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Interaction of charged particles with surface plasmons in cylindrical channels in solids

Néstor R. Arista and Miguel A. Fuentes
Instituto Balseiro and Centro Ato´mico Bariloche, Comisio´n Nacional de Energı´a Atómica, 8400 S.C. Bariloche, Argentina

~Received 11 September 2000; published 27 March 2001!

The interaction between swift charged particles and the electronic surface modes of a cylindrical cavity is
described according to classical and quantum-mechanical formulations. We perform a quantization of the
collective modes and obtain expressions for the coupling with external probes moving with arbitrary trajecto-
ries. We study the case of particles moving parallel to the channel axis and derive the probabilities of single
and multiple plasmon excitation and the average energy loss. A correspondence between the classical and
quantum pictures is shown. The scaling properties of the interaction terms are studied and general scaling
functions are obtained, which may be applied to a wide range of particle velocities and cavity sizes, including
microcapillaries and nanotubes.
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I. INTRODUCTION

The interaction of swift ionized particles with surfac
plasmon modes has become an ever-increasing part of
face physics and related studies since the pioneering wor
Ritchie in 1957.1 These modes are localized collective ele
tronic oscillations that can be excited by charged particle
electromagnetic radiation and give place to a wide field
interesting phenomena. The quantal properties of sur
plasmons have already been investigated by several wor
for the case of plane surfaces or interfaces.2–4

In experiments with electrons, the excitation of surfa
plasmons may be studied through the analysis of the mult
energy-loss peaks that appear in the spectrum of the ine
tically reflected particles.5,6 Previous experiments of plasmo
excitation in aloof scattering during transmission through m
cropores in thin metal foils~with channel radii of 20–200
nm! have also been reported,7,8 and several theoretical stud
ies dealing with the energy loss of charged particles in
lindrical cavities have been published.9–11 In these papers
the energy-loss process has been described in a clas
way, but the importance of the underlying mechanism
surface-plasmon excitation may be inferred from the resu

More recently, the synthesis of nanotubes of graphite
fullerenes has been reported,12,13 and there are alread
electron-spectroscopy experiments.14 and studies of particle
channeling in these structures.15, which may have small di-
ameters of about 14 Å .16 In addition, there is also growing
interest in studying the interaction of swift ions and t
formation of hollow atoms in microcapillaries an
nanotubes.17,18 Hence, the study of plasmon excitation
these systems is a subject of great current interest.

We consider in this paper the interaction between non
ativistic charged particles and the surface modes of a cy
drical cavity using both classical and quantum-mechan
formalisms. The classical approach follows the lines of p
vious studies and provides a convenient link with the qu
tum description. The quantum formulation is derived start
from a quantization of the surface modes in order to obt
the forms of the Hamiltonians corresponding to the free c
lective modes and their interaction with external prob
moving with arbitrary trajectories. We obtain the probab
0163-1829/2001/63~16!/165401~13!/$20.00 63 1654
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ties of single and multiple plasmon excitation and the av
age energy loss for particles moving parallel to the chan
axis. The correspondence between the classical and qua
pictures is shown. Finally, we study the scaling properties
the interaction terms and provide general scaling functi
that may be applied to describe the excitation processes
wide range of cavity radii and particle velocities.

II. CAPILLARY MODES

The electrostatic modes of a cylindrical cavity of radiusa
in a solid are determined by the solutions of the Lapla
equation, in terms of cylindrical Bessel functionsI m(x) and
Km(x), with m50,61,62,63, . . . , asfollows:19

~a! For r,a,

f (1)5Amei (kz1mw)I m~kr!e2 ivt; ~1!

~b! for r.a,

f (2)5Bmei (kz1mw)Km~kr!e2 ivt, ~2!

where we use cylindrical coordinates (r,w,z) and k is a
wave vector along the axial channel direction denoted bz.
The relation between the coefficientsAm and Bm , and the
frequencies of the modesvk,m5vm(k) may be determined
by the usual matching conditions atr5a, namely
f (1)(r,w,z)ur5a5f (2)(r,w,z)ur5a and “rf (1)(r,w,z)ur5a

5«(v)“rf (2)(r,w,z)ur5a , where «(v) is the dielectric
function of the medium.

This yields

Am

Bm
5

Km~ka!

I m~ka!
~3!

and

«~v!5
I m8 ~ka!

I m~ka!

Km~ka!

Km8 ~ka!
, ~4!

whereI m8 (x)5dIm(x)/dx, Km8 (x)5dKm(x)/dx.
Equation~4! gives implicitly thedispersion relationof the

modes,v5vm(k). It may be solved for each material usin
©2001 The American Physical Society01-1
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the appropriate expression for«(v). In particular, we will
approximate here the dielectric function around the plas
resonance by«(v)512vP

2 /v(v1 ig), where vP is the
plasma frequency andg the damping constant. Forg!vP ,
we obtain the frequency of the modesvk,m[vm(k) in the
form

vk,m5
vP

A11sm~ka!
, ~5!

wheresm(x)52I m8 (x)Km(x)/I m(x)Km8 (x) @note thatsm(x)
is a positive quantity sinceKm8 (ka),0#.

Using the Wronskian property20 I m(x)Km8 (x)
2I m8 (x)Km(x)521/x, we can write this relation in a very
simple form,

vk,m
2 5vP

2xIm~x!uKm8 ~x!u5vP
2gm~x!, ~6!

with x5ka and where we introduced the functiongm(x)
[xIm(x)uKm8 (x)u, which has the following limits:gm(x)
→1 for x→0; gm(x)→ 1

2 for x→`.
This shows a general scaling property ofvk,m /vP in

terms of the variablex5ka. The dispersion curves form
50,1,2,3 are shown in Fig. 1. Two important limits shou
be noted: forka→0, we getvk,m→vP for m50 ~this cor-
responds to bulk-plasmon modes in homogeneous syst!
and vk,m→vs for mÞ0, whereas forka→`, one gets
vk,m→vs in all cases, wherevs5vP /A2 is the surface-
plasmon frequency corresponding to flat surfaces (a→`
limit !.1

FIG. 1. Dispersion relation of the surface-plasmon modes o
cylindrical cavityvk,m /vP , for m50, 1, 2, and 3, vs the variabl
x5ka. Some characteristic limits should be noted: forka→0, we
get vk,m→vP for m50 andvk,m→vs for mÞ0, whereas forka
→`, one getsvk,m→vs , where vs5vP /A2 is the surface-
plasmon frequency corresponding to flat surfaces (a→` limit !. The
intersections of the various curves with the linev/vP5ux ~solid
circles! yield the conditions for the resonant excitation of each
the modes~the linev/vP5ux shown here corresponds to a reduc
velocity u50.5).
16540
a
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III. CLASSICAL TREATMENT

A. Field of external charge

The Coulomb potential of a chargeZe moving uniformly
with trajectory parallel to thez axis, with velocityv and with
instantaneous coordinatesx05(r0 ,f0 ,vt), may be ex-
panded in terms of cylindrical functions as follows:19

f0~r,f,z,t !5
Ze

ux2x0u

5
2

p
Ze (

m52`

`

3E
0

`

dk exp@ im~f2f0!#

3cos@k~z2vt !#I m~kr,!Km~kr.!. ~7!

We introduce here a Fourier transform of the time coor
nate, defined by

F~v!5E
2`

`

dt eivtF~ t !, ~8!

and obtain

f0~r,f,z,v!52Ze (
m52`

` E
0

`

dk exp@ im~f2f0!#

3I m~kr,!Km~kr.!

3$exp~ ikz!d~v2kv !

1exp~2 ikz!d~v1kv !%. ~9!

B. Induced potential

Following the form of the external potential, Eq.~9!, the
induced potential inside and outside the cavity may be
panded also in a convenient way in terms of the regu
solutions in each domain.

~a! r,a. Following Eq.~9!, we write the induced poten
tial as follows:

f ind
(a) ~r,f,z,v!52Ze (

m52`

` E
0

`

dk exp@ im~f2f0!#

3AmI m~kr!@exp~ ikz!d~v2kv !

1exp~2 ikz!d~v1kv !# ~10!

so that the total potential forr,a becomes

f tot
(a)~r,f,z,v!5f0~r,f,z,v!1f ind

(a)~r,f,z,v!. ~11!

~b! r.a. In this case it becomes convenient to expand
total ~external plus induced! potential as follows:

a

f

1-2
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INTERACTION OF CHARGED PARTICLES WITH . . . PHYSICAL REVIEW B63 165401
f tot
(b)~r,f,z,v!52Ze (

m52`

` E
0

`

dk exp@ im~f2f0!#

3BmKm~kr!@exp~ ikz!d~v2kv !

1exp~2 ikz!d~v1kv !#. ~12!

The coefficientsAm andBm in Eqs.~10! and~12! will be
determined from the boundary conditions.

C. Boundary conditions

Using the former expressions of Eqs.~9!–~12!, we apply
the usual matching conditions atr5a, namely

f0~a,f,z,v!1f ind
(a)~a,f,z,v!5f tot

(b)~a,f,z,v! ~13!

and

f08~a,f,z,v!1f ind
(a)8~a,f,z,v!5«~v!f tot

(b)8~a,f,z,v!,
~14!

where the primes denote the derivatives with respect to
variabler.

This yields the following equations to determine the c
efficientsAm andBm :

I m~kr0!Km~ka!1AmI m~ka!5BmKm~ka!,

I m~kr0!Km8 ~ka!1AmI m8 ~ka!5BmKm8 ~ka!«~v!, ~15!

and we obtain the solutions in the formAm(k,v)
5I m(kr0)Ãm(k,v), Bm(k,v)5I m(kr0)B̃m(k,v), whereÃm

and B̃m are given by

Ãm~k,v!5
@12«~v!#Km~ka!Km8 ~ka!

«~v!I m~ka!Km8 ~ka!2Km~ka!I m8 ~ka!
,

~16!

B̃m~k,v!5
I m~ka!Km8 ~ka!2Km~ka!I m8 ~ka!

«~v!I m~ka!Km8 ~ka!2Km~ka!I m8 ~ka!
.

~17!

In the following, the primes in the expressionsI m8 (x) and
Km8 (x) will denote the derivatives with respect to the arg
mentx5ka.

Using Eq. ~16! and Fourier transforming Eq.~10!, we
obtain the induced potential inside the cylinder,

f ind
(a)~r,f,z,t !52ZeE

2`

` dv

2p
e2 ivt

3 (
m52`

` E
0

`

dk Im~kr!I m~kr0!

3eim(f2f0)Ãm~k,v!@exp~ ikz!d~v2kv !

1exp~2 ikz!d~v1kv !#, ~18!

which, after integrating inv, may be written as follows:
16540
e
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f ind
(a)~r,f,z,t !5

2

p
Ze (

m52`

` E
0

`

dkIm~kr!I m~kr0!eim(f2f0)

3$Re@Ãm~k,v!#cos~kz2vt !

2Im@Ãm~k,v!#sin~kz2vt !%uv5kv , ~19!

where we have used the proper

Ãm~k,v!1Ãm~k,2v!52 Re@Ãm~k,v!#,

Ãm~k,v!2Ãm~k,2v!52i Im@Ãm~k,v!#,

and the frequency is now given byv5kv.
A further useful expression forÃm(k,v) that applies to

the previously introduced dielectric function is the followin

Ãm~k,v!5
vk,m

2

v~v1 ig!2vk,m
2

Km~x!

I m~x!

5
gm~x!

V~V1 iG!2gm~x!

Km~x!

I m~x!
, ~20!

whereV(x)5v/vP5kv/vP5ux, with u5v/vPa ~reduced
velocity!, G5g/vP andgm(x)[xIm(x)uKm8 (x)u. This shows

that the values ofÃm(k,v) may also be parametrized in
general way using reduced variables, in terms ofx5ka.

D. Resonant excitations

According to Eq.~19!, the induced field consists of a su
perposition of wave components that satisfy the condit
v5kv. This means that only waves with phase velocit
v/k coincident with the particle velocityv will be excited by
the particle. This corresponds to conditions of coherent
citation of the modes.

Then, the values ofk andvm must be determined for eac
velocity v by solving the equationvm(k)5kv. This condi-
tion is illustrated in Fig. 1 by the linev/vP5kv/vP5ux,
with u5v/vPa andx5ka. The values ofk andv to be used
in the evaluation are those corresponding to the intersec
of the line v/vP5ux with the corresponding dispersion
relation curve for each modem. In these conditions, we hav
resonant excitations. These values are indicated by sol
circles in Fig. 1 In this way,k and v become velocity-
dependent functions:k5km@v#, v5vm@v#.

It may be shown that the form of the induced potenti
Eq. ~19!, has a typical ‘‘wake’’ structure, characterized by
function ofr andz2vt, which remains stationary in a fram
of reference moving together with the particle at velocityv
~the phenomenon of a wake potential has been studied
tensively for particles moving inhomogeneousmedia!.21

IV. STOPPING FORCE ON THE PARTICLE

The potential inside and outside the capillary is given
Eqs. ~10!–~12!. In order to calculate the stopping force du
to the induced reaction of the medium on the moving p
1-3
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ticle, it is enough to consider the internal induced elec
field, namely

Ez
(a)~r,f,z,t !52

]f ind
(a)

]z
5

2

p
Ze(

m
E

0

`

dk kIm~kr!I m~kr0!

3exp@ im~f2f0!#$Re@Ãm~k,v!#

3sin~kz2vt !1Im@Ãm~k,v!#

3cos~kz2vt !%uv5kv . ~21!

In particular, we may calculate the field acting on t
charge~with z5vt, r5r0, andf5f0), which produces a
reaction on it, in the form of astopping force Fz5ZeEz

(a) ,
given by

Fz5
2

p
~Ze!2 (

m52`

` E
0

`

dk k@ I m~kr0!#2Im@Ãm~k,v!#,

~22!

with v5kv.
Moreover, sinceI m(x)5I 2m(x), Km(x)5K2m(x), the

modes withm.0 andm,0 yield equal contributions and
we can write

Fz5 (
m52`

`

Fz,m5Fz,012 (
m51

`

Fz,m , ~23!

whereFz,m is the contribution from each modem.
Let us consider now some limiting cases of special int

est.

A. Limit ka\0

This limit applies both to the cases of small channel
dius or relatively fast particles~i.e., vsa/v→0), but within
the nonrelativistic restrictions.

We use the behavior of theI m(x) and Km(x) functions
when x→0, namely20 I m(x)→amxm, I m8 (x)→mam

xm21, K0(x)→ ln(1.123 . . . /x), K08(x)→21/x,Km(x)→bm

x2m ~for mÞ0), andKm8 (x)→2mbmx2(m11) (mÞ0), with
am522m/G(m11) andbm52m21G(m).

Then we get, form50,

Ã05K0~ka!F12«~v!

«~v! G> lnS 1.123

ka D F12«~v!

«~v! G , ~24!

and formÞ0,

Ãm>
bm

~ka!2m F12«~v!

11«~v!G . ~25!

In particular, we can distinguish the following two cases
interest.

1. Motion along the axis (r0Ä0)

In this case only them50 term contributes, yielding a
stopping force
16540
c

-

-

f

Fz>
2

p
~Ze!2E

0

`

dk k lnS 1.123

ka D ImF 1

«~v!G ~26!

with v5kv. Using the dielectric function model,«(v)51
2vP /v(v1 ig), in the limit of small damping (g→0),
Im@1/«(v)#5 2(p/2)vP@d(v2vP)2d(v 1vP)#, we get

Fz>2S ZevP

v D 2

lnS 1.123v
avP

D . ~27!

It is interesting to note that this result agrees with the o
corresponding to particles moving uniformly in a homog
neous medium, as it may be expected in the present l
(r050, a!v/vP) with a cutoff radius given bya.

2. Motion near the axis (r0™a)

Using here the limiting forms of the Bessel functions f
x→0, and considering the limit Im$@12«(v)#/@11«(v)#%
52(p/2)vs@d(v2vs)2d(v1vs)#, with vs5vP /A2, we
get

Fz,0>2S ZevP

v D 2

lnS 1.123v
avP

D ~28!

and

Fz,m>2S Zevs

v D 2

ambmS r0

a D 2m

~29!

with the values ofam andbm given before.
We notice here the quadratic growing of them51 con-

tribution for smallr0, i.e., for particles moving close to th
channel axis.

B. Limit ka\`

We observe from Eq.~6! that for x5ka→`, gm(x)→ 1
2

and sovk,m→vs ; moreover, we obtain in this limit thatk
>vs /v. Using these approximations in Eqs.~16! and ~22!,
we get, forr0;a,

Fz>2S Zevs

v D 2

(
m52`

`

I m~2kr0!Km~2ka!, ~30!

and using here the property19

(
m52`

`

I m~2kr0!Km~2ka!5K0~2kur02au!, ~31!

we finally obtain

Fz>2S Zevs

v D 2

K0S 2
vs

v
d0D ~32!

with d05ur02au.
We note that this corresponds to the expression of

stopping force for a particle moving parallel to an infini
planesurface,22 at a distanced05ur02au. Therefore, in this
limit ( ka→`) the curvature of the surface becomes irr
evant. The interaction decays rapidly ford0vs /v@1, so that
it becomes negligible in a wide inside region withr0,a.
1-4
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INTERACTION OF CHARGED PARTICLES WITH . . . PHYSICAL REVIEW B63 165401
Hence, the interaction with the surface occurs only at re
tively ‘‘small’’ distances,d0;v/vs ~with v/vs!a).

V. CALCULATION OF THE STOPPING FORCE

The expression for the stopping force, Eq.~22!, may be
integrated in a general way for a dielectric function of t
form «(v)5«1(v)1 i«2(v) when «2(v)→0. As we will
see, this provides a more general solution than the one
tained from the simple dielectric model previously used.

First we write the expression forÃm using Eq.~16! as
follows:

Ãm5
Xm

Ym1 i«2~v!Zm
, ~33!

where Xm5@12«(v)#Km(ka)Km8 (ka), Ym5«1(v)I m(ka)
Km8 (ka)2I m8 (ka)Km(ka), and Zm5I m(ka)Km8 (ka), which
is obtained by separating the real and imaginary parts
«(v)5«1(v)1 i«2(v) in the denominator of Eq.~16!.

Then, for «2(v)→01, we use the limiting expressio
~note thatZm,0)

lim
«2→01

1

Ym1 i«2Zm
→PVF 1

Ym
G1 ipd~Ym!. ~34!

Using this in Eq.~33!, we get

Im@Ãm#>pXmd@«1~v!I m~ka!Km8 ~ka!2I m8 ~ka!Km~ka!#.
~35!

Now, since the roots of the square bracket expression
precisely the frequencies of the modes,vm(k) @cf. Eq. ~4!#,
we can also approximate this result as

Im@Ãm#>2
pXm

I m~x!Km8 ~x!
U]«1

]v U21

$d@v2vm~k!#

2d@v1vm~k!#%, ~36!

where I m(x)[I m(ka), Km8 (x)[Km8 (ka), and the value of
Xm was given before.

Using this expression in Eq.~22!, we obtain the result for
the stopping force,

Fz5(
2`

`

Fz,m , ~37!

where the contribution of each modem becomes

Fz,m522S Ze

v D 2

vm

@12«1~vm!#

u]«1 /]vu
Km~ka!

I m~ka! F I mS vmr0

v D G2

.

~38!

1. Plasma resonance approximation

Let us consider again the approximation for the dielec
function used before,«(v)512vP

2 /v(v1 ig), with g→0.
We getu]«1 /]vu52vP

2 /v3, and Eq.~38! becomes
16540
-

b-
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c

Fz,m52S Zevm

v D 2 Km~ka!

I m~ka! F I mS vmr0

v D G2

. ~39!

We may write this result in a more illustrative way usin
the equation for the capillary modes, Eq.~6!, vm

2

5vPxIm(x)uKm8 (x)u, which yields

Fz,m52S ZevP

v D 2F I mS vmr0

v D G2

xKm~x!uKm8 ~x!u, ~40!

where x[ka and k5vm /v. We note here that the depen
dence on the channel radius is simply parametrized in te
of the functionGm(x)5xKm(x)uKm8 (x)u.

As was already noted, the values ofk and vm must be
determined for each velocityv by solving the intersecting
equationvm(k)5kv ~condition for resonant excitation o
modes!, so that the values ofk and v become velocity-
dependent functions:k5km@v# andv5vm@v#, as indicated
in Sec. III.

VI. QUANTUM-MECHANICAL TREATMENT

In order to quantize the previously described modes o
cylindrical cavity, we will apply the method of surface
plasmon quantization developed in Ref. 2 For this purpo
the energy of the plasmon field is separated into kinetic-
potential-energy terms. The kinetic energy, associated w
the electronic oscillations, is represented by introducing
velocity-potential functionC(r ,t), such that the velocity
field corresponding to the electron motion may be calcula
asv(r ,t)52“C(r ,t).

The energy of the surface-plasmon field is then given
the sum of potential and kinetic energies as follows:

Hsp
0 5

1

2E rsfs d3r 1 1
2 n0meE ~“C!2d3r . ~41!

Herers52ens is the electric charge associated with t
induced electronic densityns of the surface-plasmon field
andfs is the corresponding electrostatic potential, whilen0
is the equilibrium electron density in the metal andme is the
electron mass.

We write the electrostatic potential as a general expans
including all the modes,

fs~r ,t !5(
k,m

ei (kz1mw)H fk,m
(1) ~ t !I m~kr!, r,a

fk,m
(2) ~ t !Km~kr!, r.a

~42!

and express the electronic density corresponding to th
modes as a localized surface density, namely

ns~r ,t !5(
k,m

nk,m~ t !ei (kz1mw)d~r2a!. ~43!

The r component of the electric field is then derived,

Er[2
]fs

]r
52(

k,m
k ei (kz1mw)H fk,m

(1) ~ t !I m8 ~kr!, r,a

fk,m
(2) ~ t !Km8 ~kr!, r.a.

~44!
1-5
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NÉSTOR R. ARISTA AND MIGUEL A. FUENTES PHYSICAL REVIEW B63 165401
Finally, we propose an expansion for the velocit
potential fieldC(r ,t) as follows:

C~r ,t !5(
k,m

H 0, r,a

Ck,m~ t !ei (kz1mw)Km~kr!, r.a,
~45!

where we have taken into account the confinement of
electrons to the regionr.a.

In order to determine the relations between the coe
cientsfk,m , nk,m , andCk,m in these expansions, we app
Maxwell’s boundary conditions atr5a, namely

Er
(2)2Er

(1)ur5a524pess , ~46!

Er
(1)2«~v!Er

(2)ur5a50, ~47!

where ss is the induced surface density associated to
electronic densityns in Eq. ~43!, ns5ssd(r2a). To obtain
a similar relation forC(r ,t), we recall the continuity equa
tion

]ns

]t
52n0“•v5n0“

2C. ~48!

By integrating in a small volume containing a small su
face element, and using the relationns5ssd(r2a), we find

]C

]r U
r5a

5
ṡs

n0
U

r5a

, ~49!

which provides the required link between the fields.
Using Eqs.~46!–~49! and the corresponding expansio

in terms of elementary modes, we finally obtain the relatio

fk,m
(1) 5

4pe

k

nkm

I m8 ~ka!

«~v!

12«~v!
, ~50!

fk,m
(2) 5

4pe

k

nkm

Km8 ~ka!

1

12«~v!
, ~51!

Ck,m5
1

k

ṅkm

n0Km8 ~ka!
. ~52!

A. Calculation of energies

Using the expressions~42! and ~43!, the potential energy
in Eq. ~41! becomes

Hpot52
e

2 (
k,m

(
k8,m8

E d3r ei (k1k8)zei (m1m8)w

3nk,mfk8,m8
(1) I m8~ka!d~r2a!, ~53!

where we separate the volume integral as

E d3r 5E
0

`

r drE
2L/2

L/2

dzE
0

2p

dw, ~54!
16540
e
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e
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and after elementary integrations, and using the relation~50!
betweenf2k,2m

(1) andn2k,2m , we get

Hpot522pe2A(
k,m

nk,mn2k,2m

k

I m~ka!

I m8 ~ka!
S «

12« D , ~55!

whereA52pLa is the surface of the cylindrical cavity.
In order to calculate the kinetic energy in Eq.~41!, we

perform a partial integration as follows:

E d3r ~“C!25E d2AC“C2E d3r C~“2C!. ~56!

We note that the second term cancels out due to the assu
irrotational property2 “

2C50, whereas the surface integra
tion is performed using Eq.~45!,

E d2AS C
]C

]r D5(
k,m

(
k8,m8

E dzE dw Ck,mCk8,m8

3ei (k1k8)zei (m1m8)w

3k8Km~kr!Km8
8 ~k8r!. ~57!

Here thez andw integrals givedk8,2kdm8,2m , and using
Eq. ~52! for Ck,m , we get the kinetic-energy term in th
form

Hkin52
meA

2n0
(
k,m

ṅk,mṅ2k,2m

k

Km~ka!

Km8 ~ka!
. ~58!

From Eqs.~55! and~58!, the total energy of Eq.~41! may
be written as

Hsp
0 52pe2A(

k,m

nk,mn2k,2m

k
ak,m

1
meA

2n0
(
k,m

ṅk,mṅ2k,2m

k
bk,m , ~59!

where

ak,m5
I m~ka!

I m8 ~ka!
S 2«

12« D , ~60!

bk,m52
Km~ka!

Km8 ~ka!
. ~61!

Using the equation of the modes~4!, we obtain

ak,m5
bk,m

12«
5bk,m

vk.m
2

vP
2

, ~62!

where the last expression applies to the dielectric funct
«(v)512vP

2 /v(v1 ig) considered before.
It may also be proved thatak,m andbk,m are always posi-

tive quantities, since by Eq.~4! «(v) should be negative a
the frequencies of the surface-plasmon modes.
1-6
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Using Eq.~4! in Eq. ~59!, we finally obtain the energy o
the plasmon field in the desired canonical form,

Hsp
0 5

meA

2n0
(
k,m

bk,m

k
@ ṅk,mṅk,m* 1vk.m

2 nk,mnk,m* #, ~63!

where the relationsn2k,2m5nk,m* and ṅ2k,2m5ṅk,m* have
been used.

B. Quantization

The expression~63! suggests a quantization via a cano
cal transformation,

nk,m5
gk,m

2vk,m
~ak,m1a2k,2m* !,

~64!

nk,m* 5
gk,m

2vk,m
~ak,m* 1a2k,2m!,

and the corresponding relations ~using ȧk,m

52 ivk.mak,m , ȧk,m* 5 ivk.mak,m* )

ṅk,m52
igk,m

2
~ak,m2a2k,2m* !,

~65!

ṅk,m* 5
igk,m

2
~ak,m* 2a2k,2m!.

This brings Eq.~63! into the form

Hsp
0 5

meA

4n0
(
k,m

bk,m

k
gk,m

2 @ak,mak,m* 1ak,m* ak,m#, ~66!

so that, with the appropriate choice ofgk,m ,

gk,m5F2n0\k

meA

vk,m

bk,m
G1/2

, ~67!

we obtain

Hsp
0 5 1

2 (
k,m

\vk,m@ak,mak,m* 1ak,m* ak,m#. ~68!

The quantization may now be performed through the sub
tution

ak,m ,ak,m* →ak,m ,ak,m
† , ~69!

whereak,m ,ak,m
† are now the operators of annihilation an

creation of surface plasmons for each modek,m, satisfying
the usual commutation relations of bosonic operato
their time evolution being of the forme2 ivt and eivt,
respectively.23

Using these relations, we finally get the expression for
Hamiltonian of the surface-plasmon field in the stand
form,

Hsp
0 5(

k,m
\vk,m@ak,m

† ak,m1 1
2 #. ~70!
16540
ti-
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e
d

The eigenstates ofHsp
0 may be built starting from the

vacuum stateu0& in the usual way,

unk,m&5
~ak,m

† !n

An!
u0&, ~71!

corresponding to the excitation ofnk,m plasmons in a given
modek,m.

VII. INTERACTION WITH EXTERNAL PROBES

Starting from the classical description, the interaction
the plasmon field with an external particle of chargeZe mov-
ing along a prescribed trajectoryrW(t) is given by

H int5Zefs@rW~ t !#, ~72!

wherefs is given by Eq.~42!.
For particles moving within the channel, we use the fi

form of Eq. ~42! in terms offk,m
(1) . Moreover, using the re-

lation ~50! between the coefficientsfk,m
(1) and nk,m and the

relation ~64!, we can writefk,m
(1) in terms of the operatorsa

anda† as follows:

fk,m
(1) 52lk,m~ak,m1a2k,2m

† !, ~73!

where

lk,m5
2pe

k

vk,m

vP
2

bk,mgk,m

I m~ka!
. ~74!

Thus we obtain the expansion of the plasmon field in ter
of creation and annihilation operators and the correspond
~internal! eigenfunctionsI m(kr) for each mode, in the form

fs~r,a!52(
k,m

lk,mI m~kr!~ak,mei (kz1mw)

1ak,m
† e2 i (kz1mw)!. ~75!

Using this in Eq.~72!, we obtain the expression for th
interaction energy for particles moving inside the cav
along a trajectoryrW(t),

H int~ t !52Ze(
k,m

lk,mI m~kr!~ak,mei (kz1mw)

1ak,m
† e2 i (kz1mw)!urW5rW(t) , ~76!

where now the values of (r,w,z) are those corresponding t
the trajectoryrW(t).

The values of the coupling coefficientslk,m in this equa-
tion may be further simplified using the expressions forbk,m
and gk,m , as well as the equation for the modes, Eq.~6!,
yielding a very compact result:

lk,m
2 5

\vk,m

L

Km~ka!

I m~ka!
. ~77!
1-7
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VIII. EXCITATION OF MODES

The total Hamiltonian for the plasmon field interactin
with an external probe is given now in the secon
quantization formalism by

H5Hsp
0 1H int~ t !, ~78!

whereHsp
0 and H int(t) are given by Eqs.~70! and ~76!, re-

spectively. We note thatH int(t) may be written as

H int~ t !52Ze(
k,m

@ak,mf k,m~ t !1ak,m
† f k,m* ~ t !#, ~79!

with f k,m(t)5lk,mI m(kr)ei (kz1mw).
Due to the special form of the interaction Hamiltonia

the problem of determining the evolution of this system m
be solved in an exact quantum-mechanical way3 from the
Schrödinger equation,

i\
]uC~ t !&

]t
5H intuC~ t !&, ~80!

whereuC(t)& denotes the quantum state of the plasmon fi
in the interaction picture.

This problem is formally equivalent to the interaction
charged particles with a flat surface, and it is known that
state of the field is represented as acoherent state23 having
the general form6

uC~ t !&5expF2 i(
q

Xq~ t !aq1Xq* ~ t !aq
†G uC~2`!&,

~81!

with

Xq~ t !52
Ze

\ E
2`

t

f q~ t8!exp~2 ivqt8!dt8, ~82!

where for simplicity we are using the condensed notatioq
5(k,m) for the modes.

Expanding the solution of Eq.~81! in eigenstatesunq& of
the free HamiltonianHsp

0 , Eqs.~70! and ~71!, we obtain

uC~ t !&5)
q

exp~2 1
2 uXq~ t !u2! (

n50

`

@2 iXq* ~ t !#n
~aq

†!n

n!
u0&,

~83!

which contains the complete time evolution of the plasm
field.

A. Probability distributions

From Eq. ~83! we can now calculate the probability o
excitation ofn plasmons of a given stateq,

Pnq
~ t !5 z^nquC~ t !& z25exp~2Qq!

~Qq!n

n!
, ~84!

whereQq5uXq(t)u2.
More generally, the probability of excitingnq1 plasmons

in modeq1 , nq2 plasmons in modeq2, and so on, will be
given by
16540
-

,
y

d

e

n

P$nq%~ t !5 z^nq1 ,nq2 , . . . uC~ t !& z2

5e2Qq1
~Qq1!

nq1

nq1!
e2Qq2

~Qq2!
nq2

nq2!
•••, ~85!

which may also be written as

P$nq%~ t !5e2Q)
q

~Qq!nq

nq!
, ~86!

whereQ5(qQq5(k,muXk,mu2.
Alternatively, one may be interested in the excitation o

given modem, so that the appropriateQ value for this case
becomes

Qm5(
k

uXk,mu25S L

2p D E
2`

`

dkuXk,mu2, ~87!

where the sum has been transformed into an integral ovk
following the standard procedure. Note that here the integ
extends from2` to 1`, whereas in the classical calcula
tion it is restricted to positivek values; this difference is due
to the different representations used in each case~here we are
using an extended representation in terms ofeikz functions
with positive and negative values ofk).

TheseQ values are the parameters of the Poisson dis
butions describing the probabilities of multiplasmon pr
cesses, according to the following.

~a! The probability of exciting a total numberN of plas-
mons in any mode~i.e., nq11nq21•••5N) is given by

PN~ t !5 (
nq11nq21•••5N

P$nq%~ t !5e2Q
~Q!N

N!
. ~88!

~b! The probability of excitingNm plasmons of a given
modem is given by

PNm
~ t !5e2Qm

~Qm!Nm

Nm!
. ~89!

The Q values also have the following physical interpret
tion.

~i! The average total numberN̄ of excited plasmons is
given byN̄5(N50

` N PN5Q.

~ii ! The average numberN̄m of excited plasmons of mode
m is given byN̄m5(Nm50

` Nm PNm
5Qm .

B. Calculation of Qm

The values ofQm may be obtained from Eqs.~82! and
~87!, and using the expressions for thef k,m functions in Eq.
~79!, namelyf k,m(t)5lk,mI m(kr)ei (kz1mw). To integrateXq
~with q5k,m) in Eq. ~82!, we have to specify the trajector
„r(t),w(t),z(t)… of the particle. We will now perform the
calculation for a trajectory parallel to the axis of the chan
with r5r0 , w5w0 , z5vt in order to compare with the
classical calculation. In this case, since the interaction w
1-8
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the surface is permanently connected, to avoid divergen
we have to limit our integration to a finite time interva
2T,t,T, so that

Xk,m52
Ze

\ E
2T

T

f k,m~ t !exp~2 ivk,mt !dt, ~90!

which yields

Xk,m52
Ze

\
lk,mI m~kr0!eimw0FeiVT2e2 iVT

iV G ~91!

with V5kv2vm(k) @and withvm(k)[vk,m#.
Considering now the limit T→`, and using the

d-function limit @sin(VT)/V#2→pTd(V), we get

uXk,mu25
4pT

\2
@Zelk,mI m~kr0!#2d„kv2vm~k!…. ~92!

Using Eq. ~87! and performing thek integration, we fi-
nally obtain

Qm5
2TL

\2v
@Zelk,mI m~kr0!#2. ~93!

As was already discussed, the value ofk is fixed for each
mode m and ion velocity v by the resonant condition
vm(k)5kv as illustrated in Fig. 1~line v5ux). Hence, the
value of lk,m to be used in the calculations, Eq.~77!, be-
comes also a velocity-dependent coefficient.

We finally note that the result forQm , Eq. ~93!, is pro-
portional to the interaction time 2T, which we may replace
by L/v (L being the length of the channel!, so that the first
factor in Qm is proportional toL2; but there is an additiona
factor 1/L in the coefficientlk,m

2 @cf. Eqs. ~67!, ~74!, and
~77!#, so that the final result forQm will be strictly propor-
tional to L.

C. Correspondence with the classical description

There is apparently little similitude between the result o
tained forQm , Eq. ~93!, and the previous result for the stop
ping force obtained from the classical calculation, Eq.~40!.
However, since there is a correspondence between the
electric function used in Sec. III and the description of s
face plasmons applied in Sec. VI,3,4 one may expect tha
there should be a direct connection between both results

In order to derive this relation, we substitute the value
lk,m in Eq. ~93! and the corresponding values ofbk,m and
gk,m using Eqs.~61!, ~67!, and ~77!, obtaining after some
algebra

Qm5
L

a

~Ze!2

\v S vk,m

vP
D 2 Km~ka!

uKm8 ~ka!u
F I m~kr0!

I m~ka! G2

. ~94!

Moreover, using Eq.~6! for the frequency of the modes, w
may cast the result in the following form:
16540
es

-

di-
-

f

Qm5
L

\vm
S ZevP

v D 2

xKm~x!uKm8 ~x!u@ I m~kr0!#2. ~95!

It should be noted that in these expressions the value ofk is
fixed as vm /v, and sox5ka5vma/v ~see also the nex
section for further discussion!.

By comparing with Eq.~40!, we obtain the desired con
nection between both formalisms:

LuFz,mu5\vmQm , ~96!

which yields theaverageenergy loss due to excitations o
each type of surface modem.

In addition, the average energy lossDE of the particle
after traversing a distanceL inside the channel may be ca
culated following either of the two formalisms, yielding als
coincident results

DE52L(
2`

`

Fz,m5(
2`

`

\vmQm . ~97!

These relations are in full agreement with the interpre
tion of Qm as giving the average number of plasmons be
excited on each mode, with corresponding energy\vm . In
this way, previous calculations based on the class
formalism9–11 convey also information on surface-plasmo
excitation.

IX. SCALING PROPERTIES

It was already noted in Sec. II thatvk,m /vP is determined
in a general way by a function~or set of functions! of the
variable x5ka, namely vk,m /vP5Agm(x), with gm(x)
[xIm(x)uKm8 (x)u, Eq. ~6!. On the other hand, in the integra
tion of the induced potential, electric field, and stoppi
force—Eqs.~18!, ~21!, and~22!—the phase-matching cond
tion vm(k)5kv was imposed. Then, we may express th
condition asAgm(x)5kv/vP5xv/avP , or simply

Agm~x!5ux, ~98!

where we introduce thereduced velocity

u5
v

avP
. ~99!

The condition~98! was illustrated in Fig. 1, and corre
sponds to the intersection of the lineux with the curves
vk,m /vP5Agm(x). Thus, for each reduced velocityu there
is a unique set of values of the variablex for each mode
m, xm5xm(u), which determine the values ofk5km(u)
5xm(u)/a and ofv5vm(u). By varying the velocityv ~or
u), these values change in a continuous way. The functi
xm(u) are shown in Fig. 2; as it may be observed, for lar
values of u the simple relationsx0(u);1/u and xm(u)
;1/A2u ~for mÞ0) may be applied, whereas foru
!1, xm(u) may be approximated byxm(u);1/A2u for all m
values.

Using these properties, the expression for the stopp
force of Eq.~40! may be parametrized as follows:
1-9
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NÉSTOR R. ARISTA AND MIGUEL A. FUENTES PHYSICAL REVIEW B63 165401
Fz,m52S ZevP

v D 2

xKm~x!uKm8 ~x!u@ I m~xj!#2, ~100!

in terms of the variablex5ka defined before and introduc
ing also the reduced variable

j5
r0

a
. ~101!

Replacingv5uavP in Eq. ~100!, we may also write

Fz,m52
Ea

a
f m~u,j!. ~102!

HereEa5(Ze)2/a is a typical value of energy for this sys
tem, whereas the functions

f m~u,j!5
1

u2
xKm~x!uKm8 ~x!u@ I m~xj!#2U

x5xm(u)

.

~103!

may be considered universal functions of the independ
variablesu5v/avP and j5r0 /a, due to the fact thatx
5xm(u) is a function ofu. This way of scaling the results in
terms of (u,j) becomes more advantageous than the pr
ous one in terms of (x,j) since it shows the velocity depen
dence in a direct way.

The functionsf m(u,j) are shown in Fig. 3 form50, 1,
and 2. The main features of these results are the existen
maxima for intermediate values ofu, except for the casej
51 ~or r05a), where the curves show no maximum, and
general increase of the values with increasingj, i.e., as the
particle approaches the boundary of the capillary. The lo
values of f m occur always forj50 ~on the channel axis!
where the only nonvanishing term is given by the low
mode withm50. As a reference, the maximum value of t
m50 function for the case of particles channeled along
axis, f 0(u,0), is found atumax50.8, Fig. 3~a!. Due to the

FIG. 2. Functions 1/xm(u) for the modes withm50,1,5. The
values ofxm(u) are those corresponding to the intersection poi
with the linev/vP5ux indicated in Fig. 1 The dashed lines sho
the approximationsx0(u);1/u andxm(u);1/A2u ~for all mÞ0),
which apply for large values ofu.
16540
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relation betweenu andv, this shows that the maximum valu
of the stopping force or related quantities for this case w
occur for particle velocities proportional to the channel
dius, namelyvmax50.8vPa.

The previous analysis may also be applied to theQm val-
ues required for the description of surface-plasmon exc
tions. These values may be calculated from thef m functions
as follows:

s

FIG. 3. General functionsf m(u,j) ~where u5v/vPa and j
5r0 /a) for the cases~a! m50, ~b! m51, and ~c! m52. The
curves forj50 correspond to particles moving along the chan
axis, whereasj51 correspond to trajectories touching the cav
radius (r05a).
1-10
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Qm5
L

\vm
uFz,mu5

Ea

\vm

L

a
f m~u,j!. ~104!

In the next section, we will give some examples illustr
ing these results.

X. CALCULATIONS

Here we consider some examples of the results der
before. For simplicity, we will assume an incident partic
with unit charge,Z51 ~e.g., a proton or electron!. For other
Z values~as for multicharged ions!, one could use the qua
dratic (Z2) scaling of the stopping force or other linear
related quantities. However, one should note that the va
of the probabilities of plasmon excitationPn do not satisfy
theZ2 scaling, and so they should be recalculated for otheZ
values.

In Fig. 4, we show a calculation of the stopping force~or
stopping power!, Eqs. ~100! and ~102!, versus the particle
velocity, for channels with radiia510 anda520 a.u., for a
medium with plasma frequencyvP50.55 a.u. The maxi-
mum stopping values decrease with 1/a2 while the position
of the maximum grows linearly witha as indicated before
As observed, these stopping power values should lea
energy losses of the order of hundreds of eV if the length
the channels are of some thousands of Å . The observatio
multiple plasmon-loss peaks in these cases should be
pected~note by comparison that only single plasmon pea
with small intensities have been observed in experime
with larger capillary radii!.7,8

The dependence of the stopping force with ther0 value is
indicated in Fig. 5, for the casea510 a.u. Here we include
the contribution of the terms withm50,1, . . . ,5. We ob-
serve the dominance of them50 term near the axis and u
to r0;a/2, whereas whenr0→a the result approaches th
analytical value predicted by Eq.~32!.

FIG. 4. Calculation of the stopping force~or stopping power!,
according to Eqs.~100! and~103!, vs the particle velocity, for chan
nels with radiia510 anda520 a.u., for a medium with plasm
frequencyvP50.55 a.u. The shift in the curves follows from th
scaling properties contained in Eq.~102!. In particular, the maxi-
mum stopping value decreases with 1/a2 while the position of the
maximum grows linearly witha.
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Let us consider now the calculation of plasmon-excitat
processes. In Fig. 6, we show theQm values, form50,1,2,
for a proton traveling withr050.5a in a channel witha
510 andL51000 a.u., whereas in Fig. 7, we show the co
responding probabilitiesPn of exciting a numbern of plas-
mons in the modem50, with 0<n<5, calculated according
to Eq.~89!. The velocity dependence of probabilitiesPn may
be analyzed in further detail considering the corresponde
with the Qm values shown in Fig. 6. Thus, for instance,
v510 we find in Fig. 7 a maximum probability of excitin
n54 plasmons, whereas atv520 the maximum probability
is for n52 plasmons; these values are in agreement with
values ofQm50 for v510 andv520 in Fig. 6 On the other
hand, in the high-velocity limit~where theQ values drop to
0!, we observe a maximum probability of the no-plasm
excitation process~the elastic channel!.

The probabilitiesPn also have an important dependen
on the channel lengthL. In Fig. 8, we show this dependenc

FIG. 5. Stopping force on the particle as a function ofr0 for the
casea510 a.u. The contribution of the terms withm50,1, . . . ,5 is
indicated. Them50 term yields the only contribution near th
channel axis,r0→0, whereas forr0→a the stopping force ap-
proaches the value for flat surfaces predicted by Eq.~32!.

FIG. 6. Calculation ofQm , with m50,1,2, for a proton travel-
ing with impact parameterr050.5a in a channel with radiusa
510 a.u. and lengthL51000 a.u.
1-11
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considering alsoa510 and assuming now a fixed veloci
v55.5 a.u. The figure shows the exponential decrease o
elastic peak and the increase of then51,2, . . . processes
with increasingL. This may be explained rather simply from
the linear increase ofQm with L, Eq. ~95!, and consistently
with the values ofQm shown in Fig. 6 and with the interpre
tation of Qm as the average number of plasmon excitatio
expected for a given lengthL.

We finally indicate that the present values have been p
duced only for illustrative purposes, and the parameters u
here are in the range of interest for experiments with sm
size nanotubes.12–15Much larger values ofa andL would be
of interest for other experiments with microcapillaries
metals.7,8,18

With respect to the applicability of the present results
materials having more complicated dielectric properties t
the simple plasma resonance model used here, we can
that the semiclassical approach and the general results
rived in Secs. III and IV@such as Eqs.~21!–~23!, as well as
expression~16! for Ãm(k,v)# may be applied in principle to
any dielectric function. These results could then be use
calculate multiple-energy-loss spectra of experimental in
est through convolution methods such as those discusse
Refs. 24 and 25

FIG. 7. ProbabilitiesPn of exciting n plasmons~with 0<n
<5) in modem50, after traversing a fixed distanceL, as a func-
tion of velocity, calculated according to Eq.~89! and for the case of
Fig. 6 (r050.5a, a510, L51000).
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XI. SUMMARY

We have studied the interaction of charged particles w
surface modes in cylindrical cavities using both classical a
quantum-mechanical formulations. The classical descrip
follows the lines of previous approaches, providing a simp
fied and useful view of the process, and obtaining seve
new results. The quantization of the surface-plasmon mo
has been carried out, deriving from first principles the fo
of the Hamiltonian that describes the interaction with ext
nal probes.

The excitation of these modes by charged particles
been studied in detail, and general scaling properties h
been obtained. This provides a set of scaling functions
may be useful to predict energy losses and plasmon ex
tion probabilities in many cases of practical interest. T
application of the general results has been illustrated by
merical examples for particle velocities and cavity sizes
the range of experimental access.
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FIG. 8. ProbabilitiesPn of exciting n plasmons~with 0<n
<5) in modem50, as a function of the traversed distanceL, for a
fixed velocityv55.5 a.u.~with r050.5a anda510).
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