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Interaction of charged particles with surface plasmons in cylindrical channels in solids
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The interaction between swift charged particles and the electronic surface modes of a cylindrical cavity is
described according to classical and quantum-mechanical formulations. We perform a quantization of the
collective modes and obtain expressions for the coupling with external probes moving with arbitrary trajecto-
ries. We study the case of particles moving parallel to the channel axis and derive the probabilities of single
and multiple plasmon excitation and the average energy loss. A correspondence between the classical and
quantum pictures is shown. The scaling properties of the interaction terms are studied and general scaling
functions are obtained, which may be applied to a wide range of particle velocities and cavity sizes, including
microcapillaries and nanotubes.
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[. INTRODUCTION ties of single and multiple plasmon excitation and the aver-
age energy loss for particles moving parallel to the channel
The interaction of swift ionized particles with surface- axis. The correspondence between the classical and quantum
plasmon modes has become an ever-increasing part of supictures is shown. Finally, we study the scaling properties of
face physics and related studies since the pioneering work b€ interaction terms and provide general scaling functions
Ritchie in 1957* These modes are localized collective elec-that may be applied to describe the excitation processes for a
tronic oscillations that can be excited by charged particles owide range of cavity radii and particle velocities.
electromagnetic radiation and give place to a wide field of
interesting phenomena. The quantal properties of surface Il. CAPILLARY MODES

plasmons have already been investigated by several workers . N . .
for the case of plane surfaces or interfates. The electrostatic modes of a cylindrical cavity of radéaus

In experiments with electrons, the excitation of surface' @ s_ohd_are deter][nlnlgddt?y tlhe sollft]lcons .Of the Laglaee
plasmons may be studied through the analysis of the mump'gquatlon, in terms of cylindrical Bessel functiohg(x) an

energy-loss peaks that appear in the spectrum of the inelafm(X), wWith m=0,+1,22,%3, ..., asfollows:*®

tically reflected particle&® Previous experiments of plasmon (& Forp<a,

excitation in aloof scattering during transmission through mi- HV=A_ellkzrme)| (y )g-iot 1)
cropores in thin metal foilgwith channel radii of 20—200 m mi*0 '

nm) have also been reportéd,and several theoretical stud- (b) for p>a

ies dealing with the energy loss of charged particles in cy-
lindrical cavities have been publish&d:" In these papers, pD=B, ek maK (Kkp)e~iet, ®)
the energy-loss process has been described in a classical
way, but the importance of the underlying mechanism ofwhere we use cylindrical coordinatep,f,z) andk is a
surface-plasmon excitation may be inferred from the resultsvave vector along the axial channel direction denoted.by
More recently, the synthesis of nanotubes of graphite off he relation between the coefficiems, and B,, and the
fullerenes has been report&d:® and there are already frequencies of the modes, = w,(k) may be determined
electron-spectroscopy experimefiteand studies of particle by the usual matching conditions ap=a, namely
channeling in these structurEs.which may have small di- ¢(p,¢,2)|,—a= 6@ (p,¢.2)|,-a and V ,6M(p,¢,2)| -4
ameters of about 14 A® In addition, there is also growing =¢(w)V,¢?(p,¢,2)|,—a, Where e(w) is the dielectric
interest in studying the interaction of swift ions and thefunction of the medium.
formation of hollow atoms in microcapillaries and  This yields
nanotubes! '8 Hence, the study of plasmon excitation in
these systems is a subject of great current interest. An  Kpy(ka)
We consider in this paper the interaction between nonrel- B_m_ I (ka) E)
ativistic charged particles and the surface modes of a cylin-
drical cavity using both classical and quantum-mechanica‘#ind
formalisms. The classical approach follows the lines of pre-
vious studies and provides a convenient link with the quan- _ Im(ka) Ky(ka)
tum description. The quantum formulation is derived starting @ Im(ka) K/ (ka)"
from a quantization of the surface modes in order to obtain
the forms of the Hamiltonians corresponding to the free colwherel [ (x) =dl,(x)/dx, K/ (x)=dK,(x)/dx.
lective modes and their interaction with external probes Equation(4) gives implicitly thedispersion relatiorof the
moving with arbitrary trajectories. We obtain the probabili- modes,o= w,(k). It may be solved for each material using
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1.00 T T T T T T T T Ill. CLASSICAL TREATMENT
A - ] .
0.95 [ o /o, = Uux - A. Field of external charge
0.00 1 ] The Coulomb potential of a chargee moving uniformly
N I ] with trajectory parallel to the axis, with velocityv and with
3 oss| . instantaneous coordinategy=(pg,¢g,vt), may be ex-
8 I 1 panded in terms of cylindrical functions as follows:
080 [ .
m=1
Ze
075 m=2 ]
1 ,Z,t =1 7
.......................................................... Polp 820 =
0.70 — o=o — , .
- —— =,2e 2
x=ka -

FIG. 1. Dispersion relation of the surface-plasmon modes of a
cylindrical cavity wy m/wp, for m=0, 1, 2, and 3, vs the variable
x=ka. Some characteristic limits should be noted: kar— 0, we
get w m— wp for m=0 andwy ,— ws for m#0, whereas foka Xcogk(z—vt) ]I m(kp<)Km(kp=). (7)
—%, one getswy n—ws, Where ws=wp/\2 is the surface-
plasmon frequency corresponding to flat surfages ¢ limit). The ~ We introduce here a Fourier transform of the time coordi-
intersections of the various curves with the lie¢éwp=ux (solid nate, defined by
circles yield the conditions for the resonant excitation of each of
the modegthe linew/ wp=ux shown here corresponds to a reduced © .
velocity u=0.5). F(w)=f dte“'F(t), (8)

X fmdkexp[im(qﬁ—qﬁo)]
0

the appropriate expression fe w). In particular, we will 5.4 optain
approximate here the dielectric function around the plasma
resonance bys(w)=1—w3/w(w+iy), where wp is the

plasma frequency angl the damping constant. For<wp, 7 0)=27e wdkex im(é—
we obtain the frequency of the modeg ,=wn(k) in the Polp.$.2,0) m;—oc 0 Him(¢=do)]

form
X1 m(kp<)Km(kp=)
x{exp(ikz) 8(w—kv)

k= T ke ® +exp —ik2) 8w +ko)}. ©)
wherea(x) = — 1 (X) Km(X)/1 m(X)K/(X) [note thato () B. Induced potential
is a positive quantity sinck/,(ka)<O0]. Following the form of the external potential, E®), the

Using the Wronskian propedy I,(x)K/(x) induced potential inside and outside the cavity may be ex-
=1/ (X)Km(X)=—1/x, we can write this relation in a very panded also in a convenient way in terms of the regular
simple form, solutions in each domain.

(a) p<a. Following Eq.(9), we write the induced poten-
tial as follows:

0 m= @pX ()| K ()| = 05gm(X), 6
(@) _ “ L
with x=ka and where we introduced the functiay,(x) ¢i§d(P,¢,Z,w)—ZZem;x . dkexdim(é— ¢o)]
=XIn(X)|K(X)|, which has the following limits:g.,(X)
—1 for x—0; gm(X)— 3 for x—. X Anlm(kp)[expikz) 6(w—kv)

This shows a general scaling property @f ,,/wp in
terms of the variable<=ka. The dispersion curves fan
=0,1,2,3 are shown in Fig. 1. Two important limits should
be noted: forka—0, we getwy n— wp for m=0 (this cor-
responds to bulk-plasmon modes in homogeneous systems

+exp—ikz)8(w+kv)] (10

so that the total potential fgg<<a becomes

and w n— s for m#0, whereas forka—, one gets R(p.d.z,0)= do(p,.2.0)+ 6 (p,$,2,0). (1D
wym— s in all cases, whereo;=wp/+2 is the surface-

plasmon frequency corresponding to flat surfacas-¢e (b) p>a. In this case it becomes convenient to expand the
limit). total (external plus inducedpotential as follows:
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Bp.6.20-22¢ S [ “akexim(s- o)

XBrKm(kp)[expikz) 8(w—kv)
+exp—ikz)d(w+kv)]. (12

The coefficientsA,, andB,, in Egs.(10) and(12) will be
determined from the boundary conditions.

C. Boundary conditions

Using the former expressions of Eq9)—(12), we apply
the usual matching conditions at=a, namely

bo(a,¢,z,0)+ oA (a,b,2,0)= 0 (a,¢,2,0) (13
and

bo(a,b,2,0)+ ¢ (a,¢,2,0) =2 (0)d) (a,¢,2,0),
(14)

where the primes denote the derivatives with respect to the

variablep.

This yields the following equations to determine the co-

efficientsA,, andB,:
Im(kpo)Km(ka) + Al n(ka) =BnKn(ka),

Im(kpo)Kn(ka) + Al (ka) = BnKp(ka)e(w), (15)

and we obtain the solutions in the form\,(k, o)
=1 m£kpo)Am(k,w), Bm(k,0)=1,(kpo)Bm(k,w), whereA,
andB,, are given by

[1-&(w)Kn(ka)K(ka)

" s(o)l (ka)K ! (ka)— K (ka)l - (ka)
(16)

An(k, o)

B (K o)e Im(ka)K/ (ka)—Kn(ka)l/(ka)
ml ’w)_s(w)lm(ka)Kr’n(ka)—Km(ka)l;n(ka)'
17)

In the following, the primes in the expressiokjs(x) and

Km(x) will denote the derivatives with respect to the argu-

mentx=Kka.
Using Eg. (16) and Fourier transforming Eq.10), we
obtain the induced potential inside the cylinder,

o0

(a) dw it
dind(p.p,z,t)=2Ze 5e

< 3| dkn(kp)lnkpo)
x M@= b A (K, w)[exp(ikz) 8(w—kv)
+exp —ikz)s(w+kv)], (18

which, after integrating ino, may be written as follows:

PHYSICAL REVIEW B3 165401

2. o [~ _
Hap.p2t)=—Ze f dkln(kp)l(kpo)e™ ™ %0
m=—ce J0

X {RgAn(k,0)]cogkz— wt)

—IM[An(k,)I8iN(kz— &)}y, (19)

where we have used the

property
An(k,0)+An(k,—0)=2 RgAL (K, )],

An(k,0)—An(k,— 0)=2i IM[A(k,o)],

and the frequency is now given y=kuv.

A further useful expression foh(k,) that applies to
the previously introduced dielectric function is the following:

A (koye —Zm Kl
m(k,0)= w(w+i7)—wﬁlm Im(X)
Im(X) Km(X)

S Q@D g0 T 20

whereQ(x) = o/ wp=Kkv/wp=ux, with u=v/wpa (reduced
velocity), I'= y/wp andgpy(X) =XIm(X)|K/(X)|. This shows
that the values ofA,(k,w) may also be parametrized in a
general way using reduced variables, in termxefka.

D. Resonant excitations

According to Eq.(19), the induced field consists of a su-
perposition of wave components that satisfy the condition
w=kv. This means that only waves with phase velocities
wlk coincident with the particle velocity will be excited by
the particle. This corresponds to conditions of coherent ex-
citation of the modes.

Then, the values df andw,, must be determined for each
velocity v by solving the equatiom (k) =kv. This condi-
tion is illustrated in Fig. 1 by the lin@/wp=kv/wp=ux,
with u=v/wpa andx=ka. The values ok andw to be used
in the evaluation are those corresponding to the intersection
of the line w/wp=ux with the corresponding dispersion-
relation curve for each moda. In these conditions, we have
resonant excitationsThese values are indicated by solid
circles in Fig. 1 In this wayk and o become velocity-
dependent functionk=Kk,[v], o=w[v].

It may be shown that the form of the induced potential,
Eqg. (19), has a typical “wake” structure, characterized by a
function of p andz—uvt, which remains stationary in a frame
of reference moving together with the particle at veloeity
(the phenomenon of a wake potential has been studied ex-
tensively for particles moving ihomogeneoumedia.?!

IV. STOPPING FORCE ON THE PARTICLE

The potential inside and outside the capillary is given by
Egs.(10)—(12). In order to calculate the stopping force due
to the induced reaction of the medium on the moving par-
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ticle, it is enough to consider the internal induced electric 2 e 1.12 1
field, namely F.= ;(Ze)zfo dk k'”(k—aa) Im ) (26)
I * with w=kv. Using the dielectric function modet,(w)=1
(@ _ ind _ ¢ w v. g w
EX(pdzt)=—— == er% fo dkkln(kp)Im(kpo) — _ ) jw(w+i7y), in the limit of small damping §—0),
IM[1l/e(w)]= —(7/2)wp[ (w— wp) — 6(w + wp)], we get
X expim(¢— R A (K,
XHim(¢— ¢o) {RE ALK, 0)] | (Zewp|? (1123
X sin(kz— wt) + IM[A(K, )] Fe=- v awp |’ @7
X cogkz— wt)} =iy - (21) It is interesting to note that this result agrees with the one

) ] . corresponding to particles moving uniformly in a homoge-
In particular, we may calculate the field acting on thepeous medium, as it may be expected in the present limit
charge(with z=vt, p=pg, and ¢= ¢,), which produces a (po=0, a<v/wp) with a cutoff radius given by.
reaction on it, in the form of atopping force E=ZeE?,

given by 2. Motion near the axis py<a)
5 o . Using here the limiting forms of the Bessel functions for
F,=—(ze)? >, f dk K1 (Kpo) AIM[An(k, @)1, x—0, and considering the limit Ifil—e(w)]/[1+e(w)]}
™ m=—z Jo =—(72)wd (w—we) — 8w+ wy)], With ws=wp /2, we
(22 get
with w=kuv. . ZEwp 2 1.123
Moreover, sincel (X)=1_,(X), Kn(X)=K_(X), the Foo=— In (29
modes withm>0 andm<0 yield equal contributions and v awp
we can write and
[’ © Zews 2 pO 2m
F,= > Fum=F,0t2> Fom, (23) Fom=— mPml (29)
m=—© m=1

whereF, ,, is the contribution from each mode. W'tcvthe \{[glues ohThand B dgn;_en befqre. £ the= 1
Let us consider now some limiting cases of special inter- . € notice nere thé quadralic growing o con-
est. tribution for smallpy, i.e., for particles moving close to the

channel axis.
A. Limit ka—0

This limit applies both to the cases of small channel ra-
dius or relatively fast particle§.e., wsa/v—0), but within
the nonrelativistic restrictions.

We use the behavior of the,(x) and K,(x) functions
when x—0, namely® |,(x)—ax™, I/ (X)—may,

B. Limit ka—o

We observe from Eq(6) that for x=ka—, gm(X)— 3
and sowy n— wg; Moreover, we obtain in this limit that
=w,/v. Using these approximations in Eq4.6) and (22),
we get, forpg~a,

XML Ko(x) = In(1.123 . . . ix), KH(X)— — 1, Kpn(X) = by, Zew|? &
x~™ (for m#0), andK . (x) — —mb,x~ (M"Y (m#0), with Fo=—|— ) > 1n(2kpe)Km(2ka),  (30)
am=2""T(m+1) andb,,=2""I'(m). m=-=
Then we get, fom=0, and using here the propetty
& Kk 1-e(w)] (1123 [1-&(w) 04 i
o=Ko(ka) @) | N & @) | (24) 2 I m(2kpo)Km(2ka)=Ko(2k|po—al),  (3D)
and form#0, we finally obtain
_ Zewg\? 0}
A= —om_|1oelw)) 25) Fzz—( - ) KO(Zfao) (32
(ka)?m[1+e(w)

with 8,=|pg—al.

We note that this corresponds to the expression of the
stopping force for a particle moving parallel to an infinite
planesurface? at a distance’,=|p,—a|. Therefore, in this
limit (ka—«) the curvature of the surface becomes irrel-

In this case only then=0 term contributes, yielding a evant. The interaction decays rapidly jws/v>1, so that
stopping force it becomes negligible in a wide inside region wiph<a.

In particular, we can distinguish the following two cases of
interest.

1. Motion along the axis fo=0)
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Hence, the interaction with the surface occurs only at rela-

Zewn ZKm(ka) WmPo
tively “small” distances, 8~ v/ wg (With v/w.<a). Fzm=—|—3 I (ka)|'™ (39
m
V. CALCULATION OF THE STOPPING FORCE We may write this result in a more illustrative way using

The expression for the stopping force, Eg2), may be tlwe equatlon, for thg capﬂlary modes, Ed6). o,
integrated in a general way for a dielectric function of the_wPXIm(X)|Km(X)|’ which yields
form e(w)=g1(w)+iey(w) whene,(w)—0. As we will OmPo
see, this provides a more general solution than the one ob- F, =— Im< il )
tained from the simple dielectric model previously used. v

First we write the expression fok,, using Eq.(16) as  wherex=ka and k= w,/v. We note here that the depen-
follows: dence on the channel radius is simply parametrized in terms

of the functionG,(x) = xKm(X)|K/(X)]-
- Xm (33 As was already noted, the values lofand w,, must be
™ Y tie(w)Zy,' determined for each velocity by solving the intersecting
equation w,(k)=kv (condition for resonant excitation of
where Xp=[1-z(w)]Ky(ka)Ky(ka), Yn=e1(w)Im(kd)  modes, so that the values ok and @ become velocity-
Km(ka) = I (ka)Kn(ka), and Zy,=1n(ka)Kp(ka), which  dependent functionk=k.[v] andw=w.[v], as indicated
is obtained by separating the real and imaginary parts of Sec. III.
e(w)=¢e4(w)+iey(w) in the denominator of Eq.16).

Then, for e5(w)—0", we use the limiting expression VI. QUANTUM-MECHANICAL TREATMENT

(note thatZ,,<0)

2
xKm(X)[Kin(X)], (40)

Zewp 2
v

In order to quantize the previously described modes of a
, cylindrical cavity, we will apply the method of surface-
Himo(Ym). (34) plasmon quantization developed in Ref. 2 For this purpose,
the energy of the plasmon field is separated into kinetic- and
potential-energy terms. The kinetic energy, associated with
the electronic oscillations, is represented by introducing a
velocity-potential functionW(r,t), such that the velocity
field corresponding to the electron motion may be calculated
asv(r,t)=—VWw(r,t).

Now, since the roots of the square bracket expression are |he energy of the surface-plasmon field is then given by
precisely the frequencies of the modes, (k) [cf. Eq. (4)], the sum of potential and kinetic energies as follows:
we can also approximate this result as

£2

) 1
I_rT:)+Ym+iSZZm_)PV[Y_m
Using this in Eq.(33), we get

IM[An]=7Xmdl81(0) m(ka)K (k) = 1 f(ka)Kp(ka)].
(39

1
Hep=> f pechs A3 +Enom f (VW)%dr. (4D

(”781 B

Jw

Xm

1
m {olo—on(k)]

Im[Am =- . . . .
Here ps= —ens is the electric charge associated with the

induced electronic densitpg of the surface-plasmon field
— ot onK)]}, (36) and ¢, is the corresponding electrostatic potential, wije
is the equilibrium electron density in the metal andis the
electron mass.
We write the electrostatic potential as a general expansion
including all the modes,

where | ,(x)=1(ka), K/, (x)=K/,(ka), and the value of
Xm was given before.

Using this expression in E§22), we obtain the result for
the stopping force,

S t —2 i(kz+me) ¢(k:,Lr)T1(t)|m(kP)' p<<a
FZZE Fz,mi (37) ¢s(r, )_k,m e qs(k?r?n(t)Km(kp)' a

o and express the electronic density corresponding to these
where the contribution of each modebecomes modes as a localized surface density, namely

. (Ze)z [1-&1(wm)] Kn(ka) (wmpo) 2
Fam==2\ 7] @ 55 Tou] Toka) | ™ o
(38

42)

Ny = 2 (e ™ Iop—a). (43

The p component of the electric field is then derived,
1. Plasma resonance approximation

(1) '
Let us consider again the approximation for the dielectric _ %z —Z K o (kz+me) km(Dlm(kp),  p<a
function used befores (w)=1— wa/w(w+iy), with y—0. P ap m P2NOK L (kp), p>a.
We get|de, /dw|=2w3 w®, and Eq.(38) becomes (44)

165401-5



NESTOR R. ARISTA AND MIGUEL A. FUENTES PHYSICAL REVIEW B53 165401

Finally, we propose an expansion for the velocity-and after elementary integrations, and using the reld&6n

potential field¥ (r,t) as follows: betweeng™) . andn_y _,, we get
0, p<a Ny N (ka) €
t 45 __ 2 k,m'!'—k,—m m
(r.h= 2 Ve m(t)e'®FMIK (kp), p>a, 49 Hpo= —2me AE K I/ (ka) » 69
where we have taken into account the confinement of thshereA=2La is the surface of the cylindrical cavity.
electrons to the regiop>a. In order to calculate the kinetic energy in E@1), we

In order to determine the relations between the coeffiperform a partial integration as follows:
cients ¢y m, Nkm, and¥y ., in these expansions, we apply
Maxwell's boundary conditions ai=a, namely j d3r(V‘P)2=j dZA\IfV\If—f & W (V2W). (56)
E@—EWY|,_,=—4meos, (46)

We note that the second term cancels out due to the assumed
. B 2 _ -
ED)_ E@] - 4 |rrota_1t|onal propert§/_V V=0, whereas the surface integra-
o e (@)E7)=a=0, “7 tion is performed using Eq45),
where o is the induced surface density associated to the

electronic densityg in Eq. (43), ng&=08(p—a). To obtain f dZA( v ) q f do W,
a similar relation for¥(r,t), we recall the continuity equa- ap ;n kz/ Z) 9 FemT i m
0
'on ¢ ailk+K)zgi(m+m')e
dng 5 ,
RO AR A 48) k' Kon(kp)K., (K p). (57)

Here thez and ¢ integrals givedy: _ 6 —m, and using
Eq. (52) for ¥\ ,,, we get the kinetic-energy term in the
form

By integrating in a small volume containing a small sur-
face element, and using the relatiog= os6(p —a), we find

av o
9 |,_q Nol,_,

: (49) MeA < NiemN—k —m Kn(Ka)
Hin= " 25 k ' '
0 km Km(ka)

(58)

which provides the required link between the fields.
Using Eqs.(46)—(49) and the corresponding expansions ~ From Egs(55) and(58), the total energy of Eq41) may
in terms of elementary modes, we finally obtain the relationd€ written as
N mN—k —
4me N () (50 Hy=2me?AS =T ay
K 1/ (ka) 1-&(w)’ m

1
A

MA nk n_ K —
dme Ny 1 + T B, (59)

2n k,m
Plom= , (5D 0K
) k ' 1—
Km(ka) s(w) where

1 Ny 52 ln(ka) [ —e ) ©0

k' __’—. = ,

" K noKp(ka) M a) | I—e
A. Calculation of energies B Km(ka) 61)
Using the expression@?2) and(43), the potential energy m K/ (ka) '
in Eq. (41) becomes
Using the equation of the modé4), we obtain
e

Hpot 2 kEm J d3r e|(k+k )z i(m+m’)e ﬂk - wi .
k', A m=— 1— S_ﬁkmw ) (62)

X Ny el e (K@) (p—a), (53 P

) where the last expression applies to the dielectric function
where we separate the volume integral as e(w)=1-wilw(w+iy) considered before.
. o 5 It may also be proved thai, ,, and Sy ., are always posi-
J dsr:J PdPJ dz qu), (54) tive quantitie;s, since by Ed4) ¢(w) should be negative at
0 -2 Jo the frequencies of the surface-plasmon modes.
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Using Eqg.(4) in Eq. (59), we finally obtain the energy of The eigenstates ofl2 may be built starting from the

sp

the plasmon field in the desired canonical form, vacuum staté0) in the usual way,
T \n
HY 2 Bkm[n Nt 4wl Newi o], (63) (8 m)
sp 2n0 “~ Tk k,mfli,m k.mk,mMk,m1> |nk,m)=T|0>, (71
. n!
. % g o~k
where the relation$1_,_n=nm andn_ -m=Nim have  c4rresponding to the excitation af, ,, plasmons in a given
been used. modek . m. ’

B. Quantization VII. INTERACTION WITH EXTERNAL PROBES

The expressioii63) suggests a quantization via a canoni-

cal transformation Starting from the classical description, the interaction of

the plasmon field with an external particle of chargmov-
Ykom ing along a prescribed trajectont) is given by
Mem=5, (akm+a K—m)s
(64) Hin=Ze¢dr(1)], (72)
% Yk,m

nk,m=T(a’k‘,m+ a_g_m where ¢ is_ given by_ Eq.(4_2)._ _
km For particles moving within the channel, we use the first
form of Eq. (42) in terms of ¢{’),. Moreover, using the re-
lation (50) between the coefficients(’), and n, ,, and the
relation (64), we can writeg(’, in terms of the operatora

and the corresponding relations (using ék,

H R *
= —logmakm, Ak m=1 Ok mdkm)

_ Vi anda' as follows:
Ngm=— 2’ (ak,m_atk,fm)!
(65) dh=Nem(@mtal, ), (73
. | ’yk’ h
=g (= @i m)- where
. . . 27€ wim Bk,mYkm
This brings Eq(63) into the form = ' o
gs Eq(63 Mem=—¢ o2 Tn(ka) (74)
0 ﬁk m 2 * * ; : - :
HSp 4n E — Yiml Q& m@ mt A m@kml,  (66) Thus we obtain the expansion of the plasmon field in terms
kim of creation and annihilation operators and the corresponding
so that, with the appropriate choice 9f (interna) eigenfunctiond ,(kp) for each mode, in the form
2nohk wy ]2 :
= — <a)=—, Al m(kp)(ay ne Kz me)
Yk,m m.A ,8k,m ) (67 ¢S(P ) % k,m m( P)( k,m
we obtain +af e ikerme) (75)
_1 x4 g _ _ Using this in Eq.(72), we obtain thg ex.prgssion for th_e
2k2 hml Bcmdiom ™ B nim] ©8) interaction energy for particles moving inside the cavity

The quantization may now be performed through the substlalong a trajectory(t)

tution
* X Him(t)=—ZeZ )\k,mlm(kp)(ak,mel(kZer‘P)
Ay, m 8K m— &k,m» Ak m s (69) ~
whereakm,al m are now the operators of annihilation and +al’me—i(kz+m¢))|F:F(t), 76

creation of surface plasmons for each mddm, satisfying
the usual commutation relations of bosonic operatorsWhere now the values of(¢,z) are those corresponding to

their time evolution being of the forme '®' and e'“!,  the trajectoryr(t).

respectively’ The values of the coupling coefficientg ., in this equa-
Using these relations, we finally get the expression for thdion may be further simplified using the expressionsggr,

Hamiltonian of the surface-plasmon field in the standardand y. ., as well as the equation for the modes, ),

form, yielding a very compact result:

hhwg m Kn(ka)
L Iyka)’

= 2 hoalamaont 3. (70 NE = (77)
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VIIl. EXCITATION OF MODES P{nq}(t):anl:ani e )P
The total Hamiltonian for the plasmon field interacting (Qgp)"at (Qgy)"e2
with an external probe is given now in the second- —e Q- " n-Qgp =42 ..+, (85
quantization formalism by Nga! Ngy!
H= ng+ Hi(t), (789 Which may also be written as
Whergng and H;,(t) are given by Eqs(?_O) and (76), re- o (Qg)"s
spectively. We note thdt,(t) may be written as Pig(t)=e 1;[ S (86)
q

Hint(t):_ZQE [ak,mfk,m(t)‘{'ali,m :,m(t)]a (79) WhereQ:,Equ:Ek'm|Xk'm|2'. . . .
k,m Alternatively, one may be interested in the excitation of a
With e o (£) =\ ol m(kp) € k2 me), given modem, so that the appropriat® value for this case

Due to the special form of the interaction Hamiltonian, P&COMes
the problem of determining the evolution of this system may

be solved in an exact quantum-mechanical Wapm the _ X ZZ(L) fm dkIX, |2 8
Schralinger equation, Qnm ;| ol 2 | . [ Xicml*, (87)

9| (1)) where the sum has been transformed into an integral kover
a Hind ¥ (1)), (80) following the standard procedure. Note that here the integral
~extends from—« to +o, whereas in the classical calcula-
yvhere|.\lf(t)) denotes the quantum state of the plasmon fieldjqp, jt is restricted to positivé values; this difference is due
in the interaction picture. to the different representations used in each ¢asee we are

This probl_em is f_ormally equivalent to _th_e interaction of using an extended representation in terme'§f functions
charged particles with a flat surface, and it is known that they i1, positive and negative values kj.

state of the field is represented asaherent staf€ having TheseQ values are the parameters of the Poisson distri-
the general forfh butions describing the probabilities of multiplasmon pro-

cesses, according to the following.
|\P(t)>=ex;{ —i> Xq(t)ag+ X;(t)ag | W (—)), (a '_I'he probabil_ity of exciting a total nl_me_eN of plas-
q mons in any modéi.e., ng;+ng+ - - - =N) is given by
(81) q q
with QN
Pa= 2 Ppg(D=e"®5—. (89
Ze (t _ g1t Ngz+ =N :
Xq(t)=—7f_qu(t’)exq—|wqt’)dt’, (82

(b) The probability of excitingN,,, plasmons of a given

where for simplicity we are using the condensed notation Medem s given by
=(k,m) for the modes.
Expanding the solution of Eq81) in eigenstate$n,) of

the free HamiltoniarH(S)p, Egs.(70) and(71), we obtain

(Qm)"m

= Q
Py, (D)=e"~m N, |

(89

. . (ap)" The Q values also have the following physical interpreta-
v ()=I1 exp—31Xo(01%) 2 T-X5 O =100 gion, B
(83 (i) The average total numbe¥ of excited plasmons is

which contains the complete time evolution of the plasmordiven byN=ZXg_(N Py=Q.
field. (ii) The average numbet,,, of excited plasmons of mode
m is given byN,,= Eﬁmzon Py, = Qnm-
A. Probability distributions

From Eqg.(83) we can now calculate the probability of B. Calculation of Q,,

excitation ofn plasmons of a given stal
xetad P g ® The values ofQ,, may be obtained from Eq$82) and

) (Qy)" (87), and using the expressions for thg,, functions in Eq.
an(t)=|(nq|‘lf(t)>| =exp(—Qq)—— 84 (79, namelyfy n(t) =Ny ml m(kp)e'*2* ™). To integrateX,,
' (with g=k,m) in Eqg. (82), we have to specify the trajectory
Wherqu=|Xq(t)|2. (p(t),0(1),z(t)) of the particle. We will now perform the

More generally, the probability of excitingy, plasmons calculation for a trajectory parallel to the axis of the channel
in modeq;, ng, plasmons in mode,, and so on, will be with p=pg, ¢=¢g, z=vt in order to compare with the
given by classical calculation. In this case, since the interaction with
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the surface is permanently connected, to avoid divergencies L (Zewp\?
we have to limit our integration to a finite time interval: Qm=m(—) XKn(3X) [K ()] [1m(kpo) 12, (95)
—T<t<T, so that m
It should be noted that in these expressions the valdei®f
Ze (T ) fixed asw,, /v, and sox=ka=walv (see also the next
Xem="— 7" . frm(Dexp—iw, mt)dt, (900 section for further discussion
By comparing with Eq(40), we obtain the desired con-
which yields nection between both formalisms:
Ze _ 0T _ o—i0T LIF,ml = 0nQm, (96)
Xkm=— Thk!mlm(km)elm% iQ (91) which yields theaverageenergy loss due to excitations of

with Q =kv — wpn(K) [and with wy,(K) = wy m].
Considering now the Ilimit T—o, and using the
S-function limit [sin@QT)/QP—#T&Q), we get

2 47T 2 5(ko —
Xl == [Z€Ncml mlkpo) 20 (kv — n(K)). (92

Using Eq.(87) and performing thek integration, we fi-
nally obtain

2TL
Qm= 2 [Ze)\k,mlm(kpo)]z- (93)
hv

As was already discussed, the valueka$ fixed for each
mode m and ion velocityv by the resonant condition
wn(K)=kov as illustrated in Fig. 1line w=ux). Hence, the
value of A\, ,, to be used in the calculations, E7), be-
comes also a velocity-dependent coefficient.

We finally note that the result fo®,,, Eq. (993), is pro-
portional to the interaction timeT2 which we may replace
by L/v (L being the length of the channgko that the first
factor in Q,, is proportional tol2; but there is an additional
factor 1L in the coefficient)xﬁ’m [cf. Egs. (67), (74), and
(77)], so that the final result fo®,, will be strictly propor-
tional to L.

C. Correspondence with the classical description

each type of surface mode.

In addition, the average energy loA€ of the particle
after traversing a distande inside the channel may be cal-
culated following either of the two formalisms, yielding also
coincident results

AE=—LZ,C Fzyngo fwnQm. (97

These relations are in full agreement with the interpreta-
tion of Q,, as giving the average number of plasmons being
excited on each mode, with corresponding endigy,,. In
this way, previous calculations based on the classical
formalisn? ! convey also information on surface-plasmon
excitation.

IX. SCALING PROPERTIES

It was already noted in Sec. Il thal ,/ wp is determined
in a general way by a functiofor set of functiony of the
variable x=Kka, namely oy m/wp=ygn(X), with gmn(x)
=XIn(X)|K(X)], Eq.(6). On the other hand, in the integra-
tion of the induced potential, electric field, and stopping
force—EQs(18), (21), and(22)—the phase-matching condi-
tion w.,(k)=kv was imposed. Then, we may express this
condition asygy(X) =kv/wp=xXv/awp, or simply

There is apparently little similitude between the result ob- v

tained forQ,,, Eqg.(93), and the previous result for the stop-

ping force obtained from the classical calculation, E4).

However, since there is a correspondence between the di-
electric function used in Sec. Ill and the description of sur-

face plasmons applied in Sec. ¥t,one may expect that
there should be a direct connection between both results.

In order to derive this relation, we substitute the value of

Am in Eq. (93) and the corresponding values Bf ,, and
Ykm using Egs.(61), (67), and (77), obtaining after some
algebra

2

I m(Kpo) 94)

I m(ka)

L (Ze)z(

_- Wy m 2 Km(ka)
a hv

[Kfn(ka)]

m wp

Moreover, using Eq(6) for the frequency of the modes, we
may cast the result in the following form:

VOm(X) = UX, (98)
where we introduce theeduced velocity
u=—— (99

_awpl

The condition(98) was illustrated in Fig. 1, and corre-
sponds to the intersection of the linex with the curves
oy m/ wp=+0n(X). Thus, for each reduced velocitythere
is a unique set of values of the variabtefor each mode
m, Xm=Xy(u), which determine the values dé=k(u)
=Xm(u)/a and of w= wy,(u). By varying the velocity (or
u), these values change in a continuous way. The functions
Xm(Uu) are shown in Fig. 2; as it may be observed, for large
values of u the simple relationsxg(u)~21/u and x,(u)
~1//2u (for m#0) may be applied, whereas fou
<1, x,,(u) may be approximated by, (u) ~ 1/y/2u for all m
values.

Using these properties, the expression for the stopping
force of Eq.(40) may be parametrized as follows:
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1/7x (u)

FIG. 2. Functions X,(u) for the modes withm=0,1,5. The
values ofx,(u) are those corresponding to the intersection points
with the line w/wp=ux indicated in Fig. 1 The dashed lines show
the approximation,(u)~ 1/u andx,,(u)~1/y2u (for all m#0),
which apply for large values ai.

2

Ze(l)p , 2
XKin(3%) [Kn(¥)[[1m(x€) 1%, (100)

I:z,m: (

in terms of the variablex=ka defined before and introduc-
ing also the reduced variable

E=, (101

Replacingv =uawp in Eq. (100), we may also write

Ea
Fz,m: - Efm(uyf)- (102 T
HereE,=(Ze)?/a is a typical value of energy for this sys- g .
tem, whereas the functions ~
1 , , ]
fm(uag):7XKm(X)|Km(X)|[lm(Xf)]
u X=X, (u) ]

(103

may be considered universal functions of the independen

variablesu=v/awp and {=pg/a, due to the fact thak

=X(u) is a function ofu. This way of scaling the results in

terms of (4,&) becomes more advantageous than the previ- FIG. 3. General functiond(u,£) (where u=v/wpa and &

ous one in terms ofx, £) since it shows the velocity depen- =po/a) for the casesa m=0, (b) m=1, and(c) m=2. The

dence in a direct way. curves foré=0 correspond to particles moving along the channel
The functionsf ,(u,&) are shown in Fig. 3 fom=0, 1, axi§, whereag=1 correspond to trajectories touching the cavity

and 2. The main features of these results are the existence GdiUs o=2a).

maxima for intermediate values of except for the casé

=1 (or pp=a), where the curves show no maximum, and arelation betweemn andv, this shows that the maximum value

general increase of the values with increasing.e., as the of the stopping force or related quantities for this case will

particle approaches the boundary of the capillary. The loweoccur for particle velocities proportional to the channel ra-

values off, occur always foré=0 (on the channel axis dius, namely ,,=0.8wpa.

where the only nonvanishing term is given by the lowest The previous analysis may also be applied toGheval-

mode withm=0. As a reference, the maximum value of the ues required for the description of surface-plasmon excita-

m=0 function for the case of particles channeled along théions. These values may be calculated from fthegunctions

axis, fo(u,0), is found atu,,,=0.8, Fig. 3a). Due to the as follows:

20
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0.20 T T T T T T v T
E g
2 >
D
° 2
[ [
° e
w =]
o '8
£ o
s =
2 s
% ]
»
velocity [a.u.]
FIG. 4. Calculation of the stopping forder stopping power . i .
according to Eqg(100) and(103), vs the particle velocity, for chan- FlG_' 5. Stopping force on the particle as a fl_JnEtlorp@ifor the
nels with radiia=10 anda=20 a.u., for a medium with plasma Casea= 10 a.u. The contribution of the terms with=0,1, ... ,5is

frequencywp=0.55 a.u. The shift in the curves follows from the ndicated. Them=0 term yields the only contribution near the
scaling properties contained in E€L02. In particular, the maxi- channel axis,po—0, whereas forp,—a the stopping force ap-
mum stopping value decreases witlaZLivhile the position of the ~Proaches the value for flat surfaces predicted by (B2).
maximum grows linearly witta.
Let us consider now the calculation of plasmon-excitation
L . L processes. In Fig. 6, we show tk¥, values, form=0,1,2,
Qm:m|Fz,m|: mgfm(u,g). (104  for a proton traveling withpy=0.5a in a channel witha
m m =10 andL =1000 a.u., whereas in Fig. 7, we show the cor-
responding probabilitie®,, of exciting a numben of plas-
mons in the moden=0, with 0=n<5, calculated according
to Eq.(89). The velocity dependence of probabilitieg may
be analyzed in further detail considering the correspondence
X. CALCULATIONS with the Q,, values shown in Fig. 6. Thus, for instance, at
8=10 we find in Fig. 7 a maximum probability of exciting

Here we consider some examples of the results derived . o
L : S . N=4 plasmons, whereas at=20 the maximum probability
before. For simplicity, we will assume an incident particle .

with unit chargeZ=1 (e.g., a proton or electronFor other is for n=2 plasmons; these values are i_n agreement with the
Z values(as for multicharged ionsone could use the qua- values_ OmeZO. for v=10 aT‘dP—ZO in Fig. 6 On the other
dratic (Z?) scaling of the stopping force or other linearly hand, in tghe h|gh—veloc!ty I|m|(wh€rg_|t.it1lev?rl]ues drcip to
related quantities. However, one should note that the value%)X’C;’tV;ign serrve a rr\nax:mlf[.m phro a II Ity of the no-plasmon
of the probabilities of plasmon excitatid?, do not satisfy b oc_e_s_St € elastic ¢ ann)e_
the Z? scaling, and so they should be recalculated for ofher The probabilitiesP, also.have an important dependence
values. on the channel length. In Fig. 8, we show this dependence
In Fig. 4, we show a calculation of the stopping fofoe
stopping powey, Egs. (100 and (102), versus the particle
velocity, for channels with radi&a=10 anda=20 a.u., for a
medium with plasma frequencyp=0.55 a.u. The maxi- sl
mum stopping values decrease wita?ivhile the position @
of the maximum grows linearly witka as indicated before.
As observed, these stopping power values should lead t
energy losses of the order of hundreds of eV if the lengths of
the channels are of some thousands of A . The observationc  «|
multiple plasmon-loss peaks in these cases should be ex
pected(note by comparison that only single plasmon peaks
with small intensities have been observed in experiments
with larger capillary radji.”®
The dependence of the stopping force with phevalue is 0
indicated in Fig. 5, for the case=10 a.u. Here we include
the contribution of the terms witm=0,1,...,5. We ob-
serve the dominance of the=0 term near the axis and up  FIG. 6. Calculation 0fQ,,, with m=0,1,2, for a proton travel-
to pg~al2, whereas whepy—a the result approaches the ing with impact parametep,=0.5a in a channel with radius
analytical value predicted by E¢32). =10 a.u. and length =1000 a.u.

In the next section, we will give some examples illustrat-
ing these results.

0 5 10 15 20
velocity [a.u.]
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0.8 . . . T . . . . . . . 1.0 . T . . . . . .

velocity [a.u.]

FIG. 8. ProbabilitiesP, of exciting n plasmons(with 0<n
<5) in modem=0, as a function of the traversed distarigdor a
fixed velocityv =5.5 a.u.(with po=0.5a anda=10).

FIG. 7. ProbabilitiesP,, of exciting n plasmons(with 0<n
=<5) in modem=0, after traversing a fixed distante as a func-
tion of velocity, calculated according to E@®9) and for the case of
Fig. 6 (0pg=0.5a, a=10,L=1000).

Xl. SUMMARY

considering alsa=10 and assuming now a fixed velocity . . . . .
2255 .. The fgure shows the exponental decreaseof g, 2 12V sled e tercton of harge parices i
elastic peak and the increase of the1,2, ... processes y g

with increasingL. This may be explained rather simply from guantum-mechanical formulations. The classical description
the linear increése @@, with L, Eq. (95), and consistently follows the lines of previous approaches, providing a simpli-

with the values o, shown in Fig. 6 and with the interpre- fied and useful view of the process, and obtaining several

tation of Q, as the average number of plasmon excitation new results. The quantization of the surface-plasmon modes
expected ffgr 2 qiven len %h P “has been carried out, deriving from first principles the form
P 9 g of the Hamiltonian that describes the interaction with exter-

We finally indicate that the present values have been pror—(]]al probes.

gg?eeir%n:% iﬂ;”ﬁ:ﬁggt'ﬁ ir?tue rr%céfiz’rzzgén?ngigvﬁﬁ r:n?;? The excitation of these modes by charged particles has
size nanotube2-15Much larger values of andL would be been studied in detail, and general scaling properties have

of interest for other experiments with microcapillaries in been obtained. This provides a set of scaling functions that
metals’ 518 P P may be useful to predict energy losses and plasmon excita-

tion probabilities in many cases of practical interest. The

ma\?élrtiglgeﬁg\?i(: t?ntohri 222'(:'?02';28 %fi;reit?ircesfgterﬁfgsltfhfapplication of the general results has been illustrated by nu-
9 P prop erical examples for particle velocities and cavity sizes in

the simple plasma resonance model here, wi nn .
€ Simple piasma resonance odel used here, we ca e range of experimental access.
that the semiclassical approach and the general results de-

rived in Secs. Ill and IMsuch as Egqs(21)—(23), as well as

expressior(16) for A,,(k,»)] may be applied in principle to ACKNOWLEDGMENTS
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