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Zero-point fluctuations in the ground state of a mesoscopic normal ring

Pascal Cedraschi and Markus Bu¨ttiker
Département de Physique The´orique, Universite´ de Gene`ve, 24, quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland

~Received 29 June 2000; published 4 April 2001!

We investigate the persistent current of a ring with an in-line quantum dot capacitively coupled to an
external circuit. Of special interest is the magnitude of the persistent current as a function of the external
impedance in the zero-temperature limit when the only fluctuations in the external circuit are zero-point
fluctuations. These are time-dependent fluctuations that polarize the ring-dot structure and we discuss in detail
the contribution of displacement currents to the persistent current. We have earlier discussed an exact solution
for the persistent current and its fluctuations based on a Bethe ansatz. In this work, we emphasize a physically
more intuitive approach using a Langevin description of the external circuit. This approach is limited to weak
coupling between the ring and the external circuit. We show that the zero-temperature persistent current
obtained in this approach is consistent with the persistent current calculated from the Bethe ansatz solution. In
the absence of coupling our system is a two level system consisting of the ground state and the first excited
state. In the presence of coupling we investigate the projection of the actual state on the ground state and the
first exited state of the decoupled ring. With each of these projections we can associate a phase-diffusion time.
In the zero-temperature limit we find that the phase-diffusion time of the excited state projection saturates,
whereas the phase-diffusion time of the ground state projection diverges.

DOI: 10.1103/PhysRevB.63.165312 PACS number~s!: 73.23.Ra, 73.23.Hk, 71.27.1a
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I. INTRODUCTION

An interesting aspect of quantum systems is the fact
even at zero temperature there are fluctuations that man
themselves in observables that do not commute with
Hamiltonian of the system. In mesoscopic systems phase
herence plays an essential role, and it is thus important to
to what extent coherence is affected by zero-point fluct
tions. To investigate this question we consider theground
stateof a normal mesoscopic ring threaded by an Aharon
Bohm flux and capacitively coupled to an external circu
Such a ring exhibits a persistent current that is a direct c
sequence of phase-coherent electron motion over dista
that are large compared to the ring circumference. At z
temperature such a ring interacts with an external circuit~see
Fig. 1! only due to zero-point fluctuations. More precise
the external circuit can, through the generation of zero-po
voltage fluctuations, induce polarization fluctuations in t
ring, which in turn affect the magnitude of the persiste
current. The source of the voltage fluctuations in the exte
circuit are the resistive elements. We can thus ask: How d
the persistent current of the ring depend on the resis
properties of the external circuit? For the system shown
Fig. 1, Ref. 1 provided an answer by mapping a sim
model of a ring with a quantum dot and external circuit
the anisotropic Kondo model and using the known Be
ansatz solutions of this problem.2 The purpose of this work is
to consider the same model and to provide a discussion
is physically more transparent. The discussion given be
is, however, limited to the case of weak coupling betwe
the ring and the external circuit.

Investigations of the coherence properties of the gro
state of mesoscopic structures are rare and concern m
superconductors. Hekking and Glazman3 investigate a thin
superconducting loop in an electromagnetic environme
Oshikawa and Zagoskin4 consider a superconducting gra
0163-1829/2001/63~16!/165312~12!/$20.00 63 1653
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coupled to a normal wire. In contrast, investigations
dephasing in systems driven out of the ground state are
merous and there exists a considerable literature. In part
lar, zero-point fluctuations have been of interest, followi
recent experimental work by Mohanty, Jariwala, and Web5

on weak localization in metallic diffusive wires. These e
periments probe a transport state and not the ground sta
the system. In the experiments of Mohanty, Jariwala, a
Webb it is the weak-localization effect in the linear respon
conductance of the system which is of interest. Subseque
to these experiments the role of zero-point fluctuations
weak-localization effects has been very much debated6–9 and
a number of works have appeared that suggest that the
periments can possibly be better explained without invok
zero-point fluctuations.10 Weak localization is a quantum ef
fect that survives ensemble averaging and thus the depha
rates that count are specific to the fact that we deal w
time-reversed trajectories and that an ensemble average
to be performed. The absence of an effect of zero-point fl
tuations found in Refs. 7 and 8 might give rise to the m

FIG. 1. Ring with an in-line dot subject to a fluxF and capaci-
tively coupled to an external impedanceZext .
©2001 The American Physical Society12-1
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PASCAL CEDRASCHI AND MARKUS BÜTTIKER PHYSICAL REVIEW B 63 165312
taken impression that zero-point fluctuations are quite ge
ally without any effect on the coherence properties o
system. The example presented here shows that zero-
fluctuations are clearly important for the coherence prop
ties of the system, although perhaps not for we
localization phenomena. Below we consider a specific r
~not an ensemble! and ask how the maximum amplitude
the persistent current is affected by zero-point fluctuation

The effect of a thermal bath on the persistent current
been discussed by Landauer and Bu¨ttiker11 and Büttiker12,13

within a Debye relaxation approach. In this approach, ho
ever, the bath affects essentially only the population of d
ferent states, but not the electronic states of the ring itself
a consequence, at zero temperature, this model exhibit
effect due to zero-point fluctuations: the magnitude of
persistent current is independent of the coupling strengt
the bath. Still a different model, introduced by Bu¨ttiker,14

considers a ring coupled via a side branch to a normal e
tron reservoir. Due to the connection between reservoir
ring a carrier in the ring eventually escapes to the reser
and is replaced with an incident carrier with a phase tha
unrelated to that of the escaping carrier. This model pred
even at zero temperature an amplitude of the persistent
rent that depends on the coupling strength.14–18This effect is
not due to zero-point fluctuations but results from the
change of carriers between the reservoir and the ring. If
ring is coupled to a side branch of finite length, the s
branch can nevertheless generate effects that are simil
that of a reservoir, especially if only ensemble-averag
quantities are considered. This is correct only if the s
branch has a charging energy that is weak compared to
level spacing.19 If the charging energy is large compared
the level spacing the side branch has no effect on
ensemble-averaged persistent current.19 It is thus interesting
to ask whether there exist models that are strictly canon
~without carrier exchange with a reservoir! and for which the
sample specific persistent current depends nevertheles
the properties of the bath. The model investigated in t
work examines a ring that is coupled to the bath only via
long-range Coulomb force.

The mesoscopic ring that we consider~see Fig. 1! is di-
vided into two regions by tunneling barriers. It is a ring wi
an in-line quantum dot.20–26 This model allows a simple
characterization of the electrostatic potential in terms of o
two variablesUd ~for the dot! andUa ~for the arm! and by
the chargesQd andQa . The two regions, the dot and the ar
of the ring, are coupled via capacitorsC1 and C2 to the
external circuit. The external circuit is described by its im
pedanceZext . The potential at the capacitorC1 is denoted by
V0, the charge byQ0. Likewise, we write the potential an
the charge on the capacitorC2 asV` andQ` .

II. LANGEVIN EQUATION

To be specific, we consider a purely resistive exter
impedance,Zext5R. The fluctuations generated by this r
sistor can be represented as a noise source in parallel
the resistor as shown in Fig. 2. The currentdV/R through the
resistor must be equal to the sum of the current of the n
16531
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sourcedI (t) and of the current through the ring-dot stru
ture. In terms of the potential differencedV[V02V` across
the ring-dot structure we find that the coupling between
ring-dot structure and the external circuit is described by

dV/R52C0dV̇1
C0

Ci
Q̇d1dI ~ t !. ~1!

Here we introduce the capacitanceC0
21[Ci

211Ce
21 , which

is the series capacitance of theinternal capacitanceCi[CL

1CR and theexternalcapacitanceCe
21[C1

211C2
21 and the

charge on the dotQd . A detailed consideration of the circu
equations leading to Eq.~1! is given in Appendix A. The
noise source in parallel to the resistor generates a cur
noise spectrum, ^dI (v)dI (v8)&[2pd(v1v8)SII (v),
given by

SII ~v!5
\v

R
cothS \v

2kTD , ~2!

wherek is the Boltzmann constant andT is the temperature
To complete the description of this system, we need to
vestigate the dynamics of the ring in the presence of
fluctuating external voltagedV(t).

First, we consider the effect of the external circuit in li
ear response. Since we are only interested in the we
coupling limit, we can choose the ground state of the rin
dot system in the absence of an external circuit as a s
around which we can expand. What we need is the lin
response relation betweendQd(t) ~the deviation of the
charge away from a reference state! as a function of the
external voltagedV(t). Note that both of these variables a
in fact operators. Here, we proceed as in the random-ph
approximation and use a linear response function to desc
the connection between these two quantities. In linear
sponse we can Fourier transformdQd(t) and dV(t). The
linear response coefficient gives the increment of the cha
on the dot in response to a variation of an external voltage
is thus a dynamic capacitance that we denote byCd(v)
5dQd(v)/dV(v). Similarly, the relation between th
chargedQ0 piled up on the external capacitorC1 and the
applied voltage is determined by the overall capacitance
the ring dot-structure vis-a`-vis the external circuit, and is

FIG. 2. The external impedanceZext(v) has been replaced by
resistorR with a noise source in parallel in order to take quantu
fluctuations into account.
2-2
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ZERO-POINT FLUCTUATIONS IN THE GROUND STATE . . . PHYSICAL REVIEW B 63 165312
denoted byCm(v)5dQ0(v)/dV(v). From circuit theory
~see Appendix A! it follows that these two capacitances a
related:

Cm~v!5C02
C0

Ci
Cd~v!. ~3!

The noise source~see Fig. 2! sees a total impedanceZ(v),
which consists of this capacitance and the resistance:

1

Z~v!
5F 1

R
2 ivCm~v!G . ~4!

With these response coefficients Eq.~1! leads to

dV~v!5Z~v!dI ~v!5@12 ivRCm~v!#21RdI ~v! ~5!

and the spectrum of the external voltage is thus

SVV~v!5
R\vcoth~\v/2kT!

11v2@RCm~v!#2
. ~6!

Our next task is now to find explicit expressions for t
capacitancesCm(v) andCd(v).

A. The dynamics of the ring

The dynamics of the charge on the dot, determined
Q̂d , is in the Heisenberg picture given by

]

]t
Q̂d5

\

i
@Ĥring ,Q̂d#, ~7!

where Ĥring is the Hamiltonian of the ring in an applie
external potentialdV. We assume that the tunneling amp
tudes are much smaller in magnitude than the level spa
in the dot and the level spacing in the arm. Moreover,
assume the electrons to be spinless. As discussed in Ref
and 21 a spin singlet appears in the case of electrons
spin, and the tunneling amplitude is enhanced by a facto
A2. Our choice of parameters excludes the Kondo effe24

and also if the electron spin is taken into account. As a m
ter of fact, the Kondo effect appears only at a tunnel
amplitude comparable to or larger than the mean le
spacing.25 We note that the number of charge carriers in
ring is conserved. Following Bu¨ttiker and Stafford,20,21 we
consider hybridization between the topmost occupied e
tron level in the arm and the lowest unoccupied elect
level in the dot,eaM and ed(N11) only. To simplify the no-
tation, we denote the tunneling amplitudes between the
els eaM and ed(N11) by tL for tunneling through the left
junction and bytR for tunneling through the right junction
and introduce the total tunneling amplitude

\D0

2
5AtL

21tR
262tLtR cos

2pF

F0
, ~8!

whereF05hc/e is the flux quantum, and the sign in front o
the cosine depends on the parity of the number of electr
in the ring. The sign is positive, if the number of electrons
odd, and negative if the number is even. In the model in
16531
y

g
e
20

ith
of

t-
g
l

e

c-
n

v-

ns

-

duced above, we are considering only two states, namely
topmost electron being in the dot, which we represent by
vector (1,0), and the topmost electron being in the arm of
ring, written as (0,1). The dynamics of these two states
described by a time dependent Hamiltonian

Ĥring5
\«~ t !

2
sz2

\D0

2
sx1

\n~ t !

2
1, ~9!

where sz and sx are Pauli matrices, and1 is the identity
matrix. The prefactor\n(t)52C0dV2(t) is a global shift in
energy. We split the detuning«(t) into a time-independen
and a time-dependent part«(t)5«01d«(t), with

\«0[ed(N11)2eaM1
e2~N2N111/2!

C
2

Ce

C
V0

[
e

C
~Qd* 2Qd0!, ~10!

d«~ t ![
e

\

C0

Ci
dV~ t !. ~11!

The effective background charge on the dot isQd05eN1

1CeV0, where the first term is a built in background char
and the second term can be externally controlled by apply
a static voltage across the ring-dot structure. If coherent t
neling is neglected the ground states of the ring withN and
N11 carriers are degenerate if the polarization charge
equal to

Qd* [eS N1
1

2D1
C

e
~ed(N11)2eaM!. ~12!

Thus Qd05Qd* is the ~classical! condition at which the
Coulomb blockade is lifted. Quantum mechanically the st
in the ring and the state in the arm of the ring are in re
nance whenQd05Qd* and the persistent current exhibits
peak. Our simple two-level picture is applicable when«0 is
small, that is, in the vicinity of a resonance.

We want to find the time evolution of a statec(t), which
we write as

c5eix/2S cos
u

2
eiw/2

sin
u

2
e2 iw/2

D , ~13!

with u, w and x real. This is the most general form of
normalized complex vector in two dimensions. In terms
u, w, and the global phasex, the time-dependent Schro¨-
dinger equation reads

ẇ52«02d«~ t !2D0cotu cosw, ~14!

u̇52D0 sinw, ~15!

ẋ52n1D0

cosw

sinu
. ~16!
2-3
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Note that Eq.~16! describing the dynamics of the glob
phasex is special in the sense that it is driven byf andu but
it has no back effect on them. Moreover,x is irrelevant for
expectation values such as the persistent current or
charge on the dot. It plays an important role, however, in
discussion of phase-diffusion times; see Sec. IV. The sys
of the two equations forw and u, Eqs. ~14! and ~15!, is
closed by Eq.~1!,

Q̇d5
d

dt
^c~ t !uQ̂duc~ t !&, ~17!

with c(t) defined above, and

Q̂d5eS 1 0

0 0D 1eN1 . ~18!

We find

Q̇d5e
d

dt
^c~ t !uS 1 0

0 0D uc~ t !&52
e

2
~sinu!u̇. ~19!

Using this result and Eq.~1!, gives

dV52C0RdV̇2
RC0

Ci

e

2
~sinu!u̇1RdI ~ t !. ~20!

Equations~14!, ~15!, and~20! form a closed system of equa
tions in which the external circuit is incorporated in terms
a fluctuating currentdI (t) and of an Ohmic resistorR. In the
next section, we investigate Eqs.~14!, ~15!, and~20! to find
the effect of zero-point fluctuations on the persistent curr
of the ring.

B. Expansion around a stationary state

First, let us discuss the stationary states of the system
differential equations, Eqs.~14!, ~15!, and ~20! in the ab-
sence of the noise termdI (t). We take 0<w,2p and 0
<u,p. This gives immediately sinw50 and consequently a
stationary state hasw[w0, with w050 or w05p. With this
it is easy to show that in the stationary state we must h
u[u0, with

cotu056
«0

D0
. ~21!

The lower sign applies forw050. This is the ground state
for the ring-dot system at fixed«(t)[«0, and the upper sign
holds for w05p. The energy of the ground state is
2\V0/2; thus the global phase isx0(t)5V0t. Here

V0
2[«0

21D0
2 ~22!

is the resonance frequency of the~decoupled! two-level sys-
tem. We also introduce the ‘‘classical’’ relaxation timetRC
[RC0, and a relaxation rate

G[pa
D0

2

V0
, ~23!
16531
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which as we shall see in Sec. II E is a relaxation rate due
the coupling of the ring-dot system to the external circu
Herea is a dimensionless coupling constant

a[
R

RK
S C0

Ci
D 2

~24!

with RK[h/e2 the quantum of resistance. We will immed
ately see the usefulness of these definitions.

Now, we switch on the noisedI (t). We seek
w(t),u(t), x(t), anddV(t) in linear order in the noise cur
rent dI (t). We expandw(t) and u(t) to first order around
the ground state,w50 and u5u0. For dw(t)5w(t)
2w0 , du(t)5u(t)2u0, we find in Fourier space,

2 ivdw52d«1
V0

2

D0
du, ~25!

2 ivdu52D0dw, ~26!

2 ivd«5
1

tRC
F2d«2Gdw1

e

\
R

C0

Ci
dI G . ~27!

We also expand the global phasex(t) around its evolution in
the ground statex0(t)5V0t, and define dx(t)5x(t)
2x0(t). In Fourier space, Eq.~16! becomes

2 ivdx5V0

«0

D0
du. ~28!

We note that there is no effect of the global shift in energ
\n(t), as it is quadratic in the voltagedV, and we are only
interested in effects up to linear order indV.

In the following section, we evaluate the linear respon
of the ring, described by Eqs.~25! and ~26! to an applied
external potentialdV(v), giving the frequency-dependen
capacitanceCm(v).

C. Capacitance of the ring and impedance

We evaluatedQd(v) to first order indV(v), using Eqs.
~25! and ~26!, which gives the dynamic capacitanceCd(v)
5dQd(v)/dV(v),

Cd~v!5C0

e2/~2Ci !

\V0

D0
2

v22V0
2 . ~29!

The frequency-dependent capacitance as seen from the e
nal circuit reads@see Eq.~3!#,

Cm~v!5C0S 12
e2/~2Ci !

\V0

D0
2

v22V0
2D . ~30!

The frequency-dependent capacitanceCm contains in addi-
tion to the geometrical capacitanceC0 a term that arises from
the dynamic polarizability of the ring. In the low-frequenc
regime the polarizability enhances the capacitance,
2-4
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ZERO-POINT FLUCTUATIONS IN THE GROUND STATE . . . PHYSICAL REVIEW B 63 165312
Cm~0!5C0S 11
e2/~2Ci !

\V0

D0
2

V0
2D

5C01S C0

Ci
D 2 2e2ut6u2

$@e~Qd02Qd* !/C#214ut6u2%3/2
.

~31!

The zero-frequency-capacitance has already been obta
by Büttiker and Stafford.20,21 The zero-frequency~electro-
chemical! capacitance, Eq.~31!, can be obtained as a secon
order derivative of the grand canonical potential21 with re-
spect to the voltage applied across the ring-dot system o
a dynamic response to a slowly varying voltage across
ring-dot system. Since the tunneling amplitudeD0 depends
periodically on the magnetic fluxF @see Eq.~8!# Cm(v) can
be modulated by varyingF. The electrochemical capac
tance exhibits a peak as the biasV0 is varied. The peak
shows up at resonance,Qd05Qd* , corresponding to«0
50. At the same point, there is also a peak in the persis
current. A recent experiment by Deblocket al.27 demon-
strated indeed a flux-dependent polarizability of mesosco
rings.

At high frequencies the polarization cannot follow the e
ternal voltage, and the capacitance Eq.~30! is smaller than
the geometrical capacitance. Atv5V0 the capacitance ex
hibits a resonance characteristic for dielectric functions. T
ring by itself has no damping mechanism; therefore the re
nance shows up as a pole. The damping is provided by
dissipation in the external circuit.

From Eqs.~4! and ~30!, we find

1

Z~v!
5

1

R

v22V0
22 ivtRC~v22V0

22G/tRC!

v22V0
2

. ~32!

This expression for the impedance ‘‘seen’’ by the no
source contains all the information needed to calculate
various spectral densities.

D. Spectral densities

We solve Eqs.~25!–~27! for dw by eliminatingdu and
d«, and obtain after some algebra

dw5
e

\

C0

Ci

~2 iv!Z~v!

v22V0
2 dI . ~33!

It follows immediately that̂ dw(v)&5^du(v)&50 and that
^d«(v)&50. The spectral densities ofdw(v), du(v), and
their cross-correlations can all be expressed in terms of
current noise spectral density. We haveSuu(v)
5(D0

2/v2)Sww(v), Swu(v)52 i (D0 /v)Sww(v), and

Sww~v!5
e2

\2 S C0

Ci
D 2v2uZ~v!u2

~v22V0
2!2 SII ~v!. ~34!

We will relate the reduction of the persistent current
Sww(v) in Sec. III. While the spectral densities fordw and
du are finite at zero frequency, the spectral density of
global phase dx is not. We have Sxx(v)
16531
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5(V0
2«0

2/v4)Sww(v) @see Eq.~28!#; therefore it exhibits av22

pole in the vicinity ofv50 for finite temperatures

Sxx~v!;2pa
2kT

\

«0
2

V0
2

1

v
~v→0!, ~35!

whereas in the quantum limitT50 the order of the pole is
reduced by 1,

Sxx~v!;2pa
«0

2

V0
2

1

uvu ~v→0! ~36!

~see Fig. 3!. These two last results do not affect the persist
current, but they are of great importance in the discussion
the rates of phase diffusion in Sec. IV.

E. Weak coupling

Within the approach outlined above, we can expect
reproduce the exact result for the reduction of the persis
current only in the limit of weak coupling between the rin
dot system and the external circuit. This means that thepo-
tential fluctuations of the system and the external circuit a
only weakly coupled. Thus weak coupling between the r
and the external circuit is achieved by letting the capa
tances coupling the two systems become very sma28

C1 ,C2→0, for a fixed resistanceR. This entailsC0→0, thus
the coupling strengtha between the ring and the extern
circuit, Eq.~24!, is small against 1. Note that in this approx
mation theRC time tRC becomes very small as well.

In the following paragraph, we calculate the poles
Z(v), in the approximationC0→0. The small parameters in
this case aretRC}C0 and G}C0

2. The equation@Z(v)#21

50 has one solution behaving asC0
21. To leading order in

C0, it reads

v352
i

tRC
. ~37!

Thus in the weak-coupling limit charge relaxation across
mesoscopic system becomes instantaneous. The other

FIG. 3. The spectral functionSxx(v) at finite temperaturekT
510\V0 ~solid line! and at zero temperature~dashed line!. The left
y axis carries the scale for the finite-temperature curve, the right
carries the scale for the zero-temperature curve. The parameter
the same as in Fig. 4; in addition,«05V0 /A2.
2-5
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solutions,v6 , are of zeroth order inC0. Up to and includ-
ing corrections of orderC0

2, they are

v656V02 i
G

2
, ~38!

with a relaxation rateG introduced in Eq.~23!. The rateG
describes the relaxation of perturbations with a freque
close to the eigenfrequency of the isolated ring-dot syst
In Sec. IV it is shown thatG is also related to a phase
diffusion time. The denominator in Eq.~34! can now be
written as

~v22V0
2!2

uZ~v!u2
5

tRC
2

R2 S v21
1

tRC
2 D @~v2V0!2

1~G/2!2#@~v1V0!21~G/2!2#. ~39!

For frequenciesvtRC!1, the denominator takes the form

~v22V0
2!2

uZ~v!u2
5

1

R2 @~v2V0!2

1~G/2!2#@~v1V0!21~G/2!2#. ~40!

Since in the quantum limit it is always necessary to introdu
a cutoff, Eq.~40! is valid over the entire range of frequenci
of interest, if only 1/tRC is larger than the cutoff frequency
The spectral densitySww(v) @Eq. ~34!#, reads therefore

Sww~v!5
2pav3coth~\v/2kT!

@~v2V0!21~G/2!2#@~v1V0!21~G/2!2#
,

~41!

where the coupling strengtha between the ring and the ex
ternal circuit is defined in Eq.~24!. Note thatSww(v) goes to
zero at the originv50 like uvu3 in the extreme quantum
case (T50) and likev2 for finite temperatures; see Fig. 4
For uvu@V0, it behaves likeuvu21 for small temperatures
and like v22 for large temperatures. Analogous formul
hold for Suu(v) and forSwu(v). We mention that the spec

FIG. 4. The spectral functionSww(v) at finite temperaturekT
510\V0 ~solid line! and at zero temperature~dashed line!. The left
y axis carries the scale for the finite-temperature curve; the right
carries the scale for the zero-temperature curve. The paramete
R55RK , C050.1Ci , D050.5V0, andG50.2V0.
16531
y
.

e

tral densitySuu(v) behaves for smallv like uvu at T50 and
goes to a constant for finiteT. All the three spectral densitie
exhibit peaks of widthG at 6V0.

The spectral density of the global phaseSxx(v) ~Fig. 3!
exhibits peaks atv56V0 as well. More important, how-
ever, is the fact that it has a pole atv50, as already pointed
out in the previous section.

III. PERSISTENT CURRENT

In the following, we calculate the persistent current a
quantumand statistical average of the operator of the circ
lating current

Î c5S 0 J
J* 0 D , ~42!

whereJ is given by

J52
e

\S tL
21tR

262tLtR cos
2pF

F0
D 21/2H 6tLtR sin

2pF

F0

2 i FCR

Ci
tL
22

CL

Ci
tR
26

CR2CL

Ci
tLtR cos

2pF

F0
G J . ~43!

Here the first term is a pure particle current contributio
whereas the second term is a consequence of interact
For the average persistent current of interest here, it is o
the first term that contributes. A derivation of Eq.~43! and a
discussion of the relationship betweenI c and the magnetiza
tion is given in Appendix B.

The expectation value of the persistent current for
state given in Eq.~13! reads

I ~ t ![^c~ t !u Î cuc~ t !&5
1

2
ReJ~sinu!e2 iw. ~44!

We are, however, interested in thestatistically averagedof
the persistent current^I (t)&, given by

^^c~ t !u Î cuc~ t !&&5
1

2
Re@J^~sinu!e2 iw&#, ~45!

where the double bracket indicates a quantum and statis
average. Therefore, we have to calculate the correl
^(sinu)e2iw&. First, we observe that there are no correlatio
betweendw anddu,

^dw~ t !du~ t !&50, ~46!

as the spectral densitySwu(v) is an odd function ofv. Thus
we have

^~sinu!e2 iw&5^sinu&^e2 iw&, ~47!

to second order indI , that is, the probability distributions fo
w andu are decoupled up to second order indI . Second, it
can be shown that the second-order corrections tow and u
vanish on average. Finally, we assume that the correlat
in dw are Gaussian, which allows us to write

e
are
2-6
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^e2 iw(t)&5e2 iw0^e2 idw(t)&5 K expS 2
dw2~ t !

2 D L , ~48!

where we have usedw050. In the weak-coupling limit~see
Sec. II E! and in the extreme quantum limit,T50, we find
for the time-averaged mean square fluctuations

^dw2~ t !&5E
0

vcdv

p
Sww~v!'2a ln

vc

V0
, ~49!

where the cutoff frequencyvc is taken to be larger than a
frequency scales~except tRC

21), and a is the coupling
strength between the ring and external circuit@see Eq.~24!#.
In the limit vc@V0, we can neglect ^du2(t)&
5*0

vc(dv/p)Suu(v) against^dw2(t)&. We insert^dw2(t)&
and sinu05D0 /V0 into ^(sinu)e2iw&, and observe that

1

2
ReJ5

\c

2

]D0

]F
. ~50!

Put together, we obtain the noise-averaged current in the

^I ~ t !&52
\c

2

]D0

]F

D0

V0
S V0

vc
D a

. ~51!

Equation~51! is a key result of this work. Fora!1, corre-
sponding to weak coupling between the ring and the exte
circuit, the power law for the persistent current obtained
Eq. ~51!, as well as the exponenta, Eq.~24!, are the same a
those obtained when the external circuit is treated quan
mechanically as well. In a recent work,1 the authors in col-
laboration with Ponomarenko have shown that if the exter
circuit is represented by a transmission line, the persis
current at resonance,«50, has fora,1 the power law be-
havior

I ~«50!}S D0

vc
D a/(12a)

. ~52!

For a very small coupling parameter,a!1, the Bethe ansatz
result @Eq. ~52!#, goes over to the power law of Eq.~51!.
Thus the simplified discussion presented here leads at lea
the weak-coupling limit to the same result as that obtaine
Ref. 1.

We emphasize that the persistent current is a propert
the ground state of a system. In our case, the persistent
rent is, however, carried by only a part of the system. Due
the coupling to the external circuit this subsystem is sub
to fluctuations, which even at zero temperatures suppres
persistent current. If we keep the capacitances fixed, E
~51! and ~52! give a persistent current that decreases w
increasing external resistanceR. The spectral density of the
voltage fluctuations across the ring-dot system increases
R @see Eq.~6!#. We next characterize the fluctuations of t
ring-dot subsystem in more detail.

IV. PHASE-DIFFUSION TIMES

In this work we are concerned with the effect of an ext
nal circuit on the ground state properties of the system an
16531
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particular on the persistent current of the ring-dot subsyst
In transport experiments that reveal phase-coherent contr
tions or in experiments that investigate the evolution of
initial state, we can describe the effect of an environm
with the help of dephasing rates. On the other hand, it is
a priori clear that the coherence properties of the grou
state of a system can be equally expressed in terms
dephasing rates. After all the persistent current investiga
here exists quite independently of how long we let the s
tem evolve. Here we consider the state in the ring and inv
tigate its evolution away from an initial state. Below w
show that this evolution is diffusive at least for times sh
enough such that we remain within the limit of validity of th
calculation.

We have seen in Sec. II E that the dynamics of the r
strongly affects the spectral densitiesSww(v) andSuu(v) in
the vicinity of the characteristic frequencyV0. The charac-
teristic frequency describes the free dynamics of a ring tha
disconnected from the external circuit, described by
Hamiltonian Ĥring @Eq. ~9!#, without the time-dependen
termsd«(t) andn(t),

Ĥ05
\«0

2
sz2

\D0

2
sx . ~53!

This Hamiltonian can be viewed as describing a spin in
magnetic field of strength proportional to («0

21D0
2)1/25V0,

forming an angleu0 with the z axis. The angleu0 has been
defined in Sec. II B and is related to«0 and D0 by cotu05
2«0 /D0. The eigenstates of the time-independent Ham
tonianĤ0 are theground statec25(cosu0/2,sinu0/2), with
eigenvalue 2\V0/2, and the excited state c15
(2 sinu0/2,cosu0/2) with eigenvalue\V0/2. The evolution
due toĤ0 of a spin prepared in a state that is not an eig
state corresponds to a rotation of the expectation value of
spin about the direction of the magnetic field with a fr
quencyV0. Let us now return to the full problem in which
polarization fluctuations modify the free evolution of the d
coupled system. In the weak-coupling limit, we are inte
ested in the time evolution that is long compared toV0

21.
Therefore, we switch to the ‘‘rotating frame’’ picture, whe
the wave functionc(t) of the ring, Eq.~13!, readscR(t)
[ exp(iĤ0t/\)c(t). We consider the projectionc6(t)
[^c6ucR(t)& of the wave functioncR(t) onto the states
c6 . If the statec(t) evolves under the influence of th
time-independent HamiltonianĤ0, the projectionsc6(t) are
constant in time. The moduli of the projections averag
over the noise,̂uc6(t)u2&, are also independent of time if th
evolution is determined byĤring which includes the fluctu-
ating potential. The phase of the projectionsc6(t), however,
shows diffusive behavior. On the average, we have^uc6(t)
2c6(0)u2&;t/t6 for sufficiently long timest. We shall see
below thatt2 is related to the phase diffusion of theglobal
phasex, whereast1 is related to the diffusion of theinter-
nal phasesw andu @see Eq.~13!#. It is a known feature of
two-level systems that they exhibit two distinct dephas
times.29,30 The difference betweent2 andt1 is particularly
pronounced in the low-temperature limit. The phase break
2-7
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time t2 diverges at zero temperature, whereas the timet1

saturates to a finite value for temperatureskT below \V0.
We expand the wave functioncR to first order ind«, that

is, to first order indw, du, anddx,

cR~ t !5F11 i S dx~ t !

2
2

«0

V0

dw~ t !

2 D Gc2

1Fdu~ t !

2
2 i

D0

V0

dw~ t !

2 GeiV0tc1 . ~54!

From this expression, we immediately obtain the proj
tions c2(t)511 i @dx(t)/22(«0 /V0)dw(t)/2# and c1(t)
5(1/2)@du(t)2 i (D0 /V0)dw(t)#exp(iV0t). As the averages
^dw2(t)&, ^du2(t)&, and ^dx2(t)& as well as all the
‘‘crossed’’ averages of the typêdw(t)du(t)& are constant in
t, the moduli^uc6(t)u2& are indeed independent of time. Th
mean squared displacement of the projectionsc6(t) read,
respectively,

^uc2~ t !2c2~0!u2&5E dv

2p
sin2

vt

2 FSxx~v!1
«0

2

V0
2 Sww~v!G ,

~55!

^uc1~ t !2c1~0!u2&5E dv

2p
sin2

vt

2

3FSuu~v1V0!1
D0

2

V0
2 Sww~v1V0!G .

~56!

The long time behavior of Eq.~55! is dominated by the fre-
quencies nearv50. The spectral densitySww(v) vanishes
like v2 for finite temperatures or even likeuvu3 in the zero-
temperature limit. The spectral densitySxx(v), however,
has a pole atv50. For finite temperatures the pole is
order v22 @see Eq.~35!#, entailing a long time behavior o
the type ^uc2(t)2c2(0)u2&;t/t2 , with a characteristic
phase-diffusion time

t25
\

2pakT

V0
2

«0
2 . ~57!

We stress again thatt2 determines the diffusion time of th
global phasex as it is given in terms of the spectral functio
Sxx(v). In the quantum limitT50, the phase diffusion time
t2 diverges. Furthermore, it follows from Eq.~57! thatt2 is
tunable, since«0 may be varied by an external dc bias.
particular, at resonance«050, the phase-diffusion timet2

diverges for any temperature.
The long time behavior of Eq.~56!, on the other hand, is

determined by the frequencies nearV0. In the vicinity of this
characteristic frequency,Sww(V01v) as well asSuu(V0
1v) show av22 behaviorat finite as well as at zero tem
perature, which is cut off by the relaxation rateG, defined in
Eq. ~23! at very small frequenciesv;G!V0. In summary,
we have, foruvu!V0
16531
-

Sww~V01v!'
2paV0coth~\V0/2kT!

v21~G/2!2 ~58!

and Suu(V01v)'(D0
2/V0

2)Sww(V01v). The time evolu-
tion of Eq.~56! for times much larger than the inverse of th
characteristic frequencyV0, yet smaller than the inverse o
the relaxation rateG, is therefore linear in time with a char
acteristic timet1 , where

t15
1

G
tanh

\V0

2kT
. ~59!

Note that Eq.~59! holds for finite temperatures as well as
the quantum limit. The phase-diffusion timet1 is inversely
proportional toT at high temperatures,

t15
1

G

\V0

2kT
~kT@\V0!, ~60!

just as the other characteristic timet2 . In the low-
temperature or quantum limit, however, itsaturatesto a
value

t1
(0)5

1

G
~kT!\V0! ~61!

~see also Fig. 5!. The crossover from high-temperature b
havior to the quantum limit behavior takes place atkT
;\V0. We point out thatt1 is related to the spectral den
sities Sww(v) and Suu(v) of the internal phasesw and u.
This indicates that there is a relation between dephasing~at
finite temperature! and the reduction of the persistent curre
at zero temperature, which is determined bySww(v).

We point out that Eq.~55! and Eq.~56! do not hold for
arbitrarily long times. In reality the mean square displac
ments^uc6(t)2c6(0)u2& are bounded since the wave fun
tion cR(t) is normalized to 1. The fact that̂ uc2(t)
2c2(0)u2& @Eq. ~55!# grows without bounds is an artifact o
the linearization of Eqs.~14!–~16! and ~20!.

In summary, we find two characteristic phase-diffusi
timest2 andt1 , related to the projection of the equilibrium

FIG. 5. The characteristic phase diffusion timet1 normalized
by the decay rateG, defined in Eq.~23!, as a function of 2kT/\V0

in a logarithmic scale. For high temperatures,t1 is inversely pro-
portional to the temperatureT. For low temperatures,kT!\V0, it
saturates at a valuet15G21.
2-8
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ZERO-POINT FLUCTUATIONS IN THE GROUND STATE . . . PHYSICAL REVIEW B 63 165312
statec(t) onto the ground state and the excited state. T
time t2 , associated with the projection on the ground sta
is related to the loss of coherence in the global phasex and
diverges as the temperature goes to zero. The timet1 , on
the other hand, characterizes the loss of coherence in
internal phasesw andu, and saturates to a finite value in th
limit of zero temperature. This indicates that even at z
temperature, coupling to the external circuit causes exc
tions of the ring into the excited state. In the zer
temperature limit these excitations still decay in a finite tim

V. CONCLUSION

We have investigated the persistent current in a nor
metal ring coupled capacitively to a resistive external circ
using a Langevin equation approach. We have shown
the quantum fluctuations in the external circuit suppress
persistent current at zero temperature, thus confirming
earlier Bethe ansatz result.1 Within the same framework, bu
at finite temperature, we have derived two characteri
phase-diffusion timest2 and t1 , which are the phase
diffusion times of the projections of the wave function of t
ring to the ground state and the excited state, respectivel
a ring that is disconnected from the external circuit. W
show thatt1 is related to the spectral densities of the ‘‘i
ternal’’ phasesw and u of the wave function of the ring
which are also responsible for the reduction of the persis
current. Whilet2 diverges in the zero-temperature limit,t1

saturates to a finite value.
The phase-diffusion rates are not needed to obtain

persistent current, the quantity of principal interest. In f
for small systems a direct calculation of the quantity of
terest, the persistent current, the conductance, or its fluc
tions, without first calculating a dephasing rate, is prefera
In very small systems the dephasing rate is itself a sam
specific quantity that is characterized by a distribution31

Sample specific rates are clearly no longer a concept th
that useful. On the other hand, the phase-diffusion rates
culated above clearly demonstrate that due to the interac
with the bath the state of the ring-dot system acquires
overlap with the excited state of the decoupled ring-dot s
tem. This overlap, taken as an initial state, decays with t
even in the zero-temperature limit with a rate determined
t1 . To obtain this result, we require only that the combin
coupled system~ring-dot and external circuit! is in an equi-
librium state and not each system separately as is somet
assumed.32

In this work we have used the term ‘‘phase-diffusio
times’’ in distinction to ‘‘phase breaking times.’’ In the
ground state considered here polarization fluctuations red
the amplitude of the persistent current but still leave even
ally a coherent state in place. This is very different fro
situations in which an initial coherent superposition evolv
into a final incoherent state.33

Persistent currents have played a mayor role in the de
opment of mesoscopic physics and continue to be a sub
of considerable interest. For a brief review of the status
the persistent current measurements we refer the read
Ref. 34. While for semiconducting rings theory and expe
16531
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ments seem to agree, for metallic diffusive rings, the fact t
theory predicts a persistent current that is considera
smaller than that found in experiments, remains. In meta
diffusive samples one is thus lead to search for effects wh
enhance rather than reduce the persistent current. It woul
very intriguing to think that the polarization fluctuations
an environment could give rise to a persistent current ab
that found in the decoupled system, for instance, in a sit
tion when the ring arm and dot are not at resonance. For
model investigated here the effect of the bath is, howev
always a suppression. In contrast, nonequilibrium radiat
has been shown to enhance the persistent current in me
diffusive samples.10 Even in a purely classical system no
equilibrium noise can generate circulating currents.35

An experimental investigation of the role of polarizatio
fluctuations either for the persistent currents or for the c
ductance of a mesoscopic system would clearly be very
teresting. As shown in our work, bringing nearby gates t
mesoscopic conductor should affect the coherence prope
of the system. An experimental situation in which the co
pling to gates could be tuned would lead to an additio
parameter that would permit introduction of another dime
sion into the investigation of phase breaking. In fact, a sim
lar investigation for an array of Josephson junctions abov
backgate has already been performed.36

In semiconductors mesoscopic systems are alre
formed with the help of gates.37 Their role in the dephasing
of open conductors is discussed in Ref. 31. While the volt
at gates is maintained with high precision at low frequenc
at higher frequencies their impedance is finite. For an exp
mental investigation of the role of nearby gates on
dephasing process the characterization of the impedance~dy-
namical conductance! over the relevant range of frequencie
is needed. We hope that the future will bring us experime
that combine high precision dynamical conductance m
surements with the investigation of the coherence proper
of mesoscopic systems.

Note added in proof:Our phase-diffusion ratest2 andt1

can be related to the relaxation rate and the dephasing
given by Grifoni, Paladino and Weiss.39 To find the dephas-
ing rate we write the time evolution of the stateCR(t) @see
Eq. 54!# with the help of an overall phaseh(t) in the form
CR(t)5exp(2ih(t))CR(0). For times scales over whichh
remains small we haveCR(t)5(12 ih(t))CR(0) or
CR(t)2CR(0)52 ih(t)CR(0). The scalar product of
CR(t)2CR(0) with itself is uCR(t)2CR(0)u25uh(t)u2 and
its expectation value is thus just̂ uh(t)u2&5^uc2(t)
2c2(0)u2&1^uc1(t)2c1(0)u2&. The dephasing rate is 1/t
5^uh(t)u2&/2t and is therefore given by

1/t51/2t111/2t25
G

2
coth

\V0

2kT
1

pakT

\

e0
2

V0
2 . ~62!

The dephasing rate found here for the ground state of
ring-dot system is identical with the dephasing rate found
the loss of phase coherence of non-equilibrium states in s
boson systems on short and intermediate time scales39 @see
Eq. ~4.5!#.
2-9
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APPENDIX A: COULOMB INTERACTIONS AND
DISPLACEMENT CURRENTS

In this Appendix, we briefly discuss the electrical co
pling of the ring and the external circuit. The fluctuations
the charge in the ring and the external circuit are not a
trary but are connected by the flow of a displacement cur
between the ring and the external circuit. We can express
coupling between the ring and external circuit in terms of
displacement current. Since the coupling between these
systems is crucial, we present first a discussion of the
placement currents.

In our model the charges and potentials are related vi

Q05C1~V02Ud!, ~A1!

Qd5C1~Ud2V0!1Ci~Ud2Ua!, ~A2!

Qa5C2~Ua2V`!1Ci~Ua2Ud!, ~A3!

Q`5C2~V`2Ua!, ~A4!

where we have introduced the parallel capacitanceCi[CL
1CR . In the following, we shall also need the external~se-
rial! capacitanceCe

21[C1
211C2

21 , as well as the paralle
and the serial total capacitancesC[Ci1Ce and C0

21

[Ci
211Ce

21 . The whole structure, that is, the ring togeth
with the external circuit is charge neutral. As a matter of fa
it follows from Eqs. ~A1!–~A4! that Q01Qd1Qa1Q`

50. The ring and the external circuit taken separately, ho
ever, do not need to be neutral. The total charge of the
Qd1Qa is balanced by the charge on the external capaci
C1 and C2 , Q01Q`52(Qd1Qa), as follows from Eqs.
~A1!–~A4!. As the ring and the external circuit do not e
change particles, the charges on the ring and in the exte
circuit are conserved, and it is more convenient to cons
the deviations from a reference state. We denote these d
tions bydQd on the dot and bydQa on the arm, and simi-
larly by dQ0 anddQ` for the external circuit. They obey th
relationsdQd1dQa5dQ01dQ`50. For time derivatives,
it is of course irrelevant whether we consider total charge
deviations.

The current flowing out from the capacitorC1 is a pure
displacement current

I 152Q̇05C1

]

]t
~Ud2V0!, ~A5!

whereas the currents flowing through the right and the
junction, respectively, are particle currentsI L/R

p augmented
by displacement currents

I L5I L
p1CL

]

]t
~Ud2Ua!, ~A6!
16531
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I R5I R
p1CR

]

]t
~Ud2Ua!. ~A7!

The particle currents are related to the charge on the do
I L

p1I R
p52Q̇d . At each node we haveI 11I L1I R5I 22(I L

1I R)50, and thusI 11I 250. These equations correspon
to the law of current conservation at the nodes of an elec
cal network.

We can express all electrical quantities of interest in ter
of the external biasdV[V02V` and the charge deviation
dQd . We combine Eqs.~A2! and ~A3! and the condition
dQd1dQa50 to obtain the potential difference inside th
ring:

Ud2Ua5
Ce

C
dV1

dQd

C
. ~A8!

The charge deviationdQ0 on the capacitorC1 is found from
Eqs.~A1!, ~A4!, and~A8!,

dQ05C0dV2
C0

Ci
dQd , ~A9!

where we have used the identity

Ce

C
5

C0

Ci
, ~A10!

whence we obtain for the current flowing in the extern
circuit

I 15
C0

Ci
Q̇d2C0dV̇. ~A11!

In the circuit containing a current noise source~see Fig. 2!,
the currentI 1 flowing out of the circuit augmented by th
currentdI coming from the noise source must equal the c
rent through the resistorI 5dV/R, namely,

dV/R5I 11dI . ~A12!

Together with Eq.~A11!, this gives Eq.~1!.

APPENDIX B: THE CIRCULATING CURRENT

The equilibrium persistent currentI is a quantum and sta
tistical average that can be obtained from the derivative
the free energyI 52c]F/]F. Some discussion is required
if we are, as in Ref. 1, concerned with current fluctuatio
Naively, we might want to investigate the fluctuations of t
persistent current by considering the second-order deriva
of the thermodynamic potential. However, such a proced
works only if the observable of interest commutes with t
Hamiltonian. Moreover, as pointed out above, the true a
physically relevant currents is the total current~particle cur-
rent plus displacement current!. Whereas the displacemen
current needs not to be considered as long as we are i
ested in average quantities only, this is not true, if we c
sider fluctuations of the current. For the model conside
here, we can derive expressions for the current operators
are particle operators weighted according to the distribut
2-10
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ZERO-POINT FLUCTUATIONS IN THE GROUND STATE . . . PHYSICAL REVIEW B 63 165312
of the geometrical capacitances of the system.
Consider first for a moment the electrically isolated loo

In this case the capacitances to the exterior circuit areC1
5C250. From Eq. ~A2! we find Qd5Ci(Ud2Ua) and
thus we can also write the currents through the left a
right junctions, Eqs. ~A6! and ~A7!, in terms of the
charge on the dot as,I L5I L

p1(CL /Ci)dQd /dt and I R5I R
p

1(CR /Ci)dQd /dt. Using particle conservation,I L
p1I R

p

2dQd /dt50, to eliminate the time derivative of the charg
we find immediately that the currentcirculating in this loop
is Î c[ Î L52 Î R with

Î c5
CRÎ L

p2CLÎ R
p

Ci
, ~B1!

whereCi5CL1CR . The circulating current is thus in gen
eral not determined by the particle currents but by an aver
of these currents weighted according to the Coulomb in
action ~capacitance ratios!. Expressions of this type are fa
miliar form the dynamic transport through double barrie
but seem to be novel for persistent currents. We empha
that Eq. ~B1! does not mean that the particle currents c
now be calculated from the noninteracting problem. The
namic particle currents depend on the self-consistent po
tial distribution. For an illustration of this point we refer th
reader to Ref. 38 where dynamic current noise spectra
double barriers are compared based on calculations usin
particle currents of the noninteracting problem and calcu
tions using the particle currents of the interacting problem

Next let us consider the system coupled to the exte
circuit. In this caseC1.0 andC2.0. We can proceed a
above. We first express the time derivative of potential d
ferenceUd2Ua in terms of the time derivative of the charg
on the dot and the currentI 15dQ0 /dt5C1d(V02Ud)/dt
@see Eq.~A1!#. Using current conservationI 15I L1I R and
particle conservationI L

p1I R
p2dQd /dt50, we can again

eliminate the time derivative of the chargeQd and find for
the currents through the left and right barrier,

Î L5 Î c1~CL /Ci !I 1 , ~B2!

Î R52 Î c1~CR /Ci !I 1 , ~B3!
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with Î c as given in Eq.~B1!. The currentI 1, which can be
induced with the help of the external circuit, is divided in
the two branches of the ring-dot sample also according
capacitance ratio.

What is observed in a measurement of the magnetizat
It is important to note that the external circuit~see Fig. 1!
also forms a current loop and depending on the geometr
the circuit also contributes to the fluctuation of the magne
zation. Suppose, the circuit of Fig. 1 is a planar structure
the x-y plane. Let the ring with the in-line dot enclose a
areaAr and let the external circuit~excluding the ring! en-
close an areaAe . For this circuit the magnetic moment ca
be viewed as being generated by a currentI L enclosing the
area A1 and by a currentI 1 enclosing the areaAe . The
magnetic moment is thusm5(1/c)(I LAr2I 1Ae). Of course
the topology of the current distribution matters: If we co
sider the external circuit to be above the ring-dot struct
instead of below as shown in Fig. 1, the magnetization
m5(1/c)(2I RAr1I 1Ae). In these two circuits the externa
circuit gives magnetization contribution into opposite dire
tions. The average magnetization of the two circuits is j
m5(1/c)I cAe . A third circuit that permits us to investigat
the magnetization of the ring and the external circuit se
rately is a structure in which the ring lies in thex-y plane and
the external circuit say in thex-z plane. Then the magneti
zation ismz5(1/c)I cAr and my5(1/c)I 1Ae . I c appears as
the most natural generalization of the equilibrium persist
current. In Ref. 1 we have investigated the fluctuations ofI c .

All the above expressions are based on linear relati
between currents, charges, and potentials. All the above
pressions are thus valid also for operators. We now prese
specific expression for the operator of the circulating curr
used in Ref. 1. Let us consider the particle current opera
Î L

p through the left andÎ R
p through the right tunnel barrier. In

terms of the Hamilton operatorsĤL and ĤR responsible for
the tunneling across the left and the right tunnel barrier,
spectively, they readÎ L/R

p 52 i /\@ĤL/R ,Q̂d#. In other words,
they are equal to the decrease of the charge on the do
unit of time through the right and left junction. For the two
level system, in a basis in which the Hamiltonian is real@see
Eq. ~9!# we have
n

Î L
p52

e

\

6tLtR sin~2pF/F0!sx1@ tL
26tLtR cos~2pF/F0!#sy

AtL
21tR

262tLtR cos~2pF/F0!
, ~B4!

Î R
p5

e

\

6tLtR sin~2pF/F0!sx2@ tR
26tLtR cos~2pF/F0!#sy

AtL
21tR

262tLtR cos~2pF/F0!
. ~B5!

Using the particle current operators in Eq.~B1! leads to the operator given by Eq.~42!. With the help of this operator we ca
investigate the average persistent current and the fluctuations@see Eq.~7! of Ref. 1#.
2-11



b

v

et

es

v

,

r-

p.

ith
w-
,

-
M.

,

he
he
es
the

.
in
ices

os-

n,

u-
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