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Leaky interface phonons in AlxGa1ÀxAsÕGaAs structures
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A dispersion equation for interface waves is derived for the interface of two cubic crystals in the plane
perpendicular to@001#. A reasonable hypothesis is made about the total number of acoustic modes. According
to this hypothesis the number is 64, but not all of the modes have the physical meaning of interface waves.
Rules have been worked out to select physical branches among all 64 roots of the dispersion equation. The
physical meaning of leaky interface waves is discussed. The calculations were made for the interface
Al0.3Ga0.7As/GaAs. In this case all physical interface modes have been shown to be leaky. The velocities of the
interface waves are calculated as functions of an angle in the plane of the interface. The results support a recent
interpretation of weakfield magnetoresistance oscillations as a resonant scattering of a two-dimensional elec-
tron gas by the leaky interface phonons.
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I. INTRODUCTION

The propagation of acoustic surface and interface wa
has attracted significant attention over recent decades.
concept of surface waves goes back to the famous pape
Lord Rayleigh.1 The interface wave is a simple generaliz
tion of the surface wave, when the second medium is
vacuum, and the wave propagates along the boundary
tween two media. The theoretical study of interface wa
was initiated by Stoneley2 who considered the case of tw
isotropic solids.

In anisotropic materials the interface waves between h
agonal crystals3,4 have been studied theoretically in sufficie
detail. Relatively little is known about the effects of crysta
line anisotropy when the interface is formed by cubic cr
tals. To the best of our knowledge the only numeric
searches for true interface wave velocities for several c
binations of materials so far have been carried out in Ref
and 6.

Both surface and interface waves were initially studied
the context of seismological waves propagating in
Earth’s crust.7–10 Later on these waves were studied expe
mentally in semiconductors by light scattering.11,12

The earlier theoretical studies by Lord Rayleigh a
Stoneley~see also Ref. 13! were restricted only to those roo
of the secular equations that give an exponential decay o
surface wave in the medium under the surface and an e
nential decay of the interface wave in both media away fr
the interface. Phinney9 was probably the first to consider th
so called leaky or pseudo waves that do not obey this
scription. Surface leaky waves have been widely stud
theoretically for both isotropic and anisotropic crystalli
materials ~see the review by Maradudin14 and references
therein!. To the best of our knowledge leaky interface wav
have been studied only for the isotropic case9,10 and for hex-
agonal crystals.15

The interest in leaky interface waves is stimulated by
fact that true interface waves exist inside a very narrow ra
of parameters. Therefore in the general case interface w
are leaky. This is not the case for surface waves where a
nonleaky mode always exists in a wide range
parameters.16 However, the dispersion equation for surfa
0163-1829/2001/63~16!/165305~11!/$20.00 63 1653
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waves also has several roots that give leaky solutions.
Structures with a two-dimensional electron gas~2DEG!,

such as heterostructures or quantum wells, provide ano
source of interest in interface waves. The interaction o
2DEG with surface waves was investigated long ago.17,18 If
the 2DEG is far from the surface, the electrons may inter
with interface waves. For example, the electrons may
scattered by thermally excited interface waves. This scat
ing should not be weaker than scattering by bulk phono
since in the vicinity of the interface the three-dimension
densities of the bulk and interface phonons are of the sa
order. In Ref. 19 we explained the oscillations of magneto
sistance, observed in a high-mobility 2DEG in GaA
Al xGa12xAs heterostructure, by a magnetophonon resona
originating from the interaction of the 2DEG with thermal
excited leaky interface acoustic phonon modes.

The primary goal of this paper is the calculation of t
interface waves for an Al0.3Ga0.7As/GaAs interface on the
basal~001! face. This is exactly the interface used in the R
19. We have shown that all interface waves in this case
leaky. To this end we have derived analytically the secu
equation for the phase velocityv of the waves at the inter
face between two cubic crystals. We have discussed the
lection rules for the modes and given a general qualita
picture of the leaky interface waves. In this picture we co
sider the conservation of energy and show that the amplit
of the wave never becomes infinite if the problem is prope
formulated. We show that under some conditions lea
waves do not differ substantially from true waves. Final
we have obtained numerical results, which were partia
used in Ref. 19.

The paper is organized as follows. The basis of
method is outlined in Sec. II. In the third section we discu
general properties of the secular equation, the selection r
for its solutions, and the physical meaning of leaky wav
The numerical results and discussion are presented in
IV. Finally, some auxiliary technical material regarding th
calculations is given in the Appendix.

II. GENERAL FORMULATION

Within the framework of the linear theory of elasticity th
equations of motion of an infinite medium are
©2001 The American Physical Society05-1
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r
]ui

]t2
5

]s i j

]xj
, i 51,2,3, ~1!

where r is the mass density of the medium,ui(r ,t) is a
Cartesian component of the displacement of the medium
the point r at time t, ands i j (r ,t) is the stress tensor. Thi
last is given by Hooke’s law

s i j 5l i jkl

]uk

]xl
, ~2!

wherel i jkl is a symmetrical fourth-rank tensor. In a cub
crystal the stress tensor can be conveniently written as

s i j 5C12~div u!d i j 1C44S ]ui

]xj
1

]uj

]xi
D1D

]ui

]xj
d i j , ~3!

where summation overi andj is not assumed in the last term
HereD is the anisotropy parameter:

D5C112C1222C44. ~4!

For an isotropic mediumD50.
In the following analysis we consider a system formed

two semi-infinite cubic crystals. The elastic moduli and de
sity related to the lower part will be denoted by primed sy
bols ~see Fig. 1!. The interface coincides with the plan
~001! and it is perpendicular to thex3 axis. The coordinate
axesx1 , x2, andx3 coincide with the@100#, @010#, and@001#
directions, respectively, for both cubic media.

The equations of motion~1! have to be supplemented b
the boundary conditions at the interface, expressing the c
tinuity of the displacement and normal components of
stress tensor:

ui5ui8ux350 , i 51,2,3, ~5!

s i35s i38 ux350 , i 51,2,3. ~6!

Homogeneous plane waves~bulk phonons! are the simplest
solutions of the wave equation in one infinite medium. Th
are

u( l )~r ,t !5exp~ iki•xi1 ik3x32 iv ( l )t ! ~7!

for three different branchesl 51,2,3, wherexi and ki are
two-dimensional vectors with components (x1 ,x2,0) and

FIG. 1. Structure for the study of interface acoustic waves.
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(k1 ,k2,0)[k(cosu,sinu,0), respectively~the angleu is mea-
sured from the@100# direction!, andv ( l )5s( l )Ak21k3

2 with
the bulk sound velocity s( l )5s( l )(u,f), where cosf
5k3 /Ak21k3

2.
The solution for the phase velocity can be determined

substituting the plane wave of Eq.~7! into the equations of
motion ~1!. This yields a homogeneous set of linear equ
tions. Setting the determinant of the coefficients equal
zero produces a cubic equation inv2. The three roots of this
equation are the squares of the velocities for three b
phonons.

For propagation along the~001! plane one of the veloci-
ties t15AC44/r is independent ofu and represents a trans
verse mode. Two others depend on the angle of propaga
in the plane. They are neither longitudinal nor transverse,
we denote the upper branch by the letter ‘‘l ’’ and the lower
one by ‘‘t2.’’

The interface between two semi-infinite media introduc
an inhomogeneity in thex3 direction. Therefore, we could
expect that the plane waves will also become inhomo
neous in this direction. The frequency and wave vectorki are
the same in both media, but the componentk3 of the wave
vector may be complex and different in the upper and low
media. Moreover, since the boundary conditions Eqs.~5! and
~6! consist of six equations, the simplest solution for an
bitrary direction of propagation should consist of a line
superposition of three terms described by Eq.~7! for each
medium, with their own different complex componentsk3.

The subsequent analysis is facilitated by performing a
tation of the coordinate frame in such a way that the dir
tion of propagation of the acoustic wave in the plane of
interface is along thex̃1 axis, i.e.,k̃i5(k,0,0). Let

T̂5F cosu sinu 0

2sinu cosu 0

0 0 1
G ~8!

be the transformation matrix that produces this rotati
Then the transformation law for the elements of the ela
modulus tensor under this rotation is

l̃ i jkl 5 (
i 8 j 8k8 l 8

Tii 8Tj j 8Tkk8Tll 8l i 8 j 8k8 l 8 . ~9!

At the first stage of the analysis we determine the poss
values ofk3 for a given value ofk. To this end, we define
k3[ ikb, v5kv, and we suggest a solution for the interfa
waves in the rotated system in the form

ui5Aie
2kb x̃3exp@ ik~ x̃12vt !# for x̃3.0,

ui85Ai8e
kb8x̃3exp@ ik~ x̃12vt !# for x̃3,0. ~10!

The subsequent analysis is carried out in the rotated sys
only. Therefore we omit tildes for the sake of convenien
Conceptually, thex3 dependence is a part of the ‘‘ampl
tude’’ ~see Ref. 20! and the wavelike properties are describ
by a common propagation part exp@ik(x12vt)#. Thus, the
5-2
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propagation vector is always assumed to be parallel to
interface even though the exponentb may be complex.

If Reb,b8.0, then such a form describes a wave th
propagates in thex1 direction, whose amplitude decays e
ponentially with increasing distance into each medium fr
the interface. The waves with~i! Reb,0 and Imb,0, ~ii !
Reb8,0 and Imb8,0, ~iii ! Reb,b8,0, and Imb,b8,0
are leaky waves that radiate energy outward from the in
face.
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Substituting Eqs.~9! and~10! into the equations of motion
~1! yields a set of homogeneous equations for each medi

Li j ~v,b!Aj50,

Li j8 ~v,b8!8Aj850, ~11!

where the matrixL ~or L 8) has the form
F 2C44b
21C112

1

2
D sin2 2u2rv2 2

1

4
D sin 4u 6 ib~C112C442D !

2
1

4
D sin 4u 2C44b

21C441
1

2
D sin2 2u2rv2 0

6 ib~C112C442D ! 0 C442C11b
22rv2

G . ~12!
s.
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The sign plus~minus! corresponds to the upper~lower! me-
dium, and we omitted primes for the lower medium. In ea
medium Eqs.~11! have nontrivial solutions if the corre
sponding determinant of the coefficients vanishes:

det~L !50. ~13!

This gives the secular equation for the unknown values ob
with the phase velocityv as a parameter. The explicit form
of Eq. ~13! is given in the Appendix. The plane of the inte
face coincides with the plane~001! for both cubic crystals.
This is a plane of mirror symmetry for both of them if the
are considered separately. Because in our solution the ve
ki is in this plane~see Fig. 1!, the secular equation is bicubi
in b and the roots have inversion symmetry with respec
the origin of the complex plane.20

One can also show that, ifb l5bR j1 ib I j for j
51, . . . ,6 are theroots of Eq.~13! with a complex velocity
v5vR1 iv I , then the rootsb j5bR j2 ib I j are the roots of
the same equation withv5vR2 iv I . Here the superscript
‘‘ R’’ and ‘‘ I ’’ denote the real and imaginary parts, respe
tively.

The amplitudesAa ~or Aa8 ) for anyb j (b j8) are related by

A1
( j )

C1
( j )

5
A2

( j )

C2
( j )

5
A3

( j )

C3
( j )

5K j , j 51, . . . ,6, ~14!

where theK j are constants andCa
( j )(v,b j ) (a51,2,3) are

the cofactors of the elements in the first row of the matrixL :

C1
( j )5L22L33,

C2
( j )52L21L33,

C3
( j )52L31L22.

The next step of our analysis is the construction of
general solution, that satisfies the boundary conditions E
h

tor

o

-

e
s.

~5! and ~6!. To this end, we form linear combinations from
the three terms~10! with undefined constantsK j andK j8 for
each medium:

ua5(
j 51

3 Ca
( j )

C1
( j )

K jexp@ ik„x12vt1 ib j~v !x3…# for x3.0,

ua85(
j 51

3 Ca8
( j )

C18
( j )

K j8exp@ ik„x12vt2 ib j8~v !x3…#, for x3.0.

~15!

Substitution of this form for the displacement field into Eq
~5! and ~6! leads to a set of six~in the general case! homo-
geneous linear equations forK j ,K j8 . Nontrivial solutions ex-
ist if the corresponding determinant vanishes:

uDkl
(g)~v !u50, k,l 51, . . . ,6. ~16!

Equation~16! is the dispersion relation for the phase veloc
v of the interface acoustic wave. In general it has to
solved numerically. The left hand side functionD(v)
[uDkl

(g)u is some algebraic expression. Therefore, in gene
the roots of Eq.~16! are complex. Moreover, sinceD(v)
contains six different decay constantsb j (v),b j8 , which in-
volve square roots of some expressions ofv2, the function
D(v) is a multivalued analytical function of the comple
variable v, defined on its associated Riemann sheets.
superscriptg enumerates these sheets. The number of R
mann sheets is determined by different combinations ob
branches. However, not all of 6!/3!3!520 combinations of
b j are possible for each medium in the superpositions of
~15!. Each of the three decay constants must be taken f
the different rootsb2 of the cubic equation det(L )50 for
fixed v2. Therefore, the total number of possible combin
tions is 23323564. This is the number of Riemann shee
for our case. Since a simultaneous change of all signs
5-3
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b,b8 in Eq. ~16! does not change the form of determina
~see the Appendix!, it is enough, in fact, to investigate 3
independent Riemann sheets in order to find all poss
roots of the dispersion relation. In the isotropic case and
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propagation along the directions of high symmetry the nu
ber of independent Riemann sheets reduces to eight.

The sign convention for the sheets is determined by
real part ofb. It is denoted as follows:
„sgn Re~b1!,sgn Re~b2!,sgn Re~b3!,sgn Re~b18!,sgn Re~b28!,sgn Re~b38!…. ~17!
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Let us assume thatg51 corresponds to the cas
~111111!. If a solution exists on this sheet, then it is
true interface wave, which is also called a Stoneley wave.
other g correspond either to leaky waves or to nonphysi
solutions. Some of them may also correspond to b
phonons~see Sec. III!. In the next section we formulate se
lection rules for physical solutions. The correct direction
the energy flux is the main principle for the selection. T
explicit form of Eq.~16! and the method of enumerating i
Riemann sheets are given in the Appendix.

III. SELECTION RULES FOR THE VELOCITY AND THE
PHYSICAL MEANING OF LEAKY WAVES

The question of the total number of possible values of
velocity was investigated in the early 1970s theoreticall21

for the isotropic solid-liquid interface, and numerically fo
the case of two isotropic solids.10 In the case of the liquid-
solid interface there areeight Riemann sheets. It is shown21

that the roots on all these sheets are the roots of an eig
order polynomial inv2 with real coefficients, and so ther
are eight complex roots which are either real or come
complex conjugate pairs. Numerical investigation of t
Stoneley equation ~A20! for an isotropic solid-solid
interface10 has shown that there are 16 independent roots
its 16 Riemann sheets.

Thus, we can put forward a simple hypothesis: The nu
ber of possible values ofv2 is equal to the number of Rie
mann sheets. However, some of them may be degenera
we are speaking about themaximumnumber of differentv2.
Note that this hypothesis is true for isotropic surface wa
as well. It follows from it that the maximum number o
modes in our interface is 64. To check this hypothesis
have calculated this number for one direction that does
have any special symmetry. The result is 64.

Let us turn now to the problem of classifying the roots f
the caseg.1. First of all we discuss real roots forv of the
dispersion equation Eq.~16!. If all b are pure imaginary, this
corresponds to the refraction of bulk phonons and has n
ing in common with leaky waves. If at least one of theb on
either side has a negative real part, such a solution shoul
considered as nonphysical. If it happens that someb are
imaginary but some are complex with positive real part, th
this relates to the problem of total internal reflection of bu
phonons. In our subsequent numerical analysis we dis
such solutions, since they have a different nature.

Now we come to complexv. Let us assume that we hav
a real positive frequencyv.0 and a complex root
ll
l
k

f

e

th-

n

-

so

s

e
ot

h-

be

n

rd

v5vR7 iv I ~18!

of Eq. ~16!. As follows from the Appendix all complex root
form such pairs. Then the wave vectors of propagation al
the x1 axis for these solutions will be complex and equal

k5v/v5v/~vR7 iv I !5kR6 ikI . ~19!

If kR.0, it corresponds to a running wave propagating fro
the left to the right with exponentially decreasing or increa
ing amplitude. Since both of these solutions always occu
pairs we will consider only the wave attenuated from the l
to the right. Then we should chose only the rootkR1 ikI or
vR2 iv I , wherevR ,v I ,kR ,kI.0.

Sinceg.1, one or severalb have negative real part, i.e

b52bR2 ib I , ~20!

wherebR.0 and sgnb I is not determined yet.
It is useful to introduce the following notations:

ṽR5~vR
21v I

2!/vR , ~21!

b̃R5bR2b Iv I /vR , ~22!

b̃ I5b I1bRv I /vR . ~23!

After the substitutionk5v/v the term has the form of an
inhomogeneous plane wave

e2 iv(t2x/ ṽR2zb̃ I / ṽR)e2v/ ṽR(xv I /vR2zb̃R). ~24!

In fact, the sign ofb I is not arbitrary, but is dictated by th
radiation condition.22,23 Indeed, since we consider here los
less media the only reason for the amplitude attenua
along the direction of propagation on the interface is
radiation of energy away from the interface into the bu
media. The total wave vectorq5v/ ṽR(1,0,b̃ I) is no longer
parallel to the boundary, but is inclined to it, which indicat
the presence of a continuous flow of energy from the bou
ary to the bulk. Note that the direction of phase propagat
q/q does not represent the direction of energy flow itse
The latter is determined by the time-averaged power flux

Wa52ReK 1

2
sbau̇b* L , a,b51,2,3. ~25!

One can show that for smallv I the sign of the componentW3
that determines the flow perpendicular to the interface co
5-4
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cides with the sign ofb̃ I . Therefore, in the notations of Eq
~20! the sign b̃ I must be positive to guarantee the prop
radiation condition.

Now we come to the physical meaning of the lea
waves. Discussing Rayleigh waves, Landau and Lifshi13

prescribe dropping as nonphysical a solution that increa
away from the surface. In the theory of leaky waves we ta
such a solution into consideration. The goal of this part is
give a physical explanation of leaky waves~see also the re
view by Maradudin24!.

On both sides of the interface our solution consists
three inhomogeneous plane waves. At large values ofx andz
these waves can be considered as independent. So we
centrate on one of them, choosing the wave atz.0 with
negative real part ofb, i.e., a wave exponentially increasin
with z. This wave has the form of Eq.~24!:

e2 iv(t2x/ ṽR2zb̃ I / ṽR)e2v/ ṽR(xv I /vR2zb̃R), ~26!

where b̃R.0 and b̃ I.0. This is an inhomogeneous bu
plane wave with wave vectorq5v/ ṽR(1,0,b̃ I) propagating
away from the interface. The lines of constant phase
determined by the equationt2x/ c̃R2zb̃ I / c̃R5C1, and the
lines of constant amplitude are given by the equat
xv I /vR2zb̃R5C2 ~see Fig. 2!. The latter expression show
that such modes attenuate when they move along the su
z50.

The central point of our understanding of leaky waves
that one cannot consider these waves in the entire regionx
values, since their amplitude becomes infinite whenx→
2`. This happens because we have chosen the solution
propagates from the left to the right along thex axis. Thus,
we should propose that the wave is created at some line
x50, in the plane of the interface. Our equations of mot
do not include any dissipation; therefore the attenuation
the plane of the interface may be due only to radiation i
the media. There is an important theorem25 stating that for
inhomogeneous plane waves the energy flux is parallel to
plane of constant amplitude. The cross sections of th
planes with the planezx are shown by full lines of differen

FIG. 2. Illustration of geometry of leaky interface wave term
Power fluxW and wave vectorq are shown. The full lines with
different thicknesses are the lines of constant amplitude. The th
ness of the line indicates schematically the absolute value of
amplitude. Dashed lines are the lines of constant phase. For v
clarity the angle of the constant amplitude lines has been exag
ated.
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thickness. The uppermost line is thickest because the am
tude of the wave at the linex50 is the largest, and it de
creases with increasingx. That is why the amplitude at an
point x increases withz for z,xv I /b̃vR . It follows from the
above theorem that the energy flux cannot cross the plane
constant amplitude. It also cannot cross the plane of maxi
amplitude. This means that the entire wave is within t
wedge formed by the plane of the interface and the plane
maximal amplitudez5xv I /b R̃vR , at least in the sense tha
the entire energy of the wave is within this wedge. The a
plitude of the wave is finite everywhere in this region.

One gets a severe contradiction on considering a stat
ary problem. Indeed, Eq.~26! gives a nonzero result outsid
the wedge as well. Moreover, the amplitude diverges whez
tends to infinity. This is an artifact of the stationary cons
eration. The origin of the divergence is the infinite amplitu
of the wave at the pointx52`. The increase of the ampli
tude at largez is an artifact originating from the flux coming
from large negativex.

It is important to mention that the leaky wave does n
differ substantially from a true interface wave only ifkR
@kI in Eq. ~18 orvR@v I . SincebR is not small, this means
that the angle between the plane, forming the wedge in
2 should be small. If this condition is not satisfied, the int
face~or surface! wave cannot be considered as a wave sin
the wavelength is larger than the attenuation length.

The problem does not contain any small parameter
could cause this condition to be fulfilled. The numeri
show, however, that the majority of modes have small
tenuation. The roots of this phenomenon are not clear to

Thus, based on the discussion in this section we use
following selection rules for the valuesv5vR2 iv I that are
solutions of Eq.~16!. ~1! vR.0, v I>0. ~2! If v I50, then Re
b, Reb8.0. ~3! If v I.0 and Reb,0, then Imb,0. ~4! If
v I.0 and Reb8,0, then Imb8,0.

IV. NUMERICAL RESULTS

To calculate velocities as a function of angle we use E
~A1! for b2 and Eq.~A6!. A numerical search for all the
roots in the entire complexv plane is a very time-consumin
process. Therefore we restrict our search to the rectang
region defined by the limits 2,vR,7 km/s, 0,v I,0.6
km/s. Our analysis have shown that almost all modes
located in this rectangle. Although some of the modes
outside the region, we have found that usually such mo
either are nonphysical or have a very strong attenuation.
choice of the particular interface Al0.3Ga0.7As/GaAs was dic-
tated by the experiment Ref. 19. In the first step we div
the complex planev in the interval 2,vR,7 km/s, 0,v I
,0.6 km/s into 400 squares. For a vertex of each square
find six values ofb for the upper medium and six values o
b8 for the lower medium using Eq.~A1!. For each value ofv
we find 32 different combinations ofb ~each of six values!
and substitute them into Eq.~A6!. For each Riemann sheetg
we find all minima of abs(uDi j

(g)(v)u) with respect tovR and
v I using a standard program. For those minima that are c
to zero, we do an iterative search for roots. The parame

k-
e
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er-
5-5



c
te

tw

cu
io

te

ll
i

te
ig

.
ac
h
s
ys
u

In
n
n
ity
ws,
ery
o
ted

e
a

ion
a

eir
eal

ig.
e

d is
r

em.

2
8

I. V. PONOMAREV AND A. L. EFROS PHYSICAL REVIEW B63 165305
of the bulk lattices have been taken from Table I. To che
the method some results were obtained using the comple
different surface Green function matching method.27,28,4We
have not found any differences between the results of the
methods.

For an additional check of the problem we have cal
lated true surface waves for both materials. The dispers
relation for surface waves on a~001! cut of cubic crystals
can be obtained from the determinant of the truncated in
face matrix Eq.~A5!. For the upper~lower! medium we
should take the lower left~right! 333 part of the matrix. We
obtained 2.873 km/s~2.737 km/s! for GaAs (Al0.3Ga0.7As).
These results may be compared with the results of Farne20

Our results are slightly different because of the difference
the parameters of the bulk materials. Taking the parame
used by Farnell, we obtained his velocities with a very h
accuracy.

The results for leaky interface waves are shown in Fig
and Fig. 4. In plotting these figures we have taken into
count all selection rules formulated at the end of Sec. III. T
discontinuities appear because at some points these rule
not fulfilled and the corresponding modes become nonph
cal. All the modes have different anisotropy, different atten

TABLE I. Densities (g/cm3), elastic constants (1010 N/m2), and
sound velocities~km/s! in the directions of high symmetry for bulk
crystals~Ref. 26!.

Crystal r C11 C12 C44 l [100] t1 l [110] t2[110]

Al 0.3Ga0.7As 4.794 12.24 5.65 5.90 5.05 3.51 5.56 2.6
GaAs 5.307 12.26 5.71 6.0 4.81 3.36 5.31 2.4
16530
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ation, and different angular intervals in which they exist.
Fig. 3 we draw all the modes@note that the velocity scales i
3~a! and 3~b! are different#. One can see that there is a
abundant number of leaky interface modes in the veloc
range between 3 and 4 km/s. A thorough analysis sho
however, that a majority of these modes exists in a v
restricted range of angles. It will probably be difficult t
detect them experimentally. In Figure 4 we draw selec
modes that exist in a large interval of the angles only. W
left one mode~A! with a small angle range in the figure as
typical example of discarded modes. For further clarificat
of the picture we also discard all physical modes with
strong anisotropy of the real and/or imaginary parts of th
velocity. One such mode with a strong anisotropy of the r
part ~B! is left in the figure as an example.

All numerical parameters for the modes presented in F
4 are given in Table II. For classification of the modes w
introduce the following parameters.~1! The real v R̄ and
imaginaryv Ī parts of the velocity averaged over angles.~2!
The angle range parameterdan5(wmax2wmin) 4/p. It equals
unity when a mode exists in the entire range of angles, an
smaller than unity otherwise.~3! Anisotropy parameters fo
the real and imaginary parts of the velocity,

svR
5~vRmax2vRmin!/v R̄, sv I

5~v Imax2v Imin!/v Ī .
~27!

Modes with smaller anisotropy have smallers.
Among the modes there are two (C andD in the figure!

that are reminiscent of those in the surface acoustic probl
That is, for AlxGa12xAs materials there are always20 true
surface acoustic waves~SAW’s! ~they are shown by dotted
s
.5

s-
FIG. 3. The real parts of complex velocitie
for all leaky interface waves in the range 3
,vR, 5.7 km/s~a! and 2.4,vR, 3.5 km/s~b!.
The solid lines represent velocities of bulk acou
tic waves for both media.
5-6
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lines in the figure!, which change very little with angle unti
they meet the lowest bulk transverse velocity curves~they
are shown by a solid line!. After that point the true SAW’s
repeat the behavior of their bulk velocity curves up to t
end—the 45° angle in the figure. Meanwhile, in the reg
between two transverse bulk velocity curves leaky surf
acoustic waves appear with approximately the same real
of their velocity.

The situation for interface waves is different. As we me
tioned, there are no true interface waves. However, there
leaky interface waves with a very small attenuation at sm
angles before they ‘‘collide’’ with the bulk transverse velo
ity curve. At larger angles the leaky modes acquire a lar
imaginary part of the velocity and become more stron
attenuated~see Table II!.

V. CONCLUSION

We have derived a dispersion equation for interfa
waves at the interface of two cubic crystals in the pla
perpendicular to@001#. By analyzing different solutions fo

FIG. 4. The real parts of the complex velocities for selec
modes in the range 2.4,vR, 5.7 km/s. See explanation in the tex
The numerical parameters for these modes are given in Tabl
The value of the attenuation is determined by the imaginary pa
the complex velocity. Different line styles and thicknesses co

spond to different magnitudes of the average imaginary parv Ī

~km/s! of the velocity. The solid lines represent velocities of bu
acoustic waves, and the dotted lines are true surface acoustic w
for both media~Upper curves correspond to Al0.3Ga0.7As and lower
curves correspond to GaAs.!
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the interface waves we come to the conclusion that the m
mum number of interface modes in each direction is equa
the number of its Riemann sheets. In our case this is 64.
have successfully checked this hypothesis by calculating
number of modes in one direction in the interface plane, t
does not have any special symmetry.

The computations have been made for the interf
Al0.3Ga0.7As/GaAs. We showed that in this case all interfa
modes that have physical meaning are leaky, but the majo
of them have a small attenuation in the direction of propa
tion. We show that to understand the physical meaning
leaky waves one should consider not a stationary probl
but the problem starting with the creation of the wave
some line in the interface plane.

After that we are able to formulate how to separate th
64 modes into physical and nonphysical modes. This sep
tion is mainly based upon some theorems on the energy
and upon the assumption that, if a mode deviates from
interface in some medium, the energy flux should go into
same medium.

Using the elastic moduli of the bulk lattices we perform
numerical calculations of the velocities of the interfa
waves as functions of an angle in the plane of the interfac
a wide range of velocities. The results are shown in Fig
One can see two close groups of modes within the interv
3–3.5 km/s and 4.2–4.5 km/s, respectively. These gro
may be responsible for the two periods of oscillations t
have been observed in experiments with the two-dimensio
electron gas in a magnetic field,19 mentioned in the Introduc-
tion. Note that the velocities of the leaky interface wav
may be sensitive to the difference of the bulk media para
eters. This difference is not known well enough. This fa
may be responsible for possible deviations of the results
our calculations from the experimental data.
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APPENDIX: EXPLICIT FORM OF THE DISPERSION
RELATION IN GENERAL, SYMMETRY DIRECTIONS,

AND ISOTROPIC CASES

From the determinant~13! we obtain the following equa-
tion for the unknown variableb with the phase velocityv as
a parameter:

b62b4Fa1b1c2
~l2212d!2

l2 G
1b2Fab1bc1ca2b

~l2212d!2

l2
2t2G1c~t22ab!

50, ~A1!

d

II.
of
-

ves
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TABLE II. Parameters for the selected modes. The units for average velocities are km/s.

No. dan v R̄ v Ī
svR

sv I
vRmin vRmax v Imin v Imax

A 0.46 4.166 6.531023 0.25 0.39 3.58 4.60 5.231023 7.731023

B 0.99 4.022 9.531023 0.15 2.48 3.60 4.22 2.131024 2.431022

C1 0.26 3.195 1.931024 0.01 2.65 3.18 3.22 1.8310211 5.131024

C2 0.73 3.000 3.331022 0.10 2.50 2.89 3.19 3.831027 8.431022

D1 0.63 2.966 5.331023 0.11 1.00 2.72 3.05 1.931023 7.231023

D2 0.53 2.856 6.631022 0.07 2.76 2.75 2.95 2.331024 0.18
1 1 5.369 7.931023 0.09 1.32 5.10 5.58 3.431023 1.431022

2 1 5.167 4.231023 0.1 0.31 4.83 5.32 3.731023 5.031023

3 1 5.330 2.131024 0.1 3.44 5.05 5.56 2.231026 7.131024

4 1 5.112 6.831023 0.09 0.79 4.86 5.32 4.131023 9.431023

5 1 5.115 4.031023 0.1 0.19 4.83 5.32 3.731023 4.531023

6 1 5.104 3.531022 0.1 1.41 4.81 5.32 9.531023 5.931022

7 1 4.960 3.531022 0.12 1.72 4.62 5.20 1.631022 7.731022

8 1 4.446 8.731023 0.13 1.75 4.20 4.76 2.631023 1.831022

9 1 4.360 2.131022 0.05 0.65 4.24 4.44 1.331022 2.731022

10 1 4.323 2.231022 0.03 0.58 4.26 4.38 1.431022 2.731022

11 0.94 3.578 2.031022 0.02 2.22 3.53 3.60 1.231023 4.631022

12 0.99 3.475 3.131023 0.02 1.27 3.45 3.51 2.031024 4.131023

13 0.99 3.452 3.131022 0.03 1.63 3.42 3.51 2.031024 5.131022

14 0.68 3.77 8.831023 0.01 1.35 3.37 3.42 8.631024 1.331022

15 0.99 3.79 4.131022 0.11 1.46 3.15 3.51 2.031024 5.931022

16 0.53 3.040 6.931022 0.05 1.69 3.00 3.15 1.031023 0.12
where

a5l2S 12
v2

l2t2D 2
d

2
sin22 u,

b512
v2

t2
1

d

2
sin22 u,
16530
c5
1

l2 S 12
v2

t2 D ,

t5
d

4
sin 4u. ~A2!

The ‘‘weight factors’’ in Eq. ~15! have the following
forms:
s for the
be

s with
Ca
( j )

C1
( j )

55
1 for a51

2
L21

L22
[p2

( j )~b j
2!5

D/4 sin 4u

2C44b j
21C441D/2 sin2 u2rv2

, for a52,

2
L31

L33
[7 ib j p3

( j )~b j
2!57 ib j

C112C442D

C442C11b j
22rv2

, for a53,

~A3!

where the upper sign is for the upper medium, and for the sake of convenience we have omitted primes in formula
lower medium. Then, for each term in the sum~15! the condition~6! on the continuity of stress in the rotated frame can
written in the vector form:

F s13
j

s23
j

s33
j
G5 iF 6 ib jC44 0 C44

0 6 ib jC44 0

C12 0 6 ib jC11

G F 1

p2
( j )

7 ib j p3
( j )
G . ~A4!

One can can see that the boundary conditions decouple for the sagittal plane$x1x3% and the perpendicular directionx2. With
the help of Eq.~A4! and minor simplifications we obtain six homogeneous linear equations for the boundary condition
the matrixD(v) equal to
5-8
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3
1 1 1 21 21 21

p2
(1) p2

(2) p2
(3) 2p28~1! 2p28

(2)
2p

2

8(3)

b1p3
(1) b2p3

(2) b3p3
(3) b18p38

(1) b28p38
(2)

b38p
3

8(3)

C44b1p2
(1) C44b2p2

(2) C44b3p2
(3) C448 b18p28

(1) C448 b28p28
(2) C448 b38p28

(3)

C44b1~12p3
(1)! C44b2~12p3

(2)! C44b3~12p3
(3)! C448 b18~12p38

(1)! C448 b28~12p38
(2)! C448 b38~12p38

(3)!

C121C11b1
2p3

(1) C121C11b2
2p3

(2) C121C11b3
2p3

(3) 2C128 2C118 b18
2p38

(1) 2C128 2C118 b28
2p38

(2) 2C128 2C118 b38
2p38

(3)

4 .

~A5!
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The condition for a nontrivial solution is that its determ
nant must vanish:

D (g)~v;b1 , . . . ,b38![uDi j
(g)u50. ~A6!

Since eachb is a double-valued function of the comple
variablev, this determinant has 64 Riemann sheets, wh
we denote by the superscriptg.

The sign convention for independent sheets is determ
by the real part ofb. It is given as follows:

sgn~Re~b1!,Re~b2!,Re~b3!,Re~b18!,Re~b28!,Re~b38!!.
~A7!

That is, the Riemann sheet~1 1 1 2 2 2! corresponds to
the case Re(b j ).0 and Re(b j8),0, wherej 51,2,3.

The important property of the determinant is that its so
tions are invariant against the simultaneous change of sig
all six decay constants. Indeed, the functionsp2 and p3 are
defined in such a way that they depend onb2 only. There-
fore, from the form of the matrix~A5! it follows that a si-
multaneous change of the sign ofb leaves the secular equa
tion unaltered. Thus, in order to find all the roots of Eq.~A6!
it is enough to investigate only 32 independent Riema
sheets. To enumerate these sheets we first solve Eq.~A1! and
sort theb(v) obtained for each medium in the followin
order:

uRe~b1!u<uRe~b2!u<uRe~b3!u.

Second, we choose the notation that the sign of the real
b1 is always positive. Then the uppermost Riemann sh
g51 corresponds to the case~111111! and the subse
quent numbers for lower sheets are given in Table III.

Another feature of Eq.~A6! is the following. If v5vR
1 iv I is the solution of the dispersion relationD (g)(v)
[DR

(g)1 iD I
(g)50, thenv5vR2 iv I will also be a solution

of Eq. ~A6!. Here we explicitly separated the real and ima
nary parts of a complex function. This can be understo
from the following consideration. Letb l5bRl

1 ib I l
( l

51, . . . ,6) besolutions of Eqs.~13! for v5vR1 iv I ; then
the solutions of Eqs.~13! for v5vR2 iv I areb l5bRl

2 ib I l
.

16530
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Moreover, the simultaneous changev→vR2 iv I , b l→bRl

2 ib I l
in Eq. ~A6! leads to a change of sign of the imagina

part of the determinant only:

D (g)~vR2 iv I !5DR
(g)2 iD I

(g) .

Thusv5vR2 iv I is also a solution.
If we suggest that the frequency of the interface acou

wave is real, thenk5v/v will be complex. We will choose
solutions withv5vR2 iv I , which correspond to waves~for
v.0) attenuated along their direction of propagation on
interface.

The dispersion relation simplifies considerably for prop
gation on the interface~001! along the directions of high
symmetry~@100# and@110#! and in the isotropic case. For a
these cases the matrix elementsL125L21[0 @because
sin 4u50 or D50; see Eq.~12!#. Therefore, the system~11!
for each medium breaks up into the pair

FL11 L13

L13 L33
GFA1

A3
G50 ~A8!

and

TABLE III. Enumeration of Riemann sheets.

g Reb1 Reb2 Reb3 Reb18 Reb28 Reb38

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 2 1

4 1 1 1 2 1 1

5 1 1 1 1 2 2

6 1 1 1 2 1 2

7 1 1 1 2 2 1

8 1 1 1 2 2 2

9 1 1 2 1 1 1

••• ••• ••• ••• ••• ••• •••

17 1 2 1 1 1 1

••• ••• ••• ••• ••• ••• •••

25 1 2 2 1 1 1

••• ••• ••• ••• ••• ••• •••

32 1 2 2 2 2 2
5-9
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L22A250. ~A9!

The only nontrivial solution of the latter equation corr
sponds to a bulk transverse acoustic wave propagating
allel to the interface of the elastic media,24 and therefore it is
discarded. Thus, in these cases the interface waves are p
ized in the sagittal plane and do not have au2 component.

For interface waves polarized in the sagittal plane
solvability condition for Eq.~A8! is the biquadratic equation

l2b42b2@g1
21l4g2

22~l2212d!2#1l2g1
2g2

250,
~A10!

where we have introduced the notation

l25C11/C44, ~A11!

d5D/C44, ~A12!

g1
2512v2/t2, ~A13!

t25C44/r, ~A14!

and

g2
25H 12v2/~lt !2 for u50

12d/2l22v2/~lt !2 for u5p/4.
~A15!
16530
ar-
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e

In the isotropic case (d50) Eq. ~A10! reduces to

b42b2~g1
21g2

2!2g1
2g2

250 ~A16!

with the obvious solutions

b156A12v2/t2,

b256A12v2/~lt !2. ~A17!

For all these cases the general solutions for the interf
waves are linear combinations of two partial waves in b
media:

u1~r ,t !5@K1e2kb1x31K2e2kb2x3#eik(x12vt),

u3~r ,t !5@K1p3
(1)e2kb1x31K2p3

(2)e2kb2x3#eik(x12vt),

u18~r ,t !5@K18e
kb18x31K28e

kb28x3#eik(x12vt),

u38~r ,t !5@K18p38
(1)ekb18x31K28p38

(2)ekb28x3#eik(x12vt).
~A18!

After substituting solution~A18! into the boundary condi-
tions ~5! and~6! we obtain a set of four homogeneous line
equations with solvability condition
U 1 1 21 21

b1p3
(1) b2p3

(2) b18p38
(1) b28p38

(2)

C44b1~12p3
(1)! C44b2~12p3

(2)! C448 b18~12p38
(1)! C448 b28~12p38

(2)!

C121C11b1
2p3

(1) C121C11b2
2p3

(2) 2C128 2C118 b18
2p38

(1) 2C128 2C118 b28
2p38

(2)

U50. ~A19!
ann
nu-
For the isotropic casep3
(1)521/b1

2 andp3
(2)521. Then the

resulting dispersion relation reduces2 to

v4@~r2r8!22~rb281r8b2!~rb181r8b1!#

14Fv2@rb18b282r8b1b22r1r8#

14F2~12b1b2!~12b18b28!50, ~A20!
where

F5rt22r8t82. ~A21!

There are 16 independent roots on eight different Riem
sheets for the given equation. There is always a nonatte
ated solution fort5t8, l5l8 andrÞr8.
*Present address: Deprtment of Physics, University of Rhode
land, Kingston, RI, 02881. Email address: ilya@phys.uri.edu
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