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Homogeneous broadening and excitation-induced dephasing of intersubband transitions
in a quasi-two-dimensional electron gas
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The irreversible decay of coherent intersubband polarizations nitype modulation-doped
GaAs/ALGa _,As quantum wells is studied by femtosecond time-integrated and time-resolved four-wave
mixing. We provide the first direct evidence for predominant homogeneous broadening of intersubband reso-
nances by intraband electron-electron scattering. Even at a low electron concentratisd @f cm™ 2 the
dephasing timé,=320 fs accounts fully for the 4 meV intersubband linewidth. For1®'® electrons/crh
and strong excitation, athermal electron distributions show enhanced dephasing rates.
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IntersubbandlS) transitions of quantum-confined carriers cussed dephasing by Coulomb scattering at low electron
are relevant both for nonequilibrium carrier dynamics andconcentrations has remained unresolved.
for optical properties of low-dimensional systehis quasi- In this paper, we investigate IS dephasing in high quality
two-dimensional semiconductors, optical IS transitions aresaAs/AlLGa _,As QWs with negligible disorder-induced in-
strongly influenced by Coulomb interaction among the carri-homogeneous broadening, for electron concentrations as low
ers and thus provide a sensitive probe of microscopic intergs 5¢ 10 ¢m~2, and as a function of excitation intensity.
action; and of the rgsulting ultrafast dyna.mics._ Moreover, |§)jtrafast time-integratedTI) and time-resolvedTR) detec-
transitions play an important role for devices like the quan+;g of four-wave-mixing (FWM) transients in the mid-
tum cascade lasér. , y , , infrared demonstrates for the first time that irreversible
The properties of o_pt|cal IS transitions, in particular thedephasing processes on a time scale of several hundreds of
s_pectral position and line shape of the stationary IS absor emtoseconds represent the predominant broadening mecha-
tion spectra of electrons, have been the subject of NUMETOUm at such low carrier concentrations resulting in a homo-

theoretical and experimental studies. In general, there are

three major effects of Coulomb interaction on the Iineshape?JenEOUSIy broadened IS absorption line of less than 4 meV

First, depolarization in a dense 2D electron plasma leads toﬁ('dth‘ Experm_‘nents give evidence of IS phase relaxation
blueshift of the absorption band together with a line narrow-dominated by |r?trasubbandlC0u[C)2mb scattering. For an elec-
ing for a nonparabolic in-plane dispersidrSecond, direct 1ron concentration of &10'" cm™?, the experiments as a
and exchange Coulomb interactions result in a spectral redidunction of excitation density demonstrate that an increase in
tribution of oscillator strength and a reshaping of the absorpPhase space available for scattering results in faster IS
tion spectrum, thereby partly compensating the depolarizadephasing.
tion shift*~" Third, Coulomb scattering among electrons is a We investigated two QW samples with different electron
dephasing process of the coherent macroscopic IS polariz&oncentrations: sampleconsists of 51 GaAs QWs of 10-nm
tion, contributing to the homogeneous broadening of IS abwidth, separated by 20-nm-thick §:Gay ssAs barriers, the
sorption line$*® centers of which are-type 5§-doped with Si. This results in
The first two effects of Coulomb interaction have beenan electron concentratioms=5x10" cm 2 per QW.
studied in quite some detail by observing the changes of I$ampleB is doped to a higher electron concentratiy 6
absorption lines in heterostructures or quantum wElg/s < 10" cm 2, containing 6 wells of 9 nm width. The two
as a function of equilibrium parameters such as temperaturgamples show comparable overall absorbanégs~0.8
or electron concentration. In contrast, experimental informa{sampleA) and Ais~0.6 (sampleB). Both samples were
tion about the amount of homogeneous broadening and thgrocessed into small prisms to achieve a strong coupling
influence of Coulomb scattering on IS dephasing remaindetween the-polarized light field entering through the front
scarce. To grasp the IS polarization dynamics, nonlinear opfacet of the prism and the IS transition dipole which is ori-
tical techniques, e.g., four-wave mixing, are required. So farented perpendicular to the QW layers. Tire1 ton=2 IS
subpicosecond IS dephasing has been studied only for eleabsorption spectra are shown in the insets of Fig. 1, demon-
trons in strongly disordered Ga,_,As/Al,In;_,As QWs strating very small IS line widths ofAE;s=3.7 meV
exciting a small fraction of the electrons present by dopgthg. (FWHM) for sampleA, andAE,;s= 6.3 meV for sampld. In
The strong inhomogeneous broadening of the IS transition ithe femtosecond experiments, the 1 ton=2 IS transition
such samples leads to a fast photon-echolike polarization devas excited resonantly by 130-fs mid-infrared pulses-@
cay, hindering a study of dephasing rates for different non—15 wm), which were generated by nonlinear frequency
equilibrium electron distributions. Moreover, the much dis-conversion of amplified pulses from a Ti:sapphire lder.
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Delay Time (fs) (dashed lingand directly after(solid line) excitation.
FIG. 1. (a Bleaching dynamics of IS absorption in time-integrating HgCdTe detector or by time-resolved up-
GaAs/ALGa,_(As quantum wells after resonant femtosecondconversion. For TR detection, the sum frequency of the dif-
excitation (electron concentration,=5xX 10" cm™?, sampleA).  fracted signal and a synchronized reference p(igéth 100
The  spectrally integrated  absorption  changeAA= {5 wavelength 1.3um) generated in a 1-mm-thick GaSe
—Jdo In[T(w)/Te(w)] (symbol§ is plotted versus pump-probe time crystal was recorded as a function of time delay between
delay. It 'f ﬁmp?tﬁ$njggoﬂ;ezbz iybbf’.mtd poama_tll?n::/r\‘/?wdfec_ays signal and reference pulsésr details, see Ref. 12
exponentially with 74 ! s.g ) Time-integrated .) M n In Figs. Xb) and Xc), TI-FWM signals are shown for
tensity in the diffracted directionk—k, for pulse intensitied, both | dfor | d hiah itation intend
=0.7 MWi/cn? (solid circleg and 61, (open circles in sampleA oth samples and for low and nign excitation inten l‘ﬂy)_.
as a function of time dela\t,=t,—t, between the incident The spectrally integrated signals are plotted as a function of
pulses.(c) Same agb), but for highern,=6x 1011 cm~2 (sample time deIayAtlz between the two pulses generating the tran-
B). Insets: Corresponding normalized 1S absorption profiiees ~ Si€nt grating. In all cases, the signals rise within the time
and pulse spectreircles. resolution of the experiment, exhibit a delayed peak 400
fs, and subsequently decay on a time scale of several hun-
The spectra of the mid-infrared pulses are also shown in Figdreds of femtoseconds, reflecting the decay of the macro-
1. The measurements were performed at a lattice temperatuseopic IS polarizationP®. At low excitation intensities
of T, =15 K. [solid symbols, Figs. (b) and Xc)] one finds a decay time of
The lifetime T, of electrons in then=2 subband was 7=160=15 fs for sampleA and 7= 130z 10 fs for sample,
determined by pump-probe measurements. The nonlinednoth significantly faster than the population decay. For stron-
change of IS absorption induced by the pump pujseak ger excitation(open symbolsthe dynamics of sampla re-
intensityl ;=0.7 MW/cn?) was monitored by weak delayed mains unchanged, whereas samplshows a substantially
probe pulses® In Fig. 1(a), the spectrally integrated absorp- faster decay.
tion changeAA= — [dw In[T(w)/To(w)] of sampleA is plot- Figures 2a) and 2b) show the induced pump-probe am-
ted as a function of the delay time between pump and probplitudes and the TI-FWM signal intensity versud,. The
(T, To: sample transmission with and without excitajion saturation of the pump-probe signals allows to estimate the
The strong nonlinear decrease of IS absorption decays Hyaction ng,. of excitedn=1 carriers[Fig. 2@]. For low
relaxation ofn=2 electrons back to the=1 subband via intensities, the diffracted FWM signal shows a cubic depen-
the emission of longitudinal optical phonol{sBoth samples dence onl/l, [Fig. 2(b)], as expected for a third-order non-
show a time constant of; =550 fs. linear process. The diffracted signal begins to saturate when
Coherent IS polarizations were studied in degenerate substantial fraction afi=1 electrons is excited into the
four-wave-mixing (FWM) experiments. Two mid-infrared =2 subband. The corresponding decay rates of the Tl-
pulses with wavevectors, andk, generate a transient grat- FWM signals are plotted in Fig.(®). For low electron con-
ing in the sample from which third-order signals are self-centration(sampleA, circles, the decay rate of the TI-FWM
diffracted into the directionsk —k; and Xk, —k,. The sig-  signal is practically independent ofl,. In contrast, a sig-
nal in the direction of R,—k; was detected either by a nificant increase of the decay rate with excitation intensity is
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At signals gives direct information about the relative strength of
1 A, 2 133 these two contributions, and about the presence of many-
~ ' body effects caused by the Coulomb interaction among the

) : electrons, directly affecting the polarization dynamics. The
data in Fig. 3 display a linear shift of the maximum of the
TR-FWM signals with increasing time delakt,, and a
slopem=1 for both samples. This behavior is indicative of a
free induction decay of the macroscopic polarization and
gives direct evidence for a predominant homogeneous broad-
ening of the IS resonance in both sampfe&ased on this
finding, one derives an IS dephasing tinig=27=320
+30 fs from the decay of the TI-FWM signal of sample A at
T,=15 K [Fig. 1(c)]. This translates into a homogeneous
-87 fs linewidth of 4.0+ 0.4 meV, accounting very well for the line-

20 s width of the steady state IS absorption of 3.7 mgENig.
1(a)]. Such excellent agreement is also found for higher lat-
tice temperatures and demonstrates that inhomogeneous line
380 fs broadening due to static disorder, which would lead to fluc-

W 513 fs tuations of the IS transition energy, or from subband nonpa-
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demonstrates that the IS absorption limedth 6.3 meV at

FIG. 3. () Time-resolved FWM transients for samplede-  1L=15 K) is homogeneously broadened also in this case. A
tected by sum-frequency mixing of the mid-infrared FWM tran- Single-particle picture of IS absorption predicts a small inho-
sients with near-infrared pulses € 1.3 um) in GaSe. Signals are Mogeneous broadening of 1.2 meV due to different disper-
shown as a function of real time delayt,; between the near- sions of the two subbands. However, many-body effects re-
infrared pulse 3 and the mid-infrared pulse 1, at various fixed delaysult in a coupling of transitions at different energies,
Aty,. Inset: pulse sequencé) Peak positions of the transients for reducing this inhomogeneous broadening substanfidllye
different Aty, (filled circle, compared to a linear dependence influence of such effects on the FWM signals are expected to
At13=At;,+130 fs (solid ling). Diamonds: corresponding results be n(:,-(_:]ligiblr-gl_l
for sampleB. We now consider the microscopic mechanisms underlying

IS dephasing. For resonant IS excitation, electrons in both

observed in the case of higher electron concentrgsample  then=1 andn=2 subband transiently populate states well
B, diamonds. below the LO phonon energy and thus intraband LO phonon

To unambiguously distinguish between homogeneous an@mission is suppressed. The rates of intraband LO phonon
inhomogeneous broadening we have performed the first TRabsorption at such low temperaturel €15 K) and of in-
FWM study of IS polarizations. In Fig.(8), TR-FWM sig-  traband acoustic phonon scattering are orders of magnitude
nals diffracted from samplé in 2k,—k; direction are plot- too small to account for the observed dephasing dynamics.
ted versus the real time delayt,; between pulse 1 and the The |rreverS|bIe loss of intersubband phase measured by the
reference pulse @nse for different time delayg\t;,. With rateT2 can occur due to populatlon relaxation with a con-
increasingAt,,, the maximum of the TR-FWM signal shifts tribution of (2T;) ~* and due to “pure” dephasing caused by
monotonously to later times and the peak position as a fungehase-breaking scattering processes within each subband
tion of Aty, [Fig. 3b), circleg reveals a linear dependence with a rate I3) '. The experimentally determined,
At;3=mAt;,+ 130 fs (solid line) with the slopem=1. A =550 fs give a rate (2,) '=0.9 ps* [Fig. @], clearly
similar behavior is found for samp[Fig. 3(b), diamonds. smaller than the dephasing rates of 8 ps 1. Thus intra-
In both cases, the signal integrated o ; reproduces the subband Coulomb scattering among electrons dominates the
TI-FWM signal as a function oft,. irreversible dephasing of coherent intersubband polariza-

In the following, we first discuss the dynamics of the tions, even in the case of very low plasma densities studied
macroscopic IS polarization and the resulting broadening ohere’®
the 1S absorption line. In general, the IS dephasing dynamics Our intensity-dependent measurements, in which the total
is influenced by(i) the destructive interference between po-electron concentration remains constant, provide new infor-
larization components with different transition frequencies inmation on IS dephasing by Coulomb scattering for strong
an inhomogeneously broadened ensemble, each evolving diftonequilibrium excitation. With increasing excitation inten-
ferently in time, andii) theirreversible phase loss of the IS sity, a bigger fraction of electrons is excited to the=2
polarization due to scattering processes, resulting in a homeubband, resulting in a athermal electron distribution with
geneous broadening. The temporal structure of TR-FWMstrong population of both thev=1 and n=2 subband.
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At intensities ofl =61, about 30% of then=1 electrons dimensional plasma excitations in a full dynamically
are excited into then=2 subband[Fig. 2@)]. For the screened RPA approaéliThe resulting scattering rates de-
higher electron concentrationg=6x10'* cm~2 (sample pend strongly on the energy position of a “hole,” i.e., unoc-
B)—corresponding to an initial Fermi energy &f-,=21  cupied electron state, below the Fermi level in the lower
meV—the phase space available for electron-electron scasubband, and vary from 0 to 6 ps This gives an average
tering is significantly increased due to the energy and morate of~3 ps ?, in good agreement with the dephasing rate
mentum independent depletion of carriers through the broadeund in our experiment. Similar scattering rates were found
band femtosecond excitatigof. Fig. 2c)]. This results ina for electrons close to the subband minima of
strong increase of dephasing rafegy. 2(c), diamond$. For  GaAs/Al 3Ga ssAS QWS at low temperatures using a dy-
sampleA, however, the Fermi energy of 1.8 meV is too low namic RPA approach. In these calculations, however,
to allow for a significant modification of the available phasea much smaller IS energy spacing ef20 meV was
space and consequently the dephasing rates are independeansidered?®
of the excitation intensitycircles in Fig. Zc)]. In summary, electron-electron scattering results in subpi-
So far, a microscopic theory of IS dephasing by electroncosecond IS dephasing, even at electron concentrations as
electron scattering has not been developed. Nevertheledsw as 5<10'° cm2. The dephasing rates increase strongly
electron-electron interactions in QWs have been analyzed iwith the amount of phase space available for scattering as is
various approximations, giving electron scattering timesevident from femtosecond four-wave-mixing experiments
similar to the dephasing timek, found here. The broaden- with strong IS excitation. Time-resolved detection of the
ing of an IS resonance at about 130 meV by electron+WM signals demonstrate unambiguously that the narrow IS
electron scattering in a 8-nm-wide GaAsfAlGay ¢sASs QW  absorption lines of high quality GaAs/&ba _,As quantum
was calculated taking into account the structure of the twowells are predominantly homogeneously broadened.
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