
PHYSICAL REVIEW B, VOLUME 63, 165314
Andreev tunneling, Coulomb blockade, and resonant transport
of nonlocal spin-entangled electrons

Patrik Recher, Eugene V. Sukhorukov, and Daniel Loss
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

~Received 28 September 2000; published 4 April 2001!

We propose and analyze a spin-entangler for electrons based on ans-wave superconductor coupled to two
quantum dots, each of which is coupled to normal Fermi leads. We show that in the presence of a voltage bias
and in the Coulomb blockade regime two correlated electrons provided by the Andreev process can coherently
tunnel from the superconductor via different dots into different leads. The spin singlet coming from the Cooper
pair remains preserved in this process, and the setup provides a source of mobile and nonlocal spin-entangled
electrons. The transport current is calculated and shown to be dominated by a two-particle Breit-Wigner
resonance that allows the injection of two spin-entangled electrons into different leads at exactly the same
orbital energy, which is a crucial requirement for the detection of spin entanglement via noise measurements.
The coherent tunneling of both electrons into the same lead is suppressed by the on-site Coulomb repulsion
and/or the superconducting gap, while the tunneling into different leads is suppressed through the initial
separation of the tunneling electrons. In the regime of interest the particle-hole excitations of the leads are
shown to be negligible. The Aharonov-Bohm oscillations in the current are shown to contain single- and
two-electron periods with amplitudes that both vanish with increasing Coulomb repulsion albeit differently
fast.
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I. INTRODUCTION

The creation of nonlocal pairwise-entangled quant
states, so-called Einstein-Podolsky-Rosen~EPR! pairs,1 is
essential for secure quantum communication,2 dense coding
and quantum teleportation,3 or more fundamental, for testin
the violation of Bell’s inequality.4 Such tests already exis
for photons but not yet formassiveparticles such as electron
since it is difficult to produce and to detect entangled el
trons. However, there is strong experimental evidence
electron spins in a semiconductor environment show unu
ally long dephasing times approaching microseconds
that they can be transported phase coherently over dista
exceeding 100mm.5–10 This makes spins of electrons i
semiconductors promising candidates for carriers of quan
information~qubits!.11,12 In particular, we have recently pro
posed a setup13 consisting of a spin-entangler and a bea
splitter where the spin entanglement is detectable via e
tronic transport properties. We have shown that the curr
current correlations~noise! are enhanced if the entangle
electrons are spin singlets leading to bunching behav
whereas the noise is suppressed for spin triplets leadin
antibunching behavior.

In Ref. 13 we assumed the existence of an entangler,
a device that generates spin singlets that are made out o
electrons that reside in different but degenerate orbital sta
and we focused on the question of how to detect sp
entangled electrons via transport and noise measurem
Here, we address the problem of how to implement such
entangler in a solid state device. We have found13 that for
such noise measurements, which are based on two-pa
interference effects, it is absolutely crucial that both el
trons, coming from different leads, possess thesame orbital
energy. If the orbital energies of the two entangled electro
0163-1829/2001/63~16!/165314~11!/$20.00 63 1653
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are different, the electrons cannot interfere with each oth
and thus spin correlations would not be observable in
noise.13

In the following we propose a setup that involves a sup
conductor coupled to two quantum dots, which themsel
are coupled to normal leads; see Fig. 1. We show that su
setup acts as an entangler that meets all the requirem
needed for a successful detection of spin entanglement
noise measurements. In previous work14 we showed that in
equilibrium the spin correlations of ans-wave supercon-
ductor induce a spin-singlet state between two electro
each of which resides on a separate quantum dot that
are weakly coupled to the same superconductor~but not
among themselves!. This nonlocal spin entanglement lead
then to observable effects in a generalized Josephson j
tion setup.14 In the present work we consider anonequilib-
rium situation where an applied voltage bias drives a stati
ary current of pairwise spin-entangled electrons from
superconductor through the quantum dots into the leads;
Figs. 1 and 2.

II. QUALITATIVE DESCRIPTION OF THE ANDREEV
ENTANGLER

We begin with a qualitative description of the entang
and its principal mechanism based on Andreev processes
Coulomb blockade effects. In subsequent sections we in
duce the Hamiltonian and calculate the stationary curren
detail. We consider ans-wave superconductor that acts as
natural source of spin-entangled electrons, since the elect
form Cooper pairs with singlet spin wave functions.15 The
superconductor, which is held at the chemical potentialmS ,
is weakly coupled by tunnel barriers to two separate quan
dots D1 and D2, which themselves are weakly coupled
Fermi liquid leadsL1 andL2, respectively, both held at th
©2001 The American Physical Society14-1
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same chemical potentialm15m2. The corresponding tunnel
ing amplitudes between superconductor and dots and
tween dots and leads are denoted byTSD andTDL , respec-
tively ~for simplicity we assume them to be equal for bo
dots and leads!.

In general, the tunnel coupling of a superconductor t
normal region allows for coherent transport of two electro
of opposite spins due to Andreev tunneling,15 while single-
electron tunneling is suppressed.16 In the present setup, w
envision a situation where the two electrons are forced
tunnel coherently intodifferentleads rather than both into th
same lead. This situation can be enforced in the presenc
two intermediate quantum dots that are assumed to be in
Coulomb blockade regime17 so that the state with the tw
electrons being on the same quantum dot is strongly s
pressed, and thus the electrons will preferably tunnel i
separate dots and subsequently into separate leads~this will
be quantified in the following!.

By applying a bias voltageDm5mS2m l.0 transport of
entangled electrons occurs from the superconductor via
dots to the leads. The chemical potentialse1 and e2 of the
quantum dots can be tuned by external gate voltages17 such
that the coherent tunneling of two electrons into differe
leads is at resonance, described by a two-particle Br
Wigner resonance peaked ate11e252mS . In contrast, we
will see that the current for the coherent tunneling of tw
electrons into thesame lead is suppressed by the on-s

FIG. 1. The entangler setup: Two spin-entangled electrons fo
ing a Cooper pair can tunnel with amplitudeTSD from pointsr1 and
r2 of the superconductor, SC, to two dots,D1 andD2, by means of
Andreev tunneling. The dots coupled to normal leads L1 and L2,
with tunneling amplitudeTDL . The superconductor and leads a
kept at chemical potentialsmS andm l , respectively.
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CoulombU repulsion of a quantum dot and/or by the sup
conducting gapD.

Next, we introduce the relevant parameters describing
proposed device and specify their regime of interest. First
note that to avoid unwanted correlations with electrons
ready on the quantum dots one could work in the cotunne
regime17 where the number of electrons on the dots are fix
and the resonant levelse l , l 51,2 cannot be occupied. How
ever, we prefer to work at the resonancese l.mS , since then
the total current and the desired suppression of tunneling
the same lead is maximized in this regime. Also, the des
injection of the two electrons into different leads but at t
same orbital energyis then achieved. It turns out to be mo
efficient to work in the regime where the dot levelse l have
vanishing occupation probability. For this purpose we
quire that the dot-lead coupling is much stronger than
superconductor-dot coupling, i.e.,uTSDu,uTDLu, so that elec-
trons that enter the dots from the superconductor will lea
the quantum dots to the leads much faster than new elect
can be provided from the superconductor. In addition, a
tionary occupation due to the coupling to the leads is ex
nentially small ifDm.kBT, T being the temperature andkB
the Boltzmann constant. Thus in this asymmetric barr
case, the resonant dot levelse l can be occupied only during
a virtual process.

Next, the quantum dots in the ground state are allowed
contain an arbitrary but even number of electrons,ND
5even, with total spin zero~i.e., antiferromagnetic filling of
the dots!. An odd numberND must be excluded since
simple spin flip on the quantum dot would be possible in
transport process and as a result the desired entangle
would be lost. Further, we have to make sure that also s
flip processes of the following kind are excluded. Consid
an electron that tunnels from the superconductor into a gi
dot. Now, it is possible in principle~e.g., in a sequentia
tunneling process17! that another electron with the opposi
spin leaves the dot and tunnels into the lead, and, again
desired entanglement would be lost. However, such spin
processes will be excluded if the energy level spacing of
quantum dots,de ~assumed to be similar for both dots! ex-
ceeds both temperaturekBT and bias voltageDm. A serious
source of entanglement loss is given by electron-hole p
excitations out of the Fermi sea of the leads during the re
nant tunneling events. However, we show in the followi
that such many-particle contributions are suppressed if
resonance widthg l52pn l uTDLu2 is smaller thanDm ~for

-

o
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v
-

o

FIG. 2. Two competing virtual
processes are shown when the tw
electrons tunnel via the same do
The left panel shows an Andree
process leading to a double occu
pancy of the dot with virtual en-
ergy 1/U @process~I!#. The pro-
cess on the right differs by the
sequence of tunneling, leading t
an additional virtual energy 1/D
instead of 1/U @process~II !#.
4-2
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ANDREEV TUNNELING, COULOMB BLOCKADE, AND . . . PHYSICAL REVIEW B 63 165314
e l.mS), wheren l is the density of states~DOS! per spin of
the leads at the chemical potentialm l .

Finally, an additional energy scale that enters the con
eration is the superconducting gap energyD, which is half
the minimum energy it costs to break up a Cooper pair i
two quasiparticles. This gap energy also characterizes
time delay between the subsequent coherent Andreev tun
ing events of the two electrons of a Cooper pair. In orde
exclude single-electron tunneling where the creation o
quasiparticle in the superconductor is a final excited state
require thatD.Dm,kBT.

To summarize, the regime of interest in this work is th
given by

D,U,de.Dm.g l ,kBT, g l.gS . ~1!

Some inequalities will become clear when we discu
the various processes in detail below. As regards poss
experimental implementations of the proposed setup and
parameter regime, we would like to mention that typica
quantum dots are made out of semiconducting heterost
tures that satisfy the above-noted inequalities.17 Furthermore,
in recent experiments, it has been shown that the fabrica
of hybrid structures with semiconductor and supercondu
being coupled by tunnel barriers is possible.18,19 Other can-
didate materials are, e.g., carbon nanotubes, which also s
Coulomb blockade behavior withU andde being in the re-
gime of interest here.20 The present work might provide fur
ther motivation to implement the structures proposed he

Our goal in the following is to calculate the stationa
charge current of pairwise spin-entangled electrons for
competing transport channels, first for the desired trans
of two entangled electrons into different leads (I 1) and sec-
ond for the unwanted transport of both electrons into
same lead (I 2). We compare then the two competing pr
cesses and show how their ratio,I 1 /I 2, depends on the vari
ous system parameters and how it can be made large
important finding is that when tunneling of two electrons in
different leads occurs, the current is suppressed due to
fact that tunneling into the dots will typically take place fro
different pointsr1 andr2 on the superconductor~see Fig. 1!
due to the spatial separation of the dotsD1 andD2. We show
that the distance of separationdr 5ur12r2u leads to an ex-
ponential suppression of the current via different dots ifdr
.j @see Eq.~20!#, where j is the coherence length of
Cooper pair. In the relevant regime,dr ,j, however, the
suppression is only polynomial and}1/(kFdr )2, with kF be-
ing the Fermi wave vector in the superconductor. On
other hand, tunneling via the same dot impliesdr 50, but
suffers a suppression due toU and/orD. The suppression o
this current is given by the small parameter (g l /U)2 in the
caseU,D, or by (g l /D)2, if U.D as will be derived in the
following. Thus, to maximize the efficiency of the entangle
we also requirekFdr ,D/g l ,U/g l . Finally, we will discuss
the effect of a magnetic flux on the entangled current in
Aharonov-Bohm loop, and we will see that this current co
tains both single- and two-particle Aharonov-Bohm perio
whose amplitudes have different parameter dependence
16531
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III. HAMILTONIAN OF THE ANDREEV ENTANGLER

We use a tunneling Hamiltonian description of the sy
tem,H5H01HT , where

H05HS1(
l

HDl1(
l

HLl , l 51,2. ~2!

Here, the superconductor is described by the B
Hamiltonian15 HS5(k,sEkgks

† gks , wheres5↑,↓, and the
quasiparticle operatorsgks describe excitations out of th
BCS ground stateu0&S defined bygksu0&S50. They are re-
lated to the electron annihilation and creation operatorscks

andcks
† through the Bogoliubov transformation15

ck↑5ukgk↑1vkg2k↓
† , ~3!

c2k↓5ukg2k↓2vkgk↑
† ,

where uk5(1/A2)(11jk /Ek)
1/2 and vk5(1/A2)(1

2jk /Ek)
1/2 are the usual BCS coherence factors,15 jk5ek

2mS is the normal state single-electron energy counted fr
the Fermi levelmS , and Ek5Ajk

21D2 is the quasiparticle
energy. We choose energies such thatmS50. Both dots are
represented as one localized~spin-degenerate! level with en-
ergy e l and is modeled by an Anderson-type Hamiltoni
HDl5e l(sdls

† dls1Unl↑nl↓ , l 51,2. The resonant dot leve
e l can be tuned by the gate voltage. Other levels of the d
do not participate in transport ifde.Dm.kBT, whereDm
52m l , m l is the chemical potential of leadl 51,2, andde is
the single-particle energy level spacing of the dots. The le
l 51,2 are assumed to be noninteracting~normal! Fermi liq-
uids, HLl5(ksekalks

† alks . Tunneling from the dotl to the
leadl or to the pointr l in the superconductor is described b
the tunnel HamiltonianHT5HSD1HDL with

HSD5(
ls

TSDdls
† cs~r l !1H.c.,

HDL5(
lks

TDLalks
† dls1H.c. ~4!

Here,cs(r l) annihilates an electron with spins at site r l ,
and dls

† creates it again~with the same spin! at dot l with
amplitudeTSD . cs(r l) is related tocks by the Fourier trans-
form cs(r l)5(ke

ik•r lcks . Tunneling from the dot to the
statek in the lead is described by the tunnel amplitudeTDL .
We assume that thek dependence ofTDL can be safely ne-
glected.

IV. STATIONARY CURRENT AND THE T MATRIX

The stationary current oftwo electrons passing from th
superconductor via virtual dot states to the leads is given
4-3
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I 52e(
f ,i

Wf ir i , ~5!

whereWf i is the transition rate from the superconductor
the leads. We calculate this transition rate in terms o
T-matrix approach,21

Wf i52p z^ f uT~« i !u i & z2d~« f2« i !. ~6!

Here,

T~« i !5HT

1

« i1 ih2H
~« i2H0!

is the on-shell transmission orT matrix, withh being a small
positive real number that we take to zero at the end of
calculation. Finally,r i is the stationary occupation probab
ity for the entire system to be in the stateu i &. The T matrix
T(« i) can be written as a power series in the tunnel Ham
tonianHT ,

T~« i !5HT1HT(
n51

` S 1

« i1 ih2H0
HTD n

, ~7!

where the initial energy is« i52mS[0. We work in the re-
gime defined in Eq.~1!, i.e., g l.gS , and D,U,de.Dm
.g l ,kBT, and around the resonancee l.mS . Further, gS
52pnSuTSDu2 and g l52pn l uTDLu2 define the tunneling
rates between superconductor and dots and between dot
leads, respectively, withnS andn l being the DOS per spin a
the chemical potentialsmS and m l , respectively. We will
show that the total effective tunneling rate from the sup
conductor to the leads is given bygS

2/g l due to the Andreev
process. In the regime~1! the entire tunneling process be
comes a two-particle problem where the many-particle ef
of the reservoirs~leads! can be safely neglected and the c
herence of an initially entangled Cooper pair~spin singlet! is
maintained during the transport into the leads as we s
show below. Since the superconducting gap satisfiesD
.Dm,kBT, the superconductor contains no quasiparticle
tially. Further, in the regime~1!, the resonant dot levelse l
are mostly empty, since in the assumed asymmetric c
uTDLu.uTSDu ~or g l.gS), the electron leaves the dot to th
lead much faster than it can be replaced by another elec
from the superconductor. In addition, we can neglect a
stationary occupation of the dots induced by the coupling
the dots to the leads. Indeed, in the stationary limit and
given biasDm this occupation probability is determined b
the grand canonical distribution function}exp(2Dm/kBT)
,1, and thusr i.0 for any initial state where the resona
dot level is occupied. In this regime, the initial stateu i & be-
comes u i &5u0&Su0&Dum l& l , where u0&S is the quasiparticle
vacuum for the superconductor,u0&D means that both do
levelse l are unoccupied, andum l& l defines the occupation o
the leads that are filled with electrons up to the chem
potential m l . We remark that in our regime of interest n
Kondo effects appear that could destroy the spin entan
ment, since our dots contain each an even number of e
trons in the stationary limit.
16531
a

e

l-

and

-

ct

ll

i-

e,

on
y
f
r

l

e-
c-

V. CURRENT DUE TO TUNNELING INTO DIFFERENT
LEADS

We now calculate the current for simultaneous coher
transport of two electrons into different leads. The final st
for two electrons, one of them being in lead 1 the other
lead 2, can be classified according to their total spinS. This
spin can be either a singlet~in standard notation! uS&
5(u↑↓&2u↓↑&)/A2 with S50, or a triplet withS51. Since
the total spin is conserved,@S2,H#50, the singlet state of the
initial Cooper pair will be conserved in the transport proce
and the final state must also be a singlet. That this is so
also be seen explicitly when we allow for the possibility th
the final state could be theSz50 triplet ut0&5(u↑↓&
1u↓↑&)/A2. ~The tripletsut1&5u↑↑& andut2&5u↓↓& can be
excluded right away since the tunnel HamiltonianHT con-
serves the spin components and an Andreev process in
volves tunneling of two electrons with different spins.!
Therefore we consider final two-particle states of the fo
u f &5(1/A2)@a1p↑

† a2q↓
† 6a1p↓

† a2q↑
† #u i &, where the2 and 1

signs belong to the singletuS& and tripletut0&, respectively.
Note that this singlet/triplet state is formed out of two ele
trons, one being in thep state in lead 1 and with energyep ,
while the other one is in theq state in lead 2 with energyeq .
Thus, the two electrons are entangled in spin space w
separated in orbital space, thereby providing a nonlocal E
pair. The tunnel process to different leads appears in
following order. A Cooper pair breaks up, where one ele
tron with spins tunnels to one of the dots~with empty level
e l) from the point of the superconductor nearest to this d
This is a virtual state with energy deficitEk.D. Since
D.g l , the second electron from the Cooper pair with sp
2s tunnels to the other empty dot levelbeforethe electron
with spin s escapes to the lead. Therefore, both electr
tunnel almost simultaneously to the dots~within the uncer-
tainty time \/D). Since we work at the resonancee l.mS
50 the energy denominators in Eq.~7! show divergences
}1/h, indicating that tunneling between the dots and t
leads is resonant and we have to treat tunneling to all ord
in HDL in Eq. ~7!, eventually giving a finite result in whichh
will be replaced byg l /2. Tunneling back to the supercon
ductor is unlikely sinceuTSDu,uTDLu. We can therefore write
the transition amplitude between initial and final state as

^ f uT0u i &5
1

A2
^a2q↓a1p↑T8d1↑

† d2↓
† &^@d2↓d1↑6d2↑d1↓#T9&,

~8!

whereT05T(« i50), and the partialT matricesT8 and T9
are given by

T95
1

ih2H0
HSD

1

ih2H0
HSD ~9!

and

T85HDL (
n50

` S 1

ih2H0
HDLD 2n11

. ~10!
4-4
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In Eq. ~8! we used the fact that the matrix element contain
T8 is invariant under spin exchange↑↔↓, and the abbrevia-
tion ^•••& stands for̂ i u•••u i &. The part containingT9 de-
scribes the Andreev process, while the part containingT8 is
the resonant dot↔ lead tunneling.

We first consider the Andreev process. We insert a co
plete set of single-quasiparticle~virtual! states, i.e., 1
5( lksgks

† dl 2s
† u i &^ i udl 2sgks , between the twoHSD in Eq.

~9! and use the premise that the resulting energy denomin
u ih2Ek2e l u'uEku, since we work close to the resonan
e l.0 and Ek.D. The triplet contribution vanishes sinc
ukvk5u2kv2k for s-wave superconductors. For the fin
state being a singlet, we then get

^~d2↓d1↑2d2↑d1↓!T9&5
4TSD

2

e11e22 ih (
k

ukvk

Ek
cos~k•dr !,

~11!

where dr5r12r2 denotes the distance vector between
points on the superconductor from which electrons 1 an
tunnel into the dots. To evaluate the sum overk we use
ukvk5D/(2Ek), linearize the spectrum around the Fer
level with Fermi wave vectorkF , and obtain finally for the
Andreev contribution
g

ce

16531
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^~d2↓d1↑2d2↑d1↓!T9&5
2pnSTSD

2

e11e22 ih

sin~kFdr !

kFdr
e2 ~dr /pj!.

~12!

A. Dominant contribution of resonant tunneling
to different leads

Now we calculate the matrix element in Eq.~8! contain-
ing T8, where tunneling has to be treated to all orders inHT .
To simplify the notation we suppress spin indices and int
duce a ket notationu12&, where 1 stands for quantum num
bers of the electron on dot 1/lead 1 and similarly for 2, f
example,upq& stands fora1ps

† a2q2s
† u i &, wherep is from lead

1 andq from lead 2; orupD& stands fora1ps
† d2,2s

† u i &, etc.
We concentrate first on the resummation of the following d
↔ lead transitionsuDD&→uLD&→uDD& or uDD&→uDL&
→uDD&. In this sequence,uDD& is the state with one elec
tron on dot 1 and the other one on dot 2, anduLD& defines a
state where one electron is in lead 1 and the other one on
2. We exclude processes of the kinduDD&→uLD&→uLL&
→uLD&→uDD& or uDD&→uLD&→uLL&→uDL&→uDD&,
where both electrons arevirtually simultaneously in the lead
as well as the creation of electron-hole excitations out of
Fermi sea. We show in Appendixes A and B that such c
tributions are suppressed in the regime~1! considered here
by the small parameterg l /Dm. The dominant contribution is
then given by
^pquT8uDD&5H ^pquHD1L1
uDq&K DqU(

n50

` S 1

ih2H0
HD1L1D 2nUDqL K DqU 1

ih2H0
HD2L2

UDD L 1^pquHD2L2
upD&

3K pDU(
n50

` S 1

ih2H0
HD2L2D 2nUpDL K pDU 1

ih2H0
HD1L1

UDD L J K DDU (
m50

` S 1

ih2H0
HDLD 2mUDDL .

~13!
e

q.
Since the sums for the transitionuDD&→uDD& via the se-
quences uDD&→uLD&→uDD& and uDD&→uDL&→uDD&
are independent, we can write all summations in Eq.~13! as
geometric series that can be resummed explicitly. We be
with the two-particle process for which we find

K DDU (
m50

` S 1

ih2H0
HDLD 2mUDDL

5
1

12 K DDUS 1

ih2H0
HDLD 2UDD L , ~14!

where

K DDUS 1

ih2H0
HDLD 2UDD L 5

S

ih2e12e2
, ~15!

with S being the self-energy,S5uTDLu2( lk( ih2e l2ek)
21.

In the presence of a Fermi sea in the leads, we introdu
in

a

cutoff in the sum inS at the Fermi levelek;2Dm and at
the edge of the conduction bandec . Then we obtainS
5ReS2 ig/2, whereg5g11g2, and the logarithmic renor-
malization of the energy level is small, i.e.,uReSu
;g l ln(ec /Dm),Dm and will be neglected. Finally, we arriv
at the following expression:

K DDU (
m50

` S 1

ih2H0
HDLD 2mUDDL 5

e11e22 ih

e11e22 ig/2
.

~16!

Similar results hold for the one-particle resummations in E
~13!,

K pDU(
n50

` S 1

ih2H0
HD2L2D 2nUpDL 5

e21ep2 ih

e21ep2 ig2/2
,

~17!
4-5
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K DqU(
n50

` S 1

ih2H0
HD1L1D 2nUDqL 5

e11eq2 ih

e11eq2 ig1/2
.

~18!

Inserting the preceding results back into Eq.~13! we obtain

^pquT8uDD&5
2TDL

2 ~e11e22 ih!

~e11eq2 ig1/2!~e21ep2 ig2/2!
. ~19!

Thus, we see that the resummations cancel all diverge
like the e11e22 ih denominator appearing in Eqs.~11! and
~12!, and that, as expected, the resummation of diverg
terms leads effectively to the replacementih→ ig l /2 so that
the limit e l→0 is well behaved. It is interesting to note th
the two-particle resonance (e11e22 ig/2)21 occurring in
Eq. ~16! has canceled out in Eq.~19!, and we finally obtain a
product of two independent single-particle Breit-Wign
resonances. Still, we will just see that the two-particle cor
lation is reintroduced when we insert Eq.~19! into the ex-
pression for the current~5! due to the integrations overp, q,
and the fact that the main contribution comes from the re
nances. Indeed, making use of Eqs.~5! and ~6!, of energy
conservation« f5« i50, i.e.,ep52eq , and of Eqs.~12! and
~19!, we finally obtain for the current~denoted byI 1) where
each of the two entangled electrons tunnels into adifferent
lead

I 15
egS

2g

~e11e2!21g2/4
Fsin~kFdr !

kFdr G2

expS 2
2dr

pj D , ~20!

where, again,g5g11g2. We note that Eq.~20! also holds
for the case withg1Þg2. The current becomes exponential
suppressed with increasing distancedr between the tunnel
ing points on the superconductor, the scale given by the C
per pair coherence lengthj. This does not pose severe r
strictions for conventionals-wave material withj typically
being on the order of micrometers. More severe is the res
tion that kFdr should not be too large compared to unit
especially if kF

21 of the superconductor assumes a typi
value on the order of a few a˚ngstroms. Still, since the sup
pression inkFdr is only power-law-like there is a sufficientl
large regime on the nanometer scale fordr where the current
I 1 can assume a finite measurable value. The current~20! has
again a Breit-Wigner resonance form that assumes it m
mum value whene152e2,

I 15
4egS

2

g Fsin~kFdr !

kFdr G2

expS 2
2dr

pj D . ~21!

This resonance ate152e2 clearly shows that the current i
a correlated two-particle effect~even apart from any spin
correlation! as we should expect from the Andreev proce
involving the coherent tunneling of two electrons. Togeth
with the single-particle resonances discussed above@see after
Eq. ~19!# we thus see that the current is carried by correla
pairs of electrons whose energies satisfyuepu5uequ&g if e1
5e250.

A particularly interesting case occurs when the energ
of the dots,e1 and e2, are both tuned to zero, i.e.,e15e2
16531
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5mS50. We stress that in this case the electron in lead 1
its spin-entangled partner in lead 2 have exactly thesame
orbital energy. We have shown previously13 that this degen-
eracy of orbital energies is a crucial requirement for no
measurements in which the singlets manifest themselve
form of enhanced noise in the current~bunching!, whereas
uncorrelated electrons, or, more generally, electrons in a t
let state, lead to a suppression of noise~antibunching!.

We remark again that the currentI 1 is carried by electrons
that are entangled in spin space and spatially separate
orbital space. In other words, the stationary currentI 1 is a
current of nonlocal spin-based EPR pairs. Finally, we n
that due to the singlet character of the EPR pair we do
know whether the electron in, say, lead 1 carries an up o
down spin, this can be revealed only by a spin measurem
Of course, any measurement of the spin of one~or both!
electrons will immediately destroy the singlet state and th
the entanglement. Such a spin measurement~spin readout!
can be performed, e.g., by making use of the spin filter
effect of quantum dots.22 The singlet state will also be de
stroyed by spin-dependent scattering~but not by Coulomb
exchange interaction in the Fermi sea13!. However, it is
known experimentally that electron spins in a semiconduc
environment show unusually long dephasing times approa
ing microseconds and can be transported phase coher
over distances exceeding 100mm.5–7,9,10This distance is suf-
ficiently long for experiments performed typically on th
length scale of quantum confined nanostructures.17

B. Negligible tunnel contributions

We turn now to a discussion of various tunnel proces
that we have not taken into account so far and show that t
are negligibly small compared to the ones we have retain
As we mentioned above we exclude virtual states where b
electrons are simultaneously in the leads. This is justified
the regime~1! considered here. To show this we consider t
processuDD&→uDD&. This transition occurs either in a tran
sition sequence of the typeuDD&→uLD&→uDD&, as consid-
ered above, leading to the amplitudeADL52 igL
2gL/p ln(ec/Dm) @see Eq.~A1! in Appendix A!#, or in a
sequence of the typeuDD&→uLD&→uLL&→uDL&→uDD&,
where both electrons are simultaneously in the leads (uLL&
state!, leading to the amplitude

ALL5
gL

2

2p2Dm
F ip1 lnS ec

Dm D G
@see Eq.~A3! in Appendix A#. However, this amplitudeALL
is suppressed by a factorgL /Dm,1 compared toADL .
Above we usedg15g25gL for simplicity. Further, a pro-
cess where we create an electron-hole pair out of the Fe
sea of the leads could, in principle, destroy the sp
correlation of the entangled electron pair when an elect
with the ‘‘wrong’’ spin ~coming from the Fermi sea! hops on
the dot. But such contributions cost additional energy of
least Dm, and again such particle-hole processes are s
pressed by a factor (gL /Dm)2 as we show in detail in Ap-
pendix B.
4-6
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VI. TUNNELING VIA THE SAME DOT

The two electrons of a Cooper pair can also tunnel via
samedot into the same lead. In this section we calculate
current induced by this process. We show that we obta
suppression of such processes by a factor (g l /U)2 and/or
(g l /D)2 compared to the process discussed in the prece
section. However, in contrast to the previous case, we do
get a suppression resulting from the spatial separation of
Cooper pair on the superconductor, since here the two e
trons tunnel from the same point either fromr1 or r2 ~see
Fig. 2!. As before, a tunnel process starts by breaking u
Cooper pair followed by an Andreev process with two po
sible sequences, see Fig. 2.~I! In the first step, one electro
tunnels from the superconductor to, say, dot 1, and in a
ond step the second electron also tunnels to dot 1~see left
panel in Fig. 2!. There are now two electrons on thesame
dot, which costs additional Coulomb repulsion energyU;
thus this virtual state is suppressed by 1/U. Finally, the two
electrons leave dot 1 and tunnel into lead 1.~II ! There is an
alternative competing process that avoids the double o
pancy~see right panel in Fig. 2!. Here, one electron tunnel
to, say, dot 1, and then the same electron tunnels further
lead 1, leaving an excitation on the superconductor that c
additional gap energyD ~instead ofU), before finally the
second electron tunnels from the superconductor via do
into lead 1.

We first concentrate on the tunneling process~II !, and
note that the leading contribution comes from the proces
where both electrons have left the superconductor so tha
system has no energy deficit anymore. We still have to res
the tunnel processes from the dot to the lead to all order
the tunnel HamiltonianHDL . In what follows we suppress
the labell 51,2 since the setup is assumed to be symme
and tunneling into either lead 1 or lead 2 gives the sa
result. The transition amplitudêf uT0u i & including only lead-
ing terms is

^ f uT0u i &5(
p9s

^ f uHDLuDp9s&

3K Dp9sU(
n50

` S 1

ih2H0
HDLD 2nUDp9sL

3 K Dp9sU 1

ih2H0
HSD

1

ih2H0
HDL

3
1

ih2H0
HSDU i L , ~22!

where againu f &5(1/A2)(ap↑
† ap8↓

†
6ap↓

† ap8↑
† )u i &, with 6 de-

noting the triplet (1) and singlet (2), respectively, and the
intermediate stateuDp9s&5d2s

† ap9s
† u i &. There are some re

marks in order regarding Eq.~22!. The electron that tunnel
to the stateup9s& does not have to be resummed furth
since this would lead either to a double occupancy of the
that is suppressed by 1/U or to the state with two electron
simultaneously in the lead with avirtual summation over the
statep9. But we already showed that the latter process
16531
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suppressed byg l /Dm. Making then use of Eq.~18!, we ob-
tain for the dot-lead resummation in Eq.~22!

K fUHDL (
n50

` S 1

ih2H0
HDLD 2nUDp9↑L

52
TDL

A2

e l1ep92 ih

e l1ep92 ig l /2
~dp9p7dp9p8!, ~23!

K fUHDL (
n50

` S 1

ih2H0
HDLD 2nUDp9↓L

5
TDL

A2

e l1ep92 ih

e l1ep92 ig l /2
~dp9p87dp9p!, ~24!

where again in Eqs.~23! and ~24! the upper sign belongs to
the triplet and the lower sign to the singlet. For th
superconductor-dot transitions in Eq.~22! we obtain

K Dp9↑U 1

ih2H0
HSD

1

ih2H0
HDL

1

ih2H0
HSDU i L

52 K Dp9↓U 1

ih2H0
HSD

1

ih2H0
HDL

1

ih2H0
HSDU i L

5
TDLTSD

2 nS

D~e l1ep92 ih!
. ~25!

Combining the results~23!–~25!, we obtain for the amplitude
~22!

^ f uT0u i &52
23/2nS~TSDTDL!2~e l2 ig l /2!

D~e l1ep2 ig l /2!~e l1ep82 ig l /2!
~26!

for the final stateu f & being a singlet, whereas we get aga
zero for the triplet.

Next we consider the process~I! where the tunneling in-
volves a double occupancy of the dot~see left panel in Fig.
2!. In this case the transition amplitude can be written as

^ f uT0u i &5(
p9s

^ f uHDLuDp9s&

3K Dp9sU(
n50

` S 1

ih2H0
HDLD 2nUDp9sL

3 K Dp9sU 1

ih2H0
HDL

1

ih2H0
HSD

3
1

ih2H0
HSDU i L . ~27!

As before, the transition amplitudêf uT0u i & is only nonzero
for the final lead stateu f & being a singlet state. Repeating
similar calculation as before we find that the amplitude
given by Eq.~26! but with D being replaced byU/p. We
4-7
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note that the two amplitudes~26! and ~27! have the same
initial and same final states. Thus, to obtain the total curr
due to processes~I! and ~II ! we need to add these two am
plitudes. Then, using Eq.~5! we find for the total currentI 2
in case of tunneling of two electrons into the same lead,

I 25
2egS

2g

E 2
,

1

E 5
1

pD
1

1

U
. ~28!

We see that the effect of the quantum dots consists in
suppression factor (g/E)2 for tunneling into thesamelead.
We remark that in contrast to the previous case~tunneling
into different leads! the current does not have a resona
behavior since the virtual dot states are no longer at re
nance due the energy costsU or D in the tunneling process
Our final goal is to compareI 1 given in Eq. ~21! with I 2.
Thus, forming the ratio of the currents of the two competi
processes, we obtain

I 1

I 2
5

2E 2

g2 Fsin~kFdr !

kFdr G2

expS 2
2dr

pj D . ~29!

From this ratio we see that the desired regime withI 1 domi-
nating I 2 is obtained whenE/g.kFdr , and dr ,j. We
would like to emphasize that the relative suppression oI 2
~as well as the absolute value of the currentI 1) is maximized
by working around the resonancese l.mS50.23

VII. DISCUSSION AND AHARONOV-BOHM
OSCILLATIONS

We have seen that there are two competing processe
currents, one where the two electrons proceed via diffe
dots into different leads, and one where the two electr
proceed via the same dot into the same lead. We will sh
now that these two processes also lead to different cur
oscillations in an Aharonov-Bohm loop that is threaded
an external magnetic fluxf. For this let us consider now
setup where the two leads 1 and 2 are connected such
they form an Aharonov-Bohm loop, where the electrons
injected from the left via the superconductor, traversing
upper~lead 1! and lower~lead 2! arm of the loop before they
rejoin to interfere and then exit into the same lead, where
current is then measured as a function of varying fluxf. It is
straightforward to analyze this setup with our results o
tained so far. In particular, each tunneling amplitude obta
a phase factor, TD1L1

→TD1L1
eif/2f0 and TD2L2

→TD2L2
e2 if/2f0, wheref05h/e is the single-electron flux

quantum. For simplicity we also assume that the entire ph
is acquired when the electron hops from the dot into
leads, so that the process dot-lead-dot gives basically the
Aharonov-Bohm phase factore6 if/f0 of the loop~and only a
negligible amount of phase is picked up along the path fr
the superconductor to the dots!. Now, we repeat the calcula
tions of the transition amplitude and find it to be of th
following structure: ^ f uT0u i &;TD1L1

TD2L2
1TD1L1

2 eif/f0

1TD2L2

2 e2 if/f0. Here, the first term comes from the proce

via different leads@see Eq.~19!#, where no Aharonov-Bohm
16531
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phase is picked up. The Aharonov-Bohm phase appear
the remaining two terms, which come from processes via
same leads, either via lead 1 or lead 2@see Eqs.~26! and
~27!#. The total currentI is now obtained fromz^ f uT0u i & z2,
giving I 5I 11I 21I AB , and the flux-dependent Aharonov
Bohm currentI AB is given by

I AB5A8I 1I 2F~e l !cos~f/f0!1I 2 cos~2f/f0!,

F~e l !5
e l

Ae l
21~gL/2!2

, ~30!

where, for simplicity, we have assumed thate15e25e l , and
g15g25gL . Here, the first term~different leads! is periodic
in f0 like for single-electron Aharonov-Bohm interferenc
effects, while the second one~same leads! is periodic inhalf
the flux quantumf0/2, describing thus the interference o
two coherent electrons~similar single- and two-particle
Aharonov-Bohm effects occur in the Josephson curr
through an Aharonov-Bohm loop14!. It is clear from Eq.~30!
that theh/e oscillation comes from the interference betwe
a contribution where the two electrons travel through diff
ent arms with contributions where the two electrons tra
through the same arm. Both Aharonov-Bohm oscillatio
with period h/e and h/2e, vanish with decreasingI 2, i.e.,
with increasing on-site repulsionU and/or gapD. However,
their relative weight is given byAI 1 /I 2, implying that the
h/2e oscillations vanish faster than theh/e oscillations. This
behavior is quite remarkable since it opens up the possib
to damp down the unwanted leakage process;I 2 cos(2f/f0)
where two electrons proceed via the same dot/lead by
creasingU with a gate voltage applied to the dots. The dom
nant current contribution with periodh/e comes then from
the desired entangled electrons proceeding via differ
leads. On the other hand, ifAI 1 /I 2,1, which could become
the case, e.g., forkFdr .E/g, we are left withh/2e oscilla-
tions only. Note that dephasing processes that affect the
bital part suppressI AB . Still, the flux-independent curren
I 11I 2 can remain finite and contain electrons that are
tangled in spin space, provided that there is only negligi
spin-orbit coupling so that the spin is still a good quantu
number.

We would like to mention another important feature
the Aharonov-Bohm effect under discussion, namely
relative phase shift between the amplitudes of tunneling
the same lead and to different leads, resulting in the ad
tional prefactorF(e l) in the first term of the right-hand sid
~rhs! of the Eq.~30!. This phase shift is due to the fact th
there is a two-particle resonance in the amplitude~19! while
there is only a single-particle resonance in the amplitu
~26! and ~27! ~we recall that the second resonance is s
pressed by the Coulomb blockade effect!. Thus, when the
chemical potentialmS of the superconductor crosses the res
nance,ue l u&gL , the amplitude~19! acquires an extra phas
factoreifr, wheref r5arg@1/(e l2 igL/2)#. Then the interfer-
ence of the two amplitudes leads to the prefactorF(e l)
5cosfr in the first term in the rhs of Eq.~30!. In particular,
exactly at the middle of the resonance,e l50, the phase shift
4-8
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is f r5p/2, and thus theh/e oscillations vanish, since
F(0)5cos(p/2)50. Note however, that althoughF561
away from the resonance (ue l u.gL) theh/e oscillations van-
ish again, now because the currentI 1;egS

2gL /e l
2 vanishes.

Thus the optimal regime for the observation of t
Aharonov-Bohm effect isue l u;gL .

Finally, the preceding discussion shows that even if
spins of two electrons are entangled their associated ch
current does not reveal this spin correlation in a sim
Aharonov-Bohm interference experiment.24 Only if we con-
sider the current-current correlations~noise! in a beam split-
ter setup can we detect also this spin-correlation in the tra
port current via its charge properties.13

VIII. CONCLUSION

We have proposed an entangler device that can cr
pairwise spin-entangled electrons and provide coherent
jection by an Andreev process into different dots that
coupled to leads. The unwanted process of both elect
tunneling into the same lead can be suppressed by increa
the Coulomb repulsion on the quantum dot. We have ca
lated the ratio of currents of these two competing proces
and shown that there exists a regime of experimental inte
where the entangled current shows a resonance and ass
a finite value with both partners of the singlet being in d
ferent leads but having the same orbital energy. This en
gler then satisfies the necessary requirements needed t
tect the spin entanglement via transport and no
measurements. We also discussed the flux-dependent o
lations of the current in an Aharonov-Bohm loop.

ACKNOWLEDGMENTS

We would like to thank Guido Burkard for useful discu
sions. This work has been supported by the Swiss Natio
Science Foundation.

APPENDIX A: SUPPRESSION OF VIRTUAL STATES
WITH BOTH ELECTRONS IN THE LEADS

We have stated in the main text that the contributions
virtual states where two electrons are simultaneously in
leads are negligible. Here we estimate this contribution
show that indeed it is suppressed bygL /Dm,1 ~here the
spin of the electrons is not important, and we setg15g2
5gL for simplicity!. First we consider the dominant trans
tion from uDD& back touDD& with the tunneling of only one
electron to the lead, i.e., a sequence of the typeuDD&
→uLD&→uDD&. From now on we impose the resonant co
dition ec50, and find for the amplitude@cf. Eqs. ~14! and
~15!#

ADL5 K DDUHDL

1

ih2H0
HDLUDD L 52 igL2

gL

p
lnS ec

Dm D .

~A1!

We compare this amplitudeADL with the amplitudeALL of
the lowest-order process of tunneling of two electrons via
virtual stateuLL&, where both electrons are simultaneously
16531
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the leads, i.e., the sequenceuDD&→uLD&→uLL&→uDL&
→uDD&. We find for the amplitude of this process

ALL5 K DDUHDLS 1

ih2H0
HDLD 3UDD L

5(
kk8

2uTDLu4

~ ih2ek2ek8!~ ih2ek!
F 1

ih2ek
1

1

ih2ek8
G ,

~A2!

where the first term in the bracket results from the seque
of, say, electron 1 tunneling into lead 1, then electron 2 t
neling into lead 2, then electron 2 tunneling back into dot
and finally electron 1 tunneling back into dot 1. The seco
term in the bracket results from the sequence where the o
of tunneling back to the dots is reversed, i.e., electron
tunnels back to its dot before electron 2 does. Note that
to these two terms in the bracket the two-particle pole in E
~A2! cancels.

Replacing(k(•••) with nL*
2Dm
ec de(•••), we can write

ALL5
gL

2

2p2E2Dm

ec de8

ih2e8
E

2Dm

ec de

~ ih2e!2

53
gL

2

2p2Dm
F ip1 lnS ec

Dm D G . ~A3!

Thus, comparingADL with ALL , we see that indeed a virtua
state involving two electrons simultaneously in the leads
suppressed by a factor ofgL /Dm compared to the one with
only one electron in the leads.

APPENDIX B: ELECTRON-HOLE PAIR EXCITATION

In this Appendix we consider a tunnel process where
two electrons starting from the superconductor tunnel o
different dots but during the process of repeated tunne
from the dots to the leads and back to the dots an elec
from the Fermi sea hops on one of the dots~say dot 1! when
this dot is empty. In principle, such contributions could d
stroy the desired entanglement since then a ‘‘wrong’’ s
can hop on the dot and the electron on the other dot~dot 2!
would no longer be entangled with this electron~while the
original partner electron disappears in the reservoir provi
by the Fermi sea!. We show now that in the regimeDm
.g l such electron-hole pair processes due to the Fermi
are suppressed. We start with our consideration when the
electrons, after the Andreev process, are each on a diffe
dot forming the uDD& state ~we neglect spin and setg1
5g25gL in this consideration for simplicity!. Instead of the
amplitude^pquT8uDD& calculated in Eq.~13! we consider
now the following process:
4-9
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Aeh5^pquT8uDD&K DDU 1

ih2H0
HD1L1

3 (
n50

` S 1

ih2H0
HD2L2D 2n 1

ih2H0
HD1L1UDDL

3K DDU (
m50

` S 1

ih2H0
HDLD 2mUDDL . ~B1!

The new sequence of interest in Eq.~B1! is the amplitude
containing the sum overn. For instance, let us consider th
n50 term,

K DDUS 1

ih2H0
HD1L1D 2UDD L ,

where we assume that the electron-hole excitation occur
say, lead 1. FromuDD&, the tunnel HamiltonianHD1L1

takes

the electron from dot 1 to the statek in lead 1. Instead of
tunneling back of this electron to dot 1, an electron from
statek8 with energyek8,2Dm from the Fermi sea of lead 1
hops on dot 1. Now the dot-lead system is in the st
uDD&5d1

†d2
†a1k8a1k

† u i &. The sum overn resums the hopping
back and forth of electron 2 fromD2 to D2, resulting in the
replacement ofh in HD1L1

( ih2H0)21HD1L1
by gL/2. We

perform the further resummation in Eq.~B1! with this Fermi
sea electron on dot 1 and the other electron still on do
assuming that electron 1 in the statek in lead 1 is in its final
state~and not a virtual state!. All the resummation processe
-
Pr

w-

s,

A

o

16531
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2,

in Eq. ~B1! are similar to those already explained in the ma
text, except for having now an excitation with energyek

2ek8.0. The final stateupq& consists of two electrons in th
lead statesp andq ~their multiple tunneling is resummed i
T8) and of the excitation with energyek2ek8 , so upq&
5a1p

† a2q
† a1k8a1k

† u i &. The normalized correction to the cu
rent, I eh /I 1, can be obtained by summinguAehu2/I 1 over the
final statesupq&, and thus we arrive at the following integra
for e l50, retaining only leading terms ingL /Dm, and using
energy conservation,ek2ek81ep1eq50:

I eh

I 1
5S gL

2p D 3E E
2Dm

1`

E dek dep deq

3
12u~ek1ep1eq1Dm!

@ek
21~gL/2!2#@ep

21~gL/2!2#@eq
21~gL/2!2#

.

~B2!

We evaluate the integral in leading order and find

I eh

I 1
5

3

2p2 S gL

Dm D 2

lnS Dm

gL
D . ~B3!

We see now that the current involving an electron-hole p
I eh , is suppressed compared to the main contributionI 1 @see
Eq. ~20!# by a factor of (gL /Dm)2.
,
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