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Coherent and incoherent pumping of electrons in double quantum dots

B. L. Hazelzet, M. R. Wegewijs, T. H. Stoof, and Yu. V. Nazarov
Department of Applied Physics, Faculty of Applied Science, Delft University of Technology, Lorentzweg 1,
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~Received 30 December 1999; revised manuscript received 13 November 2000; published 4 April 2001!

We propose an alternative mode of operation of an electron pump consisting of two weakly coupled
quantum dots connected to reservoirs. An electron can be transferred within the device at zero bias voltage
when it is subjected to electromagnetic radiation, thereby exciting the double dot. The excited state can decay
by transferring charge from one lead and to the other lead in one direction. Depending on the energies of the
intermediate states in the pumping cycle, which are controlled by the gate voltages, this transport is either
incoherent via well-known sequential tunneling processes, or coherent via an inelastic co-tunneling process.
The latter mode of operation is possible only when interdot Coulomb charging is important. The dc transport
through the system can be controlled by the frequency of the applied radiation. We concentrate on the resonant
case, when the frequency matches the energy difference for exciting an electron from one dot into the other.
The resonant peaks in the pumping current should be experimentally observable. We have developed a density
matrix approach that describes the dynamics of the system on time scales much larger than the period of the
applied irradiation. In contrast to previous works we additionally consider the case of slow modulation of the
irradiation amplitude. Harmonic modulation produces additional sidepeaks in the photoresponse, and pulsed
modulation can be used to resolve the Rabi frequency in the time-averaged current.
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I. INTRODUCTION

In recent years quantum dots have attracted great a
tion. A quantum dot can be thought of as an artificial ato
with adjustable parameters. It is of more than fundame
interest to study its properties under various circumstan
e.g., by transport experiments.1 By considering a double
quantum-dot system, the analogy with real atoms can
stretched to include artificial molecules. The analog of
covalent bond is then formed by an electron that cohere
tunnels back and forth between the two dots. By apply
electromagnetic radiation with a frequency equal to the le
detuning in the double-dot system, an electron can unde
so-called spatial Rabi oscillations even when the tunne
matrix element between the dots is small.

Recently, several time-dependent transport measurem
on quantum dot systems have been reported,2,3 most of them
being of a spectroscopic nature. It has also been suggest
construct devices from quantum dots. Examples of such
plications are pumps that transfer electrons one by on
zero bias voltage by using time-dependent voltages to r
and lower tunnel barrier heights,4 or systems in which
coupled quantum dots~or quantum wells! are used for
quantum-scale information processing.5 Several theoretica
models for time-dependent transport6 through a double quan
tum dot have already been proposed. For instance, in R
dc transport was considered for arbitrary bias voltage w
the signal couples to the gate voltages of the dots. At z
bias voltage the system operates as an electron pump. In
7 the dc current, controlled by external irradiation, was c
sidered for finite bias voltage. These results were rece
generalized to include time-dependent gate and bias volt
and tunnel barriers.8,9 In all these works a tunneling
Hamiltonian approach was used to incorporate the effect
0163-1829/2001/63~16!/165313~10!/$20.00 63 1653
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Coulomb interaction between electrons on the same and
different dots. It is assumed that the barriers separating
leads and the dots are high and therefore the wave funct
have only a small overlap. A different approach would be
use scattering states of electrons that extend through
leads and dots which is appropriate for almost transpa
barriers~see, e.g., Ref. 10!. However, the effects of Coulomb
interaction are not easily taken into account in this approa
Because the transport mechanism in the above mentio
double-dot pumps is determined by sequential tunneli
electrons are pumpedincoherently, i.e., the tunneling of an
electron into and out of the device are independent eve
Also, in these works the time-dependent signal is taken to
a monochromatic.

In this paper we describe, firstly, an new mode of ope
tion of such an electron pump. In this case, electrons can
transferred coherently through the system by means of a
tunneling process. Our device has to be designed in su
way that interdot Coulomb repulsion is important. By appr
priately adjusting the gate voltages the device can be mad
operate in the co-tunneling regime or the sequential tun
ing regime. The latter regime is considered here for comp
son with previous works and should be distinguished fr
the coherent one. In the co-tunneling regime the interdotat-
traction between an extra electron excited by the ac field i
one dot and the hole it left in the other dot stabilizes t
excited state. Electrons are prevented from entering or le
ing the device independently and inelastic co-tunneling is
lowest nonvanishing order process for transport. This
volves correlated tunneling events through the different ju
tions connecting the dots weakly to the leads. The sys
switchescoherentlyfrom the excited state to the ground sta
each time an electron is pumped through the dots. Alter
tively, this process can be seen as coherent transport thro
©2001 The American Physical Society13-1
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a double-quantum-dot qubit. The second main result of
paper is that we predict the effect of slow modulation of t
irradiation amplitude on the pumping current. The time sc
of the amplitude modulation is assumed to be much lar
than the one set by the frequency of the unmodulated sig

The paper is organized as follows: in Sec. II we introdu
the system. In Sec. III we develop the density matrix a
proach to describe the system only on a time scale m
larger than the period of the applied irradiation. This dev
opment is similar to that in quantum optics for resonan
fluorescence, e.g., Ref. 11, and is central to our treatmen
the problems. We apply this approach to the transp
through the double dot in the sequential and the co-tunne
regime. In Sec. IV we consider the case where the amplit
of the applied radiation is modulated on the large time sc
Finally, a summary and conclusions are presented in Sec

II. DOUBLE-DOT ELECTRON PUMP

The system we consider consists of two coheren
coupled quantum dots 1 and 2 connected by tunnel bar
to large reservoirsL andR, as depicted in Fig. 1. The lead
are assumed to have a continuous electronic energy s
trum. The fixed difference between the electrochemical
tentials of the leadsmL5m2eVL1

and mR5m2eVL2
(e

.0) and the temperature are the smallest two energy sc
of the problem. We can thus take them to be zero. E
quantum doti 51,2, contains some numberNi electrons and
is assumed to be in the ground state. We will concentrate
transitions between the ground states of the individual d
with different numbers of electrons.

Disregarding all tunneling for the moment, let us consid
the energy of the double dot within the standard Coulo
blockade model. The capacitive coupling between doi
51,2 and the attached electrodes is taken into account by
gate capacitancecGi

and the lead capacitancecLi
. The mu-

tual capacitive coupling between the dots is described by
interdot capacitancec12. The total energy of the double-do
system, when dot 1 and dot 2 are respectively in theN1 and
N2 electron ground state, reads~see, e.g., Ref. 9!:

FIG. 1. Double-dot electron pump. The asymmetric gate v
ages allow one to induce a photocurrent at zero bias. One can e
an electron from the highest level filled in the left dot to the fi
empty level of the right dot with an ac field that is resonant with t
transition, but not with the corresponding transition in the oppo
direction.
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EN1 ,N2
5 (

i 51,2
(
l 51

Ni

« i l 1 (
i 51,2

1

2
uii Ni~Ni21!1u12N1N2 .

~1!

In the first term,« i l is thel th effective single particle energy
l 51, . . . ,Ni in dot i 51,2:

« i l ~VG1
,VG2

!5« i l
0 1

1

2
uii 2e (

j 51,2
~a iG j

VGj
1a iL j

VL j
! .

This incorporates the bare single particle energy« i l
0 , a con-

veniently chosen offsetuii /2 and the linear shift with the
electrode voltages. The coefficients of the voltagesa iG j

5Ci j
21cGj

, a iL j
5Ci j

21cL j
depend on the dot-electrode c

pacitances and the inverse capacitance matrix elements

Cii
215

~c1c2!/ci

c1c22c12
2

, C12
215C21

215
c12

c1c22c12
2

,

where ci5cGi
1cLi

1c12 is the total capacitance of doti

51,2. By appropriately changing the gate voltages the eff
tive single particle levels in dot 1 and 2 can be independe
shifted with respect to each other. In the second and th
term in Eq.~1!, uii 5e2Cii

21 is the intradot charging energy
of dot i 51,2 andu125e2C12

21,u11,u22 the interdotcharging
energy.

Let us now consider the stability of a ground state of t
double dot with respect to the tunneling between the in
vidual dots and the leads. Assume that the gate volta
VG1

,VG2
are such that in the stable state of the double

there areN1 and N2 electrons in, respectively, dot 1 and
and denote this state byu0,0&. The stability diagram of the
double dot near the region were this state is stable
sketched in Fig. 2 for the typical case where interdot cha
ing is important:u12&u11,u22. The region of stability for
stateu0,0& has a hexagonal shape. The stable statesun1 ,n2&
in the six neighboring regions haveN11n1 andN21n2 elec-

-
ite

t

e

FIG. 2. Stability diagram of the double-dot system near the
gion where the stateu0,0& is stable, withN1 andN2 electrons in dot
1 and 2, respectively. Along the horizontal and vertical axis
sequential tunneling barrierDL

2 and DR
1 , respectively, are varied

independently.
3-2
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trons in dot 1 and 2, respectively, wheren1Þn250,61 and
un11n2u<1. The energies of these states,En1 ,n2

,ni50,1, are

found from the right-hand-side of~1! by replacingNi→Ni
1ni . The hexagonal region is bounded by six stability co
straints for stateu0,0&. The first four constraints follow from
the requirement that the energy barrier for injection (1) or
emission (2) of an electron to or from either lead,

DL
15E1,02m2E0,05«1N1111u11N11u12N22m,

DR
15E0,12m2E0,05«2N2111u22N21u12N12m,

DR
25E0,211m2E0,05m2~«2N2

1u22~N221!1u12N1!,

DL
25E21,01m2E0,05m2~«1N1

1u11~N121!1u12N2!,
~2!

should be positive. Sufficiently far away from the four lin
DL,R

6 50 i.e. DL,R
6 @GL,R the sequential tunneling of singl

electrons through the junctions connecting a dot and lea
suppressed; cf. Fig. 2. Here the typical tunnel rate isGL,R
52pvL,RutL,Ru2, wherevL,R is the density of states in th
left and right lead, respectively, andtL,R is the matrix ele-
ment between the states in the lead and in the dot, wh
depends only weakly on the energy. Two of the sequen
tunneling barriers~2! can be independently tuned by the ga
voltages, the other two are related to these byDL

11DL
2

5u111d1 and DR
11DR

25u221d2 where d i5« iNi112« iNi

5« iNi11
0 2« iNi

0 is the spacing between the two ‘‘active

single particle levels in doti 51,2. It will be convenient from
here on to consider 0,DL

2,u111d1 and 0,DR
1,u221d2

as independent variables instead of the two gate voltages
Fig. 2. Two additional stability constraints follow from th
requirement that the energy barriers for polarizing the dou
dot with respect to stateu0,0&,

«05E21,12E0,05DL
21DR

12u12, ~3a!

«085E1,212E0,05DL
11DR

22u12, ~3b!

should be positive. HereDL
7 ,DR

6 are the positive Coulomb
energies we must pay to change the number of electron
each dot from the stable configurationu0,0&, and2u12 is the
energy we gain by creating an attracting electron-hole p
with respect to the stable stateu0,0&. Note that the former
energies also depend onu12, i.e., they incorporate the inter
action between the extra electron or hole and the electron
both dots. Sufficiently far from the lines«050 and«0850
~cf. Fig. 2!, the polarization of the double dot by a cohere
co-tunneling process is suppressed:«0 ,«08@Gct8 where Gct8
!GL,R is some typical rate for this process. In such a seco
order process an electron is injected into one dot and ano
electron is emitted from the other dot, effectively transpo
ing one charge across the double dot. From the relation«0

1«085( i 51,2(uii 2u121d i).0 we find that«0 ,«08.0 corre-
sponds tou12,DL

21DR
1,( i 51,2(uii 2u121d i)1u12 in the

stability diagram.
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Now consider the coherent tunneling of electrons betw
the dot 1 and 2. If the co-tunneling barriers are larger th
the matrix element T for this process,«0 ,«08@T, then the
polarization of the double dot by coherent tunneling of
electron between the dots is also suppressed. Under t
conditions the dc transport through the double dot is bloc
at low bias voltage, i.e., we have the Coulomb blockade.

This situation is changed, however, if we apply elect
magnetic radiation to the system. Assume that a tim
dependent oscillating signal is present on the gate electro
which will shift the energies of single levels without alterin
the wave functions too much, so that the time-depend
energy difference between statesu0,0& and u21,1& becomes

«~ t !5«01V cosvt, ~4!

whereV is the amplitude andv the frequency of the exter
nally applied signal. When the frequency of this applied
diation matches the time-independent energy difference«0
between statesu0,0& andu21,1&, it is possible for an electron
from the left dot to tunnel to the right one by absorbing o
energy quantumv'«0 from the field. In principle, this elec-
tron can now leave the system by tunneling to the right le
resulting in the stateu21,0&. An electron from the left lead
can then tunnel to the left dot, thus restoring the ground st
Effectively, an electron has now been transferred from
left electrode to the right one. Alternatively, the electron c
coherently tunnel back by emitting an energy quantum
sulting in stateu0,0&. This transport cycle,u0,0&↔u21,1&
→u21,0&→u0,0&, is not the only one. Another possible s
quence, in which the system passes the intermediate
u0,1&, is given by u0,0&↔u21,1&→u0,1&→u0,0&. The three
other states can be disregarded under the following co
tions. First, the field should not be resonant with the tran
tion to the other excited stateu1,21&: u«02vu!u«082vu.
This is the case when the distance between the two exc
levels is much larger than the detuning of the frequen
u«082«0u@udvu5u«02vu, which, in the stability diagram,
corresponds to@cf. Eqs.~3a!, ~3b!#

U2~DL
21DR

1!2 (
i 51,2

~uii 1d i !U@udvu. ~5!

Second, the statesu1,0&,u0,21& should not be resonant with
intermediate states of the transport cycleu0,1& and u21,0&,
respectively,uE1,02E0,1u@T and uE0,212E21,0u@T corre-
sponding to

uu111d12~DL
21DR

1!u@T, ~6a!

uu221d22~DL
21DR

1!u@T. ~6b!

Thus under these conditions an electron can be excited f
the left dot into the right one, but the probability of excitin
an electron from the right dot to the left dot can be dis
garded.

The details of the transport mechanism of a pump
cycle depend on the energies of the intermediate st
u21,0& and u0,1& relative to the pumped stateu21,1& as
shown in Fig. 3 which are controlled by the gate voltag
3-3
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The energy barrier for injecting an electron from the left le
into dot 1 and for emitting an electron from the dot 2 dot
the right lead,

D̃L
15E0,12m2E21,15u122DL

2 , ~7a!

D̃R
25E21,01m2E21,15u122DR

1 , ~7b!

can be positive or negative, depending on the position in
stable region ofu0,0&. Hereu12 is the energy we must pay t
break up the attracting electron-hole pair with respect to s
u0,0& and 2DL

2 ,2DR
1 is the Coulomb energy we gain b

changing the number of electrons on one of the dots to
value of the stable configurationu0,0&. In this paper we con-
sider two regimes of operation of the double dot elect
pump, which are schematically depicted in Fig. 3:~I! both
barriers are negative,D̃L

1 ,D̃R
2!2GL ,2GR : the pumped

level can decay through sequential tunneling processes;~II !
both barriers are positive,D̃L

1 ,D̃R
2@GL ,GR : the excited

state is stable with respect to sequential tunneling but
decay through an inelastic co-tunneling process. We do
consider the more complicated intermediate caseuD̃L

1u,uD̃R
2u

&GL ,GR where resonant processes between leads and
are important. In the stability diagram in Fig. 2 the two r
gimes correspond to

~ I! uDL
22DR

1u,~DL
21DR

1!22u12,

2u12,DL
21DR

1, (
i 51,2

~uii 2u121d i !, ~8a!

~ II ! uDL
22DR

1u,2u122~DL
21DR

1!,

u12,DL
21DR

1,2u12, ~8b!

where , stands for ‘‘separated by energy large compa
with GL,R . ’’ The narrow strips defined by conditions~5! and
~6! should be excluded from these regions.

In regime~I! (D̃L
1 ,D̃R

2,0) the charging of the individua
dots dominates the transport. The system relaxes to
ground state via the two sequential~and thus incoherent!
tunneling processes described above. As shown in Fig. 3~a!,
the four tunneling processes are described by the r

FIG. 3. Energy diagrams of the double dot electron pump
gether with the leads:~a! sequential tunneling regime,~b! co-
tunneling regime. The Coulomb interaction between the extra p
tive charge on the left dot and negative charge on the right
determines the position of levelE21,1 relative toE21,0 andE0,1.
16531
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1 , GR

1 , GL
0 , and GR

0 , respectively. The following rate
equations describe the density matrix in the sequential
neling regime:

] tr210,21051GR
0r211,2112GL

0r210,210 ~9a!

] tr00,0052 iT~r211,002r00,211!1GL
0r210,2101GR

1r01,01,

~9b!

] tr211,21151 iT~r211,002r00,211!2~GR
01GL

1!r211,211,

~9c!

] tr01,0151GL
1r211,2112GR

1r01,01, ~9d!

] tr211,0052 iT~r00,002r211,211!2 i«~ t !r211,00

2 1
2 ~GL

11GR
0 !r211,00. ~9e!

Here, and throughout this paper, units are used such th\
51. The diagonal elements give the probabilities for an el
tron to be in the corresponding states and probability is c
served, i.e., at any timet

r210,2101r00,001r211,2111r01,0151. ~10!

The nondiagonal elementsr211,005r00,211* describe the co-
herence between statesu21,1& and u0,0&. In general the tun-
nel ratesGL

0,1 and GR
0,1 depend on the energy difference b

tween the states of the transition. We can takeGL,R
0,1 5GL,R

52pvL,RutL,Ru2 when the density of statesvL,R in the left
and right lead, respectively, and the matrix elementtL,R be-
tween the states in the lead and in the dots depend
weakly on the energy. The average current through the
tem is given by

I /e5GR
0r211,2111GR

1r01,01. ~11!

In regime~II ! (D̃L
1 ,D̃R

2.0) the interdot attraction of the
electron-hole pair is dominant over the~de!charging of the
individual dots. The decay of the excited sta
u21,1& via sequential tunneling is blocked as shown in F
3~b!. However, transport is still possible via inelastic c
tunneling of electrons.12,13 When the system is in stat
u21,1&, two electrons can tunnel simultaneously through d
ferent barriers, one going from the left lead to the left d
and one from the right dot to the right lead. Because in t
transport process a state is virtually occupied these two
neling events cannot be treated independently. The neces
energy is provided by relaxing the system to the ground s
u0,0&, thereby releasing an energyE'«0. The co-tunneling
rate can be calculated with Fermi’s golden rule. The relev
matrix element is a sum of matrix elements for the two p
sible coherent processes which transfer one electron froL
to R. The co-tunnel rate is obtained by integrating the par
rates for transitions over the different final states of the le
which are assumed to be uncorrelated:

-

i-
ot
3-4
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Gct52pnLnRE
2`

`

d«LE
2`

`

d«Rf ~«L!@12 f ~«R!#

3U tLtR

D̃L
12«L

1
tLtR

D̃R
21«R

U2

d~«01«L2«R!.

Here the matrix elementstL,R for tunneling through the left
and right barrier and the densities of statesnL,R in the left
and right electrode are assumed to be energy indepen
The zero-temperature co-tunnel rate in our electron pum

Gct5
GLGR

2p F «0

~D̃L
11«0!D̃L

1
1

«0

D̃R
2~D̃R

21«0!

12
ln~11«0 /D̃L

1!1 ln~11«0 /D̃R
2!

D̃L
11D̃R

21«0
G ~12a!

5
GLGR

2p
«0S 1

D̃L
1

1
1

D̃R
2D 2

1O~«0
2!. ~12b!

Note that from«05u122(D̃L
11D̃R

2) @cf. Eqs.~3a! and ~7!#
we observe that within regime~II ! we can have«0

;D̃L
1 ,D̃R

2 . The energy denominators in Eq.~12a! reflect the
fact that the tunneling occurs via the virtual occupation
two states. In contrast to the incoherent sequential tunne
mechanism, the only relevant density matrix elements
those between statesu0,0& and u21,1& since statesu21,0&
and u0,1& are occupied only virtually. Taking the co
tunneling processes into account we obtain the equation
motion for the density matrix elements:

] tr00,0052 iT~r211,002r00,211!1Gctr211,211, ~13a!

] tr211,21151 iT~r211,002r00,211!2Gctr211,211,
~13b!

] tr211,0052 iT~r00,002r211,211!2 i«~ t !r211,00

2 1
2 Gctr00,211, ~13c!

wherer211,005r00,211* and the probability is conserved:

r00,001r211,21151.

The current is

I ~ t !/e5Gctr211,211~ t !. ~14!

In both regimes the irradiation relaxes the constraint
energy conservation during tunneling by allowing an el
tron to absorb or emit a multiple of the energy quantumv.
This gives rise to an enhancement of the zero-bias dc c
ponent of the current and additionally it introduces fast
cillations with small amplitude which do not interest us.
the next section we show how to extract the slowly vary
component of the density matrix from the exact equations~9!
and~13!, respectively. We point out that above we have w
16531
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ten expressions for the particle current only. The displa
ment current can be disregarded here since it does not
tribute to the dc current.

III. TIME SCALE SEPARATION

In this section we consider the dynamics of the two c
herently coupled levelsua&5u0,0&,ub&5u21,1& on time
scales much larger than the period of the applied irradia
tv52p/v. The details of the other states in each regime
only important for the incoherent processes that dep
weakly on the time-dependent energy difference between
sis statesua& and ub&:

«~ t !5«01V~ t !cos~vt !. ~15!

Here we also allow the amplitudeV(t) to be modulated on a
timescale which is large relative totv . The time scale sepa
ration for both regimes can be done in the same way. T
coherent part of the dynamics of the state of the system
pends only on the time-dependentH(t)5H0(t)1HT where

H0~ t !5 1
2 «~ t !~ ua&^au2ub&^bu! ~16!

introduces the energy difference between double-dot st
with zero extra electrons andHT describes the tunnel cou
pling between the dots:

HT5T~ ua&^bu1ub&^au!. ~17!

We assume that the tunneling amplitude is much sma
than the time-independent energy differenceT!«0, whereas
V(t) can be of arbitrary magnitude. The tunneling to a
from the reservoirs brings the system into a mixed st
which can only be described by a density operatorr̂ which
obeys the Neumann-Liouville equation with dissipati
terms added to the right-hand side:14,15

] tr̂52 i @H,r̂ #1Lincr̂. ~18!

Since the incoherent part in Eqs.~9! and ~13! is invariant
under a phase transformation of the nondiagonal eleme
we can derive from Eq.~18! a set of equations that describe
the dynamics on large timescales by first performing a st
dardtime-dependentbasis transformation7 on the density ma-
trix. A rapidly varying time-dependent phase factor is a
sorbed in the nondiagonal elements ofr̂,

rab5rab8 e2 if(t), ~19!

and the diagonal elements are left unchanged. In this n
basis the generalized Liouville equation forr̂ takes the same
form as Eq.~18! with the same incoherent part and a ne
Hamiltonian H 8(t)5H 081H T8(t) with a renormalized en-
ergy difference and a time-dependent tunnel amplitude

H 085 1
2 ~«~ t !2] tf~ t !!~ ua8&^a8u2ub8&^b8u!, ~20!

H T8~ t !5Te2 if(t)~ ua8&^b8u1ub8&^a8u!. ~21!

We choose the phase to bef(t)5nvt1(V(t)/v)sin(vt) to
obtain time-independent diagonal elements
3-5
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«~ t !2] tf~ t !5«02nv, ~22!

which vanish at then-photon resonancenv5«0 in which we
are interested. Furthermore, on small time scales the
tunnel matrix element is a periodic function of time and c
be expanded in a Fourier series:

H T8~ t !' (
m52`

1`

e2 i (m1n)vtHTm
8 ~ t !, ~23!

HTm
8 ~ t !5JmS V~ t !

v DT~ ua8&^b8u1ub8&^a8u!. ~24!

Likewise we expand the density operator into rapidly os
lating contributions with amplitudes that vary on large tim
scales:

r̂8~ t !5(
r 50

`

r̂8~r !~ t !eir vt. ~25!

Inserting this into the generalized Liouville equation forr̂8
we obtain an infinite set of coupled equations for the slow
varying coefficientsr̂8(r ). The amplitude of the fast oscilla
tions r̂ (1) is of orderT/v'T/«0!1 and can be disregarded
the dc componentr (0)(t) satisfies

] tr̂8(0)52 i @H 081HT2n
8 ,r̂8(0) #1Lincr̂8(0) . ~26!

Thus the nearly isolated statesua&, ub& irradiated at a reso
nant frequencyv'«0 /n are equivalent to almost degenera
statesua8&, ub8& coupled by a tunneling matrix element

T̄~ t !5J2nS V~ t !

v DT5~21!nJnS V~ t !

v DT, ~27!

which only varies on large time scales. In the following w
will only consider the one-photon resonance, i.e.,v'«0 and
we omit the superscripts used above to distinguish the slo
varying components fromr̂ itself. However, the equation
can be generalized to then-photon case by replacin
J1(V/v)→Jn(V/v) and«02v→«02nv. Due to the oscil-
latory behavior of the Bessel functionJ1 the coherent tun-
neling amplitude can be tuned between 0<T̄&0.58T by
varying the amplitude/frequency ratio of the irradiation ov
a range 0<V&1.84v. The vanishing of the effective tunne
matrix element,T̄50 for nonzeroV/v is one of the features
which distinguishes photon-assisted tunneling from adiab
electron transfer. A similar renormalization of the tunn
coupling to zero is also known from driven double-we
potentials.16

The approach developed above allows us the extract
slowly varying components of the current in both regimes
operation of the electron pump. We point out that we ha
only changed the coherent part of the dynamics which is
same in both regimes.
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A. Sequential tunneling regime

Equations~9! describe the dynamics of the double dot
the sequential tunneling regime on the long time scale w
we replace«(t)→«02v,T→T̄52J1„V(t)/v…T. The solu-
tion of these equations tends to a stationary value, whic
independent of the initial conditions, on typical time sca
max$(GL

0,1)21,(GR
0,1)21%. The solution of] tr̂(t)50 gives a

Lorentzian line shape of the current peak as a function
«02v,

I /e5I maxw
2/@w21~«02v!2#, ~28!

where the maximum currentI max and half width at half maxi-
mum w are given by

I max/e51Y H 1

GL
01GR

1F21S GR
0

GL
0

1
GL

1

GR
1 D G1

GL
01GR

1

4T̄2 J ,

~29!

w5AF21S GR
0

GL
0

1
GL

1

GR
1 D G T̄21

~GL
01GR

1 !2

4
. ~30!

Let us assume that the tunnel rates for each barrier are
same:GL,R

0,1 5GL,R . If the double dot is weakly coupled to th
leads i.e.GL,R!T!«0'v then one can access the regim
GL,R ,u«02vu!T̄ by adjusting the irradiation amplitude t
V'1.84v, where the coherent state in the double dot dom
nates the transport properties. The two delocalized state
the double dot are independent channels for transport and
current increases withGL,R :

I max/e51YS 1

GL
1

1

GR
D , w52T̄. ~31!

In the opposite regimeu«02vu!T̄!GL,R , which can be ac-
cessed by tuningV!1.84v, the decoherence due to tunne
ing to and from the reservoir dominates the transport. In t
case the height of the current peak is proportional toT̄2 and
decreaseswith enhanced tunnelingGL,R :

I max/e54T̄2/~GL1GR!, w5~GL1GR!/2 . ~32!

The current peakI max/e reaches a maximumT̄/2 as a func-
tion of GL,R whenGL5GR52T̄. This can be understood a
the precise matching of tunneling times: the time for hal
Rabi oscillation in the double dot is exactly equal to the tim
for filling the left dot and for emptying the right dot. In Fig
4~a! we have plotted the maximum current and the width
a function of the tunnel rateG relative to the tunnel coupling
T. If the double dot is strongly coupled to the leads i.e.T

!GL,R!«0'v only the regimeT̄,u«02vu!GL,R is acces-
sible.

We point out that in the sequential tunneling regime t
transport on ‘‘large’’ time scales is equivalent to transport
‘‘free’’ electrons ~i.e., negligible interdot repulsion! through
a double dot with renormalized static parameters«0→«0
2v, T→J1(V/v)T, GL,R .15 Also, the results here are sim
3-6
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FIG. 4. Lorentzian current peak height~bold solid line! and width~dashed line! as a function of~a! G/T̄ (G5GL5GR) in the sequential

tunneling regime and of~b! Gct /T̄ in the cotunneling regime. For fixedT̄ the maximal co-tunneling current as a function ofGct is larger than
the maximal sequential tunneling current as a function ofG.
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lar to the analytical results obtained for the noninteract
case in Ref. 6, where only sequential tunneling occurs.

B. Co-tunneling regime

In the co-tunneling regime two well-separated time sca
are involved, namely the ‘‘long’’ timetct5Gct

21 between two
co-tunneling processes and the ‘‘short’’ time of the proc
itself tvirt5«0

21 during which the energy is uncertain by a
amount«0. Near resonance the applied frequency matc
the detuning of the levels sotvirt'2p/v5tv . The density
matrix approach developed above describes the system
the ‘‘large’’ time scaletct . Equations~13! describe the dy-
namics of the double dot in the sequential tunneling reg
on the long time scale when we replace«(t)→«02v,T
→T̄52J1„V(t)/v…T. The stationary solution of these equ
tions gives a Lorentzian current in«02v with height I max
and half-widthw:

I max/e51YS 2

Gct
1

Gct

4T̄2D , ~33!

w5A2T̄21Gct
2 /4. ~34!

For weak coupling to the reservoirsGct!T̄ the peak height is
constant and the width increases linearly with the cohe
coupling T̄:

I max/e5 1
2 Gct , w5A2T̄ .
16531
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In the opposite caseGct@T̄ the peak height is small bu
increases rapidly withT̄ whereas now the width is constan

I max/e54T̄2/Gct , w5 1
2 Gct .

The current peakI max/e reaches a maximumT̄/A2 as a func-
tion of Gct whenGct52A2T̄. In Fig. 4~b! the scaled pumping
current is plotted for different values ofGct /T̄. In the co-
tunneling regime electrons are transferred through stron
correlated transport channels. Therefore the condition for
maximum current cannot be understood as a the pre
matching of tunneling times as in the sequential tunnel
regime~factor A2). Equations~13! coincide with those that
describe the transport of electrons that are correlated
strong Coulomb repulsion through a double dot at high vo
age bias, with renormalized static parameters«0→«02v,
T→J1(V/v)T, Gct→GR in the limit where the tunneling into
the left dot is so fast,GL@GR ,T, that the current no longe
depends on it.7 In this system the correlation of the condu
tion channels prevents more than one channel from be
occupied and reduces the effective tunnel rate by a facto
2 in Eq.~33!.17 This blockade can be obtained formally fro
the density matrix equations~9! of the ‘‘free’’ electrons by
taking GL,R

1 →0 andGL
0@GR

05Gct .
Comparing the co-tunneling and sequential tunneling

gime the main difference is that for fixedGL,R the co-tunnel
rate }GLGR is much smaller:Gct!GL,R . For GL,R;T̄ the
sequential tunneling current can be near its maximal va
;2T̄, whereas the co-tunneling current will be;Gct!T̄.
3-7



is

lue

ne

re
ac
in

o
th

e

e

in

in
e

ce

ia-
n

r of
ry
rier

nd

ur-
r of
for

HAZELZET, WEGEWIJS, STOOF, AND NAZAROV PHYSICAL REVIEW B63 165313
However, for GL,R@T̄ the sequential tunneling current
much smaller thanT̄ and it is possible to adjustGct;T̄ so
that the co-tunneling current takes its maximal va
;2A2T̄ which is much larger. Thus for fixedT̄ the maximal
co-tunneling current is larger by a factorA2 than the maxi-
mal sequential tunneling current~Fig. 4!. The width of the
co-tunnel peak is also smaller than in the sequential tun
ing regime.

IV. MODULATED IRRADIATION OF A DOUBLE DOT

In this section we consider the sequential tunneling
gime already discussed in Sec. III A and apply our appro
for large time scales to the cases of pulsed and slow s
soidal modulation of the irradiation amplitude.

A. Response to irradiation pulses

By means of irradiation pulses quantum states in the d
can be manipulated. Assuming the double dot to be in
ground state

r00,0051,r210,2105r01,015r211,2115r211,005r00,21150
~35!

at t50 we solve Eqs. ~9! with «(t)→«02v,T→T̄
52J1„V(t)/v…T for the time evolution under the influenc
of the irradiation for the caseGL,R

0,1 5G:

I ~ t !5I F12e2GtS cos~VRt !1
G

VR
sin~VRt ! D G , ~36!

where VR5A(«02v)214T̄2 is the Rabi frequency. Fort
@G21 the solution tends to the stationary current~29! de-
rived before:

I /e51YS 1

G

VR
2

2T̄2
1

G

2T̄2D . ~37!

When the irradiation is switched off att5tp , the current
decays exponentially ase2G(t2tp) to zero, as can also b
seen by solving the equations for the casev5T̄50. One can
resolve the Rabi oscillations in the dc current by consider
the current averaged over a series of identical pulses18 with
delay td , as a function of the pulse lengthtp ~see inset of
Fig. 5!:

I dc~tp!5
1

td
S E

0

tp
I ~ t !dt1I ~tp!E

tp

td
e2G(t2tp)dtD . ~38!

Here td2tp@G21 to ensure that the system is prepared
the ground state~35! at the beginning of the pulse. In th
physically interesting case of weak coupling to the leadsG
!VR we obtain

I dc~tp!'I
1

td
Ftp1

12e2Gtp cos~VRtp!

G G . ~39!
16531
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The oscillations are most clearly resolvable fortp!G21

~Fig. 5!. The period of the coherent oscillation at resonan
v5«0 , 2p/VR5p/@J1(V0 /v)T#, can be tuned by varying
the irradiation powerV0.

B. Sinusoidal amplitude modulation

Now consider the case where the amplitude of the irrad
tion is slowly sinusoidally modulated with small modulatio
amplitudeṼ!V0:

V~ t !5V01Ṽ cos~Vt !. ~40!

The case where the modulation amplitude is of the orde
or larger than the irradiation amplitude is physically not ve
interesting because the system then exhibits trivial Fou
peaks atv, v1V andv2V as a function of«0 in the dc
current. To find an analytical solution, we rewrite Eqs.~9!

with «(t)→«02v,T→T̄52J1„V(t)/v…T in matrix nota-
tion:

]rW

]t
5~ Ĝ1T̂!rW 1cW , ~41!

where rW 5(r210,210,r00,00,r211,211,r01,01,r211,00)
T, cW

5(GR
1,0,0,0,0)T and expand the Bessel functionJ1(V(t)/v)

in a Taylor series to second order inṼ. If we now consider
the Fourier coefficientsrW n of rW (t) and Tn of J1„V(t)/v…T,
we find the following equations for the dc component a
first harmonic, if we disregard higher harmonics,

05~ Ĝ1T0T̂!rW 01T1T̂~rW 111rW 21!1cW , ~42!

rW 6152T1~ Ĝ1T0T̂7 iV Î !21T̂rW 0 , ~43!

FIG. 5. Double dot subjected to an irradiation pulse train. C
rent averaged over a series of identical pulses, in units of numbe
electrons transferred per pulse, as a function of the pulse length
«05v530, T51, G50.1 and several irradiation amplitudesV.
Inset: time-dependent current during one pulse.
3-8
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from which we can solve for the dc componentrW 0. If we
furthermore assume thatGL,R

0,1 5G!T̄, the solution shows ad
ditional side peaks in the photoresponse of the system, w
are in good approximation Lorentzians along the hyperb

«02v5AV224T̄2, i.e., V5VR as plotted in Fig. 6. The
height of these peaks is

I max

e
5

G

2

~a224!2T̄82
Ṽ2

v2

a2S a2G21~a224!T̄82
Ṽ2

v2D , ~44!

with a5V/T̄,T̄85J18(V0 /v)T, and the half-width at half
maximum is

w5AT̄82
Ṽ2

v2
1

a2

a224
G2. ~45!

These side peaks thus resolve the Rabi splitting as desc
in Refs. 6 and 19 in terms of quasi-energies. The heigh
these peaks can be of the order of the first satellite peak

FIG. 6. Electron pump with harmonically amplitude-modulat
irradiation. Current as a function of the renormalized level detun
~resonance mismatch of basis frequency! and the frequency of the

amplitude modulation forT51, GL,R50.2, V0530, Ṽ510.
-
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should therefore be experimentally observable. Notice tha
«05v,V52T̄ the width diverges; however, the current pe
at this point vanishes since the exact matching«05v gives a
resonance to which the modulation cannot add extra curr

Thus by applying a high frequencyv we reduce the en-
ergy spacing by a large amount,«0→«02v, and modify the
tunneling matrix element with an intensity-(V) dependent
factor,T→T̄. The lower frequencyV allows one to precisely
match the remaining small energy difference«02v without
significantly altering the tunneling matrix elementT̄, thereby
inducing a photocurrent.

V. CONCLUSIONS

We have considered an electron pump consisting of
double quantum dot subject to irradiation. An incoherent a
a new coherent pumping mechanism were discussed.
have derived equations of motion for the density matrix e
ments of the double-dot system that are time-averaged
an interval which is long compared to the period of the a
plied signal. From these equations we calculated the pu
ing current in both regimes. In both cases the current pea
a Lorentzian. Surprisingly, for fixed effective tunnel co
pling the maximal pumping current in the co-tunneling r
gime is larger by a factorA2 compared to the value in th
sequential tunneling regime, where the maximum occurs
different value of the tunnel rates for each regime. Expe
mental realization of this device would allow for a system
atic study of coherent transport through a solid-state qu
Moreover, modulation of the irradiation amplitude exhib
interesting phenomena: a train of short pulses should res
the Rabi frequency in the time-averaged current as a func
of the pulse length, and sinusoidal amplitude modulat
should provide a tool to resolve the Rabi splitting.
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