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Bound polaron in a spherical quantum dot: Strong electron-phonon coupling case
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The effect of the electron-phonon interaction on an electron bound to an impurity in a spherical quantum dot
embedded in a nonpolar matrix is studied theoretically. The adiabatic variational method is used to calculate
the polaron energy shift. General analytical results are obtained for small and large dots for different impurity
positions. Numerical calculations were performed for ZnSe quantum dots of different radii. It is shov#) that
the interaction with interface phonons is absent when the impurity is in the center of the dot, reaches its
maximum when the impurity is close to the boundary, and decreases in value if the impurity is on the interface;
(2) unlike the interaction with bulk-type LO phonons, the interaction with interface phonons is negligible in
small dots but gives a considerable contribution to the energy in the large dots provided the impurity is located
near the dot's boundary.
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[. INTRODUCTION phonon interaction is treated within the adiabatic approxima-
tion, which, despite its obvious limitatiofsand due to its

In recent years quantum dé®D) systems have attracted relative mathematical simplicity, allows one to obtain de-
considerable attention due to the interesting quantumtailed information about the properties of the electron-
mechanical phenomena associated with them and their pghonon coupling.
tential applications to electronic and optoelectronic Recently the binding energy of a hydrogenlike impurity in
devicest2 In these systems electronic states are subject to & SPherical QD has been studied*’theoretically. In Refs.
strong three-dimensional3D) confinement effect arising 13—16 the dependence of the binding energy of the ground
from the mismatch in the band gaps of the materials. Thénd several excited electronic states on the location of the
electron—LO-phonon coupling also has different featuredmpurity was investigated using variational calculations. It
from that in the bulk, namely, there is a strong increase of it§v@s found, in particular, that the binding energy of the
strength with reduction of dimensionalifrom 3D in the ~ ground state has a maximum when the impurity is positioned
bulk to 0D in the QD, and there also exist bulk and interface in the center of the dot and decreases with its shift from the
[surface opticalSO)] types of phonon. center. In Refs. 5 and 17 the influence of the electron-phonon

As in the bulk case, polaron corrections are also preserifteraction on the binding energy was considered in the
for the electron confined in the QD, and they change thétrong couplingadiabatig case. However, no analysis of the
electronic properties significantly. This effect was studieddependence of the bulk and SO modes on the size of the dot
earlier for the case of a free polaron in a spherical QD usingVas provided.
variational techniqués’ and within second-order perturba-  This paper is organized in the following way. In Sec. II
tion theory®—** the adiabatic variational model for an electron in a spherical

The study of impurity states in these materials is impor-QD interacting with bulk and interface LO phonons is de-
tant since the impurities greatly affect both electronic andscribed. In Sec. Il the general behavior of the bound polaron
optical properties of QD’s. Since the impurity can be locatedn small and large QD’s is analyzed. Then the dependence of
in principle, anywhere in the dot, it is necessary to study théhe polaron energy and the electron-phonon interaction ener-
dependence of all relevant physical quantities on its positiondies on the impurity position is studied numerically for QD’s
The polaron effect on the so-called donorlike exciton inOf several arbitrary radii.
nanocrystals can also be treated within the framework of the
models applied to the free polaron casA.recent experi-
mental study of the luminescence in AgCl nanocrystirs Il. MODEL
dicates that a compact, heavy hole can be trapped at different A. Hamiltonian
lattice sites, causing changes in peak positions in the ob-

served spectra when it tunnels or hops toward the center of -€t Us consider an electron that is perfectly confined in a
the nanocrystal. sphere with radiu® and is interacting with LO phonons. A

In the present work we describe the electron-phonon inhydrogenlike impurity is located at the positiogi(the center
teraction in a spherical QD for the case of an electron boun@ the sphere is taken as the origiin the effective mass
to a hydrogenlike impurity(or donorlike exciton with a approximation the Hamiltonian of the system is given by
heavy hol¢ located at some point within the dot. The calcu-
lation of the polaron ground stat&S) energy is performed H=H.+H. +H 1)
within the framework of the effective mass approximation, e’ tiph T Hint:

i.e., assuming that all characteristic lengths of the problem
are large compared to the lattice constdnthe electron- Here the electronic part is given by
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p? The electron-phonon coupling coefficients are given by
He:m+VQD(r)+VC(rar0)v 2
Arho oe® 1
wherep andr are the momentum and coordinate of the elec- Vis= 27 O Rat (10
tron, Vop(r) is the confinement potential of the QD, Ml ()R 2
v 0, r<R 5 v eI [omhie? 1 1 11
oo(r)= » >R ©) 2o (105, OV R v’ ¢ en ey
and the electrostatic potential energy(r,ry) for the elec- (12)
tron motion inside the sphere'fs wherew, o is the frequency of the bulk LO phonon and the
X . o o eigenfrequencies of the SO modesdepend on the quantum
Ve(rrg)=— € +E r-e numberl as follows:
o =l = YR/ 2R
| W2 eqt(eqtep)l 2 12
” 2 I’I’o ! 8d+(8d+8w)| TO"
-2 ag| = | Pi(cos), (4) _
=0 R The values ofu,, are the roots of the spherical Bessel func-
where tion j,(un)=0 of orderl, andY,,(0,¢) are the spherical
harmonics.
1 1 eq(1+1)
N\ eg en) edtegl+1) ) B. Variational procedure

As is usually done for the bulk bound polaron, first it is

the screened Coulomb potential, the second describes a weBgCeSSary to eliminate the contribution to the total electron
energy from the impurity—LO-phonon interaction. This can

electric field directed to the center of the dtite point of the . . . )
ddte p be achieved by means of a first canonical transform&tion

highest dielectric stabilizationand the last one is a polar- h ffoct | displ h ilibri o f th
ization term giving the interaction with the surface polariza-w o§e effect Is to displace the equilibrium position of the

tion charge. These last two terms constitute the image chard@7S:

potential arising in the QD due to the difference in dielectric

constants inside and outside the dot. U=exp > > [ViSis(ro)ajs+ H.c.]]. (13)
The LO phonon Hamiltonial ,, is written as =12 s

andP, is a Legendre polynomial. The first term in Eg) is

Apart from the nonphysical divergent term arising from the
Hon= E ﬁwa;fas_ (6) use of the point-charge model, the effect of this displacement
s on the lattice polarization leads to the following electron-
impurity “exchange” interactior(the term electron-impurity

The electron-phonon interaction Hamiltoniadin 1S oy change interaction used here was first proposed in Ref. 5

given within the well-known Frblich continuum model
adapted for this particular physical situation of an electron in

a spherical environmenr(ispecified by the static and high- HX=2
frequency dielectric constants, and ¢.,,) embedded in a s
matrix with a dielectric constanty. H;,; depends on the

coordinates of both impurity and electron, reflecting the fact +| Vo
that both of them, being charged, interact with phonons: S

. lol. r
|Vls|21|(Mn|§)J|(Mn|§)

|
Mo
2 ] Yim(0o,20)Yim(0,¢)+H.c.

(14
Hint:_z 2 Vjs[{sjs(r)_Sjs(ro)}ajs+H-C-]! (7) . . . .
j=12 s When the impurity is located in the center of the QD

(ro=0), it is easy to obtamthat

e? r
—( 1— ﬁ), (15)

where

SN =11l /R Yi( 6,0), ® N :(i_i
r

X Ex €p
— |
Sosl(N=(1TR) Y im(6, ). ©) which partially compensates the electron-impurity Coulomb
Here 1 and 2 denote the bulk-type and interf{oesurface}  interaction. Note that only wheR—oc does this energy co-
type phonons, respectively. The indexis given by n incide with the corresponding value for the bulk case.

=1,2,...]=0,1,2... m=0,%1, ... for thebulk phonon The Hamiltonian of the system now takes the form
andl=1,2,... m=0,x1, ... for thesurface(SO) phonon.
For SO modes the lowest value lois 1 since the state with

=H.+H,+ — <[S «+H.c.
=0 does not interact with this type of phonéhe electric H=Het Hot Hpn j:El,Z g VislSis(Nags +H.]
field causing the polarization is equal to zéyo. (16)
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where the symbols 1 and 2 again denote contributions from
the bulk LO and surface LO phonons. Etor=(#He+ Hyl ) = 2 i ofVigl?F1d?

In the framework of the adiabatic approximation we can s
write the total wave function of the electron-phonon system
as the product of an electronic wave functigiir) and a =2 fey|Vael ool (23
phonon parfx). This implies that the phonon field experi- °
ences a static distribution of electronic charge and there is no e energy of the bound polaron can be found by mini-
correlation between the instantaneous position of the elec”%izing E,o; With respect toy. In the following calculations
and the induced polarization field. In QD's this situation canyye will pay special attention to the following quantities: the
be reahze(_:i in the following three casé$) wr_len the r.adlus binding energy of the polarofpolaron energy shift which
of the QD is small so that the quantum confinement increaseg getermined as the difference between the total energy of
the kinetic energy of the electron and, as a result of this, thg,o polaron and the ground state energy of the electron con-

distance betwee_n adja(_:ent_ energy leveld] when the  fnad in the QD without the impurity present,
electron-phonon interaction is so strong that electron self-

localization occurs, i.e., fast electron oscillatio3) when A2 [ 7\2
the electron-impurity interaction is so strong that the electron E=Etot— %<§) )
becomes localized around the impurity.

Within the adiabatic approximation, the effect of the and contributions to the total energy from electron—bulk-
electron-phonon interaction is to displace further the equilibphonon E®) and electron—SO-phonotE(®) interactions,
rium positions of the ions. This can be achieved by perform-

(24

ing another two linear shift canonical transformations corre- o) e 1o
sponding to the interaction with bullj€1) and interface E™= 25 oo Vis|? f1sl%, (25
(j=2) phonon modes:
EC=—2 fiey|Vye?f2el2. (26)
S

Uj=exp(2 [fisajs+H.c.]], a7

. L. I1l. ANALYSIS AND CALCULATIONS
where the parameteffss are to be determined variationally.

With these transformations taken into account, the total wave  A. Electron-phonon coupling in a small quantum dot

function of the system is given by the product Let us consider first the case of the small QD with
<ag, Whereag is the Bohr radius of the effective mass

| W) =U1U,|4(r))|0), (18 electron. In this case the kinetic energy of the electron will
_ predominate and the interaction energy may be regarded as a
where|0) is the phonon ground state. . perturbation to the free moving electron in the QD. This
The subsequent minimization of the expectation energyndicates that, in order to obtain the leading term of the en-
value ergy Eg, we can puty=0 in the electronic wave function
(22), thus making it the eigenfunction of the unperturbed
Eior=(V|[H|WP) (19 Hamiltonian. After some calculations, the final result for this

term in the polaron binding energy can be cast in the follow-
with respect to the variational parametdrg leads to the ing form:
following standard expressions for them:

Eo=Eco—Ex+EY +EY, (27
fie= _VlsMa (20) where the first ternE o representing the potential energy of
horo the electron in the QD, the “exchange” energy,, and the
interactions with bulke{" and interfaceE{® phonons are
(Y]Sas(1)| ) equal to
fos= = Vo . (21)
) 2 o
e 2mrg) 1le, € a
. . . . Eco= F to|l—=1]-—= > ——=3|,
Choosing the electronic part of the trial function in the form £.R R 2\ gy 2 3= A+t
(28)
sin(#r/R) g
|#(r) =N————e I, (22) e
Exo ~R F R -1], (29
with N as a normalization constant andas a variational
parameter indicating the degree of spatial correlation be- o2
tween the electron and the impurity, after some calculations EP=-C ' (30)
we can findg,,; as a functional ofy: e*R
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EG =0, (31)  tioned that the interaction energy with bulk phonons in-
. creases wherR—0 [Eq. (30)], while the electron—-SO-
with phonon interaction approaches zero in this lifiit. (36)].
This means that even in the small dot polaron corrections
J= fwdxsinz(x)xz'. (32) arising from the bulk phonons will always be present and
0 should be taken into account when calculating the electron
binding energies. The gradual decreas&®t obtained here

The functionF(x) is given by[Cin(x) is the integral cosirie can be explained as follows. The smaller the dot, the smaller

sin(x) the impact of the spatial correlation between the electron and
F(x)=1— + Cin(2)— Cin(x) (33 impurity on the behavior of the electron since the trial wave
X function (22) becomes spherically symmetrical. This means

and the COfoICIenCZ[l_SI(27T)+SI(47T)/2]/2=03931 that the Corresponding matrix elements in Eﬁ) for inter-

In order to obtain the expressiof@9) and(30) above, sum- action energies will also approach zero for all nonzero values
mation over the roots of the Bessel functipy{x) waic, per- of |. This explanation also implies that the interaction with
formed and then the resulting two-dimensional integralstgo phonons is always absent in the adiabatic limit when the

were evaluated. It should be mentioned that E8§)—(31)  'MPurity is in the center of the quantum dot.
are the same as given in Ref(\Bith «=0), but written in a On the contrary, the situation is quite different near the
closed analytical form. boundary of the QD. In that regid&{® has a nonzero value
The contribution to the electron-phonon interaction en-2nd increasesin absolute valugwith the shifting of the
ergy from the spatial correlation has a small but nonethelesé§npurity away from the boundarfsee Eq(36)], reaching its
finite value even wheR— 0. This was calculated separately Maximum inside the dot. This can be understood by noting
for two impurity positions in the quantum daft) the impu- that when the impurity is on the surface, then the electron is
rity is in the center of the dot an@) the impurity is located localized only on one side of it. When the impurity is m_oved
close to the dot’s boundary. To evaluate these corrections trfvay from the surface, the electron can “leak” behind it and
terms with the smallest values of the orbital quantum numbepecome effectively closer to the interface, thus increasing the
(1=0, n=1 for bulk andl =1 for interface phononswere interaction with SO modes. Such behavior of the electron—
taken into account. This can be justified by the fact that in @>Q-Phonon interaction energy is quite different from t?(? re-
small QD the distance between adjacent levels is larg€Ults reported for a GaAs-§iGasAs quantum welf,
enough to provide a negligible mixing of states with higherWhere it was found that this energy increases W|f[h dec_:regse
values ofl with the ground state; in other words, in this case®f the well width, has a nonzero value when the impurity is
the deviation of the functiof22) from spherical symmetry is I the_ center of the well, and reaches its maximum for the
small and the maximum input to the energy will be given byimpurity located on the boundary.
the matrix elements with lowest lying states. Neglecting ex-
change energy terms for the case-R and image charge B. Large quantum dot
effects to simplify the consideration, after elementary but

somewhat tedious calculations we can obtain the asymptotic I this case the electron is localized in a small region of
values forE® andE® in the form the quantum dot. Provided that the impurity is located far
1 1

from the boundary of the dot and the radius of the electron

o2 localization is much smaller than the dot’s radius, the elec-
~[0.0418-0.0341—¢../50)] . ro=0, tronic wave function(22) reduces to the form usually
) e*ag (34) adopted for the description of the GS of the bulk bound
Ei’= e & polaron?!
—0.0061———0.033R—-rg)——, ro—R,
e*ag A O)s* Rz ° 23| 12
(39 |w<r>>=(; e, (37)

E{®=—[0.0016+0.0022R—r)/R]
Then for sufficiently large values of in a large QD the
e’R €08 matrix elements in Eq23) can be easily evaluatédnly the
Xg*aé (g9+2eg)(e+2ey)’ ro—R. (36 interaction with_ bulk phonons contributes to the engrayd
yield the following result for the polaron energy:

From these results the following conclusions can be
d_ravyn: the bin(_jing energy has a maximum when the imp_u- 72 42 & 5 € y
rity is located in the center of the dot and decreases with Bt ——5 72— 5 . (38
change in the position of the impurity away from the center
[see Eq. (27)]. The electron—LO-phonon interaction is
largely independent of the impurity’s position in the dot andMinimization of this equation with respect tpimmediately
also reaches its maximutm absolute valugin the center of leads to the polaron ener@f,; and electron—LO-interaction
the QD[Egs. (30), (34), and (35)]. It should also be men- energyE® given by
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FIG. 1. Dependence of the polaron binding enefgyn the FIG. 2. Electron-phonon interaction energy as a function of the
radius of the quantum ddR (ro=0): curve 1, with image charge |5(ius of the guantum daR (r,=0): curve 1, with image charge
potential; curve 2, without it. Dots represent calculated values; theygtential; curve 2, without it.

curves are a guide to the eye.

met 5 o 2 fact that the radius of the dot is of the order(abt smaller
Eror=— —— | 1+ — hit (39)  than the Bohr radius for ZnSe. Nevertheless, it is clear that
Zﬁzsﬁ 16 ¢* even for this radius the approximate results agree with nu-
merical data quite favorably. From Figgbgand 3c) it may
) 5 mée 5 g 40 be concluded that the interaction with phonomgth SO
- Em + 8 g ' (40 modes in particularis quite small and weakly dependent on
the position of the impurity as demonstrated in Sec. Il A.
which are the well-known expressions for a system with The calculations for the QD with radius 100 A were per-
strong electron-phonon coupling in the batk. formed to show the situation when both the kinetic energy
and the Coulomb interaction determine the behavior of the
C. Results of numerical calculations electron in the QD. It is seen that the binding enefBig.

Numerical calculations have been carried out for Znse#@] and the absolute value of the interaction energy with
using the following material parametérs:e,=8.33, e,  Pulk phonongFig. 4(b), curve 1 are decreased in compari-
=5.9, £4=2.25,m=0.171Im,, and% w _o=238.49 meV. son with the values obtained for the QD wik=20 A.

The dependence of the polaron binding energy defined bilowever, the absolute value of the electron—SO-phonon in-
Eq. (24) on the radius of the quantum dot for the case ofteraction energyFig. 4b), curve 3 is greater for this size of
ro=0 is shown in Fig. 1 for potentials witfcurve J and dot. The observed behavior of this quantity is also different
without (curve 2 image charge effects. The upward shift of from that reported in Ref. 17 in the vicinity of the interface:
the binding energy is quite noticeable. In the next figlig.  instead of approaching a constant value as reported in Ref.
2) the dependence of the electron—LO-phonon interaction fol7, it decreases after reaching a maximum arougtR
the same case of the impurity positioned in the center of the=0.8. This behavior also corroborates the results of the ana-
dot is shown. It is seen that for small radii this energy di-lytical consideration of Sec. Il A.
verges(in inverse proportion to the radius of the dot; see In the case of a 300 A quantum dot the results converge
Sec. IllA), reaches a minimum value aroufi®=100 A, to those valid for the bulk, namely, the binding energy and
and then gradually approaches the bulk value for large valuethe electron-phonon interaction approach the values given by
of R. Such behavior is analogous to that obtained eatfiér. Egs. (39) and (40), respectively, for most positions of the

To study the dependence of all interesting physical quanimpurity in the dot[Figs. 5a) and 5b)] and then decrease
tities on the impurity position in various quantum dots, cal-sharply around ,/R~0.9. The value ofE® [Fig. 5c)] is
culations for three radi{20, 100, 300 A) of the dot were greater than for the two other QD’s studied h&agound
performed(Figs. 3—6. 30% of E®) and again exhibits a gradual increase in abso-

Figures 3a)—3(c) show the polaron binding enerd¥ig.  lute value with the displacement of the impurity from the
3(a), curve 1 and the electron—LO-phondirig. 3(b)] and  center and then a sharp roll-off near the boundary of the dot.
electron—SO-phonofiFig. 3(c)] interaction energies evalu- This is different from the resufior an electron in a spheri-
ated as functions of the impurity positiog in the QD with  cal QD and an exciton in a G® where it was found that
R=20 A. Curve 2 in Fig. &) is the corresponding result of interactions with SO phonons yield only small corrections
the approximate calculations using Eg7) of Sec. Ill A; it ~ for all values of the dot radius and electron-phonon coupling
slightly underestimates the exact values, probably due to thstrength. It should also be remarked here that the decrease in
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FIG. 4. (a) The dependence of the polaron binding energy on the
impurity position for a QD withR=100 A.(b) The electron—bulk-
phonon (curve 1 and electron—SO-phonofturve 2 interaction
energies as functions of the impurity position =100 A.

three quantum dots as a function of the impurity position
(Fig. 6). It is clear that, unlike all other energy quantities, this
parameter reaches its maximum away from the center of the
QD and decreases when the impurity approaches the bound-
ary. This means that maximum localization of the electron
occurs away from the center of the dot, probably due to
reflection from the nearest bounddiie electron is affected

by that boundary The value of this parameter also increases
when the dot becomes larger so that the situation becomes
similar to the bulk case. The ratio of for ro=0 and for
ro=R for the largest dofcurve 3 is approximately equal to

2, which is reminiscent of the so called bound surface
polaron? where the trial wave function is usually taken to
be the D state for the impurity on the surface and When

it is located in the bulk of the materi&t.

coupling with SO modes occurs in all dots studied at a dis-

tance from the interface approximately equal to the Bohr

radius for ZnSe.

Finally, we also plotted the value of the parameyecor-
responding to the minimum of the total ener@®g) for all

IV. CONCLUDING REMARKS

The effect of the electron interaction with LO phonons is
discussed for an electron bound to a hydrogenlike impurity
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FIG. 5. (a) The same as in Fig.(d but for a QD with R
=100 A.(b) The same as in Fig.(8) but for R=100 A.

confined in a spherical quantum dot embedded in a nonpolag
matrix. Both bulk and SO phonons were taken into accounf
when calculating the binding energy of the electron. Th
adiabatic variational method was used to treat the electro

e
Avithin the barrier(such as for CuCl in a NaCl crysjal
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FIG. 6. Dependence of the variational parametesn the im-
purity position for three QD’s: curve 1R=20 A: curve 2,R
=100 A; curve 3R=300 A.

for small dots, showing that here, unlike in quantum wells,
the interaction with SO phonons reaches its maximum away
from the boundary of the dot and is equal to zero when the
impurity is in the center. Results of numerical calculations
show that the electron—SO-phonon interaction depends
strongly on the dot size: it is negligible in small dots and
amounts to up to 30% of the interaction with bulk phonons in
large QD'’s.

To conclude, we mention several remaining problems
closely related to the present work. The most obvious exten-
sion of the present approach would be the incorporation in
the variational scheme of the terms pertinent to the
intermediate-coupling case as was performed edtfienn
the basis of which general properties of the electron-phonon
interaction in the spherical QD could be investigated. The
realistic case of imperfect electron confinement in the QD
inite value of the potential barrier at the interfachould
Iso be studied, taking into account the frequent situation
when the LO phonons are present not only in the dot but also

phonon interaction. Strictly speaking, this method gives valid ACKNOWLEDGMENT

results only for small quantum dots when the effects of quan-

tum confinement predominate. Nevertheless, the use of this One of the authoréD.V.M.) acknowledges financial sup-
approach allowed us to obtain some general analytical resulisort from the Sherman Fairchild Center.
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