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Bound polaron in a spherical quantum dot: Strong electron-phonon coupling case

Dmitriy V. Melnikov and W. Beall Fowler
Physics Department and Sherman Fairchild Center, Lehigh University, Bethlehem, Pennsylvania 18015

~Received 31 August 2000; published 2 April 2001!

The effect of the electron-phonon interaction on an electron bound to an impurity in a spherical quantum dot
embedded in a nonpolar matrix is studied theoretically. The adiabatic variational method is used to calculate
the polaron energy shift. General analytical results are obtained for small and large dots for different impurity
positions. Numerical calculations were performed for ZnSe quantum dots of different radii. It is shown that~1!
the interaction with interface phonons is absent when the impurity is in the center of the dot, reaches its
maximum when the impurity is close to the boundary, and decreases in value if the impurity is on the interface;
~2! unlike the interaction with bulk-type LO phonons, the interaction with interface phonons is negligible in
small dots but gives a considerable contribution to the energy in the large dots provided the impurity is located
near the dot’s boundary.

DOI: 10.1103/PhysRevB.63.165302 PACS number~s!: 73.21.2b, 71.38.2k, 71.55.2i
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I. INTRODUCTION

In recent years quantum dot~QD! systems have attracte
considerable attention due to the interesting quantu
mechanical phenomena associated with them and their
tential applications to electronic and optoelectron
devices.1,2 In these systems electronic states are subject
strong three-dimensional~3D! confinement effect arising
from the mismatch in the band gaps of the materials. T
electron–LO-phonon coupling also has different featu
from that in the bulk, namely, there is a strong increase o
strength with reduction of dimensionality~from 3D in the
bulk to 0D in the QD!, and there also exist bulk and interfac
@surface optical~SO!# types of phonon.3

As in the bulk case, polaron corrections are also pres
for the electron confined in the QD, and they change
electronic properties significantly. This effect was stud
earlier for the case of a free polaron in a spherical QD us
variational techniques4–7 and within second-order perturba
tion theory.8–11

The study of impurity states in these materials is imp
tant since the impurities greatly affect both electronic a
optical properties of QD’s. Since the impurity can be locat
in principle, anywhere in the dot, it is necessary to study
dependence of all relevant physical quantities on its posit
The polaron effect on the so-called donorlike exciton
nanocrystals can also be treated within the framework of
models applied to the free polaron case.5 A recent experi-
mental study of the luminescence in AgCl nanocrystals12 in-
dicates that a compact, heavy hole can be trapped at diffe
lattice sites, causing changes in peak positions in the
served spectra when it tunnels or hops toward the cente
the nanocrystal.

In the present work we describe the electron-phonon
teraction in a spherical QD for the case of an electron bo
to a hydrogenlike impurity~or donorlike exciton with a
heavy hole! located at some point within the dot. The calc
lation of the polaron ground state~GS! energy is performed
within the framework of the effective mass approximatio
i.e., assuming that all characteristic lengths of the prob
are large compared to the lattice constant.13 The electron-
0163-1829/2001/63~16!/165302~8!/$20.00 63 1653
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phonon interaction is treated within the adiabatic approxim
tion, which, despite its obvious limitations14 and due to its
relative mathematical simplicity, allows one to obtain d
tailed information about the properties of the electro
phonon coupling.

Recently the binding energy of a hydrogenlike impurity
a spherical QD has been studied5,13–17theoretically. In Refs.
13–16 the dependence of the binding energy of the gro
and several excited electronic states on the location of
impurity was investigated using variational calculations.
was found, in particular, that the binding energy of t
ground state has a maximum when the impurity is position
in the center of the dot and decreases with its shift from
center. In Refs. 5 and 17 the influence of the electron-pho
interaction on the binding energy was considered in
strong coupling~adiabatic! case. However, no analysis of th
dependence of the bulk and SO modes on the size of the
was provided.

This paper is organized in the following way. In Sec.
the adiabatic variational model for an electron in a spher
QD interacting with bulk and interface LO phonons is d
scribed. In Sec. III the general behavior of the bound pola
in small and large QD’s is analyzed. Then the dependenc
the polaron energy and the electron-phonon interaction e
gies on the impurity position is studied numerically for QD
of several arbitrary radii.

II. MODEL

A. Hamiltonian

Let us consider an electron that is perfectly confined i
sphere with radiusR and is interacting with LO phonons. A
hydrogenlike impurity is located at the positionr0 ~the center
of the sphere is taken as the origin!. In the effective mass
approximation the Hamiltonian of the system is given by

H5He1Hph1Hint . ~1!

Here the electronic part is given by
©2001 The American Physical Society02-1
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He5
p2

2m
1VQD~r !1VC~r ,r0!, ~2!

wherep andr are the momentum and coordinate of the el
tron, VQD(r ) is the confinement potential of the QD,

VQD~r !5H 0, r ,R

`, r .R,
~3!

and the electrostatic potential energyVC(r ,r0) for the elec-
tron motion inside the sphere is18

VC~r ,r0!52
e2

«`ur2r0u
1(

l 50

`

a l S r

RD 2l e2

2R

2(
l 50

`

a l

e2

R S rr 0

R2 D l

Pl~cosu!, ~4!

where

a l5S 1

«d
2

1

«`
D «d~ l 11!

«`l 1«d~ l 11!
~5!

andPl is a Legendre polynomial. The first term in Eq.~4! is
the screened Coulomb potential, the second describes a
electric field directed to the center of the dot~the point of the
highest dielectric stabilization!, and the last one is a polar
ization term giving the interaction with the surface polariz
tion charge. These last two terms constitute the image ch
potential arising in the QD due to the difference in dielect
constants inside and outside the dot.

The LO phonon HamiltonianHph is written as

Hph5(
s

\vas
†as . ~6!

The electron-phonon interaction HamiltonianHint is
given within the well-known Fro¨hlich continuum model
adapted for this particular physical situation of an electron
a spherical environment~specified by the static and high
frequency dielectric constants«0 and «`) embedded in a
matrix with a dielectric constant«d . Hint depends on the
coordinates of both impurity and electron, reflecting the f
that both of them, being charged, interact with phonons:

Hint5 (
j 51,2

(
s

Vjs@$Sjs~r !2Sjs~r0!%ajs1H.c.#, ~7!

where

S1s~r !5 j l~mnlr /R!Ylm~u,w!, ~8!

S2s~r !5~r /R! lYlm~u,w!. ~9!

Here 1 and 2 denote the bulk-type and interface-~or surface-!
type phonons, respectively. The indexs is given by n
51,2, . . . ,l 50,1,2, . . . ,m50,61, . . . for thebulk phonon
and l 51,2, . . . ,m50,61, . . . for thesurface~SO! phonon.
For SO modes the lowest value ofl is 1 since the state with
l 50 does not interact with this type of phonon~the electric
field causing the polarization is equal to zero.7!
16530
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The electron-phonon coupling coefficients are given b

V1s5A 4p\vLOe2

mnl
2 j l 11

2 ~mnl!R

1

«*
, ~10!

V2s5
«`Al

l«`1~ l 11!«d
vLOA2p\e2

v lR

1

«*
,

1

«*
5

1

«`
2

1

«0
,

~11!

wherevLO is the frequency of the bulk LO phonon and th
eigenfrequencies of the SO modesv l depend on the quantum
numberl as follows:

v l
25

«d1~«d1«0!l

«d1~«d1«`!l
vTO

2 . ~12!

The values ofmnl are the roots of the spherical Bessel fun
tion j l(mnl)50 of order l, and Ylm(u,w) are the spherica
harmonics.

B. Variational procedure

As is usually done for the bulk bound polaron, first it
necessary to eliminate the contribution to the total elect
energy from the impurity–LO-phonon interaction. This c
be achieved by means of a first canonical transformatio19

whose effect is to displace the equilibrium position of t
ions:

U5expH (
j 51,2

(
s

@Vjs* Sjs~r0!ajs1H.c.#J . ~13!

Apart from the nonphysical divergent term arising from t
use of the point-charge model, the effect of this displacem
on the lattice polarization leads to the following electro
impurity ‘‘exchange’’ interaction~the term electron-impurity
exchange interaction used here was first proposed in Ref!:

Hx5(
s

F H uV1su2 j l S mnl

r 0

R D j l S mnl

r

RD
1uV2su2S rr 0

R2 D lJ Ylm* ~u0 ,w0!Ylm~u,w!1H.c.G .

~14!

When the impurity is located in the center of the Q
(r 050), it is easy to obtain5 that

Hx5S 1

«`
2

1

«0
De2

r S 12
r

RD , ~15!

which partially compensates the electron-impurity Coulom
interaction. Note that only whenR→` does this energy co
incide with the corresponding value for the bulk case.

The Hamiltonian of the system now takes the form

H5He1Hx1Hph2 (
j 51,2

(
s

Vjs@Sjs~r !ajs1H.c.#,

~16!
2-2
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where the symbols 1 and 2 again denote contributions f
the bulk LO and surface LO phonons.

In the framework of the adiabatic approximation we c
write the total wave function of the electron-phonon syst
as the product of an electronic wave functionc(r ) and a
phonon partux&. This implies that the phonon field exper
ences a static distribution of electronic charge and there i
correlation between the instantaneous position of the elec
and the induced polarization field. In QD’s this situation c
be realized in the following three cases:~1! when the radius
of the QD is small so that the quantum confinement increa
the kinetic energy of the electron and, as a result of this,
distance between adjacent energy levels;~2! when the
electron-phonon interaction is so strong that electron s
localization occurs, i.e., fast electron oscillations;~3! when
the electron-impurity interaction is so strong that the elect
becomes localized around the impurity.

Within the adiabatic approximation, the effect of th
electron-phonon interaction is to displace further the equi
rium positions of the ions. This can be achieved by perfor
ing another two linear shift canonical transformations cor
sponding to the interaction with bulk (j 51) and interface
( j 52) phonon modes:

U j5expH(
s

@ f jsajs1H.c.#J , ~17!

where the parametersf js are to be determined variationally
With these transformations taken into account, the total w
function of the system is given by the product

uC&5U1U2uc~r !&u0&, ~18!

whereu0& is the phonon ground state.
The subsequent minimization of the expectation ene

value

Etot5^CuHuC& ~19!

with respect to the variational parametersf js leads to the
following standard expressions for them:

f 1s52V1s

^cuS1s~r !uc&
\vLO

, ~20!

f 2s52V2s

^cuS2s~r !uc&
\v l

. ~21!

Choosing the electronic part of the trial function in the for

uc~r !&5N
sin~pr /R!

r
e2gur2r0u, ~22!

with N as a normalization constant andg as a variational
parameter indicating the degree of spatial correlation
tween the electron and the impurity, after some calculati
we can findEtot as a functional ofg:
16530
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Etot5^cuHe1Hxuc&2(
s

\vLOuV1su2u f 1su2

2(
s

\v l uV2su2u f 2su2. ~23!

The energy of the bound polaron can be found by mi
mizing Etot with respect tog. In the following calculations
we will pay special attention to the following quantities: th
binding energy of the polaron~polaron energy shift!, which
is determined as the difference between the total energ
the polaron and the ground state energy of the electron c
fined in the QD without the impurity present,

E5Etot2
\2

2m S p

RD 2

, ~24!

and contributions to the total energy from electron–bu
phonon (E(b)) and electron–SO-phonon (E(s)) interactions,

E(b)52(
s

\vLOuV1su2u f 1su2, ~25!

E(s)52(
s

\v l uV2su2u f 2su2. ~26!

III. ANALYSIS AND CALCULATIONS

A. Electron-phonon coupling in a small quantum dot

Let us consider first the case of the small QD withR
!aB , where aB is the Bohr radius of the effective mas
electron. In this case the kinetic energy of the electron w
predominate and the interaction energy may be regarded
perturbation to the free moving electron in the QD. Th
indicates that, in order to obtain the leading term of the
ergy E0, we can putg50 in the electronic wave function
~22!, thus making it the eigenfunction of the unperturb
Hamiltonian. After some calculations, the final result for th
term in the polaron binding energy can be cast in the follo
ing form:

E05EC02Ex01E0
(b)1E0

(s) , ~27!

where the first termEC0 representing the potential energy
the electron in the QD, the ‘‘exchange’’ energyEx0, and the
interactions with bulkE0

(b) and interfaceE0
(s) phonons are

equal to

EC05
e2

«`RFFS 2pr 0

R D1
1

2 S «`

«d
21D2

«`

2 (
n51

`
a l

p2l 11
Jl G ,

~28!

Ex05
e2

«* R
FFS 2pr 0

R D21G , ~29!

E0
(b)52C

e2

«* R
, ~30!
2-3
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E0
(s)50, ~31!

with

Jl5E
0

p

dx sin2~x!x2l . ~32!

The functionF(x) is given by@Cin~x! is the integral cosine#

F~x!512
sin~x!

x
1Cin~2p!2Cin~x! ~33!

and the coefficientC5@12Si(2p)1Si(4p)/2#/250.3931.
In order to obtain the expressions~29! and~30! above, sum-
mation over the roots of the Bessel functionj 0(x) was per-
formed and then the resulting two-dimensional integr
were evaluated. It should be mentioned that Eqs.~29!–~31!
are the same as given in Ref. 5~with a50), but written in a
closed analytical form.

The contribution to the electron-phonon interaction e
ergy from the spatial correlation has a small but nonethe
finite value even whenR→0. This was calculated separate
for two impurity positions in the quantum dot:~1! the impu-
rity is in the center of the dot and~2! the impurity is located
close to the dot’s boundary. To evaluate these corrections
terms with the smallest values of the orbital quantum num
( l 50, n51 for bulk andl 51 for interface phonons! were
taken into account. This can be justified by the fact that i
small QD the distance between adjacent levels is la
enough to provide a negligible mixing of states with high
values ofl with the ground state; in other words, in this ca
the deviation of the function~22! from spherical symmetry is
small and the maximum input to the energy will be given
the matrix elements with lowest lying states. Neglecting
change energy terms for the caser 0→R and image charge
effects to simplify the consideration, after elementary b
somewhat tedious calculations we can obtain the asymp
values forE1

(b) andE1
(s) in the form

~34!E1
(b)55 2@0.041820.034~12«` /«0!#

e2

«* aB

, r 050,

20.0061
e2

«* aB

20.033~R2r 0!
e2

«* R2
, r 0→R,

~35!

E1
(s)52@0.001610.0022~R2r 0!/R#

3
e2R

«* aB
2

«0«`

~«012«d!~«`12«d!
, r 0→R. ~36!

From these results the following conclusions can
drawn: the binding energy has a maximum when the im
rity is located in the center of the dot and decreases w
change in the position of the impurity away from the cen
@see Eq. ~27!#. The electron–LO-phonon interaction
largely independent of the impurity’s position in the dot a
also reaches its maximum~in absolute value! in the center of
the QD @Eqs. ~30!, ~34!, and ~35!#. It should also be men
16530
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tioned that the interaction energy with bulk phonons
creases whenR→0 @Eq. ~30!#, while the electron–SO-
phonon interaction approaches zero in this limit@Eq. ~36!#.
This means that even in the small dot polaron correcti
arising from the bulk phonons will always be present a
should be taken into account when calculating the elect
binding energies. The gradual decrease ofE(s) obtained here
can be explained as follows. The smaller the dot, the sma
the impact of the spatial correlation between the electron
impurity on the behavior of the electron since the trial wa
function ~22! becomes spherically symmetrical. This mea
that the corresponding matrix elements in Eq.~26! for inter-
action energies will also approach zero for all nonzero val
of l. This explanation also implies that the interaction w
SO phonons is always absent in the adiabatic limit when
impurity is in the center of the quantum dot.

On the contrary, the situation is quite different near t
boundary of the QD. In that regionE1

(s) has a nonzero value
and increases~in absolute value! with the shifting of the
impurity away from the boundary@see Eq.~36!#, reaching its
maximum inside the dot. This can be understood by not
that when the impurity is on the surface, then the electro
localized only on one side of it. When the impurity is move
away from the surface, the electron can ‘‘leak’’ behind it a
become effectively closer to the interface, thus increasing
interaction with SO modes. Such behavior of the electro
SO-phonon interaction energy is quite different from the
sults reported for a GaAs-Al0.3Ga0.7As quantum well,20

where it was found that this energy increases with decre
of the well width, has a nonzero value when the impurity
in the center of the well, and reaches its maximum for
impurity located on the boundary.

B. Large quantum dot

In this case the electron is localized in a small region
the quantum dot. Provided that the impurity is located
from the boundary of the dot and the radius of the elect
localization is much smaller than the dot’s radius, the el
tronic wave function ~22! reduces to the form usually
adopted for the description of the GS of the bulk bou
polaron:21

uc~r !&5S g3

p D 1/2

e2gr . ~37!

Then for sufficiently large values ofg in a large QD the
matrix elements in Eq.~23! can be easily evaluated~only the
interaction with bulk phonons contributes to the energy! and
yield the following result for the polaron energy:

Etot5
\2

2m

g2

4
2

e2

«0

g

2
2

5

16

e2

«*

g

2
. ~38!

Minimization of this equation with respect tog immediately
leads to the polaron energyEtot and electron–LO-interaction
energyE(b) given by
2-4
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Etot52
me4

2\2«0
2 F11

5

16

«0

«*
G 2

, ~39!

E(b)52
5

16

me4

2\2«0«*
F11

5

8

«0

8«*
G , ~40!

which are the well-known expressions for a system w
strong electron-phonon coupling in the bulk.21

C. Results of numerical calculations

Numerical calculations have been carried out for Zn
using the following material parameters:17 «058.33, «`

55.9, «d52.25, m50.171m0, and\vLO538.49 meV.
The dependence of the polaron binding energy defined

Eq. ~24! on the radius of the quantum dot for the case
r 050 is shown in Fig. 1 for potentials with~curve 1! and
without ~curve 2! image charge effects. The upward shift
the binding energy is quite noticeable. In the next figure~Fig.
2! the dependence of the electron–LO-phonon interaction
the same case of the impurity positioned in the center of
dot is shown. It is seen that for small radii this energy
verges~in inverse proportion to the radius of the dot; s
Sec. III A!, reaches a minimum value aroundR5100 Å,
and then gradually approaches the bulk value for large va
of R. Such behavior is analogous to that obtained earlier5,17

To study the dependence of all interesting physical qu
tities on the impurity position in various quantum dots, c
culations for three radii~20, 100, 300 Å) of the dot were
performed~Figs. 3–6!.

Figures 3~a!–3~c! show the polaron binding energy@Fig.
3~a!, curve 1# and the electron–LO-phonon@Fig. 3~b!# and
electron–SO-phonon@Fig. 3~c!# interaction energies evalu
ated as functions of the impurity positionr 0 in the QD with
R520 Å. Curve 2 in Fig. 3~a! is the corresponding result o
the approximate calculations using Eq.~27! of Sec. III A; it
slightly underestimates the exact values, probably due to

FIG. 1. Dependence of the polaron binding energyE on the
radius of the quantum dotR (r 050): curve 1, with image charge
potential; curve 2, without it. Dots represent calculated values;
curves are a guide to the eye.
16530
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fact that the radius of the dot is of the order of~not smaller
than! the Bohr radius for ZnSe. Nevertheless, it is clear t
even for this radius the approximate results agree with
merical data quite favorably. From Figs. 3~b! and 3~c! it may
be concluded that the interaction with phonons~with SO
modes in particular! is quite small and weakly dependent o
the position of the impurity as demonstrated in Sec. III A

The calculations for the QD with radius 100 Å were pe
formed to show the situation when both the kinetic ene
and the Coulomb interaction determine the behavior of
electron in the QD. It is seen that the binding energy@Fig.
4~a!# and the absolute value of the interaction energy w
bulk phonons@Fig. 4~b!, curve 1# are decreased in compar
son with the values obtained for the QD withR520 Å.
However, the absolute value of the electron–SO-phonon
teraction energy@Fig. 4~b!, curve 2# is greater for this size of
dot. The observed behavior of this quantity is also differe
from that reported in Ref. 17 in the vicinity of the interfac
instead of approaching a constant value as reported in
17, it decreases after reaching a maximum aroundr 0 /R
'0.8. This behavior also corroborates the results of the a
lytical consideration of Sec. III A.

In the case of a 300 Å quantum dot the results conve
to those valid for the bulk, namely, the binding energy a
the electron-phonon interaction approach the values given
Eqs. ~39! and ~40!, respectively, for most positions of th
impurity in the dot@Figs. 5~a! and 5~b!# and then decreas
sharply aroundr 0 /R'0.9. The value ofE(s) @Fig. 5~c!# is
greater than for the two other QD’s studied here~around
30% of E(b)) and again exhibits a gradual increase in ab
lute value with the displacement of the impurity from th
center and then a sharp roll-off near the boundary of the
This is different from the results6 for an electron in a spheri
cal QD and an exciton in a QD22 where it was found that
interactions with SO phonons yield only small correctio
for all values of the dot radius and electron-phonon coupl
strength. It should also be remarked here that the decrea

e

FIG. 2. Electron-phonon interaction energy as a function of
radius of the quantum dotR (r 050): curve 1, with image charge
potential; curve 2, without it.
2-5
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coupling with SO modes occurs in all dots studied at a d
tance from the interface approximately equal to the B
radius for ZnSe.

Finally, we also plotted the value of the parameterg cor-
responding to the minimum of the total energy~23! for all

FIG. 3. ~a! The dependence of the polaron binding energy on
impurity position for a QD withR520 Å ~curve 1!; curve 2, the
same as curve 1 but using Eq.~27!. ~b! The electron–bulk-phonon
interaction energy as a function of the impurity position forR
520 Å. ~c! The electron–SO-phonon interaction energy vs the
purity position.
16530
-
r

three quantum dots as a function of the impurity positi
~Fig. 6!. It is clear that, unlike all other energy quantities, th
parameter reaches its maximum away from the center of
QD and decreases when the impurity approaches the bo
ary. This means that maximum localization of the electr
occurs away from the center of the dot, probably due
reflection from the nearest boundary~the electron is affected
by that boundary!. The value of this parameter also increas
when the dot becomes larger so that the situation beco
similar to the bulk case. The ratio ofg for r 050 and for
r 05R for the largest dot~curve 3! is approximately equal to
2, which is reminiscent of the so called bound surfa
polaron,23 where the trial wave function is usually taken
be the 2p state for the impurity on the surface and 1s when
it is located in the bulk of the material.24

IV. CONCLUDING REMARKS

The effect of the electron interaction with LO phonons
discussed for an electron bound to a hydrogenlike impu

e

-

FIG. 4. ~a! The dependence of the polaron binding energy on
impurity position for a QD withR5100 Å. ~b! The electron–bulk-
phonon ~curve 1! and electron–SO-phonon~curve 2! interaction
energies as functions of the impurity position forR5100 Å.
2-6
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confined in a spherical quantum dot embedded in a nonp
matrix. Both bulk and SO phonons were taken into acco
when calculating the binding energy of the electron. T
adiabatic variational method was used to treat the elect
phonon interaction. Strictly speaking, this method gives va
results only for small quantum dots when the effects of qu
tum confinement predominate. Nevertheless, the use of
approach allowed us to obtain some general analytical res

FIG. 5. ~a! The same as in Fig. 4~a! but for a QD with R
5100 Å. ~b! The same as in Fig. 4~b! but for R5100 Å.
. B

16530
ar
t

e
n-
d
-
is
lts

for small dots, showing that here, unlike in quantum we
the interaction with SO phonons reaches its maximum aw
from the boundary of the dot and is equal to zero when
impurity is in the center. Results of numerical calculatio
show that the electron–SO-phonon interaction depe
strongly on the dot size: it is negligible in small dots a
amounts to up to 30% of the interaction with bulk phonons
large QD’s.

To conclude, we mention several remaining proble
closely related to the present work. The most obvious ext
sion of the present approach would be the incorporation
the variational scheme of the terms pertinent to
intermediate-coupling case as was performed earlier,6,22 on
the basis of which general properties of the electron-pho
interaction in the spherical QD could be investigated. T
realistic case of imperfect electron confinement in the Q
~finite value of the potential barrier at the interface! should
also be studied, taking into account the frequent situat
when the LO phonons are present not only in the dot but a
within the barrier~such as for CuCl in a NaCl crystal!.
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FIG. 6. Dependence of the variational parameterg on the im-
purity position for three QD’s: curve 1,R520 Å; curve 2, R
5100 Å; curve 3,R5300 Å.
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