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Zero-point fluctuations in the ground state of a mesoscopic normal ring
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We investigate the persistent current of a ring with an in-line quantum dot capacitively coupled to an
external circuit. Of special interest is the magnitude of the persistent current as a function of the external
impedance in the zero-temperature limit when the only fluctuations in the external circuit are zero-point
fluctuations. These are time-dependent fluctuations that polarize the ring-dot structure and we discuss in detalil
the contribution of displacement currents to the persistent current. We have earlier discussed an exact solution
for the persistent current and its fluctuations based on a Bethe ansatz. In this work, we emphasize a physically
more intuitive approach using a Langevin description of the external circuit. This approach is limited to weak
coupling between the ring and the external circuit. We show that the zero-temperature persistent current
obtained in this approach is consistent with the persistent current calculated from the Bethe ansatz solution. In
the absence of coupling our system is a two level system consisting of the ground state and the first excited
state. In the presence of coupling we investigate the projection of the actual state on the ground state and the
first exited state of the decoupled ring. With each of these projections we can associate a phase-diffusion time.
In the zero-temperature limit we find that the phase-diffusion time of the excited state projection saturates,
whereas the phase-diffusion time of the ground state projection diverges.
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[. INTRODUCTION coupled to a normal wire. In contrast, investigations on
dephasing in systems driven out of the ground state are nu-

An interesting aspect of quantum systems is the fact thamerous and there exists a considerable literature. In particu-
even at zero temperature there are fluctuations that manifekr, zero-point fluctuations have been of interest, following
themselves in observables that do not commute with théecent experimental work by Mohanty, Jariwala, and Webb
Ham”tonian of the System_ In mesoscopic Systems phase C@.n Weak localization in metallic diffusive wires. These ex-
herence plays an essential role, and it is thus important to agkeriments probe a transport state and not the ground state of
to what extent coherence is affected by zero-point fluctuathe system. In the experiments of Mohanty, Jariwala, and
tions. To investigate this question we consider reund Webb it is the weak-localization effect in the linear response
stateof a normal mesoscopic ring threaded by an Aharonov_conductance of the System which is of interest. Subsequently
Bohm flux and capacitively coupled to an external circuit.t0 these experiments the role of zero-point fluctuations in
Such a ring exhibits a persistent current that is a direct coneak-localization effects has been very much del5afethd
sequence of phase-coherent electron motion over distanc@snumber of works have appeared that suggest that the ex-
that are large compared to the ring circumference. At zer@€riments can possibly be better explained without invoking
temperature such a ring interacts with an external C”(e ZerO-pOint ﬂuctuation%q Weak localization is a quantum ef-
Fig. 1) only due to zero-point fluctuations. More precisely, fect that survives ensemble averaging and thus the dephasing
the external circuit can, through the generation of zero-pointates that count are specific to the fact that we deal with
voltage fluctuations, induce polarization fluctuations in thetime-reversed trajectories and that an ensemble average has
ring, which in turn affect the magnitude of the persistentto be performed. The absence of an effect of zero-point fluc-
current. The source of the voltage fluctuations in the externduations found in Refs. 7 and 8 might give rise to the mis-
circuit are the resistive elements. We can thus ask: How does
the persistent current of the ring depend on the resistive
properties of the external circuit? For the system shown in
Fig. 1, Ref. 1 provided an answer by mapping a simple
model of a ring with a quantum dot and external circuit on
the anisotropic Kondo model and using the known Bethe
ansatz solutions of this problehThe purpose of this work is
to consider the same model and to provide a discussion that
is physically more transparent. The discussion given below
is, however, limited to the case of weak coupling between
the ring and the external circuit.

Investigations of the coherence properties of the ground I,
state of mesoscopic structures are rare and concern mainly —
superconductors. Hekking and Glazmanvestigate a thin
superconducting loop in an electromagnetic environment; FIG. 1. Ring with an in-line dot subject to a fluk and capaci-
Oshikawa and ZagosKirconsider a superconducting grain tively coupled to an external impedanzg,,.
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taken impression that zero-point fluctuations are quite gener- I Vo
ally without any effect on the coherence properties of a —
system. The example presented here shows that zero-point M TSI

fluctuations are clearly important for the coherence proper-

ties of the system, although perhaps not for weak-

localization phenomena. Below we consider a specific ring 7 _ @

(not an ensembjeand ask how the maximum amplitude of e -

the persistent current is affected by zero-point fluctuations.
The effect of a thermal bath on the persistent current has

been discussed by Landauer andtier'! and Biitiker'?13

within a Debye relaxation approach. In this approach, how- V.

ever, the bath affects essentially only the population of dif- *

ferent states, but not the electronic states of the ring itself. As FIG. 2. The external impedan@, () has been replaced by a

a consequence, at zero temperature, this model exhibits ngsistorR with a noise source in parallel in order to take quantum

effect due to zero-point fluctuations: the magnitude of thefluctuations into account.

persistent current is independent of the coupling strength to

the bath. Still a different model, introduced by tBker,"*  sourcesl(t) and of the current through the ring-dot struc-

considers a ring coupled via a side branch to a normal eleaure. In terms of the potential differen@/=V,— V., across

tron reservoir. Due to the connection between reservoir anghe ring-dot structure we find that the coupling between the

ring a carrier in the ring eventually escapes to the reservoiring-dot structure and the external circuit is described by

and is replaced with an incident carrier with a phase that is

unrelated to that of the escaping carrier. This model predicts . 0

even at zero temperature an amplitude of the persistent cur- OVIR==CodV+ =Qq+4l(1). @

rent that depends on the coupling strenftt® This effect is '

not due to zero-point fluctuations but results from the ex-Here we introduce the capacitancg'=C; '+ C_*, which

change of carriers between the reservoir and the ring. If thg the series capacitance of thgernal capacitanceC;=C,

ring is coupled to a side branch of finite length, the side+ Cy and theexternalcapacitanc€; *=C; *+C, ! and the

branch can nevertheless generate effects that are similar Eharge on the daf,. A detailed consideration of the circuit

that of a reservoir, especially if only ensemble-averagegquations leading to Eql) is given in Appendix A. The

quantities are considered. This is correct only if the sidengise source in parallel to the resistor generates a current

branch has a charging energy that is weak compared to theyise  spectrum, (8l (w)dl(w’))=278(w+0')S (o),
level spacing?® If the charging energy is large compared to given by

the level spacing the side branch has no effect on the

ensemble-averaged persistent curfért.is thus interesting ho ho
to ask whether there exist models that are strictly canonical Si(w)= ?cotr( ) ,
(without carrier exchange with a reseryaand for which the

sample specific persistent current depends nevertheless Qjherek is the Boltzmann constant arfdis the temperature.
the prOpertieS of the bath. The model investigated in thlsro Comp|ete the description of this system, we need to in-
work examines a ring that is coupled to the bath only via theestigate the dynamics of the ring in the presence of the
long-range Coulomb force. fluctuating external voltagéV(t).

The mesoscopic ring that we consideee Fig. 1 is di- First, we consider the effect of the external circuit in lin-
vided into two regions by tunneling barriers. It is a ring with ear response. Since we are only interested in the weak-
an in-line quantum dot>*® This model allows a simple coupling limit, we can choose the ground state of the ring-
characterization of the electrostatic pOtential in terms of Onlydot System in the absence of an external Circuit as a state
two variablesU (for the do} andU, (for the arm and by around which we can expand. What we need is the linear
the chargeQy andQ, . The two regions, the dot and the arm response relation betweedQq(t) (the deviation of the
of the ring, are coupled via capacito@; and C, to the  charge away from a reference states a function of the
external circuit. The external circuit is described by its im- external voltagesV/(t). Note that both of these variables are
pedanceZe,;. The potential at the capacit@r; is denoted by in fact operators. Here, we proceed as in the random-phase
Vo, the charge byQ,. Likewise, we write the potential and approximation and use a linear response function to describe
the charge on the capacit@, asV.. and Q... the connection between these two quantities. In linear re-
sponse we can Fourier transforé@Qg(t) and 6V(t). The
linear response coefficient gives the increment of the charge
on the dot in response to a variation of an external voltage: It

To be specific, we consider a purely resistive externais thus a dynamic capacitance that we denoteQyyw)
impedanceZ.,.=R. The fluctuations generated by this re- = §Qq4(w)/éV(w). Similarly, the relation between the
sistor can be represented as a noise source in parallel witharge Qg piled up on the external capacit@; and the
the resistor as shown in Fig. 2. The curré®WR through the applied voltage is determined by the overall capacitance of
resistor must be equal to the sum of the current of the noisthe ring dot-structure vis-gis the external circuit, and is

2KT @

II. LANGEVIN EQUATION
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denoted byC ,(w)=6Q(w)/6V(w). From circuit theory duced above, we are considering only two states, namely the
(see Appendix A it follows that these two capacitances are topmost electron being in the dot, which we represent by the
related: vector (1,0), and the topmost electron being in the arm of the

ring, written as (0,1). The dynamics of these two states is

Co described by a time dependent Hamiltonian
Cu(@)=Co~ ¢ Calw). 3 Y P
_ _ ' _ . he(t)  hAg  Aw(t)
The noise sourcésee Fig. 2 sees a total impedan@ w), Hring= 5 0T 5 oyt 5 1, 9

which consists of this capacitance and the resistance:
where o, and o, are Pauli matrices, andl is the identity
. 4) matrix. The prefactofi v(t) = — C,6V2(t) is a global shift in
energy. We split the detuning(t) into a time-independent
and a time-dependent parft) = e+ de(t), with

1 —_—
Z(w)

With these response coefficients Efj) leads to

1
ﬁ—leM(w)

2
, - —N,+
V() =Z(0)5l(0)=[1—i0RC,(w)] 'RSl () (5) hgozedmﬂ)_eamw_% .
and the spectrum of the external voltage is thus
e
Rh wcoth(£ w/2kT) = (Qax ~Quo), (10
Swlw)= > > (6)
1+ 0 [RC ()]
e
Our next task is now to find explicit expressions for the 58(t)5g§5V(t)- 11
I

capacitance€ ,(w) andCy(w).
The effective background charge on the dotQgy=eN,
A. The dynamics of the ring +CgVy, Where the first term is a built in background charge
and the second term can be externally controlled by applying

The dynamics of the charge on the dot, determined b% static voltage across the ring-dot structure. If coherent tun-

Qq. is in the Heisenberg picture given by neling is neglected the ground states of the ring Witand
P Z N+1 carriers are degenerate if the polarization charge is
—1Qa= 7 [Fring . Qal. (7 equalto
. 1 C
where H,i,q is the Hamiltonian of the ring in an applied Qd*Ee(NJrE + 5 (€an+1) ™ €am)- (12)

external potentiabV. We assume that the tunneling ampli-
tudes are much smaller in magnitude than the level spacinfhus Q,,=Qg, is the (classical condition at which the

in the dot and the level spacing in the arm. Moreover, weCoulomb blockade is lifted. Quantum mechanically the state
assume the electrons to be spinless. As discussed in Refs. #0the ring and the state in the arm of the ring are in reso-
and 21 a spin singlet appears in the case of electrons withance wherQ4,=Qq, and the persistent current exhibits a
spin, and the tunneling amplitude is enhanced by a factor gbeak. Our simple two-level picture is applicable whenis

V2. Our choice of parameters excludes the Kondo effect small, that is, in the vicinity of a resonance.

and also if the electron spin is taken into account. As a mat- We want to find the time evolution of a statét), which

ter of fact, the Kondo effect appears only at a tunnelingwe write as

amplitude comparable to or larger than the mean level

spacing? We note that the number of charge carriers in the 0 ol

ring is conserved. Following Btiker and Stafford®?! we A cos; €

consider hybridization between the topmost occupied elec- y=er? 0 ; (13
tron level in the arm and the lowest unoccupied electron sinze*'*”’2

level in the dot,e; and gy 1y only. To simplify the no-

tation, we denote the tunneling amplitudes between the lewyith 9, ¢ and y real. This is the most general form of a
els €am and eqn+1) by t, for tunneling through the left normalized complex vector in two dimensions. In terms of
junction and byt for tunneling through the right junction, ¢ ¢, and the global phasg, the time-dependent Schro

and introduce the total tunneling amplitude dinger equation reads
hA 27d = — _
Zo: \/tf+t2i2tLtRcos o ®) o= —gp— de(t) — Aycotd cose, (14)

where®,=hc/e is the flux quantum, and the sign in front of 0=—A¢sing, (19

the cosine depends on the parity of the number of electrons
in the ring. The sign is positive, if the number of electrons is LA cose (16
odd, and negative if the number is even. In the model intro- X Osing
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Note that Eq.(16) describing the dynamics of the global which as we shall see in Sec. Il E is a relaxation rate due to

phasey is special in the sense that it is driven #yand 6 but
it has no back effect on them. Moreovat,is irrelevant for

the coupling of the ring-dot system to the external circuit.
Here « is a dimensionless coupling constant

expectation values such as the persistent current or the

charge on the dot. It plays an important role, however, in the R
discussion of phase-diffusion times; see Sec. IV. The system a

of the two equations fop and 6, Egs. (14) and (15), is
closed by Eq(1),

. d A

Qd:ﬁ<¢(t)|Qd|¢(t)>r 17
with ¢(t) defined above, and

. (1 0

Qq=e 0 0 +eN, . (18)

We find
. d 10 e
Qd—eaw(t)l((, 0)|w<t>>——§(sma>e. (19
Using this result and Ed1), gives

. RCG e . .
5V=—COR5V—TE(sm0)0+R5l(t). (20

(24)

Co\?
R | Ci
with Ry=h/e? the quantum of resistance. We will immedi-
ately see the usefulness of these definitions.

Now, we switch on the noisedl(t). We seek
o(1),0(t), x(t), andsV(t) in linear order in the noise cur-
rent ol (t). We expandg(t) and 6(t) to first order around
the ground state,p=0 and 6=6,. For S¢(t)=¢(t)

— g, 66(t)=6(t)— 6y, we find in Fourier space,

2

—iwdp=— s+ 250, (25)

Ao
—iwdh=—Ay50, (26)
i0s= |~ se—To0+ SR8 2
lw 8_7'_RC & (6} % a . ( 7)

We also expand the global phagé) around its evolution in

the ground stateyxy(t)=Qst, and define Sx(t)=x(t)
Equations(14), (15), and(20) form a closed system of equa- — xo(t). In Fourier space, Eq16) becomes
tions in which the external circuit is incorporated in terms of
a fluctuating curren#l (t) and of an Ohmic resistdr. In the
next section, we investigate Eq4.4), (15), and(20) to find
the effect of zero-point fluctuations on the persistent current
of the ring. We note that there is no effect of the global shift in energy,
hv(t), as it is quadratic in the voltagéV, and we are only
interested in effects up to linear order &V.
. . : In the following section, we evaluate the linear response

_ First, _Iet us dls_cuss the stationary states of_ the system Oc;f the ring, described by Eq€25) and (26) to an applied
differential equations, Eqg14), (15, and (20) in the ab- external potentialéV(w), giving the frequency-dependent
sence of the noise ternal(t). We take G=p<<27 and 0 P @), giving q y-aep

=< <. This gives immediately sip=0 and consequently a capacitance ,(w).
stationary state hag= ¢q, with ¢q=0 or ¢g= 7. With this
it is easy to show that in the stationary state we must have

. €0
—I w(s)(:QOA—ﬁﬁ. (28)
0

B. Expansion around a stationary state

C. Capacitance of the ring and impedance

6= 6o, with We evaluateSQy(w) to first order in6V(w), using Egs.
(25 and (26), which gives the dynamic capacitan€g(w)
Cothy= t%. ) = 9Qu(@)/8V(w),
0
2 2
The lower sign applies fopg=0. This is the ground state Cd(w)zcoe l(2C) ZAO 5. (29)
for the ring-dot system at fixesl(t)=¢,, and the upper sign 8y 0°—Qg

holds for ¢g=m. The energy of the ground state is

— #Q,4/2; thus the global phase jg(t)=Q,t. Here The frequency-dependent capacitance as seen from the exter-

nal circuit read§see Eq.(3)],
O2=e2+A2 (22) A2
0
wz—Qg '

e?/(2C;)

C,u,(w):CO 1- hQO

is the resonance frequency of tfdecoupled two-level sys- (30
tem. We also introduce the “classical” relaxation timgc

=RGo, and a relaxation rate The frequency-dependent capacitari@g contains in addi-

tion to the geometrical capacitanCg a term that arises from
(23) the dynamic polarizability of the ring. In the low-frequency
regime the polarizability enhances the capacitance,
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c el 1e e2/(zci) Ag 30 : : 1.5
«(0)=Cyq ThO, 02 ‘: i
!
|
Co\2 2et.|? 20 i 1
=Cot|—= . —_ P
Cil {[e(Quo—Quy )/CT?+4]t.[?}*? g Ak
!
(31) o) i
10 e 105
The zero-frequency-capacitance has already been obtained [
by Blitiker and Stafford®?! The zero-frequencyelectro-
chemical capacitance, Eq31), can be obtained as a second-
order derivative of the grand canonical potertiatith re- 0 o 0 Qo 0
spect to the voltage applied across the ring-dot system or as ° ®
a dynamic response to a slowly varying voltage across the . o
rlng_dot System Slnce the tunnellng amplltuﬁg depends FIG. 3. The -Spectl’al funCtIOSXX(w) at f|n|te temperatur(kT
periodically on the magnetic flu [see Eq(8)] Cﬂ(w) can =100 (solid line) and at zero temperatutdashed ling The left

y axis carries the scale for the finite-temperature curve, the right one
carries the scale for the zero-temperature curve. The parameters are
the same as in Fig. 4; in additiong= Q4 /2.

be modulated by varyingb. The electrochemical capaci-
tance exhibits a peak as the bi¥g is varied. The peak
shows up at resonanc®q,=Qq, , corresponding toeg
=0. At the same point, there is also a peak in the persistent , > 5, 4 ) . _ s
current. A recent experiment by Debloek al?’ demon- = ((eg/)S,(w) [see Eq(28)]; therefore it exhibits a

strated indeed a flux-dependent polarizability of mesoscopiE’Ole in the vicinity ofw=0 for finite temperatures
rings. . - KT €2 1
At high frequencies the polarization cannot follow the ex- Sy (@) ~27ma—— — —
ternal voltage, and the capacitance E2D) is smaller than h Q5w
the geometrical capacitance. Ai=(, the capacitance ex- hereas in the quantum limi=0 the order of the pole is
hibits a resonance characteristic for dielectric functions. Theeqyced by 1,
ring by itself has no damping mechanism; therefore the reso-
nance shows up as a pole. The damping is provided by the 5
dissipation in the external circuit. SXX((D)~27TH? Tol (0—0) (36)
From Egs.(4) and(30), we find 0

(w—0), (35

82

(see Fig. 3 These two last results do not affect the persistent

1 1 0?— Q% —iwrre(w?—Q5—T/15¢) current, but they are of great importance in the discussion of
Z(o) R w202 - (32 the rates of phase diffusion in Sec. IV.
This expression for the impedance ‘“seen” by the noise E. Weak coupling

source contains all the information needed to calculate the

) o Within the approach outlined above, we can expect to
various spectral densities.

reproduce the exact result for the reduction of the persistent
current only in the limit of weak coupling between the ring-

D. Spectral densities dot system and the external circuit. This means thatpthe
We solve Eqs(25)—(27) for 8¢ by eliminating 56 and  tential fluctuations of the system and the external circuit are
de, and obtain after some algebra only weakly coupled. Thus weak coupling between the ring
and the external circuit is achieved by letting the capaci-
_eCy(~iw)Z(w) 5 33 tances coupling the two systems become very sffiall,

C,,C,—0, for a fixed resistancR. This entailsCy— 0, thus
the coupling strengthr between the ring and the external
It follows immediately thaf d¢(w))=(66(w))=0 and that  circuit, Eq.(24), is small against 1. Note that in this approxi-
(6e(w))=0. The spectral densities @k (w), §6(w), and  mation theRC time 7rc becomes very small as well.

their cross-correlations can all be expressed in terms of the In the following paragraph, we calculate the poles of
current noise spectral density. We hav&y(w)  Z(w), in the approximatiolC,— 0. The small parameters in

¢ RC W03

= (A5 09)S,(0), Syp(w)=—i(A¢/w)S,,(w), and this case arergcxC, and I'=C3. Trle equatior] Z(w)]~*
=0 has one solution behaving &5 ~. To leading order in
_ €[ Co|?0?|Z(w)|? Co, it reads %
Sepl@) =32 c (wz—_ﬂgysu(w)- (34) ’ |
i
We will relate the reduction of the persistent current to wz=——. (37)
S,.(w) in Sec. lll. While the spectral densities fokp and RC

60 are finite at zero frequency, the spectral density of theThus in the weak-coupling limit charge relaxation across the
global phase o6y is not. We have S,,() mesoscopic system becomes instantaneous. The other two
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30

1.5

Spe(®)

FIG. 4. The spectral functio,,(w) at finite temperaturéT
=104Q, (solid line) and at zero temperatufdashed ling The left

y axis carries the scale for the finite-temperature curve; the right one
carries the scale for the zero-temperature curve. The parameters ar

RZSRK, C0=0.1Ci, A0=0.5QO, andF=O.2§)o.

solutions,w . , are of zeroth order iI€,. Up to and includ-
ing corrections of orde€?, they are

r

we=*0oiz, (38)

with a relaxation ratd” introduced in Eq(23). The ratel’

describes the relaxation of perturbations with a frequenc

close to the eigenfrequency of the isolated ring-dot syste
In Sec. IV it is shown thafl’ is also related to a phase-
diffusion time. The denominator in Eq34) can now be
written as

( 2_92)2 2
Tan?‘%(‘“z [(0— Q)2

. 1
Téc
+(T12)%[(0+Q0)2+(T/2)%]. (39
For frequenciesoTrc<<1, the denominator takes the form
(0?-05)? 1 )
TZZ gzl(0=Q)

+(T12)?[(w+Q)?+(T'/2)?]. (40

PHYSICAL REVIEW B 63 165312

tral densityS,,(w) behaves for smab like |o| at T=0 and
goes to a constant for finife All the three spectral densities
exhibit peaks of widtH™ at = Q.

The spectral density of the global phaSg (w) (Fig. 3)
exhibits peaks atv=* (), as well. More important, how-
ever, is the fact that it has a poleat0, as already pointed
out in the previous section.

Ill. PERSISTENT CURRENT

In the following, we calculate the persistent current as a
gquantumand statistical average of the operator of the circu-
lating current

- 0 5
l.= 4
c j* o ’ ( )
Where 7 is given by
el , e _27®
j:—% tL+tRi2tLtRCOSTO i‘tLtRSInTO
. CR 2 CL 2 CR_CL 27d
—1 a L—a RiTtLtRCOSTO . (43

Here the first term is a pure particle current contribution,
hereas the second term is a consequence of interactions.
or the average persistent current of interest here, it is only

the first term that contributes. A derivation of E¢3) and a

discussion of the relationship betweknand the magnetiza-

tion is given in Appendix B.

The expectation value of the persistent current for the
state given in Eq(13) reads

« 1 ,
HO=((O)]l|p(t))=5ReT(sing)e'?. (44

We are, however, interested in tBgtistically averagedf
the persistent curreft (t)), given by

A 1 :
(BOlllp(1))=sRe[K(sind)e )], (49

where the double bracket indicates a quantum and statistical

Since in the quantum limit itis always necessary to introducgyerage. Therefore, we have to calculate the correlator
a cutoff, Eq.(40) is valid over the entire range of frequencies ((sin@)e ). First, we observe that there are no correlations

of interest, if only 1#xc is larger than the cutoff frequency.
The spectral densit$,,(w) [Eq. (34)], reads therefore

2maw3coth( i w/2KT)
Seel @)= =002+ (172)2 007+ (T/2)7]
[(0=Q0)*+(T/2)%][(w+ Qo)+ (I'/2)]
(41)
where the coupling strengil between the ring and the ex-
ternal circuit is defined in Eq24). Note thatS,,(w) goes to

betweend¢ and 66,
(de(1)56(1))=0, (46)

as the spectral densify, () is an odd function otv. Thus

we have

((sing)e '¢)=(sing)(e '¢), (47)

zero at the originw=0 like |o|® in the extreme quantum to second order i, that is, the probability distributions for

case [=0) and likew? for finite temperatures; see Fig. 4.

¢ and # are decoupled up to second orderdh Second, it

For |w|>Q,, it behaves likgw| ! for small temperatures can be shown that the second-order correctiong tand 6
and like w2 for large temperatures. Analogous formulasvanish on average. Finally, we assume that the correlations
hold for Syy(w) and forS,4(w). We mention that the spec- in d¢ are Gaussian, which allows us to write
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A , A S¢?(1) particular on the persistent current of the ring-dot subsystem.
(e"‘P(‘)>=e"“’0<e"5“’(t)>=<eXD( i )> (48)  In transport experiments that reveal phase-coherent contribu-
tions or in experiments that investigate the evolution of an
where we have used,=0. In the weak-coupling limifsee initial state, we can describe the effect of an environment
Sec. Il B and in the extreme quantum limit,=0, we find  with the help of dephasing rates. On the other hand, it is not
for the time-averaged mean square fluctuations a priori clear that the coherence properties of the ground
g state of a system can be equally expressed in terms of
@clw W dephasing rates. After all the persistent current investigated
(6%(t))= fo 7 Spe(@)~2a InQ—O, 49 here exists quite independently of how long we let the sys-
tem evolve. Here we consider the state in the ring and inves-
where the cutoff frequency, is taken to be larger than all tigate its evolution away from an initial state. Below we
frequency scalesexcept Tgé), and « is the coupling show that this evolution is diffusive at least for times short
strength between the ring and external cir¢aée Eq(24)]. enough such that we remain within the limit of validity of the
In the limit o.>Q, we can neglect(56%(t))  calculation.

=f(‘;’°(dw/77)899(w) against( 5¢2(t)). We insert( 5o2(t)) We have seen in Sec. Il E tha_t_the dynamics of th_e ring
and sinfy=A,/0 into ((sin e ¥), and observe that strongly affects the spectral densitiBg,(w) andSyy(w) in
the vicinity of the characteristic frequend€y,. The charac-
1 hc dAq teristic frequency describes the free dynamics of a ring that is
ERGJ=7E- (50 disconnected from the external circuit, described by the

) ) _ ~ Hamiltonian ﬂring [Eq. (9)], without the time-dependent
Put together, we obtain the noise-averaged current in the ringyyms se (t) and »(t),

o

fic &AO AO % ﬁso ﬁAO

oY o= o=
Equation(51) is a key result of this work. For<1, corre-  This Hamiltonian can be viewed as describing a spin in a
sponding to weak coupling between the ring and the externaghagnetic field of strength proportional te+A2)Y2=Q,,
circuit, the power law for the persistent current obtained infoyming an angled, with the z axis. The angled, has been
Eq.(51), as well as the exponent, Eq.(24), are the same as  gefined in Sec. Il B and is related tg and A, by cotfy=
those obtained when the external circuit is treated quantum.. /A = The eigenstates of the time-independent Hamil-

mechanically as well. In a recent wotkhe authors in col- I B . .
laboration with Ponomarenko have shown that if the externaﬁqmanHO are theground statey = (Costy/2,sin6y/2), with

L N . . igenvalue —#%Qy/2, and the excited state ¢, =
circuit is represented by a transmission line, the perssterﬁ_ Sin6y/2.Costy2) with eigenvalugh Q4/2. The evolution
current at resonance=0, has fora<1 the power law be- ' 9 o

Ox. (53

havior due toH, of a spin prepared in a state that is not an eigen-
state corresponds to a rotation of the expectation value of the
A\ ¢(1-e) spin about the direction of the magnetic field with a fre-
|(8=0)“(w—c) (52)  quencyQ,. Let us now return to the full problem in which

polarization fluctuations modify the free evolution of the de-
For a very small coupling parameters<1, the Bethe ansatz coupled system. In the weak-coupling limit, we are inter-
result[Eq. (52)], goes over to the power law of EG1).  ested in the time evolution that is long compared(g®.
Thus the simplified discussion presented here leads at least Therefore, we switch to the “rotating frame” picture, where
the weak-coupling limit to the same result as that obtained inhe wave functiony(t) of the ring, Eq.(13), readsyg(t)
Ref. 1. . , . = exp(Ht/A)y(t). We consider the projectionc. (t)
We emphasize that the persistent current is a pr_operty o;win(t» of the wave function(t) onto the states
the ground state of a system. In our case, the persistent c%-t_ If the statey(t) evolves under the influence of the
rent is, however, carried by only a part of the system. Due t ime-independent Hamiltonialﬁo, the projections. (t) are

the coupling to the external circuit this subsystem is subjec L . S

to fluctuations, which even at zero temperatures suppress tﬁgnstant n time. Th? moduli Of. the prOJecuons. avgraged
persistent current. If we keep the capacitances fixed, Eqéj.ver the n_0|se<|ci(t.)| ) are also mdependent oftime if the
(51) and (52) give a persistent current that decreases witrevolution is determined byl i,q which includes the fluctu-
increasing external resistange The spectral density of the ating potential. The phase of the projectiang(t), however,
voltage fluctuations across the ring-dot system increases wihows diffusive behavior. On the average, we hgee (t)

R [see Eq(6)]. We next characterize the fluctuations of the —C=(0)|?)~t/7.. for sufficiently long timest. We shall see
ring-dot subsystem in more detail. below thatr_ is related to the phase diffusion of tigéobal

phasey, whereasr, is related to the diffusion of thiter-

nal phasesp and 6 [see Eq.(13)]. It is a known feature of

two-level systems that they exhibit two distinct dephasing
In this work we are concerned with the effect of an exter-times?°3° The difference between_ and . is particularly

nal circuit on the ground state properties of the system and ipronounced in the low-temperature limit. The phase breaking

IV. PHASE-DIFFUSION TIMES
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time 7_ diverges at zero temperature, whereas the time 1
saturates to a finite value for temperatukdsbelow 7. .

We expand the wave functiafig to first order inde, that
is, to first order indp, &6, anddy,

ox(t) eo dg(t)

2 0, 2
o0(t) . Ag Se(t)
2 'O, 2

1+i

¢ 04
2 :

(54)

Yr(t)=

ei Qqt l//+ .

1 10
2kT/MQy

0.01

From this expression, we immediately obtain the projec-
tions c_(t)=1+i[Sx(t)/2— (eq/Qq) S (t)/2] and c, (t)
=(1/2)[ 56(t) —i(Ag/Qg) de(t) ]expot). As the averages

2 2 2
‘<‘5‘P (t)>’”<50 (1)), and (5x°(t)) as well as all the by the decay rat&, defined in Eq(23), as a function of RT/AQ,
crossed” averages of the typ@e(t) 66(t)) are constantin i 3 jogarithmic scale. For high temperatures, is inversely pro-

t, the mOdU“<|Ci(_t)| ) are indeed |ndepe_nde_nt of time. The portional to the temperatur® For low temperaturekT<#Q,, it
mean squared displacement of the projectionst) read, saturates at a value, =" 2.

respectively,

FIG. 5. The characteristic phase diffusion time normalized

27TaQOCOt|’(ﬁQO/2kT) 58
w?+(T'12)? (58

and Sye(Qo+ w)~(A5/Q3)S,,(Qo+ ). The time evolu-
tion of Eq.(56) for times much larger than the inverse of the
characteristic frequenc§),, yet smaller than the inverse of
the relaxation raté’, is therefore linear in time with a char-
acteristic timer, , where

S<P<P(Qo+ 01))~

&6
SXX(w) + Q_SS(P‘P((D)
(55)

d t
<|cf(t)—c7(0)|2>=f§sinz%

d t
<|C+(t)—C+(0)|2>=f£sin2%

2
= 1 40
Q3 Tt

X Sgg(&)"‘ﬂo)“l‘

(59

S¢¢(w+90)}

(56) Note that Eq(59) holds for finite temperatures as well as in
the quantum limit. The phase-diffusion time is inversely

The long time behavior of Eq55) is dominated by the fre- proportional toT at high temperatures,

quencies neaw=0. The spectral densit$,,(w) vanishes
like w? for finite temperatures or even Iil¢e&>|3 in the zero- 140,
temperature limit. The spectral densi§; (), however, ST kT
has a pole atw=0. For finite temperatures the pole is of

order o~ ? [see Eq.(35)], entailing a long time behavior of just as the other characteristic time_. In the low-
the type (|c_(t)—c_(0)|?)~t/7_, with a characteristic temperature or quantum limit, however, saturatesto a
phase-diffusion time value

(KT>%Qy), (60)

B (kT<nQyg)
= 2makT 8% '

(61)

1
(O
(57) T
(see also Fig. b The crossover from high-temperature be-
We stress again that. determines the diffusion time of the havior to the quantum limit behavior takes place kat
global phasey as it is given in terms of the spectral function ~7%(,. We point out thatr. is related to the spectral den-
S,y (@). Inthe quantum limiff=0, the phase diffusion time sities S,,(w) and Sy,(w) of the internal phaseg and 6.
7_ diverges. Furthermore, it follows from E7) that7_ is  This indicates that there is a relation between dephagihg
tunable sinceey may be varied by an external dc bias. In finite temperatureand the reduction of the persistent current
particular, at resonance,=0, the phase-diffusion time_ at zero temperature, which is determined )y, ().
diverges for any temperature. We point out that Eq(55) and Eq.(56) do not hold for
The long time behavior of Eq56), on the other hand, is arbitrarily long times. In reality the mean square displace-

determined by the frequencies nég. In the vicinity of this
characteristic frequencyS,,(2o+ ) as well asSy,({

ments(|c..(t)—c-(0)|?) are bounded since the wave func-
tion ¢g(t) is normalized to 1. The fact thaf|c_(t)

+ w) show aw ™2 behaviorat finite as well as at zero tem- —c_(0)|?) [Eq. (55)] grows without bounds is an artifact of

perature which is cut off by the relaxation rafé, defined in
Eq. (23) at very small frequencies~I"<Q,. In summary,
we have, forlw|<Q,

the linearization of Eqs(14)—(16) and (20).
In summary, we find two characteristic phase-diffusion
times7_ andr, , related to the projection of the equilibrium

165312-8
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state/(t) onto the ground state and the excited state. Thenents seem to agree, for metallic diffusive rings, the fact that
time 7_, associated with the projection on the ground statetheory predicts a persistent current that is considerably
is related to the loss of coherence in the global phasad  smaller than that found in experiments, remains. In metallic
diverges as the temperature goes to zero. The timgon  diffusive samples one is thus lead to search for effects which
the other hand, characterizes the loss of coherence in tfenhance rather than reduce the persistent current. It would be
internal phaseg and ¢, and saturates to a finite value in the very intriguing to think that the polarization fluctuations of
limit of zero temperature. This indicates that even at zeraan environment could give rise to a persistent current above
temperature, coupling to the external circuit causes excitathat found in the decoupled system, for instance, in a situa-
tions of the ring into the excited state. In the zero-tion when the ring arm and dot are not at resonance. For the
temperature limit these excitations still decay in a finite time.model investigated here the effect of the bath is, however,
always a suppression. In contrast, nonequilibrium radiation
has been shown to enhance the persistent current in metallic
diffusive samples® Even in a purely classical system non-

We have investigated the persistent current in a normafduilibrium noise can generate circulating currefits.
metal ring coupled capacitively to a resistive external circuit AN experimental investigation of the role of polarization
using a Langevin equation approach. We have shown thdtuctuations either for the_ persistent currents or for the con-
the quantum fluctuations in the external circuit suppress th@uctance of a mesoscopic system would clearly be very in-
persistent current at zero temperature, thus confirming afgresting. As shown in our work, bringing nearby gates to a
earlier Bethe ansatz resdlwithin the same framework, but Mesoscopic conductor should affect the coherence properties
at finite temperature, we have derived two characteristi®f the system. An experimental situation in which the cou-
phase-diffusion timesr_ and 7, , which are the phase- pling to gates could be tuned would lead to an additional
diffusion times of the projections of the wave function of the Parameter that would permit introduction of another dimen-
ring to the ground state and the excited state, respectively, Gion into the investigation of phase breaking. In fact, a simi-
a ring that is disconnected from the external circuit. welar investigation for an array of Josephson junctions above a
show thatr, is related to the spectral densities of the “in- Packgate has already been perforrﬁ%d.
ternal” phasese and ¢ of the wave function of the ring, In - semiconductors mesoscopic systems are already
which are also responsible for the reduction of the persisterformed with the help of gate¥. Their role in the dephasing

current. Whiler_ diverges in the zero-temperature limit, of open conductors is discussed in Ref. 31. While the voltage
saturates to a finite value. at gates is maintained with high precision at low frequencies,

The phase-diffusion rates are not needed to obtain thét higher freqqengies their impedance is finite. For an experi-
persistent current, the quantity of principal interest. In factental investigation of the role of nearby gates on the
for small systems a direct calculation of the quantity of in-dephasing process the characterization of the impedalyee
terest, the persistent current, the conductance, or its fluctuf@mical conductangever the relevant range of frequencies
tions, without first calculating a dephasing rate, is preferable!S Néeded. We hope that the future will bring us experiments
In very small systems the dephasing rate is itself a samplE'at combine high precision dynamical conductance mea-
specific quantity that is characterized by a distribufibn. surements W!th the investigation of the coherence properties
Sample specific rates are clearly no longer a concept that &f mesoscopic systems. o
that useful. On the other hand, the phase-diffusion rates cal- Note added in proofOur phase-diffusion rates. andr,
culated above clearly demonstrate that due to the interactiof@ be related to the relaxation rate and the dephasing time
with the bath the state of the ring-dot system acquires a§iven by Grifoni, Paladino and V\(e@%.‘l’o find the dephas-
overlap with the excited state of the decoupled ring-dot syslNd rate we write the time evolution of the staiex(t) [see
tem. This overlap, taken as an initial state, decays with timé&d- 54] with the help of an overall phasg(t) in the form
even in the zero-temperature limit with a rate determined by¥ r(t) =exp(=i7(1))Wr(0). For times scales over which
7. . To obtain this result, we require only that the combinedr€mains small we haveWg(t) =(1-i7(t))¥r(0) or
coupled systentring-dot and external circvits in an equi-  Vr(t) = Vr(0)=—in(t)¥x(0). The scalar product of
librium state and not each system separately as is sometimd&r(t) — Wr(0) with itself is|Wg(t) — ¥ &(0)|*=] 7(t)| and
assumed? its expectation value is thus just|n(t)|?)=(]c_(t)

In this work we have used the term “phase-diffusion —C-(0)|?)+(|c.(t)—c.(0)|?). The dephasing rate is %/
times” in distinction to “phase breaking times.” In the =({|7(t)|?)/2t and is therefore given by
ground state considered here polarization fluctuations reduce

V. CONCLUSION

the amplitude of the persistent current but still leave eventu- r 20 makT €
ally a coherent state in place. This is very different from  1/7=1/27, +1/27_== coth—2 + __02_ (62)
situations in which an initial coherent superposition evolves 2 kT ho O

into a final incoherent stafg.

Persistent currents have played a mayor role in the develFhe dephasing rate found here for the ground state of our
opment of mesoscopic physics and continue to be a subjecing-dot system is identical with the dephasing rate found for
of considerable interest. For a brief review of the status othe loss of phase coherence of non-equilibrium states in spin-
the persistent current measurements we refer the reader bmson systems on short and intermediate time stalese
Ref. 34. While for semiconducting rings theory and experi-Eqg. (4.5)].
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Foundation. The patrticle currents are related to the charge on the dot by

IP+1B=—Qq. At each node we have + 1 +I1g=1,—(I_
+1g)=0, and thusl;+1,=0. These equations correspond
to the law of current conservation at the nodes of an electri-

In this Appendix, we briefly discuss the electrical cou- cal network.
pling of the ring and the external circuit. The fluctuations of \We can express all electrical quantities of interest in terms
the charge in the ring and the external circuit are not arbiof the external biasflV=V,—V.. and the charge deviation,
trary but are connected by the flow of a displacement currendQq. We combine Egs(A2) and (A3) and the condition
between the ring and the external circuit. We can express théQq+ 6Q,=0 to obtain the potential difference inside the
coupling between the ring and external circuit in terms of the'ng:
displacement current. Since the coupling between these sub-
systems is crucial, we present first a discussion of the dis- Ud—Ua—Ce + & (A8)

APPENDIX A: COULOMB INTERACTIONS AND
DISPLACEMENT CURRENTS

placement currents. C C

In our model the charges and potentials are related via The charge deviatiodQ, on the capacito€, is found from

Egs.(Al), (A4), and(A8),

Qo=Cy(Vo—Uy), (A1)
Qu=C1(Ug—Vo)+Ci(Ug—U,), (A2) 5QO:C05V_%?5de (A9)
Q.=C,(U,—V.)+Ci(U,—Uy), (A3)  where we have used the identity

Q.= CalV.—Uy), (A) Ce_So (AL0)

c C’

where we have introduced the parallel capacitaBee C, ) ' o
+Cg. In the following, we shall also need the extersg- Whence we obtain for the current flowing in the external
rial) capacitanceC,'=C;1+C,?, as well as the parallel Circuit
and the serial total capacitancé&s=C;+C, and C, ! c
=C; '+C_'. The whole structure, that is, the ring together 1= —Qy— CooV. (A11)
with the external circuit is charge neutral. As a matter of fact, Ci
it follows from Egs. (A1)—(A4) that Qu+Qq+Qa+ Q..  In the circuit containing a current noise soursee Fig. 2,
=0. The ring and the external circuit taken separately, howthe currentl; flowing out of the circuit augmented by the
ever, do not need to be neutral. The total charge of the ringyrrentsl coming from the noise source must equal the cur-
Qq+Qa is balanced by the charge on the external capacitorgent through the resistdr= 5V/R, namely,
C, and C,, Qp+Q..=—(Qq+Q,), as follows from Egs.
(A1)—(A4). As the ring and the external circuit do not ex- SVIR=1,+4l. (A12)
change particles, the charges on the ring and in the external . .
circuit are conserved, and it is more convenient to conside?Ogether with Eq(A11), this gives Eq(1).
the deviations from a reference state. We denote these devia-
tions by 5Q4 on the dot and byQ, on the arm, and simi- APPENDIX B: THE CIRCULATING CURRENT
larly by 6Qq and Q.. for the external circuit. They obey the
relations 6Q4+ 6Q,= 6Qq+ 6Q..,=0. For time derivatives,
it is of course irrelevant whether we consider total charges
deviations.

The current flowing out from the capacit@; is a pure
displacement current

The equilibrium persistent currehis a quantum and sta-
tistical average that can be obtained from the derivative of
Othe free energy=—cdF/dP. Some discussion is required,
if we are, as in Ref. 1, concerned with current fluctuations.
Naively, we might want to investigate the fluctuations of the
persistent current by considering the second-order derivative
of the thermodynamic potential. However, such a procedure
PN ks only if the observable of interest commutes with the
|1—_Q0—01§(Ud_vo)' (A5) ~ WOrKs only )

Hamiltonian. Moreover, as pointed out above, the true and
whereas the currents flowing through the right and the lef :r)]/tsg:ﬁléyégg?;irgrﬁlej:tegasrrgnmwehg;ﬂ;%fﬁ;:;igﬂent
junction, respectively, are particle currerfs augmented  ¢rent needs not to be considered as long as we are inter-
by displacement currents ested in average quantities only, this is not true, if we con-

sider fluctuations of the current. For the model considered

L =1P+C ﬁ(u —u,) (A6) here, we can derive expressions for the current operators that
LmiL T ebgphmd Fak are particle operators weighted according to the distribution
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of the geometrical capacitances of the system. with T, as given in Eq(B1). The current ;, which can be
Consider first for a moment the electrically isolated l0op.inguced with the help of the external circuit, is divided into
In this case the capacitances to the exterior circuit@ye the two branches of the ring-dot sample also according to a
=C,=0. From Eg.(A2) we find Q4=C;(U4—U,) and capacitance ratio.
thus we can also write the currents through the left and \ypat js observed in a measurement of the magnetization?
right junctions, Eqs.(AG)p and (A7), in terms of tr;e It is important to note that the external circigtee Fig. 1
charge on the dot a$L,:|L+(C,L/Ci)de/dt aﬂd lr=IR  also forms a current loop and depending on the geometry of
+(Cr/Ci)dQq/dt. Using particle conservation)P+1% e circuit also contributes to the fluctuation of the magneti-
—dQqy/dt=0, to eliminate the time derivative of the charge 440n, Suppose, the circuit of Fig. 1 is a planar structure in
we find immediately that the currenirculating in this loop 4 x-y plane. Let the ring with the in-line dot enclose an

is 1= = —1g with areaA, and let the external circuiexcluding the ring en-
b b close an are@.. For this circuit the magnetic moment can

; _CrlIL—CilR (B1) be viewed as being generated by a curignenclosing the

¢ C; ' areaA; and by a current; enclosing the are#d.. The

. . . . . magnetic moment is thusi=(1/c)(1 A, —1,Ag). Of course
whereC;=C, +Cg. The circulating current is thus in gen- the topology of the current distribution matters: If we con-

eral not determined by the particle currents but by an averad§yer the external circuit to be above the ring-dot structure
of these currents weighted according to the Coulomb inter: ctead of below as shown in Fig. 1, the magnetization is

action (capacitance ratigs Expressions of this type are fa- m=(1/c)(~ A, +1,A,). In these two circuits the external

miliar form the dynamic transport through double bamers.’circuit gives magnetization contribution into opposite direc-

but seem to be novel for persistent currents. We empha5|zﬁaons_ The average magnetization of the two circuits is just

that Eq.(B1) does not mean that the particle currents Car}n=(1/c)ICAe. A third circuit that permits us to investigate

now_be cal'culated from the noninteracting problem. The dy'the magnetization of the ring and the external circuit sepa-
namic particle currents depend on the self-consistent poten-

tial distribution. For an illustration of this point we refer the fately is a structure in which the ring lies in they plane and

reader to Ref. 38 where dynamic current noise spectra fotrhe external circuit say in the-z plane. Then the magnet-

double barriers are compared based on calculations using t tion is m, = (1/)1 oA, and my,= (1/0)1 1A . I appears as

: . : the most natural generalization of the equilibrium persistent
particle currents of the noninteracting problem and CaICUIaE:urrent In Ref. 1 we have investigated the fluctuationk, of
tions using the particle currents of the interacting problem. ) ‘ 9

Next et us Consider the ystem couped o e extral /1 12 S00Ve epressons s based or fnear telalors
circuit. In this caseC;>0 andC,>0. We can proceed as ' ges, P '

above. We first express the time derivative of potential dif_pressions are thus valid also for operators. We now present a

ferencéU U in terms of the time derivative of the charae specific expression for the operator of the circulating current

on the dgt anad the currerit= dQy/dt=C,d(Vy—U,)/dt 9€ Used in Ref. 1. Let us consider the particle current operators
- 0 vl 0~ Yd

[see Eq.(A1)]. Using current conservatioh =1, +1g and TE through the left ancﬁﬂ througkl the rigpt tunnel barrier. In
particle conservationP+18—dQu/dt=0, we can again terms of the Hamilton operatots; andHg responsible for
eliminate the time derivative of the char@® and find for ~ the tunneling across the left and the right tunnel barrier, re-

the currents through the left and right barrier, spectively, they reatf,s= —i/%[H_r,Qq4]. In other words,
L they are equal to the decrease of the charge on the dot per
=1+ (CL/CIy, (B2)  unit of time through the right and left junction. For the two-
A R level system, in a basis in which the Hamiltonian is feale
Ig=—1.+(CRr/Cj)lq, (B3) Eqg. (9] we have
|
Tp e itLtR S|r(27T(I)/(D0)O'X+[tEitLtR COgZW(D/(I)())]O'y (B4)
LA 2+ 12+ 2t tg cog 2D/ D ) '
o e itLtRSin(Z'zT(I)/dDo)a'x—[tzRitLtRCOS(ZW(I)/CDO)]O'y (5)
Roh J2+ 12+ 2t tg cog 2D/ D ) '

Using the particle current operators in EB1) leads to the operator given by E@2). With the help of this operator we can
investigate the average persistent current and the fluctudseesEq.(7) of Ref. 1].
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