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Quantum Monte Carlo treatment of elastic exciton-exciton scattering

J. Shumway* and D. M. Ceperley
Department of Physics and the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

1110 West Green Street, Urbana, Illinois 61801
~Received 21 July 1999; revised manuscript received 20 November 2000; published 5 April 2001!

We calculate cross sections for low energy, elastic, bulk,s-wave exciton-exciton scattering within the
single-band effective mass approximation. Unlike previous theoretical approaches, we give a complete, non-
perturbative treatment of the four-particle scattering problem. Diffusion Monte Carlo is used to calculate the
essentially exact energies of scattering states, from which phase shifts are determined. For the case of equal-
mass electrons and holes, which is equivalent to positronium-positronium scattering, we findas52.1ax for
scattering of singlet excitons andas51.5ax for triplet excitons, whereax is the excitonic radius. The spin
dependence of the cross sections arises from the spatial exchange symmetry of the scattering wave functions.
A significant triplet-triplet to singlet-singlet scattering process is found, which is similar to the reported effects
in recent experiments and theory for excitons in quantum wells. We also show that the scattering length can
change sign and diverge for some values of the mass ratiomh /me , an effect not seen in previous perturbative
treatments.

DOI: 10.1103/PhysRevB.63.165209 PACS number~s!: 71.35.Cc, 36.10.Dr
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I. INTRODUCTION

Excitons in semiconductors have been the subject
many experimental and theoretical investigations of B
condensation. Low-energy exciton-exciton interactions
characterized by the exciton-exciton scattering lengthas that
determines the thermodynamics of a low-density gas an
crucial for modeling the thermalization time of a dilute e
citon gas. Despite its importance, the exciton-exciton sca
ing length is an elusive quantity, being difficult to measu
experimentally or to estimate theoretically.

As is well known in atomic physics, scattering lengths c
be extremely sensitive to the details of the interactions
tween particles. In particular, the existence of a wea
bound or nearly bound state causes the scatter length to
come quite large. Therefore,a priori one should suspect tha
exciton-exciton scattering may be a very material depend
property of semiconductors. Reliable theoretical predictio
of exciton-exciton scattering lengths require both a very
curate Hamiltonian for the semiconductor and an accu
solution to the~four-particle! scattering problem. In this pa
per we provide an essentially exact solution to bulk,s-wave
exciton-exciton scattering for a commonly used single-ba
effective mass Hamiltonian. This solution allows us to stu
three important questions:~1! how sensitive is the scatterin
length to the mass ratiome /mh , ~2! how does the scatterin
length depend on spin states~singlet or triplet! of the scat-
tering excitons, and~3! to what degree can interexciton e
change of electrons or holes cause excitons to scatter
different spin states? This calculation also serves as a be
mark for the single-band limit of more complicated scatt
ing Hamiltonians. We discuss possible extensions of
method to non-s-wave scattering, treatment of multiban
models, and applications to heterostructures in the Con
sion.

One experimental method for measuring the exciton s
tering cross section is to look at linewidth broadening of
recombination spectra in a gas of excitons. Collisions
0163-1829/2001/63~16!/165209~7!/$20.00 63 1652
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tween excitons increase the linewidth, causing the linewi
to depend on the exciton-exciton scattering ratensv, where
n is the density andv is a typical exciton velocity. Extracting
cross sections from a linewidth requires that~1! the density
and velocity distribution are known, and~2! elastic scattering
is the fastest process. As discussed below, Cu2O is a good
material for comparison to the model studied in this wo
Snokeet al.1,2 have performed such experiments on Cu2O
and have found a linewidth broadening that suggests an
per bound of 4ax on the scattering length. Although ou
simulations do not exactly model Cu2O, we will compare our
results to this value.

II. THEORETICAL BACKGROUND

Theoretical approaches to this problem start with
effective-mass approximation, in which the system un
consideration consists of two electrons, labeled 1 and 2,
two holes, labeleda andb. The Hamiltonian is

H52l1¹1
22l2¹2

22la¹a
22lb¹b

22r a1
21

2r b2
212r a2

212r b1
211r 12

211r ab
21 , ~1!

wherel5\2/2m. The Hamiltonian has symmetry under e
change of electrons and exchange of holes, so eigens
may be denoted by two exchange quantum numbers.
s-wave states are symmetric under exchange of exciton
condition which is satisfied by statesf11 andf22, where
the 1 ~2! signs refer to~anti!symmetry under exchange o
electrons and holes, respectively.~Statesf12 andf21 are
p-wave states.! Although this Hamiltonian is a well-accepte
model for exciton-exciton scattering, we should point ou
few of its deficiencies. For small excitons, such as those
Cu2O, that have radii not much larger than the lattice sp
ing, nonparabolic terms in the kinetic energy and other c
rections to the potential energy may be necessary. For m
semiconductors, such as Si, Ge and In12xGaxAs, the valence
band is a mixture of three bands and cannot be describe
©2001 The American Physical Society09-1
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a single parabolic band. That is, the valence band edg
fourfold degenerate withj 53/2, and the spin-orbit split-off
band with j 51/2 is lower in energy. Possible extensions
this method to multi-band Hamiltonians is discussed in
Conculsion. In the case of Cu2O, the band order is reverse
The valence band is the parabolic spin-orbit split-off ba
with j 51/2, and the holes may be described by the sin
band Hamiltonian. Interband exchange~virtual electron-hole
recombination! is an important effect that has been neglec
and could be modeled by an additional spin-dependent
tential term.

This Hamiltonian also describes a family of scatteri
processes for other particles, including hydrogen-hydrog
positronium-positronium, and muonium-muonium scatteri
The equal mass case is at an extreme~positronium scatter-
ing!, where the Born-Oppenheimer approximation is t
least applicable.

There have been several theoretical estimates of exc
exciton scattering for bulk systems3–5 and quantum wells6,7

as well as calculations on biexciton-biexciton scatterin8

Only the bulk, elastic scattering calculations3,4 are directly
comparable to the results of this paper, but the techniq
presented here could be generalized to the other scatte
problems. Also, the results presented here provide a be
mark for evaluating the approximations used in other th
retical treatments and could lend insight into the reliability
the approximations in more complicated situations.

One standard theoretical approach is diagrammatic pe
bation theory as presented in the work of Keldysh a
Kozlov9 and Haug and Hanamura.10 They estimated the
exciton-exciton scattering matrix as arising from a sin
term ^k11q,k22quH intuk1 ,k2&, where uk1 ,k2& represents a
state of two noninteracting excitons with momentumk1 and
k2 and H int is the interexciton Coulomb interaction. Th
method gives an estimate ofas5

13
6 ax ~independent of the

mass ratio!, whereax5me
211mh

21 is the exciton radius, bu
it is an uncontrolled approximation that may have limit
validity in the low energy limit. One serious drawback of th
method is that it does not include effects of the biexciton
the scattering. As we show later, biexciton vibrational sta
cause strong dependence of the scattering length on the
ratio me /mh , which is not captured by the low order pertu
bation theory.

A second common approach was developed by Elkom
and Munschy.4 It uses an effective exciton-exciton potenti
defined byVeff(R)5^f f(R)uHuf f(R)&, wheref f(R) is the
wave function for two free excitonsa distanceR apart. The
effective potentialVeff arises from the Hartree term and
used in a two-particle central-field calculation. While
exciton-exciton scattering pseudo-potential would be a v
useful tool, this approximate form has some serious dr
backs. Among its deficiencies are; a lack of correlation,
van der Waals attraction, a failure to reproduce biexci
states, and a vanishing interaction potential forme5mh . The
cross sections calculated by this method are small and
qualitative agreement with the results of the present wor

Some insight into exciton-exciton scattering can
gained by considering the bound states, biexcitons. Since
number of bound statesNB enters in the phase shift at ze
16520
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energyd(0)5pNB , it is necessary that a good computatio
method for low energy scattering be able to accurately c
culate biexciton binding energies.11 For the mass ratios con
sidered~and far beyond, including deuterium!, the biexcitons
cannot bind in thef22 states, so biexcitons in rotationals
states always havef11 wave functions. Detailed theoretica
descriptions of biexcitons can be found in Ref. 12. The eq
mass case was shown to have a bound biexciton by Hylle
and Ore using a variational argument,13 and a better varia-
tional estimate of the binding energy was given by Brin
man, Rice, and Bell,14 who foundEB50.029Ex , whereEx

50.5/(me
211mh

21) is the exciton binding energy. Howeve
because of the importance of correlation energy, the la
variational treatment was missinghalf of the biexciton bind-
ing energy, as shown by diffusion Monte Carlo~DMC!
calculations,15,16 which find EB50.064 04(4)Ex . DMC is a
quantum Monte Carlo~QMC! method that uses a random
walk to project out the ground state wave function from
variational wave function, in order to stochastically samp
the exact ground state energy. The success of DMC for
culating biexciton energies has been a motivation for its
in the present scattering calculations.

III. METHOD: QUANTUM MONTE CARLO
CALCULATION OF SCATTERING

A. R-matrix approach and scattering boundary conditions

The R-matrix approach to scattering is to examine t
standing waves of the system. As shown by Carls
Pandharipande, and Wiringa17 and Alhassid and Koonin,18

by fixing nodes in the standing waves the scattering prob
may be cast as a ground state problem suitable for Q
methods. For an elastic scattering process, we label the
tance between the products byR and the reduced mass of th
products bymr . In exciton-exciton scattering there is
subtlety in the definition ofR due to interexciton exchange
which we will address below in our discussion of th
exciton-exciton scattering wave functions. Nonetheless,
large separationR, the relative motion of the products i
free-particle-like, so the many-body wave function depen
on R as

f}sin@kR2 1
2 lp1d l~k!#, ~2!

wherel is the relative angular momentum,k is the scattering
momentum, andd l(k) is the phase shift. If we constrain th
wave function to have a node at a large exciton separa
Rn , we find a discrete energy spectrumEa(Rn), which may
be computed by ground state or excited state methods,
as DMC. Each choice ofRn gives a spectrum of state
fa ,a51,2, . . . ,with energiesEa that determine values o
d l(k),

d l~ka!52kaRn1 1
2 lp1ap, ~3!

whereka5A2mrEa. The scattering matrix elements are d
termined by the phase shifts,
9-2
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Sl~k!5
1

2ik
exp@2id l~k!#21. ~4!

Carlson and Shiavilla have also proposed fixing the lo
rithmic derivative of the wave function at the boundary i
stead of setting wave function to zero,19

Ŝ•¹Rf

f
U

R5Rb

5b, ~5!

where Ŝ is the normal to the boundary surface, at a fix
radiusRb , andb parametrizes the boundary condition. Th
formulation has the advantage separating the choice of s
lation sizeRb ~subject toRb lying in the asymptotic region!
from the sampling of energy, which is handled by varyingb
and is particularly well suited for finding the scatterin
length. The application to variational Monte Carlo~VMC!
calculations is straightforward, but preserving the bound
condition in DMC calculations requires a method
images.20 The results presented here do not use
logarithmic-derivative boundary condition.

B. Calculation of excited states

The use of excited statesfa(a.1) is necessary when
there is a bound state and, more generally, when the sca
ing state being studied has its first node before
asymptotic region is reached. We use a QMC method
calculate excited states developed by Ceperley and Bern21

to adapt VMC and DMC methods for a Hilbert space
several low energy wave functions. A set ofm trial wave
functions is chosenf a , wherea51, . . . ,m. The generalized
eigenvalue equation to be solved is21

(
b51

m

@Hab~ t !2Lk~ t !Nab#dkb~ t !50, ~6!

wheredk(t) is thekth eigenvector with eigenvalueLk(t) and
the matricesN and H are the overlap and Hamiltonian ma
trices in our trial basis, given by

Nab~ t !5E dR1dR2f a* ~R2!e2tH f b~R1!, ~7!

Hab~ t !5E dR1dR2H f a* ~R2!e2tH f b~R1!. ~8!

The parametert is the projection time. The eigenvalue
Lk(t) are energy eigenvaluesEk within the Hilbert space
spanned by the projected trial functions$e2tH/2f a%, and ap-
proach the exact energy eigenvalues in the limit of larget.

The matricesN and H are sampled with random walks
using a guiding functionc that must be positive everywhere
The guiding function must have significant overlap with
basis functions and should be optimized to decrease the
ance of the sampled matrices. At each stepi 11 in the ran-
dom walk, the coordinatesRi 11 of the particles are update
using

Ri 115Ri1tlc21¹c~Ri !1~2tl!1/2x i , ~9!
16520
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wherex i is a normally distributed random variate with ze
mean and unit variance andt is the time step. In the limit of
small t, Eq. ~9! describes a process for samplingc2(R).

The matrix element ofe2tH is estimated by integrating
the local energy of the guiding functionELc(R)
5c21(R)Hc(R), along the random walk,

Wn,n1k5expH 2t (
j 5n

n1k21
1
2 @ELc~Rj !1ELc~Rj 11!#J .

~10!

The estimators for matricesN andH are

nab~kt!5
1

p (
i 51

p

Fa* ~Ri !Wi ,i 1kFb~Ri 1k!, ~11!

hab~kt!5
1

p (
i 51

p

Fa* ~Ri !Wi ,i 1kFb~Ri 1k!ELb~Ri 1k!,

~12!

whereFa5 f a /c andELb5 f b
21(R)H f b(R) are the local en-

ergies of the trial basis states.

C. Form of exciton-exciton scattering wave functions

We now discuss the form for the exciton scattering fun
tions f a

11 and f a
22 . As mentioned before, interexciton ex

change of particles complicates the definition of excito
exciton separation. There are two configurations for we
separated excitons, as shown in Fig. 1. Configuration I
the electrons and the holes paired as 1a,2b; and configura-
tion II as 1b,2a. We choose wave functionsf a

I and f a
II to

represent these states,

f a
I 5e2gr 1ae2gr 2bUa~r 1a22b!expH cfr 12

11dfr 12
1

cgr ab

11dgr ab

2
chr 1b

11dhr 1b
2

chr 2a

11dhr 2a
J ,

FIG. 1. The two contributions to the exciton scattering wa
functions f, at large exciton-exciton separation. The asympto
form of thes-wave scattering states are symmetric (f11) or anti-
symmetric (f22) combinations of these configurations. Th
symmetric/antisymmetric form is used for the trial wave functio
f 11 and f 22, using f I , and f II from Eq. ~13!.
9-3
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f a
II5e2gr 1be2gr 2aUa~r 1b22a!expH cfr 12

11dfr 12
1

cgr ab

11dgr ab

2
chr 1a

11dhr 1a
2

chr 2b

11dhr 2b
J , ~13!

where g, cf , df , cg , dg , ch , dh , and parameters in th
function Ua(r ) are variational. These wave functions repr
sent two excitons in a relatives-wave state. Since these a
not eigenstates of the exchange operator for electronsP̂e or
holes P̂h , we take linear combinations of the two for ou
trial wave functions,f a

115 f a
I 1 f a

II and f a
225 f a

I 2 f a
II . For

large separation of excitons, the exponential factors proh
both configurations from simultaneously contributing to t
wave function. Thus, a node can be approximated in
scattering wave function by simply requiring thatUa(r ) be
zero for allr .Rn . The error introduced by this approxima
tion is of order exp(22aRn), and is another limit on the us
of small values forRn . Since we only do calculations fo
low energy scattering and largeRn , the lack of a well-
defined exciton-exciton separation distance for short
tances does not matter.

This method for calculating scattering properties is ve
sensitive to the energy spectra$Ea(Rn)%. To get accurate
energies, we do not try to construct and optimize elabo
variational wave functions, but rather use DMC to proje
the energy from trial wave functions of the form given in E
~13!. The coefficientsg, cf , cg , andch are chosen to obey
most of the cusp conditions on the wave function for sm
particle separations. Thes-wave envelope functionsUa(r )
are taken as solutions to an empirical exciton-exciton s
tering potentials,

V~r !55 2V0S 12
3r 2

4dr2D , r<d

2V0

d6

4r 6
, r .d,

~14!

where V0 and d have been self-consistently fit to approx
mate the energy spectrum of the four-particle scatter

FIG. 2. Change in the projected energy eigenvaluesLa(t)
2La(0) of the DMC states relative to the VMC states as a funct
of DMC projection timet, for basis statesa51,2,3,4. The eigen-
value equation is given by Eqs.~6!–~8!, where the Hamiltonian and
overlap matrices have been sampled using Eqs.~11! and ~12!.
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states. We take the guiding functionc to have the same form
as the f 11 wave functions with Uc(r )5@ce2r 2/8

1(adaUa
2(r )#1/2. The parameters$c,da% are chosen to bias

sampling towards the collision:$c50,d152,d25d35d4
51% for f11 states and$c52,da51% for f22 states. To
check for convergence of the energies in DMC, we plot
energy difference,EDMC2EVMC , as a function of projection
time in Fig. 2. We see convergence after a projection time
3Ex

21 .
We thus find two energy spectra for each value ofRn as

shown in Figs. 3~a! and 3~b!. The spectra for the symmetri
statesf11 show a clearly bound biexciton state as seen
Fig. 3~a!. The antisymmetric statesf22, as shown in Fig.
3~b!, have no bound state. The binding energy of the biex
ton is EB520.0642(3)Ex , in agreement with other groun
state calculations, and is insensitive to the position of
nodeRN because it is localized. In contrast, the delocaliz
scattering states are quite sensitive toRN and their depen-
dence onRN is a measure of the elastic scattering mat
elements.

D. Calculation of phase shifts

Using Eq. ~3!, we determine scattering-phase shi
d11(k) and d22(k), which are shown in Fig. 4 for the
equal-mass case. Thek50 limits show us that there is on
bound symmetric statef11 and no bound antisymmetri
statesf22. The slope atk50 is related to the scatterin
length as by d8(k)52as . From a cubic polynomial fit to
the data, with coefficients given in Table I, we finda

n

FIG. 3. Energy spectra as a function of nodal positionRN , for
~a! symmetricf11 states, and~b! antisymmetricf22 states, with
me5mh . The lowest energy curve in~a! is the biexciton with bind-
ing energyEB50.0642(3). These functionsE(RN) determine the
phase shiftsd11 andd22, by the relationship in Eq.~3!.

FIG. 4. Phase shiftsd(k) for the two s-wave scattering states
for me5mh , calculated using Eq.~3! and the data from Fig. 3.
9-4
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54.57(2)ax for the symmetric state, anda51.51(3) for the
antisymmetric state. These model values are consistent
the measured upper bound 4ax found in Cu2O.

E. Extracting spin dependence from spatial symmetries

In real semiconductors, electrons and holes can excha
~equivalent to virtual annihilation of the pair!, which sepa-
rates excitons into singlet and triplet energy eigenstates.
though these states are degenerate in our Hamiltonian
spin-dependent scattering cross sections can be determ
for this basis. Due to the antisymmetry of the total wa
function, we can infer that statesf11 and f22 have spin
eigenstatesus00&eh and us11&eh where the notationussesh&eh
stands for total spins, total electron spinse , and total hole
spin se . We denote the experimentally relevant basis
uss1s2&ex , where the total spin iss, and the spins on the
scattering excitons ares1 ands2, which take the values 0 fo
singlet excitons and 1 for triplet excitons. Note that for m
terials with j 53/2 holes~not treated here!, the exciton total
spin takes the values 1 and 2. Table II lists matrix eleme
for the change of basisussesh&eh→uss1s2&ex . Thus, the
states u000&eh and us11&eh act as channels fors-wave
exciton-exciton scattering. The matrix elements for scat
ing through these channels are

s11~k!5 eĥ 000;kuŝu000;k&eh5
e2id11(k)21

2ik
, ~15!

TABLE I. Coefficients for polynomomial fit to the low energ
part of the phase shift functions for the caseme5mh .

c0 c1 c2 c3

d11 p 24.574(21) 2.995~70! 20.829(54)
d22 0 21.512(29) 20.138(90) 0.216~64!

TABLE II. Matrix elements for changing spin basis in the tw
exciton problem. Columns are in theus,see,shh&eh basis and rows
are in theex̂ s,seh ,sehu basis.

u000&eh u011&eh u101&eh u110&eh u111&eh u211&eh

ex̂ 000u 2
1
2

A3
2

0 0 0 0

ex̂ 011u
A3
2

1
1
2 0 0 0 0

ex̂ 101u 0 0 1
2 2

1
2

A2
2

0

ex̂ 110u 0 0 2
1
2

1
2

A2
2

0

ex̂ 111u 0 0
A2
2

A2
2

0 0

ex̂ 211u 0 0 0 0 0 1
16520
ith
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s22~k!5 eĥ S11;kuŝuS11;k&eh5
e2id22(k)21

2ik
. ~16!

IV. RESULTS

A. Spin dependence of scattering cross sections
for the equal mass case

In order to calculate the spin dependence of the scatte
matrix elements, we decompose the scattering events into
two channels,s11(k) ands22(k). Using the change of ba
sis matrix, we finds(k)5a1s11(k)1a2s22(k), where the
coefficientsa1 and a2 for all nonzeros-wave scattering
processes are given in Table III. Thes-wave scattering cross
sections are given bys(k)58pus(k)u2, where there is a fac-
tor of 2 enhancement due to the identical particle statist
For the two channels, the cross sections take the form,

s~k!5
8p

k2
@c11 sin2d111c22 sin2d22

2c12 sin2~d112d22!#, ~17!

wherec115a1(a11a2), c225a2(a11a2), andc12

5a1a2 are tabulated in Table III. The scattering lengthsas

are given byas52a1d118(0)2a2d228(0), where the
derivatives of the phase shifts are determined from the lin
coefficients in Table I. The scattering lengths for the ca
me5mh are presented in the last column of Table III.

In Fig. 5 we plot thes-wave scattering cross sections ve
sus scattering momentum for the caseme5mh and all non-
zero spin configurations. Figure 5~a! shows scattering of two
singlet-excitons. Scattering of two triplet-excitons is show
in Fig. 5~b!, where the solid line represents the spin align
S52 state, and the dashed line represents theS50 state.
Triplet-triplet scattering is very sensitive to the relative o
entation of the exitons,S50, 1, or 2. TheS50 state scatters
stronger than theS52 state because theS50 state has a
large contribution from thes11 channel, which is enhance

TABLE III. All nonzero s-wave scattering process. Initial an
final states are denoted byuss1s2&ex , wheres is the total spin ands1

ands2 are the individual exciton spins. The coefficientsa1 ,a2 are
for computing the scattering matrix elements, and the coefficie
c11 ,c22 ,c12 are for computing cross sections. The last colum
lists the ratio of the scattering lengthas to the exciton radiusax for
the caseme5mh .

Process a1 a2 c11 c22 c12 as /ax

u000&ex→u000&ex
1
4

3
4

1
4

3
4 2

3
16 2.128~27!

u011&ex→u011&ex
3
4

1
4

3
4

1
4 2

3
16 3.759~22!

u011&ex→u000&ex 2
A3

4
2

A3

4
0 0 3

16 21.411~17!

u000&ex→u011&ex 2
A3

4
2

A3

4
0 0 3

16 21.411~17!

u110&ex→u110&ex 0 1
4 0 1 0 0.706~14!

u211&ex→u211&ex 0 1 0 1 0 1.512~29!
9-5
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by the weakly bound biexciton. Triplet-excitons in a relati
S51 state are spatially antisymmetric and thus have
s-wave scattering. We shows-wave scattering of triplet-
excitons from singlet-excitons in Fig. 5~c!. This state has two
distinguishable excitons, and can scatter by boths-wave and
p-wave processes~only s-wave is treated here!. As can be
seen in Table III, the only contribution to the cross section
from the weakers22 channel. The coefficient fors-wave
scattering is particularly small because only half the scat
ing process is symmetric (s-wave!, and there is an additiona
factor of 1/2 that cancels the identical particle factor.

There is also a triplet- to singlet-exciton conversion cro
section given in Fig. 5~d!. Although this is an inelastic pro
cess in experimental situations, it conserves energy acc
ing to our model Hamiltonian because we do not have
explicit interband-spin coupling. The conversion of tw
triplet-excitons to two singlet-excitons can be understood
an inter-exciton exchange of a pair of electrons~or holes!.
Since the spins of the individual excitons do not correspo
to symmetries of the Hamiltonian, they need not remain c
stant during scattering. This conversion process is a phys
consequence of the two inequivalent scattering channelss11

ands22. This effect has been reported in experimental22 and
theoretical6 work on exciton scattering in quantum wells.

FIG. 5. All nonzeros-wave cross sections, Eq.~17!, for exciton-
exciton scattering withme5mh , for the processes:~a! singlet-
singlet→ singlet-singlet,~b! triplet-triplet → triplet-triplet for total
spin s50 ~dashed line! and s52 ~solid line!, ~c! triplet-singlet
→ triplet-singlet withs51, and~d! triplet-triplet → singlet-singlet
and singlet-singlet→ triplet-triplet, both withs50.
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B. Mass dependence of scattering lengths

The dependence of the cross sections on mass ma
numerically studied by our methods. In Fig. 6 we show o
calculatedas

11 andas
22 as functions of mass ratio,mh /me .

We find that the scattering length is remarkably insensitive
the mass ratio forme /mh,10 ~corresponding to a wide
range of semiconductors!, but then diverges nearme /mh
515. This feature is lost in previously published theoretic
treatments of exciton-exciton scattering. The divergence
as

11 nearmh /me515 is due to the acquisition of a biexcito
vibrational state. Forme5mh the biexciton has no bound
excited states, while a H2 molecule has 15 bound vibrationa
states. Our calculations have shown that the first of th
appears nearmh /me515, with dramatic effects on the sca
tering length. Theas

22 curve is relatively featureless becau
there are are no bound antisymmetric states in this range
interpret the upward drift ofas

22 for larger mass ratios as
systematic error due to difficulties in projecting states w
large mass difference. The heavy particle determines the
jection time (;m21R22), while the light particle determines
the diffusion time stept. The difficulty in handling large
mass ratios makes the method~as presented here! comple-
mentary to calculations that use the Born-Oppenheimer
proximation.

It is important to realize that similar relationships mu
exist between the scattering length and other material par
eters, such as the Luttinger-Kohn parameters describing
alistic hole states, external strain, and spin-orbit coupling
name a few. Theoretical studies of such effects will ne
similar high-accuracy scattering calculations, but applied
more accurate Hamiltonians, and are an area for future
search.

V. CONCLUSION

To summarize, we have shown that there are several
nificant elastic scattering processes for excitons, and h
given numerically exact values for a widely used theoreti
model. We find strong triplet-triplet and singlet-singlet sc

FIG. 6. The scattering lengthsas
11 andas

22 as a function of the
electron-hole mass ratio. The divergence inas

11 nearmh /me515
is due to the appearance of second bound biexciton state. Solid
are a guide to the eye.
9-6
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tering, with weaker triplet-singlet scattering and triplet-trip
to singlet-singlet conversion processes. Scattering is r
tively insensitive to the mass ratio formh /me&10, but be-
comes very sensitive and actually diverges nearmh /me
'15. DMC has been found to be a good tool for this fou
particle excited state calculation, since the detection
weakly bound states requires very accurate evaluation of
correlation energy.

This computational approach should be extended in m
ways. The extension to higher angular momentum sta
would give important corrections at higher scattering en
gies. Even for low energies,p-wave scattering process can b
important, and we see no fundamental difficulty of extend
this QMC technique to treatp-wave scattering. Application
to biexciton-biexciton scattering are possible, but would b
bit more difficult because the scattering wave function wo
then have to describe eight interacting particles.

Most importantly, the method should be adapted to be
Hamiltonians so that the sensitivity of the scattering length
material properties for a wide range of materials can be s
ied. For materials such as Si, Ge, and In12xGaxAs, which
have j 53/2 hole states, a multiband Hamiltonian must
1652
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used. To the best of our knowledge, there have been
multiband QMC calcuations on even the ground state e
tion and biexciton in these systems. If ground state te
niques were developed for those systems, it would be
sonable to extend those techniques to the excited s
scattering framework described here. This approach sho
be quite useful for quantum well and other nanostruct
problems. Strain reduces the degeneracy of the valence
edge, so that even materials with aj 53/2 hole state in the
bulk may be modeled with a single band. Additonally, nan
structures have many more experimental parameters tha
affect exciton-exciton interaction, which could be studied
the same bulk techniques described here.
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