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Andreev tunneling, Coulomb blockade, and resonant transport
of nonlocal spin-entangled electrons
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We propose and analyze a spin-entangler for electrons based sware superconductor coupled to two
guantum dots, each of which is coupled to normal Fermi leads. We show that in the presence of a voltage bias
and in the Coulomb blockade regime two correlated electrons provided by the Andreev process can coherently
tunnel from the superconductor via different dots into different leads. The spin singlet coming from the Cooper
pair remains preserved in this process, and the setup provides a source of mobile and nonlocal spin-entangled
electrons. The transport current is calculated and shown to be dominated by a two-particle Breit-Wigner
resonance that allows the injection of two spin-entangled electrons into different leads at exactly the same
orbital energy, which is a crucial requirement for the detection of spin entanglement via noise measurements.
The coherent tunneling of both electrons into the same lead is suppressed by the on-site Coulomb repulsion
and/or the superconducting gap, while the tunneling into different leads is suppressed through the initial
separation of the tunneling electrons. In the regime of interest the particle-hole excitations of the leads are
shown to be negligible. The Aharonov-Bohm oscillations in the current are shown to contain single- and
two-electron periods with amplitudes that both vanish with increasing Coulomb repulsion albeit differently
fast.
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[. INTRODUCTION are different, the electrons cannot interfere with each other,
and thus spin correlations would not be observable in the
The creation of nonlocal pairwise-entangled quantunﬂOise??’
states, so-called Einstein-Podolsky-Ro4&#PR pairs?! is In the following we propose a setup that involves a super-
essential for secure quantum communicafiatense coding conductor coupled to two quantum dots, which themselves
and quantum teleportatichor more fundamental, for testing are coupled to normal leads; see Fig. 1. We show that such a
the violation of Bell's inequality’. Such tests already exist Setup acts as an entangler that meets all the requirements
for photons but not yet fomassiveparticles such as electrons Neéeded for a successful detection of spin entanglement via
since it is difficult to produce and to detect entangled elec0IS€ measurements. In previous wdrive showed that in
trons. However, there is strong experimental evidence th qU|I|br|'um the spin cqrrelatlons of aswave supercon-
electron spins in a semiconductor environment show unus Juctor induce a spin-singlet state between two electrons,

ally long dephasing times approaching microseconds anSaCh of which resides on a separate quantum dot that both

that they can be transported phase coherently over distancas. weakly coupled to the same supercondutort not
Y 5_10p ed p . y . Sﬁwong themselves This nonlocal spin entanglement leads
exceeding 100um. This makes spins of electrons in

. - ) . then to observable effects in a generalized Josephson junc-
semiconductors promising candidates for carriers of quanturﬂon Setupl_4 In the present work we considerrmnequilib-

- - Lo 11,12 : . - ) . . :
information (qubits.™™~“In particular, we have recently pro- yj,m sjtuation where an applied voltage bias drives a station-
posed a setdp consisting of a spin-entangler and a beamgayy current of pairwise spin-entangled electrons from the

splitter where the spin entanglement is detectable via e|e%uperconductor through the quantum dots into the leads; see
tronic transport properties. We have shown that the currentgigs. 1 and 2.

current correlationgnoise are enhanced if the entangled
electrons are spin singlets leading to bunching behavior,
whereas the noise is suppressed for spin triplets leading to
antibunching behavior.

In Ref. 13 we assumed the existence of an entangler, i.e., We begin with a qualitative description of the entangler
a device that generates spin singlets that are made out of twand its principal mechanism based on Andreev processes and
electrons that reside in different but degenerate orbital state§oulomb blockade effects. In subsequent sections we intro-
and we focused on the question of how to detect spinduce the Hamiltonian and calculate the stationary current in
entangled electrons via transport and noise measurementietail. We consider ag-wave superconductor that acts as a
Here, we address the problem of how to implement such anatural source of spin-entangled electrons, since the electrons
entangler in a solid state device. We have fdlinttiat for ~ form Cooper pairs with singlet spin wave functioiisThe
such noise measurements, which are based on two-partickeiperconductor, which is held at the chemical potentig|
interference effects, it is absolutely crucial that both elec4is weakly coupled by tunnel barriers to two separate quantum
trons, coming from different leads, possess shene orbital dots D; and D,, which themselves are weakly coupled to
energy If the orbital energies of the two entangled electronsFermi liquid leadsL; andL,, respectively, both held at the

Il. QUALITATIVE DESCRIPTION OF THE ANDREEV
ENTANGLER
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CoulombU repulsion of a quantum dot and/or by the super-

SC.u .
T, r: conducting gap.
T 2 o, Next, we introduce the relevant parameters describing the
Sy % proposed device and specify their regime of interest. First we

note that to avoid unwanted correlations with electrons al-
ready on the quantum dots one could work in the cotunneling
regimé’ where the number of electrons on the dots are fixed
and the resonant levets, | =1,2 cannot be occupied. How-
ever, we prefer to work at the resonaneges wg, since then
the total current and the desired suppression of tunneling into
the same lead is maximized in this regime. Also, the desired
injection of the two electrons into different leads but at the

FIG. 1. The entangler setup: Two spin-entangled electrons formsame orbital energys then achieved. It turns out to be most
ing a Cooper pair can tunnel with amplitu@ie,, from pointsr; and  efficient to work in the regime where the dot leve{shave
r of the superconductor, SC, to two dos, andD, by means of  yanishing occupation probability. For this purpose we re-
Andreev tunneling. The dots coupled to normal leagsahd L, quire that the dot-lead coupling is much stronger than the
with tunnellng amplltudfeTDL. The supercon(_juctor and leads are superconductor-dot coupling, i.éT,sp|<|Tpy|, So that elec-
kept at chemical potentialgs and v, respectively. trons that enter the dots from the superconductor will leave

the quantum dots to the leads much faster than new electrons

same chemical potential; = u,. The corresponding tunnel- can be provided from the superconductor. In addition, a sta-
ing amplitudes between superconductor and dots and béonary occupation due to the coupling to the leads is expo-
tween dots and leads are denotedTay, and T, , respec- nentially small ifAu>KkgT, T being the temperature arkg
tively (for simplicity we assume them to be equal for boththe Boltzmann constant. Thus in this asymmetric barrier
dots and leads case, the resonant dot levedscan be occupied only during

In general, the tunnel coupling of a superconductor to & virtual process.
normal region allows for coherent transport of two electrons Next, the quantum dots in the ground state are allowed to
of opposite spins due to Andreev tunnelifigyhile single-  contain an arbitrary but even number of electroig,
electron tunneling is suppress&din the present setup, we =even, with total spin zerd.e., antiferromagnetic filling of
envision a situation where the two electrons are forced tdhe dot$. An odd numberNp, must be excluded since a
tunnel coherently intdifferentleads rather than both into the simple spin flip on the quantum dot would be possible in the
same lead. This situation can be enforced in the presence tansport process and as a result the desired entanglement
two intermediate quantum dots that are assumed to be in theould be lost. Further, we have to make sure that also spin-
Coulomb blockade reginté so that the state with the two flip processes of the following kind are excluded. Consider
electrons being on the same quantum dot is strongly supan electron that tunnels from the superconductor into a given
pressed, and thus the electrons will preferably tunnel intalot. Now, it is possible in principlde.g., in a sequential
separate dots and subsequently into separate (dadswill tunneling process) that another electron with the opposite
be quantified in the following spin leaves the dot and tunnels into the lead, and, again, the

By applying a bias voltagd u= us— «;>0 transport of  desired entanglement would be lost. However, such spin-flip
entangled electrons occurs from the superconductor via therocesses will be excluded if the energy level spacing of the
dots to the leads. The chemical potentialsand e, of the  quantum dotsge (assumed to be similar for both dptsx-
quantum dots can be tuned by external gate voltdgesh  ceeds both temperatukgT and bias voltage\ . A serious
that the coherent tunneling of two electrons into differentsource of entanglement loss is given by electron-hole pair
leads is at resonance, described by a two-particle Breitexcitations out of the Fermi sea of the leads during the reso-
Wigner resonance peaked @t+ e,=2ug. In contrast, we nant tunneling events. However, we show in the following
will see that the current for the coherent tunneling of twothat such many-particle contributions are suppressed if the
electrons into thesamelead is suppressed by the on-site resonance widthy,=27v|Tp.|? is smaller thanAu (for

FIG. 2. Two competing virtual
processes are shown when the two
electrons tunnel via the same dot.
The left panel shows an Andreev
process leading to a double occu-
pancy of the dot with virtual en-
ergy 1U [process(l)]. The pro-
cess on the right differs by the
sequence of tunneling, leading to
an additional virtual energy A/
instead of 1W [procesIl)].
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€=pug), wherev, is the density of statedOS) per spin of Ill. HAMILTONIAN OF THE ANDREEV ENTANGLER
the I_eads at the c_h_emlcal potenta. .. We use a tunneling Hamiltonian description of the sys-

Finally, an additional energy scale that enters the consid: =

Lo . S tem,H=Hy+H+, where

eration is the superconducting gap enetgywhich is half
the minimum energy it costs to break up a Cooper pair into
two quasiparticles. This gap energy also characterizes the
time delay between the subsequent coherent Andreev tunnel- Ho=Hs+ Z Ho + 2,: Hy, 1=1.2. )
ing events of the two electrons of a Cooper pair. In order to
exclude single-electron tunneling where the creation of
quasiparticle in the superconductor is a final excited state
require thatA>A u,kgT.

To summarize, the regime of interest in this work is then
given by

Wa}—|ere, the superconductor is described by the BCS
Flamiltoniart® Hs=3y ;Ex Vo Yko» Whereo=1,|, and the

quasiparticle operatory,, describe excitations out of the

BCS ground stat¢0)g defined byy,,|0)s=0. They are re-

lated to the electron annihilation and creation operatpys

andc] , through the Bogoliubov transformatibh

AU, 8e>Au>vy kgT, v>7ys. 1

) N ) _ CkT:uk'ykT_l'vk'yikl ) ©)
Some inequalities will become clear when we discuss
the various processes in detail below. As regards possible :
experimental implementations of the proposed setup and its Cok| =UkY—k| ~UkYki s
parameter regime, we would like to mention that typically
quantum dots are made out of semiconducting heterostrugyzhere u,=(1/4/2)(1+&/E)Y?  and v, =(1/12)(1
tures that satisfy the above-noted inequalitieBurthermore,  — ¢ /E,)Y2 are the usual BCS coherence facttrg, = e,
in recent eXperimentS, it has been shown that the fabrication. us is the normal state Sing|e_e|ectr0n energy counted from

of hybrid structures with semiconductor and superconductofhe Fermi levelus, and E,= W is the quasiparticle
being coupled by tunnel barriers is possitig® Other can- energy. We choose energies such that-0. Both dots are

didate materials are, e.g., _carb(_)n nanotubeg, Which also Sh%presented as one localizépin-degenerajdevel with en-
Coulomb blockade behavior witd and de being in the re- ergy ¢ and is modeled by an Anderson-type Hamiltonian

gime of interest her&’ The present work might provide fur- Hp, = 6|2(rd|Tod|(r+Unmnu, I=1.2. The resonant dot level

ther motivation to implement the structures proposed here.eI can be tuned by the gate voltage. Other levels of the dots

Our goal in the following is to calculate the stationary - . ;
- ; >Au>
charge current of pairwise spin-entangled electrons for twéj_O not participate in transport #e>Ap>KkgT, whereA

. : : = —pu, m is the chemical potential of ledd=1,2, andSe is
competing transport channels, first for the desired transpor[ e sinale-particle enerav level spacing of the dots. The leads
of two entangled electrons into different leads)(and sec- g'e-p oy P g '

ond for the unwanted transport of both electrons into the.!zl’2 are assumed to be noninteractingrma) Fermi lig-

same lead I;;). We compare then the two competing pro- uids, HL':E"‘TG"Q'TKUa'.k”' Tunneling from the dot to the
cesses and show how their ratlg/|,, depends on the vari- leadl or to the point in the supercondu_ctor is described by
ous system parameters and how it can be made large. Ape tunnel HamiltoniarH r=Hsp+Hp, with

important finding is that when tunneling of two electrons into

different leads occurs, the current is suppressed due to the +

fact that tunneling into the dots will typically take place from Hsp= |2 Tspd|,#s(r)) +H.c.,

different pointsr, andr, on the superconductdsee Fig. 1 7
due to the spatial separation of the dbtsandD,. We show
that the distance of separatidgn=|r,—r,| leads to an ex-
ponential suppression of the current via different dotsrif
> ¢ [see EQ.(20)], where £ is the coherence length of a

Cooper pair. In the relevant regiméy <¢&, however, the " . . .
per p gimer <& Here, 4 ,(r|) annihilates an electron with spin at siter,

suppression is only polynomial andl/(kg6r)?, with ke be- ¥ . o .
ing the Fermi wave vector in the superconductor. On theétddi, creates it agairiwith the same spinat dot! with
other hand, tunneling via the same dot impligs=0, but ~ @MPlitudeTsp. ¥,(r)) is related tocy,, by the Fourier trans-

— k- R
suffers a suppression due tband/orA. The suppression of fOrM #,(r) =Z&'“"icy, . Tunneling from the dot to the
this current is given by the small parametes {U)? in the statek in the lead is described by the tunnel amplitidsg .
caseU<A, or by (y,/A)2, if U>A as will be derived in the We assume that thie dependence of b, can be safely ne-

following. Thus, to maximize the efficiency of the entangler, 91€cted.

we also requirkg or <A/vy,,U/y,. Finally, we will discuss

the effect of a magnetic flux on .the entangle_d current in an IV. STATIONARY CURRENT AND THE T MATRIX
Aharonov-Bohm loop, and we will see that this current con-

tains both single- and two-particle Aharonov-Bohm periods The stationary current dfvo electrons passing from the
whose amplitudes have different parameter dependences. superconductor via virtual dot states to the leads is given by

HDL:; TDLa;rkwa-F H.c. (4)
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V. CURRENT DUE TO TUNNELING INTO DIFFERENT
|=2e2 Wsipi , (5) LEADS
Hi

_ . We now calculate the current for simultaneous coherent
whereWy; is the transition rate from the superconductor 1 ansport of two electrons into different leads. The final state
the quds. We callculate this transition rate in terms of g, o electrons, one of them being in lead 1 the other in
T-matrix approact; lead 2, can be classified according to their total Spifhis

_ 12 spin can be either a singlgin standard notation |S)
Wri=2m(f|T(e)[)Fo(er—2i). ©) =(111)=111))/\2 with S=0, or a triplet withS=1. Since
Here, the total spin is conservefis?, H]=0, the singlet state of the
initial Cooper pair will be conserved in the transport process
and the final state must also be a singlet. That this is so can
T(ei)=Hr—5 —7(ei—Ho) also be seen explicitly when we allow for the possibility that
e the final state could be thes,=0 triplet |to)=(|1])
is the on-shell transmission @rmatrix, with 7 being a small ~ +||1))/y2. (The triplets|t.)=|11) and|t_)=]| |) can be
positive real number that we take to zero at the end of thexcluded right away since the tunnel Hamiltonidr con-
calculation. Finallyp; is the stationary occupation probabil- serves the spin component and an Andreev process in-
ity for the entire system to be in the stdté. The T matrix  volves tunneling of two electrons with different spin)
T(e;) can be written as a power series in the tunnel Hamil-Therefore we consider final two-particle states of the form
tonianH+, |f'):(1/\/§)[a1ma£qlﬂ_fa1p ady i), where the— and +
signs belong to the smgléﬁ) and triplet|ty), respectively.
1 n Note that this singlet/triplet state is formed out of two elec-
mHT) , () trons, one being in thp state in lead 1 and with energy,
while the other one is in the state in lead 2 with energgy, .
where the initial energy is;=2u<s=0. We work in the re- Thus, the two electrons are entangled in spin space while
gime defined in Eq(1), i.e., ,>vs, and A,U,8e>Apu separated in orbital space, thereby providing a nonlocal EPR
>1y,,kgT, and around the resonaneg=pus. Further,ys  Ppair. The tunnel process to different leads appears in the
=2mvg|Tspl? and y,=2m1|Tp.|? define the tunneling following order. A Cooper pair breaks up, where one elec-
rates between superconductor and dots and between dots df@n with spino tunnels to one of the dotsvith empty level
leads, respectively, withg and v, being the DOS per spin at €,) from the point of the superconductor nearest to this dot.
the chemical potentialg.s and u,, respectively. We will This is a virtual state with energy deficE,>A. Since
show that the total effective tunneling rate from the superd >y, the second electron from the Cooper pair with spin
conductor to the leads is given b}/ y, due to the Andreev — o tunnels to the other empty dot levietforethe electron
process. In the reg|m@_) the entire tunne"ng process be- with Spin o escapes to the lead. TherEfore, both electrons
comes a two-particle problem where the many-particle effectunnel almost simultaneously to the dgtsithin the uncer-
of the reservoirgleads can be safely neglected and the co-tainty time7/A). Since we work at the resonaneg=ug
herence of an initially entangled Cooper paipin singletis =0 the energy denominators in E(f) show divergences
maintained during the transport into the leads as we shaff1/7, indicating that tunneling between the dots and the
show below. Since the superconducting gap satisfies leads is resonant and we have to treat tunneling to all orders
> Au,kgT, the superconductor contains no quasiparticle iniin Hpp in Eq.(7), eventually giving a finite result in which
tially. Further, in the regimél), the resonant dot levels ~ Will be replaced byy,/2. Tunneling back to the supercon-
are mostly empty, since in the assumed asymmetric cas@uctor is unlikely sincgTsp| <|Tp,|. We can therefore write
|ToL|>|Tspl (or v,>vs), the electron leaves the dot to the the transition amplitude between initial and final state as
lead much faster than it can be replaced by another electron
from the superconductor. In addition, we can neglect any 1
stationary occupation of the dots induced by the coupling of ([ Toli)= E<a2qialpTT,dIszlX[dZLleidZlel]T”>y
the dots to the leads. Indeed, in the stationary limit and for ®)
given biasA u this occupation probability is determined by
the grand canonical distribution functionexp(~Au/ksT)  whereTy=T(e;=0), and the partial matricesT' and T"
<1, and thusp;=0 for any initial state where the resonant gre given by
dot level is occupied. In this regime, the initial stéitg be-
comes|i)=|0)g/0)p|u ), where|0)s is the quasiparticle 1 1
vacuum for the superconductd), means that both dot T'= H H 9
levels e, are unoccupied, angk,), defines the occupation of
the leads that are filled with electrons up to the chemicagnd
potential u, . We remark that in our regime of interest no

T(e;)=Hq+ HTnZl

Kondo effects appear that could destroy the spin entangle- o ont1

ment, since our dots contain each an even number of elec- T =Hp, >, ( 1 H ) (10)
. . s DL S DL .

trons in the stationary limit. n=o \Ip—H
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In Eq. (8) we used the fact that the matrix element containing 2mvsT3p sin(kedr)
T’ is invariant under spin exchande- |, and the abbrevia- ~ ((d dy; —dy;dy ) T")=———— — —~—¢€" (erimg),
tion (- --) stands for(i|---|i). The part containing™” de- 1rem i BF (12)

scribes the Andreev process, while the part contaifiihgs

the resonant dot> lead tunneling. . A. Dominant contribution of resonant tunneling
We first consider the Andreev process. We insert a com- to different leads

plete STEt TOf ;in-gIe-quasiparticlévirtual) states, .i.e.,}l Now we calculate the matrix element in E®) contain-
=21k Vol ol 1)1 1di - 571, DEtWeen the twddsp in Eq. ng T', where tunneling has to be treated to all orderslin
(9) and use the premise that the resulting energy denominatgiy’ simplify the notation we suppress spin indices and intro-
|in—Ex—e|~|E|, since we work close to the resonance gce a ket notatiofl 2), where 1 stands for quantum num-
=0 and E,>A. The triplet contribution vanishes since pers of the electron on dot 1/lead 1 and similarly for 2, for
U =U_0 g for swave superconductors. For the final example)pgq) stands foraIpUa;q_U|i>, wherep is from lead
state being a singlet, we then get 1 andq from lead 2; or|pD) stands foral,,d} i), etc.
We concentrate first on the resummation of the following dot
4T2 y « lead transitongDD)—|LD)—|DD) or |DD)—|DL)
_ " _ SD kVk | ) —|DD). In this sequencgdDD) is the state with one elec-
((dg dy; = dzydy )T €1 te—iny ; Ey cos(k- r), tron on>d0t 1 and the other on>e on dot 2, 4h®) defines a
(11)  state where one electron is in lead 1 and the other one on dot
2. We exclude processes of the kitdD)—|LD)—|LL)

] —|LD)—|DD) or |DD)—|LD)—|LL)—|DL)—|DD),
where ér=r,—r, denotes the distance vector between theyhere both electrons awrtually simultaneously in the leads
points on the superconductor from which electrons 1 and 2s well as the creation of electron-hole excitations out of the
tunnel into the dots. To evaluate the sum okewe use Fermi sea. We show in Appendixes A and B that such con-
uv=A/(2Ey), linearize the spectrum around the Fermitributions are suppressed in the regifi¢ considered here
level with Fermi wave vectokg, and obtain finally for the by the small parametey, /A . The dominant contribution is
Andreev contribution then given by

oo

1
pD> < pD‘ in_HOHDlLl

* 1 2n
nzo (iﬂ_HoHDlLl)

(pq|T'|DD)=

in—Hp

oo} o

HDz'—z

<quHDlL1IDq><Dq DD>+<quHDZLZIpD>

x<pD

* 1 2n
> (—HDZLZ)

n=o \in—Hg

> 1 2m
—H
mE:O ('U—Ho DL)

o)

(13

Since the sums for the transitig@D)—|DD) via the se-  cutoff in the sum inS at the Fermi level,~— A and at

quences|DD)—|LD)—[DD) and |[DD)—|DL)—|DD)  the edge of the conduction bang. Then we obtain3,
are independent, we can write all summations in®@) as  —Rey —j /2, wherey=y,+ ¥,, and the logarithmic renor-
geometric series that can be resummed explicitly. We begifhajization of the energy level is small, ie|Re3|

with the two-particle process for which we find ~ v In(e;/Au)<Ap and will be neglected. Finally, we arrive

= 1 om at the following expression:
DD —H DD
< mzzo (' 7—Ho DL) >

1 < DD
= 14

1 2 ’
1—<DD‘(—i 7]_HOHDL) DD>

m 7

*® 1 2m
—H
2=o ( Ho DL)

€1+ €r—i
€1t e—iyl2

(16)

Similar results hold for the one-particle resummations in Eq.

where (13),
1 2
DD|| ————H DD )=r————, 15 "
< ’('77_"'0 DL) > 17— €17 € (19 o| > ( 1 H )2“ 5 €2t e—in
with 3, being the self-energ® =|Tp |?Z(i7— e —€) L. PPl &) in—Hy C22 PR/= €+ €ep—iyol2’
In the presence of a Fermi sea in the leads, we introduce a (17
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* 1 2n €1+ €q—i7 =us=0. We stress that in this case the electron in lead 1 and
Dql > (?HDlLl) Dq =+—i./2. its spin-entangled partner in lead 2 have exactly shene
n=0 117~ Ho €17 €&~ 171 18 orbital energy We have shown previousfthat this degen-

eracy of orbital energies is a crucial requirement for noise
Inserting the preceding results back into EbB) we obtain ~ measurements in which the singlets manifest themselves in
form of enhanced noise in the currefiunching, whereas
—T3 (e1+€—i7) 19 uncorrelated electrons, or, more generally, elect'rons in a trip-
(ext eq—171/2) (3t €p—172/2) (19 let state, lead to a suppression of nofaatibunching.
We remark again that the currentis carried by electrons
Thus, we see that the resummations cancel all divergencesat are entangled in spin space and spatially separated in
like the €, + e,—i 7 denominator appearing in Eq4.1) and  orbital space. In other words, the stationary currgnis a
(12), and that, as expected, the resummation of divergenturrent of nonlocal spin-based EPR pairs. Finally, we note
terms leads effectively to the replacement—ivy,/2 so that that due to the singlet character of the EPR pair we do not
the limit e, — 0 is well behaved. It is interesting to note that know whether the electron in, say, lead 1 carries an up or a
the two-particle resonancee{+ e,—iy/2)~ ! occurring in  down spin, this can be revealed only by a spin measurement.
Eqg. (16) has canceled out in E¢L9), and we finally obtain a Of course, any measurement of the spin of ¢ae both
product of two independent single-particle Breit-Wigner electrons will immediately destroy the singlet state and thus
resonances. Still, we will just see that the two-particle correthe entanglement. Such a spin measurenigpin readouyt
lation is reintroduced when we insert E.9) into the ex- can be performed, e.g., by making use of the spin filtering
pression for the currerib) due to the integrations ovex, q, effect of quantum dot& The singlet state will also be de-
and the fact that the main contribution comes from the resostroyed by spin-dependent scatterifimit not by Coulomb
nances. Indeed, making use of E¢S) and (6), of energy  exchange interaction in the Fermi $8a However, it is
conservatiors;=g;=0, i.e.,e,= — €;, and of Eqs(12) and  known experimentally that electron spins in a semiconductor
(19), we finally obtain for the currerdenoted byl;) where  environment show unusually long dephasing times approach-
each of the two entangled electrons tunnels intifierent  ing microseconds and can be transported phase coherently
lead over distances exceeding 100n.>~"%1This distance is suf-
ficiently long for experiments performed typically on the
sin(kgdr)]? 26r length scale of quantum confined nanostructdfes.
keor } ex;{ - —) (20

mé
where, again;y= vy, + y,. We note that Eq(20) also holds

(pq[T’[DD)=

. eydy
(€1t 52)2+ 72/4

1

B. Negligible tunnel contributions

: : We turn now to a discussion of various tunnel processes
for the case withy, # y,. The current becomes exponentially that we have not taken into account so far and show that they

suppressed with increasing distangie between the tunnel- are negligibly small compared to the ones we have retained
ing points on the superconductor, the scale given by the Coo: gligibly P ) :

: : As we mentioned above we exclude virtual states where both
per pair coherence length This does not pose severe re-

. ) . . . electrons are simultaneously in the leads. This is justified in
strictions for conventionat-wave material withé typically the regime(1) considered here. To show this we consider the
being on the order of micrometers. More severe is the restric- 9 :

tion thatkear should not be too large compared to unity proces§DD)— |DD). This transition occurs either in atran-
LI .7 sition sequence of the tyd®D)—|LD)—|DD), as consid-
especially ifkg = of the superconductor assumes a typical

5 ST ered above, leading to the amplitudé\p =—ivy,

V?Iueiorr: it”fle;r?errﬁf a f\?vmn:gis\t/\r/olms.tr?“r”’ ismce ;Rglesrl:tf — vy /min(eJAur) [see Eq.(ALl) in Appendix A, or in a

lr;eses% ime o fh?a n);regmit_ea éalstfor(\aNﬁeseiﬁg c ren%l sequence of the typDD)—|LD)—|LL)—|DL)~|DD),

rge regi nme rs ' ur where both electrons are simultaneously in the leads
I, can assume a finite measurable value. The cutBdhtas

; L . statg, leading to the amplitude
again a Breit-Wigner resonance form that assumes it maxi- 9 9 P

mum value where;= — e,, 5
L . €c
. AL=—7—]im+In| —
_4ey3[sin(kgor) | 261 ’ oAl (AM”
T T keer | TR ) G

[see Eq(A3) in Appendix A]. However, this amplitudé |

This resonance at; = — €, clearly shows that the current is is suppressed by a factoy, /Au<1 compared toAp, .

a correlated two-particle effedeven apart from any spin Above we usedy,=y,= vy, for simplicity. Further, a pro-

correlation) as we should expect from the Andreev processcess where we create an electron-hole pair out of the Fermi

involving the coherent tunneling of two electrons. Togethersea of the leads could, in principle, destroy the spin-

with the single-particle resonances discussed apgee after correlation of the entangled electron pair when an electron

Eqg. (19)] we thus see that the current is carried by correlatedvith the “wrong” spin (coming from the Fermi sedops on

pairs of electrons whose energies satighy =|ey|<vy if ¢,  the dot. But such contributions cost additional energy of at

=€e,=0. least Au, and again such particle-hole processes are sup-
A particularly interesting case occurs when the energiepressed by a factory /Au)? as we show in detail in Ap-

of the dots,e; and e,, are both tuned to zero, i.ee;=¢,  pendix B.
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VI. TUNNELING VIA THE SAME DOT suppressed by, /A x. Making then use of Eq.18), we ob-

étain for the dot-lead resummation in E@2)
Dp”T>

(v,/A)? compared to the process discussed in the preceding

section. However, in contrast to the previous case, we do not ToL etey—in _

get a suppression resulting from the spatial separation of the - ﬁ m(5p”p+ Sprp)s (23

Cooper pair on the superconductor, since here the two elec- e !

trons tunnel from the same point either framor r, (see o on

Fig. 2). As before, a tunnel process starts by breaking up a flH 1 H

Cooper pair followed by an Andreev process with two pos- DL \ip—H, Pt

sible sequences, see Fig.(D. In the first step, one electron

tunnels from the superconductor to, say, dot 1, and in a sec- ToL €tey—in B

ond step the second electron also tunnels to dgek left = E f(%”p’ﬁ” Spp)s (24)
. . € +en—1 ’)/|/2

panel in Fig. 2. There are now two electrons on tsame P

thus this virtual state is suppressed by 1Finally, the two  the triplet and the lower sign to the singlet. For the

electrons leave dot 1 and tunnel into Ieadl].) There is an Superconductor-dot transitions in HQ.Z) we obtain
alternative competing process that avoids the double occu-
i >

pancy(see right panel in Fig.)2 Here, one electron tunnels é
Dp//T

The two electrons of a Cooper pair can also tunnel via th
samedot into the same lead. In this section we calculate the on
current induced by this process. We show that we obtain a <f

suppression of such processes by a factgr/\¢)? and/or

” 1
H ——H
DLnE ('ﬂ_Ho DL

Dp”l>

1 1

to, say, dot 1, and then the same electron tunnels further int . - -
\ I,,’_HOHSDI77_HOHD|_|7]_H0HSD

lead 1, leaving an excitation on the superconductor that cost

additional gap energy (instead ofU), before finally the 1 1
second electron tunnels from the superconductor via dot 1 = —<Dp”1 : Hsps: Hpy: Hsp i>
into lead 1. t=Ho ="in=Ho ""in—Ho
We first concentrate on the tunneling procéls, and T T2
note that the leading contribution comes from the processes = _DLsb’s (25)

where both electrons have left the superconductor so thatthe ~ A(e+ ey —in)

system has no energy deficit anymore. We still have to resum o ) .

the tunnel processes from the dot to the lead to all orders iff@Mbining the result&23)—(25), we obtain for the amplitude
the tunnel HamiltoniarHp_ . In what follows we suppress

the labell =1,2 since the setup is assumed to be symmetric

and tunneling into either lead 1 or lead 2 gives the same (1Tl 232y (TspToL) (e —i7/2) 26
" . S . iV=—
result. The transition amplitudd|To|i) including only lead- 0 Ale+ ep— il e+ ey —i7/2)
ing terms is
for the final statgf) being a singlet, whereas we get again
FIT i) = flH~ DD zero for the triplet.
(f[Toli) %:‘,< [Ho[Dp"0) Next we consider the procesh where the tunneling in-

volves a double occupancy of the dsee left panel in Fig.

y < i é ( 1 HDL)Z“ Dp"0'> 2). In this case the transition amplitude can be written as
n=0 |"7_HO

| b 1 H 1 H <f|To|i>:Z’ (f[HpL|Dp" o)

pain—Ho SDi,,—H, Pt plo

* 1 2n

1 . x| Dp” —H ) Dp”

XTHSD|>a (22) < po-nEo(ln—Ho bL pro
i7—Hg

1 1
where agairlf)=(112)(a}al, +aj al,)[i), with + de- ><<Dp”cr —— - Hou——Hso
noting the triplet ¢+) and singlet ), respectively, and the '~ Ho 177 Ho
intermediate statﬁ)p”a)zdi(,ag,,{r|i>. There are some re- 1 _
marks in order regarding E@§22). The electron that tunnels ><i n—Ho Hso '>' (27)

to the state|p”o) does not have to be resummed further

since this would lead either to a double occupancy of the dofs before, the transition amplitude|Toli) is only nonzero
that is suppressed byU/or to the state with two electrons for the final lead stat¢f) being a singlet state. Repeating a
simultaneously in the lead withvartual summation over the similar calculation as before we find that the amplitude is
statep”. But we already showed that the latter process iggiven by Eq.(26) but with A being replaced by/7. We
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note that the two amplitude®6) and (27) have the same phase is picked up. The Aharonov-Bohm phase appears in
initial and same final states. Thus, to obtain the total currenthe remaining two terms, which come from processes via the
due to processed) and(ll) we need to add these two am- same leads, either via lead 1 or leadsge Eqgs(26) and
plitudes. Then, using Eq5) we find for the total current,  (27)]. The total current is now obtained from|(f|To|i)[?,
in case of tunneling of two electrons into the same lead, giving |=1,+1,+1,5, and the flux-dependent Aharonov-
Bohm currentl 55 is given by
2eydy 1 1 1

= AU (28 | s=VBIIT F (€))cOs ¢/ o) +1,CO8 28/ o),
We see that the effect of the quantum dots consists in the ‘
suppression factory/£)? for tunneling into thesamelead. Flg)= ——, (30)
We remark that in contrast to the previous césmneling Ver+(y./2)?

into different leads the current does not have a resonant o
behavior since the virtual dot states are no longer at resgvhere, for simplicity, we have assumed tlegt= e,= ¢, and
nance due the energy codtsor A in the tunneling process. Y1=7Y2= .- Here, the first terntdifferent leadsis periodic

Thus, forming the ratio of the currents of the two competingeffects, while the second orisame leadsis periodic inhalf
processes, we obtain the flux quantumegg/2, describing thus the interference of
two coherent electrongsimilar single- and two-particle
1, 2E2[sin(kgdr)]? 25r Aharonov-Bohm effects occur in the Josephson current
T T T ;{ W—§> (29 through an Aharonov-Bohm lodf). It is clear from Eq(30)
2.y F that theh/e oscillation comes from the interference between

From this ratio we see that the desired regime witdomi- & contributiqn Wherg thg two electrons travel through differ-
nating I, is obtained when&/y>kpdr, and or<¢. We ~ €ntarms with contributions where the two electrons travel
would like to emphasize that the relative suppressiom,of through the same arm. Both Aharonov-Bohm oscillations
(as well as the absolute value of the currptis maximized ~ With period h/e and h/2e, vanish with decreasing;, i.e.,

by working around the resonances= ug= 023 with increasing on-site repulsiod and/or gapA. However,
their relative weight is given by/l,/I,, implying that the
h/2e oscillations vanish faster than tihée oscillations. This
behavior is quite remarkable since it opens up the possibility
to damp down the unwanted leakage proces$s cos(2p/ ¢)

We have seen that there are two competing processes vfere two electrons proceed via the same dot/lead by in-
currents, one where the two electrons proceed via differergreasingJ with a gate voltage applied to the dots. The domi-
dots into different leads, and one where the two electron®ant current contribution with period/e comes then from
proceed via the same dot into the same lead. We will shovihe desired entangled electrons proceeding via different
now that these two processes also lead to different curreéads. On the other hand, fl ; /1 ,< 1, which could become
oscillations in an Aharonov-Bohm loop that is threaded bythe case, e.g., fdkg6r > &/ y, we are left withh/2e oscilla-
an external magnetic fluy. For this let us consider now a tions only. Note that dephasing processes that affect the or-
setup where the two leads 1 and 2 are connected such thbital part suppres$,g. Still, the flux-independent current
they form an Aharonov-Bohm loop, where the electrons ard;+1, can remain finite and contain electrons that are en-
injected from the left via the superconductor, traversing thegangled in spin space, provided that there is only negligible
upper(lead 1 and lower(lead 2 arm of the loop before they spin-orbit coupling so that the spin is still a good quantum
rejoin to interfere and then exit into the same lead, where theaumber.
current is then measured as a function of varying gt is We would like to mention another important feature of
straightforward to analyze this setup with our results ob-the Aharonov-Bohm effect under discussion, namely the
tained so far. In particular, each tunneling amplitude obtainselative phase shift between the amplitudes of tunneling to
a phase factor, Tp —Tp€?*% and Tp,,6 the same lead and to different leads, resulting in the addi-
_)TD2L2e7i¢/2¢>o, where ¢o=h/e is the single-electron flux tional prefactor=(e)) in the first term of the right-hand side
guantum. For simplicity we also assume that the entire phas hs O.f the Eq.(30)_. lTh'S phase Sh'ﬁ flws due th the faﬁ.tl that
is acquired when the electron hops from the dot into the:[ ere s atwo-par.nce resonance In the amp it w e
leads, so that the process dot-lead-dot gives basically the fuﬁ ere is only a single-particle resonance in the amplltudes
Aharonov-Bohm phase facter* #/¢o of the loop(and only a 6) and (27) (we recall that the second resonance is sup-
negligible amount of phase is picked up along the path fronpress_ed by the_Coqumb blockade efjecthus, when the
the superconductor to the dptdlow, we repeat the calcula- chemical potentiaks of th? supercondugtor crosses the reso-
tions of the transition amplitude and find it to be of the nance,|i2,|5yL, the amplltude(lg) acquires an ext_ra phase
following  structure: (f|Toli)~Tp... T LT2 @il factore'¢r, where¢,=arg[1/(e,—|yL/Z)]. Then the interfer-

_ 0 Dily "Doby 7Dyl ence of the two amplitudes leads to the prefadtdi,)
2 —igld . . X piit P A
+Tp e “ 0. Here, the first term comes from the process— g, in the first term in the rhs of Eq30). In particular,

via different lead§see Eq(19)], where no Aharonov-Bohm exactly at the middle of the resonanegs 0, the phase shift

VII. DISCUSSION AND AHARONOV-BOHM
OSCILLATIONS
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is ¢,=m/2, and thus theh/e oscillations vanish, since the leads, i.e., the sequen¢®D)—|LD)—|LL)—|DL)
F(0)=cos@/2)=0. Note however, that although=*=1  —|DD). We find for the amplitude of this process
away from the resonanceée(|> v, ) theh/e oscillations van-
ish again, now because the currépt- ey%y,_/qz vanishes.
Thus the optimal regime for the observation of the 8
Aharonov-Bohm effect ise ||~ vy, . A= < DD HDL(WHDL) DD>

Finally, the preceding discussion shows that even if the 0

1 1

current does not reveal this spin correlation in a simple = - : — - 1
Aharonov-Bohm interference experiméhitOnly if we con- k' (in—e—eao)(in—ea) '™ €% in—ec
sider the current-current correlatiofrmise in a beam split- (A2)
ter setup can we detect also this spin-correlation in the trans-
port current via its charge properti&s.

spins of two electrons are entangled their associated charge 2| T |*

where the first term in the bracket results from the sequence

VIIl. CONCLUSION of, say, electron 1 tunneling into lead 1, then electron 2 tun-

. neling into lead 2, then electron 2 tunneling back into dot 2,

We have proposed an entangler device that can creaigg finally electron 1 tunneling back into dot 1. The second
pairwise spin-entangled electrons and provide coherent ingym in the bracket results from the sequence where the order
jection by an Andreev process into different dots that ar€y ynneling back to the dots is reversed, i.e., electron 1
coupled to leads. The unwanted process of both electrongnne|s hack to its dot before electron 2 does. Note that due

tunneling into the same lead can be suppressed by increasigg ihese two terms in the bracket the two-particle pole in Eq.
the Coulomb repulsion on the quantum dot. We have calcu(Az) cancels.

lated the ratio of currents of these two competing processes
and shown that there exists a regime of experimental interest
where the entangled current shows a resonance and assumes

a finite value with both partners of the singlet being in dif- )

ferent leads but having the same orbital energy. This entan- YL J’fc de’ ffc de

ReplacingZ (- - -) with v,_fefAMde(' -+), we can write

gy . A, =— [
gler then sat|§f|es the necessary requwements needed tq de- Lo 2 auin—e Joau(in—e)?
tect the spin entanglement via transport and noise
measurements. We also discussed the flux-dependent oscil- 2 €c
lations of the current in an Aharonov-Bohm loop. =X i7+In —” (A3)
27 A Ap
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APPENDIX A: SUPPRESSION OF VIRTUAL STATES

WITH BOTH ELECTRONS IN THE LEADS
APPENDIX B: ELECTRON-HOLE PAIR EXCITATION

We have stated in the main text that the contributions of . ) )

virtual states where two electrons are simultaneously in the N this Appendix we consider a tunnel process where the
leads are negligible. Here we estimate this contribution andVC €lectrons starting from the superconductor tunnel over
show that indeed it is suppressed by/Au<1 (here the different dots but during the process of repeated tunneling
spin of the electrons is not important, and we st y, from the dots to the leads and back to the dots an electron
= v, for simplicity). First we consider the dominant transi- f“?m the. Fermi sea hOPS on one of the d@ay ,dOt 3 when

tion from DD} back to|DD) with the tunneling of only one this dot is em.pty. In principle, suc_h contributions could dg—
electron to the lead, i.e., a sequence of the typd) stroy the desired entanglement since then a “wrong” spin
—|LD)—|DD). From' I’]OV\; on we impose the resonant con-€an hop on the dot and the electron on the other(dot 2

dition e,=0, and find for the amplitudécf. Egs.(14) and would no longer be entangled with this electramhile the
(15)] c original partner electron disappears in the reservoir provided

by the Fermi sea We show now that in the regimau
> ' " ( €c ) > v, such electron-hole pair processes due to the Fermi sea
DD )=—iy.——In| —]. are suppressed. We start with our consideration when the two
T \Au .
electrons, after the Andreev process, are each on a different
(A1) dot forming the|DD) state (we neglect spin and seg,
We compare this amplitudAp, with the amplitudeA,, of = vy,= v, in this consideration for simplicily Instead of the
the lowest-order process of tunneling of two electrons via themplitude(pg|T’'|DD) calculated in Eq(13) we consider
virtual statglLL ), where both electrons are simultaneously innow the following process:

1
ADL=<DDHDLmHDL
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in Eq.(B1) are similar to those already explained in the main
text, except for having now an excitation with energy
— € >0. The final stat¢pq) consists of two electrons in the
> lead statep andq (their multiple tunneling is resummed in
DD

Aeh=<pqlT'IDD><DD R Hou

o

1 2n nex
X (.—HD L ) ——Hp T’) and of the excitation with energy,— €./, SO |pQ)
A=0 T =Ho 7272] 1y—Ho = =aj al,aneal,li). The normalized correction to the cur-
© 1 2m rent,len/14, can be obtained by summingep/?/1, over the
X < DD| >, (jHDL) DD> . (B1) final stategpq), and thus we arrive at the following integral
m=0 117~ Ho for =0, retaining only leading terms i /A u, and using

The new sequence of interest in E&1) is the amplitude energy conservatiorg, — €, + €,+ €,=0:
containing the sum ovar. For instance, let us consider the

n=0 term,
+ 00
Ieh_ YL 3
L (2] Jonste
DD mHDlLl DD , I

where we assume that the electron-hole excitation occurs in, % 1-0(extepteqtAp) .
say, lead 1. FroniDD), the tunnel Hamiltoniaiti, | = takes [ei+ (v /22 e+ (/22 €5+ (1 /2)%]

the electron from dot 1 to the stakein lead 1. Instead of (B2)
tunneling back of this electron to dot 1, an electron from the

statek’ with energye, < — A from the Fermi sea of lead 1 We evaluate the integral in leading order and find
hops on dot 1. Now the dot-lead system is in the state

|DD)=d]d}a,,al,|i). The sum oven resums the hopping

back and forth of electron 2 from, to D, resulting in the len 3 [ \%2 [An
replacement ofy in HDlLl(i 77—H0)*1HDlLl by y /2. We K‘ ﬁ H 7
perform the further resummation in E@®1) with this Fermi

sea electron on dot 1 and the other electron still on dot 2We see now that the current involving an electron-hole pair,
assuming that electron 1 in the statén lead 1 is in its final |y, is suppressed compared to the main contributiofsee
state(and not a virtual staleAll the resummation processes Eq. (20)] by a factor of ¢y, /Au)?.

. (B3)
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