PHYSICAL REVIEW B, VOLUME 63, 165305
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A dispersion equation for interface waves is derived for the interface of two cubic crystals in the plane
perpendicular t§001]. A reasonable hypothesis is made about the total number of acoustic modes. According
to this hypothesis the number is 64, but not all of the modes have the physical meaning of interface waves.
Rules have been worked out to select physical branches among all 64 roots of the dispersion equation. The
physical meaning of leaky interface waves is discussed. The calculations were made for the interface
Al Ga -As/GaAs. In this case all physical interface modes have been shown to be leaky. The velocities of the
interface waves are calculated as functions of an angle in the plane of the interface. The results support a recent
interpretation of weakfield magnetoresistance oscillations as a resonant scattering of a two-dimensional elec-
tron gas by the leaky interface phonons.
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I. INTRODUCTION waves also has several roots that give leaky solutions.
The propagation of acoustic surface and interface waves Structures with a two-dimensional electron gabEG),
has attracted significant attention over recent decades. TH@iCh as heterostructures or quantum wells, provide another

Lord Rayleigh The interface wave is a simple generaliza- 2DEG With surface waves was investigated long o If

tion of the surface wave. when the second medium is notlhe 2DEG is far from the surface, the electrons may interact

vacuum, and the wave propagates along the boundary bg\yth interface waves. For example, the electrons may be

tween two media. The theoretical study of interface Wavesscattered by thermally excited interface waves. This scatter-

o ; ing should not be weaker than scattering by bulk phonons,
was initiated by Stoneléywho considered the case of two since in the vicinity of the interface the three-dimensional

Isotropic SOI'dS.' als the interf b h densities of the bulk and interface phonons are of the same
In anisotropic materials the interface waves between Nexs qer |n Ref. 19 we explained the oscillations of magnetore-

agonal cryst_aFS:4 have been studied theoretically in sufficient gjstance, observed in a high-mobility 2DEG in GaAs-
detail. Relatively little is known about the effects of crystal- 5| Ga _ As heterostructure, by a magnetophonon resonance
line anisotropy when the interface is formed by cubic crys-griginating from the interaction of the 2DEG with thermally
tals. To the best of our knowledge the only numericalexcited leaky interface acoustic phonon modes.
searches for true interface wave velocities for several com- The primary goal of this paper is the calculation of the
binations of materials so far have been carried out in Refs. interface waves for an AkGa, /As/GaAs interface on the
and 6. basal(001) face. This is exactly the interface used in the Ref.
Both surface and interface waves were initially studied in19. We have shown that all interface waves in this case are
the context of seismological waves propagating in thdeaky. To this end we have derived analytically the secular
Earth’s crust. 1% Later on these waves were studied experi-equation for the phase velocity of the waves at the inter-
mentally in semiconductors by light scatteritig'? face between two cubic crystals. We have discussed the se-
The earlier theoretical studies by Lord Rayleigh andlection rules for the modes and given a general qualitative
Stoneley(see also Ref. )3vere restricted only to those roots picture of the leaky interface waves. In this picture we con-
of the secular equations that give an exponential decay of th@ider the conservation of energy and show that the amplitude
surface wave in the medium under the surface and an exp@f the wave never becomes infinite if the problem is properly
nential decay of the interface wave in both media away fromformulated. We show that under some conditions leaky
the interface. Phinndywas probably the first to consider the Waves do not differ substantially from true waves. Finally,
so called leaky or pseudo waves that do not obey this prel® hz_ive obtained numerical results, which were partially
scription. Surface leaky waves have been widely studiedSed in Ref. 19. . .
theoretically for both isotropic and anisotropic crystalline The paper 1S organlzed as fOHOV.VS' The_ basis pf the
materials (see the review by Maradudihand references method is outllned in Sec. Il. In the thqu section we Q|scuss
therein. To the best of our knowledge leaky interface wavesdeneral properties of the secular equation, the selection rules
have been studied only for the isotropic ca¥eand for hex- for its SOIUt_'OnS’ and the phy_S|caI meaning of leaky Waves.
agonal crystal&® The numerical results and discussion are presented in Sec.

The interest in leaky interface waves is stimulated by thd V- Fina_lly, some au>§iliary technica} material regarding the
fact that true interface waves exist inside a very narrow rang&/culations is given in the Appendix.

of parameters. Therefore in the general case interface waves
are leaky. This is not the case for surface waves where a true
nonleaky mode always exists in a wide range of Withinthe framework of the linear theory of elasticity the
parameters® However, the dispersion equation for surface equations of motion of an infinite medium are

I. GENERAL FORMULATION
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A[001] (kq,k,0)=k(cos8,sin6,0), respectivelythe angled is mea-
I sured from thg 100] direction, and w(|)=s(|)\/k2+ k32 with
| the bulk sound velocity sy=s(y(6,¢), where cosp

=ky/\KZF K2

| 17 The solution for the phase velocity can be determined by
0,C,sC,D ﬁ > substituting the plane wave of E(J) into the equations of
/“’ |/ _|nhool motion (1). This yields a homogeneous set of linear equa-
Z tions. Setting the determinant of the coefficients equal to
/ zero produces a cubic equationdf. The three roots of this
'/C' C.D equation are the squares of the velocities for three bulk
porwlw phonons.

For propagation along th@01) plane one of the veloci-
FIG. 1. Structure for the study of interface acoustic waves. tiest;=Cu4/p is independent of and represents a trans-
verse mode. Two others depend on the angle of propagation
in the plane. They are neither longitudinal nor transverse, but

Jdu;  day;
p—=——. i=1,23, (1)  we denote the upper branch by the lettéf ‘and the lower
SIS one by ‘“t,.”
where p is the mass density of the mediuna(r,t) is a The interface between two semi-infinite media introduces

Cartesian component of the displacement of the medium &0 inhomogeneity in thes direction. Therefore, we could
the pointr at timet, and o7;(r,t) is the stress tensor. This €XPect that the plane waves will also become inhomoge-

last is given by Hooke’s law neous in this direction. The frequency and wave vekjare
the same in both media, but the componkgnof the wave

AUy vector may be complex and different in the upper and lower
i = Niji ﬁ_x| 2 media. Moreover, since the boundary conditions Efjsand

_ _ ~ (6) consist of six equations, the simplest solution for an ar-
where\;j is a symmetrical fourth-rank tensor. In a cubic pjtrary direction of propagation should consist of a linear
crystal the stress tensor can be conveniently written as superposition of three terms described by ER). for each
medium, with their own different complex componekts

du; &Ul) D au;

0ii=Cy(div U) &+ Cyyl — + —8., (3 The subsequent analysis is facilitated by performing a ro-
. . IXj X axj " tation of the coordinate frame in such a way that the direc-
where summation ovérandj is not assumed in the last term. {ion of propagation of the acoustic wave in the plane of the
HereD is the anisotropy parameter: interface is along the, axis, i.e..k;=(k,0,0). Let
D=C;;—C15—2Cy4. (4) cosfd sing O
For an isotropic mediund=0. T=| —sind cosd O )
In the following analysis we consider a system formed by 0 0o 1

two semi-infinite cubic crystals. The elastic moduli and den-
sity related to the lower part will be denoted by primed sym-be the transformation matrix that produces this rotation.
bols (see Fig. 1L The interface coincides with the plane Then the transformation law for the elements of the elastic
(001) and it is perpendicular to the; axis. The coordinate modulus tensor under this rotation is
axesxy, X, andx; coincide with theg[100], [010], and[001]
directions, respectively, for both cubic media.

The equations of motiofil) have to be supplemented by
the boundary conditions at the interface, expressing the con-
tinuity of the displacement and normal components of theAt the first stage of the analysis we determine the possible

XijkI: > Tii Tjj T T Njrjrgen 9
i/j/k/l!

stress tensor; values ofks for a given value ok. To this end, we define
. ks=ikB, w=kv, and we suggest a solution for the interface
Ui=uf|y-0, 1=1,2,3, (5)  waves in the rotated system in the form
0i3=0j3lx,=0, 1=1,2,3. (6) u=Ae “Psexik(x,—vt)] for Xz>0,

Homogeneous plane wavésulk phonong are the simplest
solutions of the wave equation in one infinite medium. They

are The subsequent analysis is carried out in the rotated system
7) only. Therefore we omit tildes for the sake of convenience.
Conceptually, thexs dependence is a part of the “ampli-
for three different branches=1,2,3, wherex;, andk; are  tude” (see Ref. 2Dand the wavelike properties are described
two-dimensional vectors with componentg; (x,,0) and by a common propagation part é¥gx,—vt)]. Thus, the

u/ =A’ e Xsexfik(x,—vt)] for Xs<0. (10)

u(')(r,t) =expi kH Xt ikaXz—i w(|)t)
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propagation vector is always assumed to be parallel to the Substituting Eqs(9) and(10) into the equations of motion

interface even though the exponghimay be complex. (1) yields a set of homogeneous equations for each medium,
If ReB,B'>0, then such a form describes a wave that
propagates in the&, direction, whose amplitude decays ex- Lij(v,8)A;=0,

ponentially with increasing distance into each medium from
the interface. The waves witf) Re8<0 and InB<0, (ii)

ReB’<0 and InB’'<0, (i) ReB,8'<0, and InB,B’'<0 Lij(v,8")'Aj=0, (11
are leaky waves that radiate energy outward from the inter-
face. where the matrixt. (or L") has the form
) 1 ) 1 .
—Cayf?+Cyy— 5D sir? 26— puv —zDsin4g *iB(C13;—Cyy—D)
1 1 12
—zDsin4g —C44,82+C44+§D Sirt 26— pv? 0 12
+iB(C11—Cyy—D) 0 Caa— C11B%—pv?

The sign plugminus corresponds to the upp@ower) me-  (5) and (6). To this end, we form linear combinations from
dium, and we omitted primes for the lower medium. In eachthe three term$10) with undefined constants; and KJ-’ for
medium Egs.(11) have nontrivial solutions if the corre- each medium:
sponding determinant of the coefficients vanishes:

3 )

de(L)=0. (13 = C—(‘;)Kjexqik(xl—uwigj<u)x3)] for x>0,
=1
This gives the secular equation for the unknown valueg of : !
with the phase velocity as a parameter. The explicit form 3 ol

of Eq. (13) is given in the Appendix. The plane of the inter- , a . .,
face coincides with the plan@01) for both cubic crystals. ”a—,Zl @KJ exdik(xy—vt—=igj(v)x3)], for x3>0.
This is a plane of mirror symmetry for both of them if they (15)
are considered separately. Because in our solution the vector

kj is in this plane(see Fig. 1, the secular equation is bicubic Substitution of this form for th_e_ displacement field into Egs.
in B and the roots have inversion symmetry with respect td5) and(6) leads to a set of sikin the general cagehomo-

the origin of the complex plar@®. geneous linear equations fif; K . Nontrivial solutions ex-
One can also show that, if3/=pgg;+iB); for ] ist if the corresponding determinant vanishes:

=1,...,6 are theoots of Eq.(13) with a complex velocity

v=vg+iv,, then the rootsB;= Br;—iB; are the roots of D (v)]=0, k,I=1,....6. (16)

the same equation with=vg—iv,. Here the superscripts i . . ) ) )

“R” and “1” denote the real and imaginary parts, respec_Equatlon(16) is the dispersion relation for the phase velocity

tively. v of the interface acoustic wave. In general it has to be

solved numerically. The left hand side functiob(v)
E|Df<,7)| is some algebraic expression. Therefore, in general,
AP AD AD . the roots of Eq.(16) are complex. Moreover, sincB(v)
o~ w:mzKJ’ , J=1,....6, (14 contains six different decay constan@(v),s;] , which in-

1 2 3 volve square roots of some expressions&f the function
where theK; are constants an@g)(v,ﬂj) (a=1,2,3) are D(v) is a multivalued analytical function of the complex
the cofactors of the elements in the first row of the matrix vVariablev, defined on its associated Riemann sheets. The
superscripty enumerates these sheets. The number of Rie-

The amplituded\, (or A)) for any 8; (B]) are related by

CP=L,ol g3, mann sheets is determined by different combinationgs of
branches. However, not all of 6!/3!3120 combinations of
C(Zj): — Lyl s, B; are possible for each medium in the superpositions of Eq.
(15). Each of the three decay constants must be taken from
CYP=—Lgilo,. the different rootsB? of the cubic equation ddt()=0 for

fixed v2. Therefore, the total number of possible combina-
The next step of our analysis is the construction of thetions is Z£x 23=64. This is the number of Riemann sheets
general solution, that satisfies the boundary conditions Eqg$or our case. Since a simultaneous change of all signs of
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B,B’ in Eq. (16) does not change the form of determinant propagation along the directions of high symmetry the num-
(see the Appendix it is enough, in fact, to investigate 32 ber of independent Riemann sheets reduces to eight.
independent Riemann sheets in order to find all possible The sign convention for the sheets is determined by the
roots of the dispersion relation. In the isotropic case and foreal part of3. It is denoted as follows:

(sgn ReB1),sgn RéB,),sgn RéB3),sgn RéB;),sgn RéB;),sgn ReBs)). (17)

Let us assume thaty=1 corresponds to the case V=URF iV, (18)
(++++++). If a solution exists on this sheet, then it is a )

true interface wave, which is also called a Stoneley wave. AlPf EQ. (16). As follows from the Appendix all complex roots
other y correspond either to leaky waves or to nonphysicalfform such pairs. Then the wave vectors of propagation along
solutions. Some of them may also correspond to bulkh€Xy axis for these solutions will be complex and equal to
phonons(see Sec. Il In the next section we formulate se- . .

lection rules for physical solutions. The correct direction of k=owlv=wl(veTiv)=kexik. (19

the energy flux is the main principle for the selection. Theyf k>0, it corresponds to a running wave propagating from
explicit form of Eq.(16) and the method of enumerating its the left to the right with exponentially decreasing or increas-

Riemann sheets are given in the Appendix. ing amplitude. Since both of these solutions always occur in
pairs we will consider only the wave attenuated from the left
lll. SELECTION RULES FOR THE VELOCITY AND THE to the right. Then we should chose only the r&qtt ik, or
PHYSICAL MEANING OF LEAKY WAVES vr—liv,, wherevg,v, kg, k;>0.

The question of the total number of possible values of the Sincey>1, one or severa have negative real part, i.e.,

velocity was investigated in the early 1970s theoreti@élly B=—Br—ip (20)
for the isotropic solid-liquid interface, and numerically for R b
the case of two isotropic solid.In the case of the liquid- where 8g>0 and sgng, is not determined yet.

solid interface there areight Riemann sheets. It is sho@n It is useful to introduce the following notations:
that the roots on all these sheets are the roots of an eighth-
order polynomial inv? with real coefficients, and so there ZR:(U§+U|2)/UR' (21)
are eight complex roots which are either real or come in
complex conjugate pairs. Numerical investigation of the =
P ug X 9 Br=Br=Bivvg, (22

Stoneley equation(A20) for an isotropic solid-solid

interfacé® has shown that there are 16 independent roots on ~

its 16 Riemann sheets. Bi=Bi+ Brui vg. (23
Thus, we can put forward a simple hypothesis: The numagier the substitutiork=w/v the term has the form of an

ber of possible values af? is equal to the number of Rie- inhomogeneous plane wave

mann sheets. However, some of them may be degenerate so

we are speaking about tmeaximumnumber of differenw 2. e 0(t—XIvR—2B fvg) g~ @/vR(XV| IvR=2BR) (24)

Note that this hypothesis is true for isotropic surface waves

as well. It follows from it that the maximum number of In fact, the sign ofg, is not arbitrary, but is dictated by the

modes in our interface is 64. To check this hypothesis weaadiation conditiorf>?3 Indeed, since we consider here loss-

have calculated this number for one direction that does ndess media the only reason for the amplitude attenuation

have any special symmetry. The result is 64. along the direction of propagation on the interface is the
Let us turn now to the problem of classifying the roots for radiation of energy away from the interface into the bulk

the Case}/>1. First Of a” we diSCUSS I’ea| roots fOI’Of the media_ The tota' wave Vect(m’: w/ZR(1.0ﬁ|) iS no |Onger
dispersion equation E@16). If all g are pure imaginary, this parallel to the boundary, but is inclined to it, which indicates
corresponds to the refraction of bulk phonons and has nothhe presence of a continuous flow of energy from the bound-
ing in common with leaky waves. If at least one of fB®n  ary to the bulk. Note that the direction of phase propagation
either side has a negative real part, such a solution should bﬁq does not represent the direction of energy flow itself.

considered as nonphysical. If it happens that sgBnare  The latter is determined by the time-averaged power flux
imaginary but some are complex with positive real part, then

this relates to the problem of total internal reflection of bulk :
phonons. In our subsequent numerical analysis we discard Waz—R€<§ffﬁaU}§>, a,f=123. (25
such solutions, since they have a different nature.
Now we come to complexk. Let us assume that we have One can show that for smal| the sign of the componei¥,
a real positive frequency>0 and a complex root that determines the flow perpendicular to the interface coin-
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Z 4 thickness. The uppermost line is thickest because the ampli-
= tude of the wave at the ling=0 is the largest, and it de-
q By —» creases with increasing That is why the amplitude at any

point x increases wittz for z<xuv,/Bug. It follows from the

N a above theorem that the energy flux cannot cross the planes of
constant amplitude. It also cannot cross the plane of maximal

amplitude. This means that the entire wave is within the

wedge formed by the plane of the interface and the plane of

maximal amplitudez=xv,/Brvg, at least in the sense that
the entire energy of the wave is within this wedge. The am-
FIG. 2. lllustration of geometry of leaky interface wave term. Plitude of the wave is finite everywhere in this region.
Power fluxW and wave vector are shown. The full lines with One gets a severe contradiction on considering a station-
different thicknesses are the lines of constant amplitude. The thickary problem. Indeed, Eq26) gives a nonzero result outside
ness of the line indicates schematically the absolute value of théhe wedge as well. Moreover, the amplitude diverges when
amplitude. Dashed lines are the lines of constant phase. For visuténds to infinity. This is an artifact of the stationary consid-
clarity the angle of the constant amplitude lines has been exaggeeration. The origin of the divergence is the infinite amplitude
ated. of the wave at the point= —o0. The increase of the ampli-
tude at largez is an artifact originating from the flux coming
cides with the sign of3,. Therefore, in the notations of Eq. from _Iar'ge negative. _
(20) the signB, must be positive to guarantee the proper It is |mporta_nt to mention tha_t the leaky wave doe_s not
radiation condition. differ substantially from a true interface wave only kig
Now we come to the physical meaning of the Ieaky>kl in Eq. (18 orvg>v,. SinceBy is not small, this means
waves. Discussing Rayleigh waves, Landau and Liféhitz that the angle between the plane, forming the wedge in Fig.
prescribe dropping as nonphysical a solution that increase’ Should be small. If this condition is not satisfied, the inter-
away from the surface. In the theory of leaky waves we takd@Ce (or surface wave cannot be considered as a wave since
such a solution into consideration. The goal of this part is tdhe wavelength is larger than the attenuation length.
give a physical explanation of leaky wavesee also the re-  The problem does not contain any small parameter that
view by Maradudi®?). could cause this condition to be fulfilled. The numerics
On both sides of the interface our solution consists ofShOW, however, that the majority of modes have small at-
three inhomogeneous plane waves. At large valuesapidz ~ tenuation. The roots of this phenomenon are not clear to us.
these waves can be considered as independent. So we con-Thus, based on the discussion in this section we use the
centrate on one of them, choosing the wavezad with foIIovying selection rules for the valuas=vg—iv, that are
negative real part oB, i.e., a wave exponentially increasing Solutions of EQ(16). (1) vg>0, v,=0.(2) If v, =0, then Re

with z This wave has the form of Eq24): B, Rep'>0.(3) If v,>0 and RgB<0, then ImB<0. (4) If
v,>0 and Re3’' <0, then ImB’ <0.

X

St e

e 10(t—XvR—2B fvg) g~ wlvR(xv) /UR—zZ;R)’ (26)
where Bg>0 and 3,>0. This is an inhomogeneous bulk IV. NUMERICAL RESULTS
plane wave with wave vectay= w/vg(1,08)) propagating To calculate velocities as a function of angle we use Eq.

away from the interface. The ~Iines ~of ~constant phase arga1) for 2 and Eq.(A6). A numerical search for all the
determined by the equatian-x/cr—zB,/cg=Cy, and the roots in the entire complex plane is a very time-consuming
lines of constant amplitude are given by the equatiomprocess. Therefore we restrict our search to the rectangular
xvi lvg—2Br=C, (see Fig. 2 The latter expression shows region defined by the limits 2vg<7 km/s, 0<v,<0.6
that such modes attenuate when they move along the surfaég/s. Our analysis have shown that almost all modes are
z=0. located in this rectangle. Although some of the modes are
The central point of our understanding of leaky waves isoutside the region, we have found that usually such modes
that one cannot consider these waves in the entire regign oféither are nonphysical or have a very strong attenuation. Our
values, since their amplitude becomes infinite when  choice of the particular interface ;Ga, ;As/GaAs was dic-
—o0. This happens because we have chosen the solution thi@ted by the experiment Ref. 19. In the first step we divide
propagates from the left to the right along thexis. Thus, the complex plane in the interval 2<vg<7 km/s, 0<v,
we should propose that the wave is created at some line, say0.6 km/s into 400 squares. For a vertex of each square we
x=0, in the plane of the interface. Our equations of motionfind six values ofg for the upper medium and six values of
do not include any dissipation; therefore the attenuation in3" for the lower medium using E§A1). For each value of
the plane of the interface may be due only to radiation intove find 32 different combinations g8 (each of six values
the media. There is an important theof@mtating that for ~and substitute them into E¢A6). For each Riemann sheet
inhomogeneous plane waves the energy flux is parallel to there find all minima of absiDi(jV)(v)D with respect tawg and
plane of constant amplitude. The cross sections of these, using a standard program. For those minima that are close
planes with the planex are shown by full lines of different to zero, we do an iterative search for roots. The parameters
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TABLE I. Densities (g/cm), elastic constants (10N/m?), and  ation, and different angular intervals in which they exist. In
sound velocitiegkm/s) in the directions of high symmetry for bulk Fig. 3 we draw all the modd#ote that the velocity scales in

crystals(Ref. 28. 3(a) and 3b) are differenf. One can see that there is an
abundant number of leaky interface modes in the velocity
Crystal P Cu Cip Cau lpog t I tzuo range between 3 and 4 km/s. A thorough analysis shows,

AlyGaAs 4794 12.24 565 590 505 3.51 556 2.62 however, that a majority of these modes exists in a very

GaAs 5307 12.26 571 60 481 3.36 531 248 restricted range of angles. It wiII_ probably be difficult to
detect them experimentally. In Figure 4 we draw selected

modes that exist in a large interval of the angles only. We

of the bulk lattices have been taken from Table I. To checKeft one modeA) with a small angle range in the figure as a
the method some results were obtained using the completefypical example of discarded modes. For further clarification
different surface Green function matching meti6&*we  of the picture we also discard all physical modes with a
have not found any differences between the results of the twstrong anisotropy of the real and/or imaginary parts of their
methods. velocity. One such mode with a strong anisotropy of the real
For an additional check of the problem we have calcufart(B) is left in the figure as an example.

lated true surface waves for both materials. The dispersion All numerical parameters for the modes presented in Fig.
relation for surface waves on @01) cut of cubic crystals 4 are given in Table Il. For classification of the modes we
can be obtained from the determinant of the truncated interintroduce the following parameter§l) The realvg and

face matrix Eq.(A5). For the upper(lower) medium we  imaginaryy, parts of the velocity averaged over anglé.
should take the lower lefright) 3X 3 part of the matrix. We  The angle range parametd,= (¢ ma— ¢min) 4/. It equals
obtained 2.873 km/§2.737 km/$ for GaAs (Ab3Ga AS).  unity when a mode exists in the entire range of angles, and is

These results may be compared with the results of Fathell. smaller than unity otherwisé3) Anisotropy parameters for
Our results are slightly different because of the difference inhe real and imaginary parts of the velocity,

the parameters of the bulk materials. Taking the parameters
used by Farnell, we obtained his velocities with a very high UUR:(URmax_URmin)/UT lez(vlmax_vlmm)/vT
accuracy. . o 27)

The results for leaky interface waves are shown in Fig. 3
and Fig. 4. In plotting these figures we have taken into acModes with smaller anisotropy have smalter
count all selection rules formulated at the end of Sec. Ill. The Among the modes there are tw@€ (@andD in the figure
discontinuities appear because at some points these rules dhat are reminiscent of those in the surface acoustic problem.
not fulfilled and the corresponding modes become nonphysithat is, for ALGa _,As materials there are alwaystrue
cal. All the modes have different anisotropy, different attenu-surface acoustic waveSAW'’s) (they are shown by dotted

TIETTTT T TIT T T[T T T I T[T o777 T

FIG. 3. The real parts of complex velocities
for all leaky interface waves in the range 3.5
<vr< 5.7 km/s(a) and 2.4<vg< 3.5 km/s(b).
The solid lines represent velocities of bulk acous-
tic waves for both media.

[t ool rybeptooseeen

0 10 20 40 0 10 20 30 40
angle(degrees) angle(degrees)
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the interface waves we come to the conclusion that the maxi-
mum number of interface modes in each direction is equal to
the number of its Riemann sheets. In our case this is 64. We
have successfully checked this hypothesis by calculating the
number of modes in one direction in the interface plane, that
does not have any special symmetry.

The computations have been made for the interface
Aly Ga 7/As/GaAs. We showed that in this case all interface
modes that have physical meaning are leaky, but the majority
of them have a small attenuation in the direction of propaga-
tion. We show that to understand the physical meaning of
leaky waves one should consider not a stationary problem,
but the problem starting with the creation of the wave at
some line in the interface plane.

After that we are able to formulate how to separate these
64 modes into physical and nonphysical modes. This separa-
tion is mainly based upon some theorems on the energy flux
and upon the assumption that, if a mode deviates from the
interface in some medium, the energy flux should go into the
same medium.

Using the elastic moduli of the bulk lattices we performed
numerical calculations of the velocities of the interface
waves as functions of an angle in the plane of the interface in
o | a wide range of velocities. The results are _sh_own in Fig. 3.
0 10 20 30 40 One can see two close groups of modes_ within the intervals
3-3.5 km/s and 4.2—-4.5 km/s, respectively. These groups
may be responsible for the two periods of oscillations that

FIG. 4. The real parts of the complex velocities for selectedhave been observed in experiments with the two-dimensional
modes in the range 24 v < 5.7 km/s. See explanation in the text. electron gas in a magnetic fiefdmentioned in the Introduc-
The numerical parameters for these modes are given in Table Ition. Note that the velocities of the leaky interface waves
The value of the attenuation is determined by the imaginary part omay be sensitive to the difference of the bulk media param-
the complex velocity. Different line styles and thicknesses correeters. This difference is not known well enough. This fact
spond to different magnitudes of the average imaginary part may be responsible for possible deviations of the results of
(km/s) of the velocity. The solid lines represent velocities of bulk our calculations from the experimental data.
acoustic waves, and the dotted lines are true surface acoustic waves
for both mediaUpper curves correspond to AlG&, /As and lower
curves correspond to GaAs.
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of their velocity. RELATION IN GENERAL, SYMMETRY DIRECTIONS,

The situation for interface waves is different. As we men- AND ISOTROPIC CASES
tioned, there are no true interface waves. However, there are grom the determinantl3) we obtain the following equa-
leaky interface waves with a very small attenuation at smalfjq for the unknown variabl@ with the phase velocity as
angles before they “collide” with the bulk transverse veloc- 4 parameter:
ity curve. At larger angles the leaky modes acquire a larger
imaginary part of the velocity and become more strongly

A2—1—d)?
attenuatedsee Table ). g5 gt a+b+c—( = ) 1
V. CONCLUSION , ()\2—1—d)2 , ,
We have derived a dispersion equation for interface /4 |ab+bc+ca=b N2 — 7| +e(r—ab)
waves at the interface of two cubic crystals in the plane
perpendicular td001]. By analyzing different solutions for =0, (A1)
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TABLE Il. Parameters for the selected modes. The units for average velocities are km/s.

No. Oan UR v Tur Ty, U Rmin U Rmax Uimin Ulmax
A 0.46 4.166 6.%10° 025 0.39 3.58 4.60 5210°%  7.7x1073
B 099 4022 9%10° 015 248 3.60 4.22 241074 2.4x10°2
C, 026 3.195 1104 0.01 265 3.18 3.22 181071 51x10°4
C, 0.73 3.000 3.%102 0.10 250 2.89 3.19 38107 8.4x 1072
D, 0.63 2966 5%10° 0.11 1.00 2.72 3.05 19103 7.2x10°3
D, 053 285 6.102 0.07 276 2.75 2.95 231074 0.18
1 1 5369 7.%10°% 0.09 1.32 5.10 5.58 34103 1.4x10°2
2 1 5.167 4.x10°°3 0.1 0.31 4.83 5.32 371073 5.0<10°°
3 1 5330 2.x10°4 0.1 3.44 5.05 5.56 2210 © 7.1x10°4
4 1 5112 6.&10°% 009 079 4586 5.32 4210°%  9.4x10°°
5 1 5.115 4.x10°3 0.1 0.19 483 5.32 3710°°%  45x10°8
6 1 5104 3.%10°2 0.1 1.41 4.81 5.32 96103 5.9x 102
7 1 4960 3.%102 012 1.72 4.62 5.20 16102 7.7X1072
8 1 4.446 8%10°° 0.13 1.75 4.20 4.76 226102 1.8x10°?
9 1 4360 2.X10°2 0.05 0.65 4.24 4.44 1:310°2 2.7x10°?2
10 1 4323 2102 0.03 058 4.26 4.38 14102 2.7x10°?
11 094 3578 28102 0.02 222 3.53 3.60 12103 4.6x1072
12 099 3475 3%x10° 0.02 1.27 3.45 3.51 20104  4.1x10°°3
13 099 3452 3%x102 0.03 1.63 3.42 3.51 201074  5.1x10°2
14 0.68 3.77 8810° 001 1.35 3.37 3.42 86104  1.3x10°2
15 0.99 3.79 4Xx10%2 011 1.46 3.15 3.51 20104 5.9x 102
16 053 3.040 68102 0.05 1.69 3.00 3.15 10102 0.12
where 1 ( v2>
2 d ¢ )\2 t2 ’
2 v -
a=X\ ( 1- —) — —sif2 6,
2 2 d
T= Zsm 46. (A2)
v d . . .
b=1— — + —sirf2 The “weight factors” in Eg. (15 have the following
2 2 ' forms:
(1 fora=1
W _t_ﬂzp(zj)(ﬁjz): : D/45|n449- _, fora=2,
=0 = 22 —Cy4B3}+Cyyt DI2sir? 6—pv (A3)
1
_t_isiiﬂjpg)(ﬂf)ziiﬁjcCilcc“i_D > for a=3,
\ 44— Cpffj —pv

where the upper sign is for the upper medium, and for the sake of convenience we have omitted primes in formulas for the
lower medium. Then, for each term in the sui) the condition(6) on the continuity of stress in the rotated frame can be
written in the vector form:

s *iBiCus 0 Caa 1
ohs| =i 0 *iBiCus 0 pY) . (Ad)
ol Ciz 0 +iBCul L +igpy

One can can see that the boundary conditions decouple for the sagittal pjageand the perpendicular directio. With
the help of Eq(A4) and minor simplifications we obtain six homogeneous linear equations for the boundary conditions with
the matrixD(v) equal to
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1 1 1 -1 -1 -1
’ ’ "(3)
p5" p5” p5” —p5(1) —p;® ~p,
’ At I "(3)
Bps) Bop BpS) Bips™ Byps? Bip,
CuB1p" CusBB2p% CuaB3ps CluB1ps™ CluB5p5? CluB5p5™
CaaBr(1-p))  CusBo(1-pY)) CuBa(1-pF))  ChBi(1-ps™)  CLBy1-ps®)  CLBi(1-ps?)
| Ciot CuBIpS” CitCpBspY) CiptCiBips” —Ci—CBi’ps™ —Ci-CuBy?ps®  —Cipm Cihgézp:’a(s)_

(A5)

The condition for a nontrivial solution is that its determi- Moreover, the simultaneous change-vg—iv,, Bi—Br

nant must vanish: —ip, in Eq. (A6) leads to a change of sign of the imaginary
part of the determinant only:
D (v;By, ... B3)=|D{)|=0. (AB)
D (vg—iv))=DY’—iD{".

Since eachB is a double-valued function of the complex
variablev, this determinant has 64 Riemann sheets, whic
we denote by the superscript

The sign convention for independent sheets is determin
by the real part of3. It is given as follows:

hThUSU =vgr—Iv, is also a solution.
If we suggest that the frequency of the interface acoustic
oyave is real, thekk= w/v will be complex. We will choose
Solutions withv =vg—iv,, which correspond to waved$or
>0) attenuated along their direction of propagation on the
interface.
sgr(Re(B81),Re(B,), R B3),Re( B1), Re( B) ,RE( B3)). The dispersion relation simplifies considerably for propa-
(A7) gation on the interfac€001) along the directions of high
symmetry([100] and[110]) and in the isotropic case. For all
That is, the Riemann sheet + + — — —) corresponds to  these cases the matrix elements,=L,,=0 [because
the case Ref;)>0 and Reﬁj’)<0, wherej=1,2,3. sin40=0 or D=0; see Eq(12)]. Therefore, the systeifil)
The important property of the determinant is that its solu-for each medium breaks up into the pair
tions are invariant against the simultaneous change of sign of

all six decay constants. Indeed, the functigmsand p; are Li1 Lys|| Aq
defined in such a way that they depend @honly. There- Lis Lasl| A =0 (A8)
fore, from the form of the matriXA5) it follows that a si-
multaneous change of the sign @fleaves the secular equa- and
tion unaltered. Thus, in order to find all the roots of E46)
it is enough to investigate only 32 independent Riemann TABLE lll. Enumeration of Riemann sheets.
sheets. To enumerate these sheets we first solveA&Egand
sort the B(v) obtained for each medium in the following Rep; ReB, ReB; Rep; Rep; Repg
order: 1 + + + + + +
2 + + + + + -
|Re(B1)|<|Re(By)|<|Re(B3)]. 3 + + + + - +
4 + + + - + +
Second, we choose the notation that the sign of the real past + + + + — -
B4 is always positive. Then the uppermost Riemann sheeg + + + — + _
y=1 corresponds to the case +++++) and the subse- 7 + + + - — +
guent numbers for lower sheets are given in Table IlI. 8 + + + — _ —
Another feature of Eq(A6) is the following. Ifv=vg g + + — + + +
+iv, is the solution of the dispersion relatiod”(v) .
=D’ +iD{”=0, thenv=vg—iv, will also be a solution 17 4 _ n n 4 n
of Eq. (A6). Here we explicitly separated the real and imagi- . . . .
nary parts of a complex function. This can be understood I _ _ i I I

from the following consideration. Let=pg+ifB (I
=1,...,6) besolutions of Eqs(13) for v=vr+iv,; then 32 T - - — _ _
the solutions of Eqs(13) for v=vg—iv, areB; =B~ 14,
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L,A,=0. (A9) In the isotropic cased=0) Eqg. (A10) reduces to

The only nontrivial solution of the latter equation corre- B BA(y3+y5) — v3y3=0 (A16)
sponds to a bulk transverse acoustic wave propagating par- _ _

allel to the interface of the elastic medfaand therefore itis  With the obvious solutions

discarded. Thus, in these cases the interface waves are polar-

ized in the sagittal plane and do not haveacomponent. B1=*V1-v?/t?,
For interface waves polarized in the sagittal plane the
solvability condition for Eq(A8) is the biquadratic equation Bo=+\1-v?/(\1). (A17)
N2B4— B v2+ A4 2— (N2— 1—d)2]+\2y2+2=0, For all these cases the general solutions for the interface
B BTyt Ny VI Y2 (A10)  Waves are linear combinations of two partial waves in both
media:

where we have introduced the notation |
Uy (r,t) =[K e e+ K e kBxa]elkCa—vt)

A2=C41/Cys, (A11)
d=D/Cyy4, (A12) Ua(r1) = [Kyp§Tle™ 4+ KppgleTPera]ehtaey),
Y=1-vt?, (A13) ui(r,t) =[ KXt Kyehharsjelktaon),
t2=Cyulp, (A14) UL (r, 0 =[ K, ps(DekBiXa+ K o p,(DekBrxa]giktxa—vt),
and (A18)
1 v2I(A1)? for 6=0 After substituting solution(A18) into the boundary condi-

y% (A15) tions (5) and(6) we obtain a set of four homogeneous linear

Tl 1-di2A2—v2(\t)2 for 6=la. equations with solvability condition

1 1 -1 -1
Bips) BopS Bips™ Byps® . A9
CaBr(1-p8)) Caso(1-p§))  CuBi(l-ps™)  CiBy(l—p®) |7
Cio+ CuuBips” Cipt Cuup3py) —Cl=CpyBi°ps™  —Cip— CpyBy°ps®
|
For the isotropic casp§’=—1/87 andp{)= —1. Then the ~ where
resulting dispersion relation reduées
: b o F=pt?—p't'? A21
0“[(p=p')>= (pBy+p' B2 (pBi+p' By)] Prop (A21)
+4Fv?[pB1Bs—p' B1B—p+p'] There are 16 independent roots on eight different Riemann
5 . sheets for the given equation. There is always a nonattenu-
+4F5(1-B1B2)(1—-B1B3)=0, (A20)  ated solution fot=t’', A\=\" andp#p’.
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