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Alternative to the Shuttleworth formulation of solid surface stress
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~Received 4 August 2000; revised manuscript received 11 December 2000; published 3 April 2001!

We examine two derivations of the Shuttleworth equation~which is a relation between surface stressg,
surface tensiong, and surface strain!, and identify the flaws we perceive. Rectifying the perceived flaws leads
not to the Shuttleworth equation but tog-g equivalence. We conclude that surface stress is merely the gener-
alization of the concept of surface tension to an elastically anisotropic system; the surface free-energy density
is one-half of the trace of the surface stress tensor, to lowest order. In our opinion, our conclusions lead to a
more coherent and elegant form of surface thermodynamics which should prove useful in controlling and in
understanding nanometer-scale fabrication.
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A key component of future technology is expected to
devices fabricated on the nanometer scale. The previous
cade was one in which this idea motivated a great dea
research into the behavior of and fabrication of condens
matter structures on the nanometer scale. For example,
bon nanotubes—hollow cylinders made of carbon atom
were fabricated,1 GaAs and Ge nanowires were grow
epitaxially,2,3 and quantum dots—three-dimensional islan
most notably of InxGa12xAs on GaAs surfaces—were inve
tigated for their promising optoelectronic properties.4,5

The influence of surfaces and interfaces on device pr
erties will increase as the device size decreases. A prop
common to many of the nanoscale systems is the presen
facets on the surfaces of the nanostructures. For exam
$133%B facets bound the surfaces of GaAs nanowires gro
on GaAs~113!A ~Ref. 2!; $159% facets bound the surfaces o
Ge nanowires grown on Si~113! ~Ref. 3!; and the surfaces o
InAs dots grown on GaAs~001! are bounded by$113%A and
$136%A facets.6,7 The presence of facets makes it clear th
one must use surface thermodynamics in order to unders
the origin of the nanostructure shape. The equilibrium cry
shape in the absence of external stress is given by minim
ing the integral

f surf5E g~A!dA, ~1!

wheref surf is the surface free energy,g is the surface tension
and the integral is taken over the entire surface areaA.8,9

Aside from Eq.~1!, it is generally thought that the mos
important equation in the domain of the equilibrium shap
of surfaces is the Shuttleworth equation, given by

gi j 5gd i j 1F ]g

]ei j
G

T

~2!

where gi j , ei j , and d i j are the surface stress tensor, t
surface strain tensor, and the Kronecker delta, respectiv
and the partial derivative is evaluated at a constant temp
ture T.9 This equation~or rather a more primitive version o
it! was first derived by Shuttleworth in 1950, and is und
stood to define the relation between surface stress, sur
tension, and surface strain.10 It is the goal of this paper to
0163-1829/2001/63~16!/165412~5!/$20.00 63 1654
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show that Eq.~2! is not the only possible relation betwee
these quantities: an alternative relation exists which, in
opinion, leads to a more useful, coherent, and elegant f
of surface thermodynamics.

In the year 2000, Sanfeld and Steinchen calculated
surface energy, surface stress, capillary-elastic pressure
chemical equilibrium constant in nanoparticles.11 In the in-
troduction to their paper, Sanfeld and Steinchen noted
the distinction between surface energy, surface tension,
surface stress is still a cause of controversy. For exam
they stated that the interpretation of compressive and ten
surface stress contributions remains controversial. San
and Steinchen gave the perfectly reasonable view that th
controversies arise from insufficiently rigorous distinctio
between the various terms. We tend to agree with this vi
but we would go further. We think that the existence of su
a controversy half a century after Shuttleworth’s original p
per is evidence that there could be something seriously am
with the Shuttleworth equation itself.

We will begin by reviewing some elements of surfa
thermodynamics theory, principally following Zangwill.9 In-
cluding the surface, the differential of the internal energyU
is given by

dU5T dS2P dV1m dN1g dA, ~3!

whereS, P, V, m, andN are the entropy, pressure, volum
chemical potential, and number of atoms, respectively.12 One
has also the Euler equation9

U5TS2PV1mN1gA. ~4!

Differentiating Eq.~4! and applying Eq.~3!, one obtains the
Gibbs-Duhem equation

A dg1S dT2V dP1N dm50. ~5!

If we consider the surface free energyf surf in isolation, by
Eqs.~3! and ~4! one has

f surf5gA, ~6a!

d fsurf5g dA. ~6b!

Now let us consider the derivation of Eq.~2!, but simplified
to the case of uniaxial surface stress on a flat surface
order to clarify the physics involved, as in the work of Pim
©2001 The American Physical Society12-1
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inelli and Villain.13 Let the direction of uniaxial surface
stress be thex direction, which results in a surface stressgxx
and a surface strainexx . For f surf, Pimpinelli and Villain
wrote

f surf5Ag~exx!5~A01dA!~g01dg!

5~A01dA!S g01
]g

]exx
exxD , ~7!

where the zero subscript denotes the parameter value i
initial state, and the delta terms refer to the change in a gi
parameter between the initial and final states. UsingdA
5A0exx one therefore has

d f surf5g0dA1A0dg5dAS g01
]g

]exx
D . ~8!

Note that the non-numbered equation before Eq.~16.35! of
Pimpinelli and Villain has a superfluousexx .13 One may ob-
tain the change inf surf due to reversible work,2PdV, using
the analogous term for the surface, i.e., from the mathem
cal transformationV→A and2P→gxx . This gives

d f surf5gxxdA, ~9!

and hence Eqs.~8! and ~9! give the result for thexx tensor
element of Eq.~2!. ~HereP andgxx are taken to be opposit
in sign because a compressiveP is positive whereas a com
pressivegxx is negative!. Similar arguments lead to the othe
tensor elements of Eq.~2!.

What objections can one raise to the above derivation
the Shuttleworth equation? If we differentiate Eq.~6a!, we
obtain

d fsurf5g dA1A dg. ~10!

But by Eq.~6b! we have

A dg50, ~11!

which is, incidentally, what remains of Eq.~5! if we drop the
variablesS, T, V, P, m, andN, e.g., if we ignore bulk effects
Equation~11! implies that the termA0dg in Eq. ~8! vanishes,
even though the expansions in Eqs.~7! and ~8! appear to
imply that A0dg does not necessarily vanish. Logically, th
contradiction can be eliminated only by assuming thatg can-
not be changed in this system, i.e., thatdg is zero. Use of the
state functionf surf in isolation~i.e., ignoring the variablesS,
T, V, P, m, andN! is therefore restricted to systems at co
stantg, by Eq.~11!: the expansions in nonzerodg in Eqs.~7!
and ~8! are forbidden because they violate an axiom in
mathematical structure. If we compare Eqs.~6b! and~9!, we
simply have the result that surface stress and surface ten
are identical in the isotropic limit: the Shuttleworth equati
does not follow. We will call this result ‘‘g-g equivalence,’’
whereg is isotropic surface stress. The wider implication
this result is that the surface stress is the generalization o
concept of surface tension to anisotropic systems, since
surface stress is a second-rank tensor whereas the su
tension is a scalar.
16541
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Another problem with the above derivation of the Shutt
worth equation is that Eq.~11! does not follow automatically
for all systems from the more general Eq.~5!. Equation~11!
arises only iff surf is considered in isolation fromU. While it
is an acceptable approximation in many circumstances
neglect surface effects in bulk thermodynamics, it is not p
missible to neglect bulk effects universally when calculati
surface thermodynamic phenomena. For example, in
above derivation, in order to obtain a surface stressgxx by
external mechanical perturbation it is necessary to change
bulk stress tensor elementsxx , which will in turn alterU and
hence will influence some terms in Eq.~5!. Since the above
calculation treatsf surf in isolation fromU, the derivation of
Eq. ~2! does not follow, because such a treatment leads
Eq. ~11! which then forbids variation ing.

A further criticism of the above Shuttleworth equatio
derivation is that the differentialdA ~or dA! is not used in the
standard sense. In Eqs.~3! and ~6b!, dA is a surface area
element to be integrated over in order to generate the wh
surface area, whereasdA in Eq. ~9! was taken in Ref. 13 to
be the additional area generated through the action of sur
stress. These senses are mutually inconsistent. If the inte
tation is made consistent i.e., thatdA ~or dA! is a surface
area element, the aboveg-g equivalence follows. We will
return to this point later.

Zangwill gave a derivation of the Shuttleworth equati
which differed from the derivation in Pimpinelli and Villain
in that the termsS, T, V, P, m, andN are included9,13. Here
we show that Zangwill’s derivation results from contradi
tory assumptions—when the contradiction is eliminated,
Shuttleworth equation does not follow. Zangwill obtained

dU5T dS2P dV1m dN1Agi j dei j , ~12!

as the second equation of Zangwill’s Eq.~1.9!. @To avoid
confusion, we state that Zangwill’s Eq.~1.9! contains a su-
perfluousA in the final term.# Zangwill then used Euler’s
equation adapted to include surface effects in the isotro
limit, namely, Eq.~4!. ThegA term in Eq.~4! only addresses
isotropic cases becauseg is a scalar.14 By contrastgi j andei j
in Eq. ~12! are second-rank tensors, which can describe
isotropic cases up toC2v in symmetry, by Neumann’s
principle.14 If one uses Eqs.~4! and~12! simultaneously, one
must restrict the results to isotropic surface systems~here
taken to implyC3 symmetry or higher!, to avoid contradic-
tion. Differentiating Eq.~4! and applying Eq.~12!, Zangwill
obtained

A dg2S dT1V dP2N dm1A~gd i j 2gi j !dei j 50.
~13!

For isotropic surface systems,gi j can be written asgd i j ,
whereg is a scalar. Likewise,dei j can be written asd i j de,
wheree is a scalar. Hence

A~gd i j 2gi j !dei j 52A~g2g!de, ~14!

since d i j d i j 52 for the surface. Zangwill stated thatdA/A
5dei j d i j : from this equation we obtain

dA5A dei j d i j 52A de, ~15!
2-2
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ALTERNATIVE TO THE SHUTTLEWORTH FORMULATION . . . PHYSICAL REVIEW B 63 165412
taking the isotropic limit. Combining Eqs.~13!–~15!, the re-
sult is

A dg2S dT1V dP2N dm1~g2g!dA50. ~16!

This is evidently the Gibbs-Duhem equation for a syst
~liquid or solid! with an isotropic surface. For isotropic su
face systems,g andA are thermodynamically conjugate var
ables. Hence one of the terms containingdA or dg in Eq.
~16! is zero, as required by the contact manifold mathem
cal structure of equilibrium thermodynamics.15 @Mathemati-
cally, this is the reason for the absence of theT dS, 2P dV,
and m dN terms from Eq.~16!, because their respectiv
complementary terms2S dT, V dP, and 2N dm are
present.# If A dg were zero, this would imply a zero surfac
areaA in general, or the inability to varyg, both of which are
unphysical.@In Eq. ~16!, A dg50 is not implied by Eq.
~11!, because Eq.~11! is derived assuming one can igno
the variablesS, T, P, V, m, andN in Eq. ~16!.# Therefore the
(g2g)dA term is zero:g andg are equal. The result leads t
the Gibbs adsorption equation originally derived by Gibbs16

i.e., without the final term in Zangwill’s Eq.~1.11!. Without
the final term, the Shuttleworth equation does not follo
Our earlier result ofg-g equivalence is confirmed in a mor
rigorous fashion.

For anisotropic surface systems, we replacegA in Eq. ~4!
with Agi j d i j /2. This substitution is made using our insig
thatg andg are identical in isotropic systems. Two equatio
which follow from this substitution are

dU5T dS2P dV1m dN1gi j d i j dA/2, ~17!

Ad i j dgi j /22S dT1V dP2N dm50, ~18!

where Eq.~17! supercedes Eq.~12!, and Eq. ~18! is the
Gibbs-Duhem equation for anisotropic surface syste
Gibbs’s original adsorption equation then follows, exce
that the A dg term is replaced byAd i j dgi j /2. @The off-
diagonal element ofgi j gives second-order contributions
f surf, through a higher-order termgi j ei j /2 within the brackets
in Eq. ~21! below; gi j ei j /2 is typically negligible in Eq.~21!
within the linear elastic regime.#

We wish to make a remark regarding the use of thedA
term by Zangwill.9 In that work,dA is used in two different
senses. In one sense it is a surface area element, which
be integrated to cover the whole surface, as in Zangwill’s
~1.19!. In the other sense it is an infinitesimal change in
surface area due to the action of surface stress, as with
equationdA/A5dei j d i j of Zangwill mentioned above. Only
in the latter case, therefore, doesdA correspond to infinitesi-
mal surface strain. Here we have followed the ambigu
usage, because it would be difficult to discuss the work
Refs. 9 and 13 otherwise. We favor usingdA strictly as a
surface area element to be integrated in order to cover
whole surface, as in Eqs.~1!, ~3!, and~21! below.

In the formal context of our derivation ofg-g equivalence,
note that in its construction we made noa priori assumption
about the equality, or otherwise, ofg and g. The Shuttle-
worth equation leads togÞg for solid surfaces. Thea priori
hypothesis thatgÞg is incompatible with our formulation
16541
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requiresg-g equivalence to be true.

Let us consider how surface thermodynamics devel
from the point of view ofg-g equivalence. First let us con
sider Hooke’s law for the surface,

gi j 5ci jkl
surfekl , ~19!

where a repeated index implies summation~from 1 to 2! with
respect to orthonormal basis vectors in the surface plane,
ci jkl

surf are the elements of the surface stiffness tensor.17 In fact,
we do not knowa priori that a typical surface will be in the
linear elastic regime~to which Hooke’s law applies!, but
support for this assumption is given below.

We will remark now that from comparing Eqs.~2! and
~19!, the (]g/]e)T term in the Shuttleworth equation for
solid surface has a property which we find to be incohere
As stated by Hirth, (]g/]e)T is approximately equal to
2gd i j for a solid surface, the difference between these qu
tities beingci jkl

surfekl .
17 If we consider the simple case of

surface with isotropic surface stress such as Si~111!, and bear
in mind thatg is the tensile force in the surface plane pe
pendicular to any straight unit length in the surface, we th
it questionable that the rate of change ofg with respect to
small surface strains~e.g., 1%! should be approximately
equal to2g. It is this property of Eq.~2! which led us to
examine its derivation in detail.

The general form ofgi j on aC1 symmetry surface is

gi j 5S g11 g12

g12 g22
D , ~20!

where the two axes are orthonormal and in the surface pl
which is under zero stress by external sources.17 For surfaces
of C1v or C2v symmetry, with the second axis perpendicu
to a mirror plane, Eq.~20! is simplified byg12 being zero.
For C3 symmetry surfaces or higher, Eq.~20! is further sim-
plified by g11 and g22 being equal: one can writegi j 5gd i j
for a g-g equivalentf surf, as for a liquid surface. To summa
rize, to lowest order the surface free energy is given by

f surf5E S d i j gi j ~A!

2 DdA. ~21!

The integral in Eq.~21! is taken over all the surfaces an
interfaces in the system.~Note that, for the surface,d i j d i j
52.! Equation~21! implies that the surface free-energy de
sity is given by half of the trace of the surface stress tens
to first order. One can call this quantityḡ, the mean surface
tension, since it is equal to (g111g22)/2. Equation~1! is
recovered from Eq.~21! in the isotropic limit, to lowest or-
der.

One might object to the application of Hooke’s law to
liquid surface for ag-g equivalentf surf, since Eq.~19! im-
plies that (]g/]e)T is nonzero for the liquid surface. Her
both diagonal elements of the surface stress tensor~g11 and
g22! and the surface tension are taken to be equal;e is the
isotropic surface strain. It is clear that a low viscosity liqu
cannot be put under surface strain by an external mechan
2-3
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D. J. BOTTOMLEY AND T. OGINO PHYSICAL REVIEW B63 165412
perturbation.9 A simple illustration of this effect is to try to
pull apart the surface of some water with one’s hands.
change in the water’s surface strain is accomplished.
effect would not occur if the water were replaced by a s
ficiently hard material.

However, this does not disprove the validity of Hooke
law for the liquid surface. The liquid surface must possess
intrinsic surface strain. For liquids and solids, the surface
like an elastic skin which is stretched over the bulk: if o
could remove the bulk from the interior, the surface wou
shrink to a smaller size.~One way to visualize this process
to consider a hand entering and stretching a tight-fitting r
ber glove, where the hand represents the bulk and the ru
glove represents the surface.! The surface tension of the liq
uid is the static force perpendicular to unit length on t
surface, where the force is that stretching the surface in o
that it fit over the bulk. The surface has an intrinsic surfa
strain, because it is under tension through being stretche
the bulk. On the basis of Hooke’s law for the surface@Eq.
~19!#—the linear relation between surface stress and sur
strain—it follows that (]g/]e)T is nonzero for the liquid
surface, since (]g/]e)T is equivalent to an elastic constan
(]g/]e)T is therefore nonzero, even though changingg or e
for a liquid surface in experiment through mechanical p
turbation appears to be impossible. The liquid surface ha
nonzero surface strain even if the surface is in the nonlin
elastic regime, i.e., if the surface stress is some second-o
or higher-order polynomial function of surface strain.

For g-g equivalence, Eq.~2! does not apply and the equa
tion of surface linear elasticity is Eq.~19!. We will consider
the case of the macroscopicC4v symmetry Si~001! surface
for illustrative purposes, for which we takeg to be 1.36
J m22.18 We do not know of any reports of the surface elas
constants of Si~001!, so we will estimate them by taking th
surface to be of bilayer thicknesstB and using

ci j
surf5ci j tB , ~22!

where the contracted tensor element notation is used, anci j
are bulk elastic stiffness constants.14 For Si~001!, we obtain
c11

surf and c12
surf values of 45.0 and 17.3 J m22, respectively.19

By Eqs.~19! and ~20!,

g115~c11
surf1c12

surf!e115g, ~23!

and we obtainei j 512.2%d i j . A surface strain of 2.2% is
one for which we can expect linear elasticity theory to app
which supports our earlier assumption of the linear ela
regime. In the case of heteroepitaxy, the surface stress
ing from heteroepitaxy should be added to that present in
absence of heteroepitaxial stress to yield the total sur
stress. By the principle of superposition, for a flat, non
laxed heteroepitaxial film, one can write

gi j 5gi j
I 1gi j

H , ~24!

ei j 5ei j
I 1ei j

H ~25!

for the total surface stress and total surface strain, res
tively, where theI andH superscripts denote the parts whi
are intrinsic to the surface, and which arise from heteroe
16541
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axy, respectively.~This neglects effects due to the finit
thickness of the film, discussed recently by Mu¨ller and
Thomas20!. In the g-g equivalent formalism, no part~total,
intrinsic, or heteroepitaxial! of the surface stresses or surfa
strains obeys a relation similar to the Shuttleworth equati
By way of example, for Ge on a Si surfaceei j

H5

23.8%d i j , which is opposite in sign to the intrinsic surfac
strain.19 By Eqs. ~19!, ~21!, and ~25!, this will lead to a
negative surface energy, which could act to stabilize the
film during the earliest part of growth in the Ge on the
Stranski-Krastanow growth mode.~Normally, a negative sur-
face energy is taken to implyA→`, i.e., instability, but here
an increasingA might not be favored because it will lead t
strain relaxation, which will increase the total surface str
in Eq. ~25! and hence this might increasef surf.! Müller and
Kern noted that at present it is difficult to treat the Strans
Krastanow growth mode theoretically in a satisfacto
manner.21 In general, one expects nanostructure shape
arise by minimizing the surface and bulk stress energie
concert, within the bounds of the equilibrium states to wh
the system has access.

We should make clear the extent of the approximatio
inherent to Eq.~22!. Because of the similarity in the bondin
parallel to the surface plane, we take theci j to be fairly
constant as one approaches the surface from the bulk.
units of theci j andci j

surf are different: one has to multiply th
ci j by the thickness characteristic of the surface in order
obtain theci j

surf. Due to the approximations present, we ha
considered only the elastic constants of isotropic bulk a
surface systems. We have taken the representative thick
of the surface to betB which we expect to be accurate t
within a factor of 2. For a pessimistic assessment of surf
strain, namely, taking the surface to be of monolayer thi
ness, and assuming that Eq.~22! overestimates theci j

surf by
50%, one obtains a surface strain of16.6%, which ap-
proaches the regime in which the linear elastic approxim
tion ceases to be valid. The choice of surface elastic c
stants and surface strain is therefore fairly arbitrary in t
macroscopic theory: what is not arbitrary is that, when th
two quantities are combined@Eq. ~19!#, one must obtain a
surface stress tensor~for isotropic surface stress, a surfac
tension! which is in agreement with values derived from e
periment. We emphasize that the numerical accuracy of
example of the Si~001! surface given for illustrative purpose
has no bearing on the validity of exploring the consequen
of g-g equivalence.

We will examine the possibility that the surface strain h
a drastic influence on the surface elastic constant expres
c11

surf1c12
surf, which occurs within Eq.~23!. If we consider the

effect of a hydrostatic strain of12.2% ~equal to the surface
strain calculated above! on Si this will decrease the corre
sponding bulk elastic constant expressionc111c12 by 24%.
This result is calculated using the dependence of theci j of Si
on pressure measured in Ref. 22. The result is an upper
on the change inc11

surf1c12
surf because the surface is two d

mensional, thereby permitting some elastic relaxation in
direction perpendicular to the surface. In the context of
other approximations present in the calculation of the surf
2-4
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ALTERNATIVE TO THE SHUTTLEWORTH FORMULATION . . . PHYSICAL REVIEW B 63 165412
strain, therefore, it is permissible to take theci j
surf as being

independent of surface strain. Given the 24% change inc11
1c12 calculated above~which means that the average val
of c111c12 during the process of changing the strain fro
zero to12.2% is 12% lower than the value at zero strain!, it
would be wise to quote the Si~001! surface strain as bein
between12.2% and12.5% in the limit of the bilayer-thick
surface model.

In this paper we have examined two derivations of
Shuttleworth equation, and have identified the flaws we p
ceive. Rectifying the perceived flaws leads not to the Shut
worth equation but tog-g equivalence. In theg-g equivalent
l.

th
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ys

,

hi
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formalism, surface stress is merely the generalization of
concept of surface tension to an elastically anisotropic s
tem; the surface free-energy density is given by one-hal
the trace of the surface stress tensor, to lowest order. A
making some assumptions, we obtain a tensile surface s
of 2.2% for the Si~001! surface, which supports the assum
tion that this surface is in the linear elastic regime. We ho
that theg-g equivalent formalism will prove useful in con
trolling and in understanding nanoscale fabrication.

We thank J.-J. Delaunay, P. Finnie, and H. Omi for so
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