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Comment on ‘‘Density-matrix renormalization-group method for excited states’’
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In a recent paper@Phys. Rev. B59, 9699 ~1999!#, Chandross and Hicks claim to present a new density-
matrix renormalization group~DMRG! method for dealing with excited-states of quantum lattice models. The
proposed improvement to the DMRG—the inclusion of excited-state wave functionsin addition to the ground
state in the density matrix when calculating excitations—is in fact standard practice, is clearly stated in White’s
original papers, and has been used repeatedly by many groups to study excited states. The authors apply the
method to the extended, dimerized Hubbard model for conjugated polymers. The criteria for determining
whether states are bound or not are assessed. The authors claim that their results show that the optically
important ‘‘1Bu’’ state is bound~excitonic!, in contrast to a previous study. However, the discussion is
qualitative, and the authors arrive at conclusions on the basis of results for one lattice size only. We show that
when the criterion of Chandross and Hicks is developed into a quantitative definition of particle-hole separa-
tion, with the finite-size dependence analyzed, the implication is that the 1Bu state is unbound, at least in the
sense of the density-density correlation function, in keeping with the conclusions of a previous study.
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In a recent paper,1 Chandross and Hicks claim to prese
a new density-matrix renormalization-group~DMRG!
method2,3 for dealing with excited states of quantum latti
models. They apply the method to the dimerized, exten
Hubbard model for conjugated polymers. They claim tha
previous study5 of this model is flawed because it uses
‘‘conventional’’ DMRG method which does not handle e
citations correctly. The improvement that they suggest is
form a density matrix not only from the ground state, b
from all the states being targeted in the calculation. This i
fact standard practice in DMRG calculations of excited sta
and the structure of the density matrix required to target
cited states is given in White’s original papers on t
method.3,4 It has been used by many authors to target ex
tations in a variety of quantum lattice models~see, e.g., Ref.
6! and wascertainly used in Ref. 5 when various excitatio
energies and correlation functions were calculated for
extended Hubbard model. The comparisons presente

FIG. 2. The average number of doubly occupied sites of the 1Bu

state relative to the ground state at distancei from the center of the
chain for various lattice sizesN.
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Figs. 1 and 2 of Ref. 1, between the ‘‘conventional’’ DMR
and Chandross and Hick’s ‘‘improvement’’ are therefore
limited value, as, to the best of our knowledge, all DMR
studies of excited states to date have incorporated the
geted excitations into the density matrix.7 Unfortunately, a
slightly different value for the CoulombV is used in Ref. 1
so a direct comparison with the results~e.g., for energies!
tabulated in Ref. 5 is not possible. We have run a DMR
program which uses the algorithm used in Ref. 5 for targ
ing excited states with the parametersU53t, V5t, d50.1,
used in Ref. 1, and found good agreement for the ener
and correlation functions with the results plotted in Figs. 1~a!
and 2~a! of Ref. 1. For instance, we plot the 1Bu and mAg
~Ref. 8! energies as functions of the lattice sizeN in Fig. 1.
The results compare very well with Fig. 1~a! of Ref. 1.

In Ref. 1 Chandross and Hicks also examine criteria
deciding whether a particular excitation is bound~excitonic!

FIG. 1. The energies of the 1Bu ~diamonds! andmAg ~triangles!
states of the dimerized, extended Hubbard model as a functio
the lattice sizeN for the parameter set used in Ref. 1. The numb
of states retained per block~Refs. 2 and 3! is m5270.
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or not. They claim that the average particle-hole separat
defined in Ref. 5 in terms of the density-density correlat
function, is ‘‘too approximate’’ a quantity to determin
whether a state is bound or not. They argue that by insp
ing the centered correlation function as a function of dista
~together with the profile of doubly occupied sites along
chain!, for one particular lattice size (N536 sites!, one can
see that the 1Bu andmAg states are ‘‘different’’ in that the
1Bu (mAg) has its strongest particle-hole correlations
short~long! distances. However, Chandross and Hicks do
present an alternative quantitative definition of the partic
hole separation, based on this observation. In Ref. 5, on
other hand, it is argued that a definition of particle-hole bin
ing must take into account the way in which correlatio
scale with lattice sizeN. In Ref. 5 it is argued that this
scaling is different for bound and unbound excitations, a
that the scaling of the average particle-hole separation witN
is but one manifestation of this.

Suppose we wish to take the average double occupanc
the 1Bu state~relative to the ground state! along the chain

^(n̂i21)2&1Bu
2^(n̂i21)2&1Ag

as an example@Fig. 2~a! in
Ref. 1#. In Fig. 2 we plot this quantity for various lattic
sizesN. We see that, although the concentration of dou
occupied sites is greatest in the middle of the chain,
distribution spreads out asN is increased. The area und
these curves rapidly converges to a nonzero valu
('0.538) asN→`. This shows that the number of pairs
particles and holes in the 1Bu , relative to the number in the
ground state, approaches a constant. Our results could
cate that particle-hole pairs separate asN is increased and ar
hence unbound, or they may simply indicate dispersion o
bound exciton in the 1Bu .

To address this we again consider the averaged, cent
odd-site correlation functionC1Bu

N ( i ) ~again relative to the

ground-state value!, defined in Ref. 5 and plotted forN
536 in the inset to Fig. 2~a! in Ref. 1. In Fig. 3 we plot this
quantity for a number of values ofN. We see that, although
the correlations are generally strongest at short distan
they become increasingly spread out, and hence the part

FIG. 3. The averaged, centered, odd-site correlation func
~relative to the ground-state value, as defined in Ref. 5! for the 1Bu

state forN542 ~diamonds!, 62 ~triangles!, 82 ~stars!, and 102~solid
diamonds!.
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hole pair becomes increasingly separated, asN is increased.
Indeed, if one utilizesuC1Bu

N ( j )u to define a probability dis-

tribution for the particle-hole separation, as in Ref. 5, th
one finds that the average particle-hole separation grows
early withN, as shown in Fig. 4. We note that any use of t
density-density correlation function to describe particle-h
separation and the nature of exciton binding of excited sta
in the extended Hubbard model is merely plausible rat
than rigorous,9 but Chandross and Hicks1 do not offer an
alternativequantitativedefinition of the particle-hole separa
tion to the ones provided in Ref. 5.

To summarize, Chandross and Hicks claim that beca
the 1Bu and mAg have their greatest particle-hole correl
tions at short and long distances, respectively~on the N
536 lattice!, the 1Bu is bound and themAg is unbound. We
would argue that it indicates that the particle-hole potentia
more strongly attractive for the 1Bu state than for themAg .
However, from the plausible, quantitative definition of th
particle-hole separation given above, it would appear that
attraction between the particle and hole in the 1Bu state is
not strong enough to bind them, and their separation
creases throughout the range of lattice sizes studied.

Finally, we consider the structure of the density mat
when targeting excitations such as themAg andnBu . Chan-
dross and Hicks argue that only four states—the 1Ag ~ground
state!, the 1Bu , themAg , and thenBu—need be included in
the density matrix. Our examinations of the dipole mome
between theAg states and the 1Bu indicate that this approach
is probably reasonable for themAg which is well defined.

n FIG. 4. The~reduced! average particle-hole separation, as d
fined in Ref. 5 by usinguC1Bu

N ( i )u as a probability distribution, for
the 1Bu state. Note the linear increase withN.

TABLE I. Transition moments with themAg states for the first

five Bu states~i.e., ^ jBuum̂umAg& for j 51, . . . ,5! for N56, 10, 14,
and 18. Note that there is no clearly definednBu state.

N j51 j 52 j 53 j 54 j 55

6 2.32 0.76 0.30 1.87 1.39
10 3.48 1.77 0.38 3.30 0.06
14 4.45 3.15 0.04 3.98 0.10
18 5.33 4.73 0.67 4.24 1.73
1-2
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That is, there is a reasonably abrupt jump in the magnit

of the dipole moment̂ 1Buum̂u jAg& at j 5m. As shown in
Ref. 5, this coincides with jump in the ionicity~the average
number of doubly occupied sites! and in the particle-hole
separation. However, thenBu state is less well defined in
that there can be a number ofBu excitations that have a
strong dipole moment with themAg . This can be seen in

Table I where we list the dipole moments^ jBuum̂umAg& for
N56, 10, 14, and 18, for the first fiveBu states. Note that in
15710
eno case is thenBu state clearly defined, though there is
general trend whereby the 2Bu increases its relative dipole
strength with themAg at the expense of the 4Bu . Our con-
tention here, as proposed in Ref. 5, is that, at least in term
dipole moments or the density-density correlation functio
the 1Bu state is the threshold of unbound states in theBu
sector and the ‘‘nBu’’ is not well defined for this model.

Calculations were performed at the New South Wa
Center for Parallel Computing. This work was supported
the Australian Research Council.
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