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Quantum Monte Carlo treatment of elastic exciton-exciton scattering
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We calculate cross sections for low energy, elastic, belwave exciton-exciton scattering within the
single-band effective mass approximation. Unlike previous theoretical approaches, we give a complete, non-
perturbative treatment of the four-particle scattering problem. Diffusion Monte Carlo is used to calculate the
essentially exact energies of scattering states, from which phase shifts are determined. For the case of equal-
mass electrons and holes, which is equivalent to positronium-positronium scattering, veg=figdla, for
scattering of singlet excitons aral=1.5a, for triplet excitons, where, is the excitonic radius. The spin
dependence of the cross sections arises from the spatial exchange symmetry of the scattering wave functions.
A significant triplet-triplet to singlet-singlet scattering process is found, which is similar to the reported effects
in recent experiments and theory for excitons in quantum wells. We also show that the scattering length can
change sign and diverge for some values of the massmgtion,, an effect not seen in previous perturbative

treatments.
DOI: 10.1103/PhysRevB.63.165209 PACS nuntber71.35.Cc, 36.10.Dr
I. INTRODUCTION tween excitons increase the linewidth, causing the linewidth

to depend on the exciton-exciton scattering rate , where

Excitons in semiconductors have been the subject of is the density and is a typical exciton velocity. Extracting
many experimental and theoretical investigations of Bos&€ross sections from a linewidth requires tiia the density
condensation. Low-energy exciton-exciton interactions ar@nd velocity distribution are known, art@) elastic scattering
characterized by the exciton-exciton scattering lergtthat  is the fastest process. As discussed below,CCis a good
determines the thermodynamics of a low-density gas and igaterial for comparison to the model studied in this work.
crucial for modeling the thermalization time of a dilute ex- Snokeet al»* have performed such experiments on,Ou
citon gas. Despite its importance, the exciton-exciton scatte@nd have found a linewidth broadening that suggests an up-
ing length is an elusive quantity, being difficult to measureper bound of 4, on the scattering length. Although our
experimentally or to estimate theoretically. simulations do not exactly model g0, we will compare our

As is well known in atomic physics, scattering lengths canresults to this value.
be extremely sensitive to the details of the interactions be-
tween particles. In particular, the existence of a weakly Il. THEORETICAL BACKGROUND
bound or nearly bound state causes the scatter length to be- ) . _
come quite large. Therefore,priori one should suspect that _ 1heoretical approaches to this problem start with the
exciton-exciton scattering may be a very material dependerfiff€Ctive-mass approximation, in which the system under
property of semiconductors. Reliable theoretical prediction§onsideration consists of two electrons, labeled 1 and 2, and
of exciton-exciton scattering lengths require both a very acfWo holes, labeled andb. The Hamiltonian is
curate Hamiltonian for the semiconductor and an accurate 2 2 2 P
solution to the(four-particle scattering problem. In this pa- H==MVi= AoV AaVa— AoV —Tag
per we proylde an ess_entlally exact solution to bB_Jrkvave _rgzl_r;Zl_rk;ll +r1’21 +r;b1, 1)
exciton-exciton scattering for a commonly used single-band
effective mass Hamiltonian. This solution allows us to studywherex =#2/2m. The Hamiltonian has symmetry under ex-
three important question§l) how sensitive is the scattering change of electrons and exchange of holes, so eigenstates
length to the mass ratim./m;,, (2) how does the scattering may be denoted by two exchange quantum numbers. The
length depend on spin statésinglet or triplej of the scat- s-wave states are symmetric under exchange of excitons; a
tering excitons, and3) to what degree can interexciton ex- condition which is satisfied by states™ * and ¢~ ~, where
change of electrons or holes cause excitons to scatter inthe + (—) signs refer to(antisymmetry under exchange of
different spin states? This calculation also serves as a benchlectrons and holes, respective(@tates¢™~ and¢~ " are
mark for the single-band limit of more complicated scatter-p-wave state$.Although this Hamiltonian is a well-accepted
ing Hamiltonians. We discuss possible extensions of thisnodel for exciton-exciton scattering, we should point out a
method to norswave scattering, treatment of multiband few of its deficiencies. For small excitons, such as those in
models, and applications to heterostructures in the Conclucu,O, that have radii not much larger than the lattice spac-
sion. ing, nonparabolic terms in the kinetic energy and other cor-

One experimental method for measuring the exciton scatrections to the potential energy may be necessary. For many
tering cross section is to look at linewidth broadening of thesemiconductors, such as Si, Ge ang iGaAs, the valence
recombination spectra in a gas of excitons. Collisions beband is a mixture of three bands and cannot be described by
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a single parabolic band. That is, the valence band edge ignergys(0)=mNg, it is necessary that a good computation
fourfold degenerate with=3/2, and the spin-orbit split-off method for low energy scattering be able to accurately cal-
band withj=1/2 is lower in energy. Possible extensions of culate biexciton binding energiésFor the mass ratios con-
this method to multi-band Hamiltonians is discussed in thesidered(and far beyond, including deuterignthe biexcitons
Conculsion. In the case of GO, the band order is reversed. cannot bind in thep™ ~ states, so biexcitons in rotationsil
The valence band is the parabolic spin-orbit split-off bandstates always havé™ " wave functions. Detailed theoretical
with j=1/2, and the holes may be described by the singlelescriptions of biexcitons can be found in Ref. 12. The equal
band Hamiltonian. Interband exchan@ertual electron-hole  mass case was shown to have a bound biexciton by Hyllerass
recombinatiois an important effect that has been neglectedand Ore using a variational arguméntand a better varia-
and could be modeled by an additional spin-dependent paional estimate of the binding energy was given by Brink-
tential term. man, Rice, and Beft! who foundEz=0.02E,, whereE,
This Hamiltonian also describes a family of scattering=0.5/(m_*+m; ') is the exciton binding energy. However,
processes for other particles, including hydrogen-hydrogerpecause of the importance of correlation energy, the latter
positronium-positronium, and muonium-muonium scatteringvariational treatment was missitiglf of the biexciton bind-
The equal mass case is at an extreipesitronium scatter- ing energy, as shown by diffusion Monte Car®MC)
ing), where the Born-Oppenheimer approximation is thecalculations:>*® which find Eg=0.064 04(4E,. DMC is a
least applicable. quantum Monte CarldQMC) method that uses a random
There have been several theoretical estimates of excitoRyalk to project out the ground state wave function from a
exciton scattering for bulk systeths and quantum welfs’  yariational wave function, in order to stochastically sample
as well as calculations on biexciton-biexciton ScattE?ing, the exact ground state energy. The success of DMC for cal-

Only the bulk, elastic scattering calculatidfisare directly  culating biexciton energies has been a motivation for its use
comparable to the results of this paper, but the techniqueg the present scattering calculations.

presented here could be generalized to the other scattering

problems. Also, the results presented here provide a bench-

mark for evaluating the approximations used in other theo- . METHOD: QUANTUM MONTE CARLO
retical treatments and could lend insight into the reliability of CALCULATION OF SCATTERING

the approximations in more complicated situations.

One standard theoretical approach is diagrammatic pertur- ) o )
bation theory as presented in the work of Keldysh and The R-matrix approach to scattering is to examine the
Kozlov® and Haug and Hanamut8.They estimated the Standing waves of the system. As shown by Carlson,
exciton-exciton scattering matrix as arising from a singlePandharipande, and W'rmﬂaand Alhassid and KOOWH}:
term (ky+ 0,k — q|Hinl K1, Ko), Where|k, ,k,) represents a DY fixing nodes in the standing waves the scattering problem
state of two noninteracting excitons with momentimand ~ May be cast as a ground state problem suitable for QMC
k, and H,, is the interexciton Coulomb interaction. This methods. For an elastic scattering process, we label the dis-
method gives an estimate at=a, (independent of the tance between the prodqcts Ryan_d the reduc_ed mass of_ the
mass ratio, wherea,=m; *+m; * is the exciton radius, but products_ bym, . In exciton-exciton scattering there is a
it is an uncontrolled approximation that may have limited S“*?“ety in th? definition oR due .to |nterex_0|ton (_axchange,
validity in the low energy limit. One serious drawback of the Which we will address below in our discussion of the
method is that it does not include effects of the biexciton in€XCiton-exciton scattering wave functions. Nonetheless, for
the scattering. As we show later, biexciton vibrational stated2r9¢ Separatiork, the relative motion of the products is
cause strong dependence of the scattering length on the m Lge-particle-like, so the many-body wave function depends
ratio m./my,, which is not captured by the low order pertur- onRas
bation theory.

A second common approach was developed by Elkomoss pxsifkR— 217+ 8(k)], 2
and Munschy. It uses an effective exciton-exciton potential
defined byVeu(R)=(#:(R)|H|#:(R)), where ¢¢(R) is the

A. R-matrix approach and scattering boundary conditions

X : . wherel is the relative angular momentutijs the scattering
Wave_functlon f(_)r two free excitona distanceR apart. The_ momentum, and, (k) is the phase shift. If we constrain the
effect|ye potentlal\/e_ﬁ arses f“’”.‘ the Hartreg term gnd 'S wave function to have a node at a large exciton separation
used in a two-particle central-field calculation. While an R,, we find a discrete energy spectriEy(R,), which may

exciton—exciton scatterir)g pseudo-potential WOUId. be a Ve€he computed by ground state or excited state methods, such
useful tool, this approximate form has some serious draw:

. e ] X as DMC. Each choice oR, gives a spectrum of states
backs. Among its deficiencies are; a lack of correlation, no L.a=12, ... with energiesE, that determine values of
van der Waals attraction, a failure to reproduce blex0|ton5(k)
states, and a vanishing interaction potentialfipe=my, . The e
cross sections calculated by this method are small and lack
qualitative agreement with the results of the present work. Si(ke)=—Kk,Rptzlm+am, 3
Some insight into exciton-exciton scattering can be
gained by considering the bound states, biexcitons. Since theherek,=v2m,E,. The scattering matrix elements are de-

number of bound statddg enters in the phase shift at zero termined by the phase shifts,
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1 . Configuration | Configuration Il
Si(k)= 5 exd 2i 6,(K) 11, (4) (Contig | [Config |
1 1
Carl d Shiavilla h | d fixing the | .r132b@ Lr1b23@
arlson an iavilla have also proposed fixing the loga- H H ' H
rithmic derivative of the wave function at the boundary in- a@ @ b b@ @ a
stead of setting wave function to zefd,
ot =0'+ 9"  (Symmetric s-wave)
S Vgo 0" =0'-¢" (Anti-symmetric s-wave)
=B, (5

FIG. 1. The two contributions to the exciton scattering wave

where S is the normal to the boundary surface, at a fixegfunctions ¢, at large exciFon-exciton separation.. The asymptotic
radiusRy,, and3 parametrizes the boundary condition. This form of thes-wave scattering states are symmetiie”(") or anti-
formulation has the advantage separating the choice of simgYMmetric & ) combinations of these configurations. This
lation sizeR, (subject toR,, lying in the asymptotic region symmetric/antisymmetric form is used for the trial wave functions
b b ++ -= i | I
from the sampling of energy, which is handled by varyjhg 77 andf, using’, andf™ from Eq. (13).
and is particularly well suited for finding the scattering ) . i i
length. The application to variational Monte Ca}dMC) wherey; is a normally distributed random variate with zero
calculations is straightforward, but preserving the boundary€@n and unit variance ands the time step. In the limit of
condition in DMC calculations requires a method of Small7, Eq.(9) describes a process for samphm_yﬁ(R). _
images®® The results presented here do not use the The matrix element ok is estimated by integrating

logarithmic-derivative boundary condition. the local energy of the guiding functionE,(R)
=y~ YR)Hy(R), along the random walk,

B. Calculation of excited states

n+k—1
The use of excited stateg,(a>1) is necessary when _ _ 1 , .
there is a bound state and, more generally, when the scatter- W”'”+k_eXp{ 7 ,Z‘n 2 [ELy(R) T ELy(Rye ) -
ing state being studied has its first node before the (10
asymptotic region is reached. We use a QMC method to

calculate excited states developed by Ceperley and Bérnu,The estimators for matricds andH are

to adapt VMC and DMC methods for a Hilbert space of

several low energy wave functions. A set mof trial wave P

fu_nctions is chose_rha, Wherea=1,1._ .. m. The generalized Nap(kT) = E 2 Fz(Ri)Wi,i+kFﬁ( Riii), (12)
eigenvalue equation to be solved'is pi=1

m
2 [Hap(H) = AN, g]dis(t) =0, 6) 10
=1 hap(k)= 5 2 FLROW i F (R 0ELA(R ),
whered,(t) is thekth eigenvector with eigenvalug,(t) and (12)
the matricedN andH are the overlap and Hamiltonian ma-
trices in our trial basis, given by whereF ,=f, /¢ andE_z=f 5 (R)Hf 4(R) are the local en-
ergies of the trial basis states.
Naﬂ(t)=f dR;dR,fX (Ry)e M 4(Ry), (7)
C. Form of exciton-exciton scattering wave functions
Haﬁ(t):f dR,d RZHfz(Rz)e—tHfB(Rl), (8) We now discuss the form for the exciton scattering func-

tionsf! " andf_ . As mentioned before, interexciton ex-

The parametett is the projection time. The eigenvalues change of particles complicates the definition of exciton-
A (t) are energy eigenvaluds, within the Hilbert space exciton separation. There are two configurations for well-
spanned by the projected trial functiofes ™"/2f |}, and ap-  separated excitons, as shown in Fig. 1. Configuration | has
proach the exact energy eigenvalues in the limit of large the electrons and the holes paired @ 2b; and configura-

The matricesN and H are sampled with random walks, tion Il as 1b,2a. We choose wave function, and f'! to
using a guiding function) that must be positive everywhere. represent these states,
The guiding function must have significant overlap with all
basis functions and should be optimized to decrease the vari-

ance of the sampled matrices. At each stefl in the ran- fl —e 1ag™ yrzbua(rla_zb)exp[ Cil12 Cqlab
dom walk, the coordinateR; , ; of the particles are updated 1+dirp  1+dgrap
using ~ Chlip Cnl2a ’

Ric1=Ri+ 7Ny 'V(R) +(270) Py, C) 1+dnryp  1+dproa)’
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0-000 ¢ T, : @ Symmetric | (6) Anti-Symmetric
= 0002 F= |Pr01ect|on of Energy Eigenvalues S s Statos s States
w [ = b AN
= e 05— — ~.
o -0004 £ 7= A0 i ‘e o
E r= =====::=Q1x(t24\1£:l===:=====: - L o A SR, L @/‘\2\ TN
W 0,006 F - il R ey S
[&] F = = 0.0 Te---e G‘L‘T,ﬁ'——*f o,
Z -0008 [ E_T==o.__ Aa(t)-A2(0) . ¢ A 6(_1_b_o_ nd st _té)e (no baund states)
11} E EEEEEIIII‘&(QE\ (;02 zzzzzzzzzz | 1| = lf 1 ﬁ L I | 1 CT 1 a] I
-0.010 — :letz(t:)— ()IIEIIIEE;E 8 10 12 14 10 12 14
P L0k Lo N
0 2 4 6 Boundary Condition Ry /ay

. . . -1
Projection Time (Ex) FIG. 3. Energy spectra as a function of nodal positiyn, for

FIG. 2. Change in the projected energy eigenvalegt) (@) symmetricg™ " states, andb) antisymmetri_c¢‘_‘ stat_es, \{vith
—A(0) of the DMC states relative to the VMC states as a function™e=Mh - The lowest energy curve i) is the biexciton with bind-
of DMC projection timet, for basis statesr=1,2,3,4. The eigen- N9 energyEg=0.06423). These function=(Ry) determine the
value equation is given by Eqt6)—(8), where the Hamiltonian and Phase shiftsy™ ™ and 6™, by the relationship in Eq(3).
overlap matrices have been sampled using Efb.and (12).

states. We take the guiding functignto have the same form

W Cil 12 Cql ab as the f** wave functions with Ug,j(r)z[ce‘rz’8

fo=e 7"1be 723U o(rypa)€X +3,d,U2(r)]¥2 The parameterkc,d,} are chosen to bias
1+df|’12 1+dgrab aYa o p o
sampling towards the collision{c=0,d,=2,d,=d3;=d,
=1} for ¢** states andc=2d,=1} for ¢~ states. To
check for convergence of the energies in DMC, we plot the
energy differenceEpyc— Evmc, a@s a function of projection

where y, ¢¢, dy, Cq, dg, Ch, dy, and parameters in the me in Fig. 2. We see convergence after a projection time of
functionU (r) are variational. These wave functions repre- -1

: . : ; X
sent two excitons in a relativewave state. Since these are We thus find two energy spectra for each valueRgfas

not eigenstates of the exchange operator for electfynsr  shown in Figs. &) and 3b). The spectra for the symmetric
holes P,,, we take linear combinations of the two for our states¢®* show a clearly bound biexciton state as seen in
trial wave functions,f*=f!+f! andf_ ~=f —f' For Fig. 3a). The antisymmetric state$~, as shown in Fig.
large separation of excitons, the exponential factors prohibi8(b), have no bound state. The binding energy of the biexci-
both configurations from simultaneously contributing to theton is Eg=—0.0642(3E,, in agreement with other ground
wave function. Thus, a node can be approximated in thetate calculations, and is insensitive to the position of the
scattering wave function by simply requiring tHaf,(r) be  nodeRy because it is localized. In contrast, the delocalized
zero for allr>R,,. The error introduced by this approxima- scattering states are quite sensitiveRg and their depen-
tion is of order exp{-2aR,), and is another limit on the use dence onRy is a measure of the elastic scattering matrix
of small values forR,,. Since we only do calculations for elements.
low energy scattering and large,,, the lack of a well-

defined exciton-exciton separation distance for short dis-

tances does not matter.

This method for calculating scattering properties is very Using Eq. (3), we determine scattering-phase shifts
sensitive to the energy spectf&,(R,)}. To get accurate ¢ (k) and 6~ (k), which are shown in Fig. 4 for the
energies, we do not try to construct and optimize elaboratéqual-mass case. The=0 limits show us that there is one
variational wave functions, but rather use DMC to projectbound symmetric statgp” " and no bound antisymmetric
the energy from trial wave functions of the form given in Eq. States¢™ . The slope ak=0 is related to the scattering
(13). The coefficientsy, ¢, ¢y, andc,, are chosen to obey lengthas by &(k)=—as. From a cubic polynomial fit to
most of the cusp conditions on the wave function for smalithe data, with coefficients given in Table I, we fira
particle separations. Thewave envelope functionsl ,(r)
are taken as solutions to an empirical exciton-exciton scat- 1 1

. . Symmetric L Anti-Symmetric|
tering potentials, Phase Shift | Phase Shift

Chl'1a Chl'2p ] (13)

B 1+dhr1a— 1+dprsop

D. Calculation of phase shifts

3r? i é’+=;1.57a >'i L no bound states
~Vo| 1- ——], r=d € o[l = <o
4dr s | \ o |
V(r)= (14) L \1 bound state L .
d6 ¢ | L | |a;=1.51 ax
—Vo—, r>d, 0 1 0 1
4r kax kax

whereV, andd have been self-consistently fit to approxi-  FIG. 4. Phase shift$(k) for the twos-wave scattering states,
mate the energy spectrum of the four-particle scatteringor me=m;, calculated using Eq3) and the data from Fig. 3.

165209-4



QUANTUM MONTE CARLO TREATMENT OF ELASTIC. .. PHYSICAL REVIEW B63 165209

TABLE |. Coefficients for polynomomial fit to the low energy TABLE IIl. All nonzero s-wave scattering process. Initial and

part of the phase shift functions for the casg=m,, . final states are denoted bys;s,)e,, Wheresis the total spin and,
ands, are the individual exciton spins. The coefficients ,«_ are
Co (o Cy C3 for computing the scattering matrix elements, and the coefficients

C44,C__,c,_ are for computing cross sections. The last column

ot m —4.574(21) 2.99570) —0.829(54) lists the ratio of the scattering leng#f to the exciton radius, for
5 0  —1.512(29) —0.138(90) 0.21654) the casam,=m; .
Process a, a. Cyy C._ C,_ ag/ay
=4.57(2)r, for the symmetric state, are=1.51(3) for the 1 3 1 3 3
antisymmetric state. These model values are consistent Wi%oggeilgggex 3 1 i 1 3 g;gg;g
the measured upper bounagdfound in CyO. ex ex 4 4 4 4 16 '
|01D)ex—[000) e, — \/Tg — \/Tg 0 0 %3 —-1.41117)
E. Extracting spin dependence from spatial symmetries
9 P EEP d g éOOO}eX—>|011>ex _E _ E 0 0 £ -141117
In real semiconductors, electrons and holes can exchange 4 4
(equivalent to virtual annihilation of the pairwhich sepa- 1104|110, 0 3 0 1 0 0.70614)
rates excitons into singlet and triplet energy eigenstates. A||'211>eX—>|211>ex 0 1 0 1 0 1.5129)
though these states are degenerate in our Hamiltonian, the
spin-dependent scattering cross sections can be determined
for this basis. Due to the antisymmetry of the total wave @28 (K _
function, we can infer that states’ * and ¢~ ~ have spin ™7 (K)= en(SL1KIS|SLLK)en= - (16)
eigenstate$s00)., and|s11)., where the notatiofss:Sh)en 2ik
stands for total spirs, total electron spirs,, and total hole
spin s.. We denote the experimentally relevant basis as IV. RESULTS

[ssiS5)ex, Where the total spin is, and the spins on the
scattering excitons arg ands,, which take the values 0 for
singlet excitons and 1 for triplet excitons. Note that for ma-
terials with j =3/2 holes(not treated hepe the exciton total In order to calculate the spin dependence of the scattering
spin takes the values 1 and 2. Table Il lists matrix elementgnatrix elements, we decompose the scattering events into the
for the change of basi$ss.Sp)en—|SSiS)ex. Thus, the two channelss® " (k) ands™ (k). Using the change of ba-
states |000), and |s11)e, act as channels foswave sis matrix, we finds(k) =as* " (k) + a_s~ " (k), where the
exciton-exciton scattering. The matrix elements for scattercoefficientse, and «_ for all nonzeros-wave scattering
ing through these channels are processes are given in Table Ill. Teavave scattering cross
sections are given by(k) =8|s(k)|2, where there is a fac-
tor of 2 enhancement due to the identical particle statistics.
257 (0 _q For the two channels, the cross sections take the form,

ok B

A. Spin dependence of scattering cross sections
for the equal mass case

ST (k)= ¢,(000k|S|000K)ep=

8w
o(k)=—[c, siPs" " +c__sinfs -
TABLE Il. Matrix elements for changing spin basis in the two K
exciton problem. Columns are in the,See,Shn)en basis and rows —c,_Si(8t T —56"7)], (17)
are in theg(s,Sen,Sen basis.

wherec, ,=a,(a,+a_ ), c._=a (a,+a_), andc, _
|000en, [01De 10Dy [110en [11De, [211.,  =a, «_ are tabulated in Table Ill. The scattering leng#s
3 are given byas=—a, 8" (0)—a_5 ~'(0), where the
000 -3 v3 0 0 0 0 derivatives of the phase shifts are determined from the linear
2 coefficients in Table I. The scattering lengths for the case
(011 E 41 0 0 0 0 m.=my, are presented in the last column of Table III.
o 2 z In Fig. 5 we plot thes-wave scattering cross sections ver-
N N 2 sus scattering momentum for the casg=mj, and all non-
ex(101 0 0 2 T2 > 0 zero spin configurations. Figuréeh shows scattering of two
singlet-excitons. Scattering of two triplet-excitons is shown
110 0 0 -1 1 E 0 in Fig. 5b), where the solid line represents the spin aligned
2 S=2 state, and the dashed line representsSke) state.
(111 0 0 J_E Q 0 0 Triplet-triplet scattering is very sensitive to the relative ori-
2 2 entation of the exitons$=0, 1, or 2. TheS=0 state scatters
{211 0 0 0 0 0 1 stronger than th&s=2 state because th&=0 state has a

large contribution from the® ™ channel, which is enhanced
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Spin Dependence of Exciton-Exciton Scattering‘ 1 bound state 52 bound states

25 g_ s51=0 s1=0 (a) 20 :_
20 E + &+ x b
15 $2=0 $0=0 Tk
10 & @ f
5 0
ax 0 :
g 25 -
= 2 g o
% 15 0 o T e
- 10 1 5 10 50
S 5 .
B 0 Mass ratio, mp/me
[
& 25 FIG. 6. The scattering lengttag * andag ~ as a function of the
9 . 6. s
o 20 electron-hole mass ratio. The divergenceain® nearm,/m.,=15
% 1.5 is due to the appearance of second bound biexciton state. Solid lines
£ 10 are a guide to the eye.
g 05
8 00 :
3 2'5 B. Mass dependence of scattering lengths
e dependence of the cross sections on mass may be
2'0 The depend f th t y b
1'5 numerically studied by our methods. In Fig. 6 we show our
10 calculatedag " andag ~ as functions of mass ratieg, /m.
0.5 We find that the scattering length is remarkably insensitive to
0.0 the mass ratio form,/m,<10 (corresponding to a wide
0.0 0.2 0.4 range of semiconductorsbut then diverges neamg/m;,
Scattering Energy, E/Ex =15. This feature is lost in previously published theoretical

treatments of exciton-exciton scattering. The divergence in
FIG. 5. All nonzeros-wave cross sections, E17), for exciton-  a/ * nearm;,/m,= 15 is due to the acquisition of a biexciton
exciton scattering withme=my,, for the processesta) singlet-  vibrational state. Fom,=m;, the biexciton has no bound
singlet— singlet-singlet(b) triplet-triplet — triplet-triplet for total  excited states, while aHmolecule has 15 bound vibrational
spin s=0 (dashed ling and s=2 (solid line), (c) triplet-singlet  states. Our calculations have shown that the first of these
— triplet-singlet Withs_=1, ar_ld(d) triplet-tripletﬁ singlet-singlet appears neam; /m,= 15, with dramatic effects on the scat-
and singlet-singlet- triplet-triplet, both withs=0. tering length. The_ ~ curve is relatively featureless because

by the weakly bound biexciton. Triplet-excitons in a relative (€€ are are no bound antisymmetric states in this range. We

S=1 state are spatially antisymmetric and thus have ndntérpret the upward drift o, — for larger mass ratios as a
swave scattering. We showwave scattering of triplet- SyStématic error due to difficulties in projecting states with
excitons from singlet-excitons in Fig(&. This state has two 1arge mass d|ffer_elnc?.2 The heavy particle determines the pro-
distinguishable excitons, and can scatter by kstvave and  J€ction time (~m~"R"*), while the light particle determines
p-wave processe®nly swave is treated hejeAs can be the diffusion time stepr. The difficulty in handling large
seen in Table Ill, the only contribution to the cross section igNass ratios makes the meth@as presented hereomple-
from the weakers~~ channel. The coefficient fogwave Mmentary to calculations that use the Born-Oppenheimer ap-
scattering is particularly small because only half the scatterProximation.

ing process is symmetric{wave, and there is an additional _It is important to reali_ze that similar relationships must
factor of 1/2 that cancels the identical particle factor. exist between the scattering length and other material param-

There is also a triplet- to singlet-exciton conversion cros<ters, such as the Luttinger-Kohn parameters describing re-
section given in Fig. &l). Although this is an inelastic pro- alistic hole states, external strain, and spin-orbit coupling, to
cess in experimental situations, it conserves energy accorfl@me a few. Theoretical studies of such effects will need
ing to our model Hamiltonian because we do not have arsimilar hlgh-accuracy scgtterlng calculations, but applied to
explicit interband-spin coupling. The conversion of two MOre accurate Hamiltonians, and are an area for future re-
triplet-excitons to two singlet-excitons can be understood a§€arch.
an inter-exciton exchange of a pair of electrdps holes.

Since the spins of the |ndI|V|du.aI excitons do not corre_spond V. CONCLUSION

to symmetries of the Hamiltonian, they need not remain con-

stant during scattering. This conversion process is a physical To summarize, we have shown that there are several sig-
consequence of the two inequivalent scattering charsiels  nificant elastic scattering processes for excitons, and have
ands™ ~. This effect has been reported in experime’ﬁtahd given numerically exact values for a widely used theoretical
theoreticdl work on exciton scattering in quantum wells.  model. We find strong triplet-triplet and singlet-singlet scat-
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tering, with weaker triplet-singlet scattering and triplet-triplet used. To the best of our knowledge, there have been no
to singlet-singlet conversion processes. Scattering is relanultiband QMC calcuations on even the ground state exci-
tively insensitive to the mass ratio fon,/m,=10, but be- tion and biexciton in these systems. If ground state tech-
comes very sensitive and actually diverges nea/m,  niques were developed for those systems, it would be rea-
~15. DMC has been found to be a good tool for this four-sonable to extend those techniques to the excited state
particle excited state calculation, since the detection okcattering framework described here. This approach should
weakly bound states requires very accurate evaluation of thge quite useful for quantum well and other nanostructure

correlation energy. ) problems. Strain reduces the degeneracy of the valence band
This computational approach should be extended in mankdge, so that even materials withj & 3/2 hole state in the

ways. The extension to higher angular momentum stategy|k may be modeled with a single band. Additonally, nano-
would give important corrections at higher scattering enerstryctures have many more experimental parameters that can
gies. Even for low energiep;wave scattering process can be affect exciton-exciton interaction, which could be studied by
important, and we see no fundamental difficulty of extendingthe same bulk techniques described here.

this QMC technique to tregi-wave scattering. Application

to biexciton-biexciton scattering are possible, but would be a
bit more difficult because the scattering wave function would ACKNOWLEDGMENTS
then have to describe eight interacting particles.
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