill’'s derivation results from contradic-

tensor elements of Eq2). tory assumptions—when the contradiction is eliminated, the
What objections can one raise to the above derivation oShuttleworth equation does not follow. Zangwill obtained

the Shuttleworth equation? If we differentiate E§a), we

obtain dU=T dS-P dV+u dN+Ag; de;, (12

surf_ as the second equation of Zangwill's E4..9). [To avoid
df y dA+A dy. (10 confusion, we state that Zangwill's E¢L.9) contains a su-
But by Eg.(6b) we have perfluousA in the final term] Zangwill then used Euler’s
equation adapted to include surface effects in the isotropic
A dy=0, (1)  limit, namely, Eq.(4). The yA term in Eq.(4) only addresses
o i ) isotropic cases becausds a scalal* By contrasy; j ande;;
which is, incidentally, what remains of E() if we drop the i, £q(12) are second-rank tensors, which can describe an-
variablesS, T, V, P, u, andN, e.g., if we ignore bulk effects. isotropic cases up tdC,, in symmetry, by Neumann’'s
Equation(11) implies that the teri\o 5y in Eq. (8) vanishes,  principlel4If one uses Eqg4) and(12) simultaneously, one
even though the expansions in EGg) and (8) appear t0 st restrict the results to isotropic surface systéhese
imply thatAq6y does not necessarily vanish. Logically, this {5ren to implyC, symmetry or higher to avoid contradic-

contradiction can be_eliminated_only by_assuming thaén-  ion. Differentiating Eq.(4) and applying Eq(12), Zangwill
not be changed in this system, i.e., tdgtis zero. Use of the  ,piqined

state functionfs'" in isolation (i.e., ignoring the variables,

T, V, P, u, andN) is therefore restricted to systems at con- A dy—S dT+V dP—N du+A(ys;—g;)de;=0.
stanty, by Eq.(11): the expansions in nonze#&y in Eqs.(7) (13)
and (8) are forbidden because they violate an axiom in the . . .
mathematical structure. If we compare E() and(9), we For isotropic surface systemg;; can be written ago
simply have the result that surface stress and surface tensi(W'E
are identical in the isotropic limit: the Shuttleworth equationW
does not follow. We will call this result §-y equivalence,” _ _ _
whereg is isotropic surface stress. The wider implication of Alydij—gjde;=2A(y=g)de, (14
this result is that the surface stress is the generalization of theince 8 6j=2 for the surface. Zangwill stated thetd/A
concept of surface tension to anisotropic systems, since thede” 8y : from this equation we obtain

surface stress is a second-rank tensor whereas the surface

tension is a scalar. dA=A dg;dj;=2A de, (15

. e . i
ereg is a scalar. Likewisede; can be written asy;de,
ereeis a scalar. Hence
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taking the isotropic limit. Combining Eq$13)—(15), the re-  for self-consistency our formulation of solid surface stress
sult is requiresg-y equivalence to be true.
Let us consider how surface thermodynamics develops
A dy—S dT+V dP—N du+(y—g)dA=0. (16) from the point of view ofg-y equivalence. First let us con-

This is evidently the Gibbs-Duhem equation for a systemSlder Hooke's law for the surface,

(liquid or solid with an isotropic surface. For isotropic sur-
face systemsy andA are thermodynamically conjugate vari-

ables. Hence one of the terms containag or dy in Eq.  \here a repeated index implies summatirom 1 to 2 with
(16) is zero, as required by the contact manifold mathematirespect to orthonormal basis vectors in the surface plane, and

cal structure of equilibrium thermodynamijés[Mathemati- ¢S are the elements of the surface stiffness tehsb fact,

.. ijkl
cally, this is the reason for the absence of S —P dV,  \ye do not knowa priori that a typical surface will be in the

and p dN terms from Eq.(16), because their respective jinear elastic regimeto which Hooke's law appligs but
complementary terms-S dT, V. dP, and —N du are  gypnort for this assumption is given below.
presentl If A dy were zero, this would imply a zero surface  \we will remark now that from comparing Eq&2) and

areaA in general, or the inability to vary, both of which are  (19) the (9y/Je); term in the Shuttleworth equation for a
unphysical.[In Eq. (16), A dy=0 is not implied by Ed. solid surface has a property which we find to be incoherent.
(11, bgcause Eq(1l) is derlveq assuming one can ignore ag stated by Hirth, {y/de); is approximately equal to
the variablesS, T, RV, x, andN in Eq. (16).] Therefore the  _ 5 for a solid surface, the difference between these quan-
(y—g)dAterm is zero:y andg are equal. The result leads to jieg beingcie,, .17 If we consider the simple case of a
the Gibbs adsorption equation originally derived by Gibbs, surface with iJsotropic surface stress such &8, and bear
i.e., without the final term in Zangwill's Eq1.11). Without

) . in mind thaty is the tensile force in the surface plane per-
the final term, the Shuttleworth equation does not follow.,engicylar to any straight unit length in the surface, we think
Our earlier result of-y equivalence is confirmed in a more

- A it questionable that the rate of changeyfvith respect to
rigorous fashion. q gen P

) ; ) small surface strainge.g., 1% should be approximately
For anisotropic surface systems, we replaéein Eq. (4)

. ) Y= ) % equal to—1v. It is this property of Eq(2) which led us to
with Ag;; 6;;/2. This substitution is made using our insight o2 mine its derivation in detail.

thaty andg are identical in isotropic systems. Two equations ¢ general form ofj;, on aC, symmetry surface is
which follow from this substitution are . !

9ij=Cikiex (19

dU=T dS-P dV+u dN+g;6; dA2,  (17) ___(g“ di2) 20

9= J12 022

Adij dgj/2=S dT+V dP=N du=0, (18 \where the two axes are orthonormal and in the surface plane,
where Eq.(17) supercedes Eq(12), and Eq.(18) is the  Wwhich is under zero stress by external sourde=or surfaces
Gibbs-Duhem equation for anisotropic surface systemsof Cy, or C,, symmetry, with the second axis perpendicular
Gibbs’s original adsorption equation then follows, exceptto a mirror plane, Eq(20) is simplified byg, being zero.
that the A dy term is replaced byAs;; dg;;/2. [The off-  ForCz symmetry surfaces or higher, EQO) is further sim-
diagonal element ofj;; gives second-order contributions to plified by g1, andgs, being equal: one can writg;; = yJ;
fsu" through a higher-order terg); e;;/2 within the brackets forag-y equivalentfs"" as for a liquid surface. To summa-
in Eq. (21) below; g;;e;;/2 is typically negligible in Eq(21)  rize, to lowest order the surface free energy is given by
within the linear elastic regime.

We wish to make a remark regarding the use of dihe sui_ [ [ %19 (A)
term by Zangwill® In that work,dA is used in two different == f 2
senses. In one sense it is a surface area element, which is to
be integrated to cover the whole surface, as in Zangwill’'s EqThe integral in Eq.(21) is taken over all the surfaces and
(1.19. In the other sense it is an infinitesimal change in theinterfaces in the systeniNote that, for the surfaces; d;;
surface area due to the action of surface stress, as with the2.) Equation(21) implies that the surface free-energy den-
equationd A/A=de; §; of Zangwill mentioned above. Only sity is given by half of the trace of the surface stress tensor,
in the latter case, therefore, do# correspond to infinitesi- to first order. One can call this quantity the mean surface
mal surface strain. Here we have followed the ambiguousgension, since it is equal tog(;+g,,)/2. Equation(1) is
usage, because it would be difficult to discuss the work irrecovered from Eq(21) in the isotropic limit, to lowest or-
Refs. 9 and 13 otherwise. We favor usidd strictly as a  der.
surface area element to be integrated in order to cover the One might object to the application of Hooke’s law to a
whole surface, as in Eq$l), (3), and(21) below. liquid surface for ag-y equivalentfs'" since Eq.(19) im-

In the formal context of our derivation gfy equivalence, plies that ¢y/Jde)t is nonzero for the liquid surface. Here
note that in its construction we made agriori assumption  both diagonal elements of the surface stress tefgsgrand
about the equality, or otherwise, of and y. The Shuttle- g,,) and the surface tension are taken to be equad; the
worth equation leads tg+ vy for solid surfaces. Tha priori isotropic surface strain. It is clear that a low viscosity liquid
hypothesis thag+ v is incompatible with our formulation: cannot be put under surface strain by an external mechanical

dA. (21)
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perturbatior?. A simple illustration of this effect is to try to axy, respectively.(This neglects effects due to the finite

pull apart the surface of some water with one’s hands. Nahickness of the film, discussed recently by IMu and

change in the water's surface strain is accomplished. Th&homag®). In the g-y equivalent formalism, no paftotal,

effect would not occur if the water were replaced by a suf-intrinsic, or heteroepitaxiabf the surface stresses or surface

ficiently hard material. strains obeys a relation similar to the Shuttleworth equation.
However, this does not disprove the validity of Hooke’s gy \ay of example, for Ge on a Si surface!! =

law for the liquid surface. The liquid surface must possess an_ 3.8%6.. '

o ! oo ; i ij » which is opposite in sign to the intrinsic surface
intrinsic surface strain. For liquids and solids, the surface 1Strainlo By Egs. (19), (21), and (25), this will lead to a

glc()ilgnreerlr?os\t/g ts;]kelznb\glrlllﬁ‘?o: ‘:’;r:tﬁ]r;:go?vfg;hsir?ggg \'Ilgl:'lgnegative surface energy, which could act to stabilize the flat
' film during the earliest part of growth in the Ge on the Si

shrink to a smaller sizéOne way to visualize this process is St Ki-Krast wth mod I i :
to consider a hand entering and stretching a tight-fitting rub- ranskl-rastanow growth mo ‘“.O”“"?‘ Y, anegatve sur
ber glove, where the hand represents the bulk and the rubb@ce energy 1s tal_<en t0 impl—eo, i.e., mstabthy, bUt here
glove represents the surfac@he surface tension of the lig- 2" IncreasingA might not be favored because it will lead to
uid is the static force perpendicular to unit length on the_stram relaxation, which WI|| increase the toftal s_L_Jrface strain
surface, where the force is that stretching the surface in orddp Ed- (25) and hence this might increa$&".) Muller and
that it fit over the bulk. The surface has an intrinsic surfaceéern noted that at present it is difficult to treat the Stranski-
strain, because it is under tension through being stretched Hffastanow growth mode theoretically in a satisfactory
the bulk. On the basis of Hooke’s law for the surfd&s. manner! In general, one expects nanostructure shapes to
(19)]—the linear relation between surface stress and surfac@fise by minimizing the surface and bulk stress energies in
strain—it follows that ¢y/de); is nonzero for the liquid concert, within the bounds of the equilibrium states to which
surface, sincedy/de)t is equivalent to an elastic constant. the system has access. o
(3l de)+ is therefore nonzero, even though changingr e We should make clear the extent of the approximations
for a liquid surface in experiment through mechanical perinherent to Eq(22). Because of the similarity in the bonding
turbation appears to be impossible. The liquid surface has Barallel to the surface plane, we take tbe to be fairly
nonzero surface strain even if the surface is in the nonlinea¢onstant as one approaches the surface from the bulk. The
elastic regime, i.e., if the surface stress is some second-ordhits of thec;; andcf" are different: one has to multiply the
or higher-order polynomial function of surface strain. ci; by the thickness characteristic of the surface in order to
For g-y equivalence, Eq.2) does not apply and the equa- obtain thecisj“”. Due to the approximations present, we have
tion of surface linear elasticity is E§19). We will consider  considered only the elastic constants of isotropic bulk and
the case of the macroscop®,, symmetry Si001) surface surface systems. We have taken the representative thickness
for illustrative purposes, for which we take to be 1.36 of the surface to bég which we expect to be accurate to
Jm 218 We do not know of any reports of the surface elasticwithin a factor of 2. For a pessimistic assessment of surface
constants of $001), so we will estimate them by taking the strain, namely, taking the surface to be of monolayer thick-

surface to be of bilayer thicknesg and using ness, and assuming that H@2) overestimates theisjurf by
surf 50%, one obtains a surface strain &6.6%, which ap-
Cij =Cijta, (22) proaches the regime in which the linear elastic approxima-

where the contracted tensor element notation is usedci@nd tion ceases to be valid. The choice of surface elastic con-

are bulk elastic stiffness constaffsEor Si001), we obtain stants and surface strain is therefore fairly arbitrary in this

Cilil’f and Cigrf values of 45.0 and 17.3 JT respectively”® macroscopic theory: what is not arbitrary is that, when these

By Egs.(19) and (20) two quantities are combineldEqg. (19)], one must obtain a
' ' surface stress tensd@for isotropic surface stress, a surface
911:(0?1”"' Cigff)ell: ¥, (23)  tension which is in agreement with values derived from ex-

) ) ~ periment. We emphasize that the numerical accuracy of the
and we obtaire;; = +2.2%3; . A surface strain of 2.2% is  example of the $001) surface given for illustrative purposes
one for which we can expect linear elasticity theory to apply.has no bearing on the validity of exploring the consequences
which supports our earlier assumption of the linear elastic g-y equivalence.
regime. In the case of heteroepitaxy, the surface stress aris- e will examine the possibility that the surface strain has
ing from heteroepitaxy should be added to that present in thg grastic influence on the surface elastic constant expression
absence of heter_oe_pltaxml stress to _yleld the total SurfaCEiLllrf_F S which occurs within Eq(23). If we consider the
stress. By the principle of superposition, for a flat, nonre-gtfect of a hydrostatic strain of 2.2% (equal to the surface
laxed heteroepitaxial film, one can write strain calculated aboyeon Si this will decrease the corre-

gi=g' +g" (24) sponding bulk elastic constant expressmp+ cq, by 24%.
R IO This result is calculated using the dependence otthef Si
on pressure measured in Ref. 22. The result is an upper limit
ej=ej e (25) b surf, surf PP

on the change irc;; +c3, because the surface is two di-

for the total surface stress and total surface strain, respeeaensional, thereby permitting some elastic relaxation in the
tively, where thd andH superscripts denote the parts which direction perpendicular to the surface. In the context of the
are intrinsic to the surface, and which arise from heteroepitother approximations present in the calculation of the surface
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strain, therefore, it is permissib|e to take tb#”f as being formalism, surface stress is merely the generalization of the
independent of surface strain. Given the 24% changgjn concept of surface tension to an elastically anisotropic sys-
+ ¢4, calculated abovéwhich means that the average value tem; the surface free-energy density is given by one-half of
of ¢4+ ¢4, during the process of changing the strain fromthe trace of the surface stress tensor, to lowest order. After
zero to+2.2% is 12% lower than the value at zero styain ~ making some assumptions, we obtain a tensile surface strain
would be wise to quote the ®01) surface strain as being of 2.2% for the Si001) surface, which supports the assump-
between+2.2% and+2.5% in the limit of the bilayer-thick tion that this surface is in the linear elastic regime. We hope
surface model. that theg-y equivalent formalism will prove useful in con-

In this paper we have examined two derivations of thetrolling and in understanding nanoscale fabrication.
Shuttleworth equation, and have identified the flaws we per-
ceive. Rectifying the perceived flaws leads not to the Shuttle- We thank J.-J. Delaunay, P. Finnie, and H. Omi for some
worth equation but t@-vy equivalence. In thg-y equivalent  helpful references.
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