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Correlation versus mean-field contributions to excitons, multiexcitons, and charging energies
in semiconductor quantum dots
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Single-dot spectroscopy is now able to resolve the energies of excitons, multiexcitons, and charging of
semiconductor quantum dots with&1 meV resolution. We discuss the physical content of these energies and
show how they can be calculated via quantum Monte Carlo~QMC! and configuration interaction~CI! methods.
The spectroscopic energies have three pieces:~i! a ‘‘perturbative part’’ reflecting carrier-carrier direct and
exchange Coulomb energies obtained fromfixed single-particle orbitals,~ii ! a ‘‘self-consistency correction’’
when the single particle orbitals are allowed to adjust to the presence of carrier-carrier interaction, and~iii ! a
‘‘correlation correction.’’ We first apply the QMC and CI methods to a model single-particle Hamiltonian: a
spherical dot with a finite barrier andsingle-bandeffective mass. This allows us to test the convergence of the
CI and to establish the relative importance of the three terms~i!–~iii ! above. Next, we apply the CI method to
a realistic single-particle Hamiltonian for a CdSe dot, including via a pseudopotential description the atomistic
features,multiband coupling, spin-orbit effects, and surface passivation. We include all bound states~up to
40 000 Slater determinants! in the CI expansion. Our study shows that~1! typical exciton transition energies,
which are ;1 eV, can be calculated to better than 95% by perturbation theory, with only a;2 meV
correlation correction;~2! typical electron addition energies are;40 meV, of which correlation contributes
very little (;1 meV!; ~3! typical biexciton binding energies are positive and;10 meV and almost entirely due
to correlation energy, and exciton addition energies are;30 meV with nearly all contribution due to correla-
tion; ~4! while QMC is currently limited to a single-band effective-mass Hamiltonian, CI may be used with
much more realistic models, which capture the correct symmetries and electronic structure of the dots, leading
to qualitatively different predictions from effective-mass models; and~5! CI gives excited state energies
necessary to identify some of the peaks that appear in single-dot photoluminescence spectra.

DOI: 10.1103/PhysRevB.63.155316 PACS number~s!: 73.21.La, 78.66.2w, 71.45.Gm, 85.35.Be
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I. INTRODUCTION: THE PHYSICAL CONTENT
OF EXCITON, MULTIEXCITON,

AND CHARGING ENERGIES IN DOTS

Small semiconductor dots, such as semiconduc
embedded Stranski-Krastanow~SK! dots or ‘‘free-standing’’
colloidal dots, are engineered and studied for their opt
and transport properties.1–3 Measurements on these dots ha
centered around quantities such as excitons4–6

multiexcitons,7–11 and charging energies.12–16 Advanced ex-
perimental techniques, such as single-dot spectroscopy
able to resolve such energies to&1 meV resolution. This
article discusses the physical content of such measured q
tities in terms of the mean-field~direct and exchange! Cou-
lomb energies, which are relatively simple to model, a
correlation energies, which we calculate by two lead
methods in the field—quantum Monte Carlo~QMC! and
configuration-interaction~CI! methods.

Let us consider a quantum dot withM holes in the valence
band andN electrons in the conduction band. The total e
ergy of the dot isEM ,N(a), wherea is a quantum numbe
that identifies the state of the system. Only differences
energy are accessible to experiment. We focus on four ph
cal quantities.

(a) Exciton energies. Theexciton transition energy EX
( i j ) is

the difference in total energy of a dot having as a domin
configuration an electron in levele0 and a hole in levelh0
and a dot in the ground state,
0163-1829/2001/63~15!/155316~13!/$20.00 63 1553
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EX5E1,1~e0
1 ,h0

1!2E0,0. ~1!

Typical excitonic transition energies in III-V or II-VI dots
measured experimentally5,17 by photoluminescence~PL! or
by absorption, are 1–3 eV. Theexciton binding energyDX is
the difference between the total energy of a system con
ing of two infinitely separated identical dots, one with a ho
in h0 and the other with an electron ine0, and the total
energy of a quantum dot with an exciton:

DX5E1,01E0,12E1,12E0,0, ~2!

where E1,0 stands for E1,0(h0
1e0

0), E0,15E0,1(h0
0e0

1), and
E1,15E1,1(h0

1e0
1). Typical exciton binding energies in III-V

and II-VI dots are 10–200 meV.5,17

~b! Biexciton energies. Thebiexciton binding energyDXX
is the difference between twice the exciton energy~or the
energy of a system of two infinitely separated dots, each w
an electron-hole pair!, and the biexciton energy:

DXX52E1,12E2,22E0,0, ~3!

whereE22 stands forE22(h0
2e0

2). The biexciton binding en-
ergy is positive~‘‘bound biexciton’’! when the total energy
of two excitons in the same dot is lower than the energy
the two excitons in two separate dots. A bound biexcit
appears as a redshifting of the exciton luminescence en
when a second exciton is present. This was seen in single
spectroscopy e.g., for InAs/GaAs.7,8,11,18 Biexciton binding
energies in III-V dots are 1–6 meV.18–23
©2001 The American Physical Society16-1
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~c! Multiexciton energies. The Nth exciton charging en-
ergy WN is the minimum energy needed to add to a d
having N21 electron-hole pairs~excitons! in their ground
state one additional exciton,

WN5EN,N2EN21,N21 . ~4!

Physically,WN is the highest possible energy for a phot
emitted in the transition from the lowest energy state oN
excitons to a state withN21 excitons. The difference be
tween successive multiexciton charging energies is theNth
exciton addition energyDN,N11

(X) ,

DN,N11
(X) 5WN2WN215EN11,N111EN21,N2122EN,N .

~5!

~d! Electron loading energies. The electron charging en-
ergymN

(e) is the chemical potential needed to add an elect
to a dot already havingN21 electrons,

mN
(e)5E0,N2E0,N21 , ~6!

whereas theelectron addition energyis the difference be-
tween two successive chemical potentials,

DN,N11
(e) 5mN

(e)2mN21
(e) 5E0,N111E0,N2122E0,N . ~7!

Electron addition energies in colloidal dots14 are;200 meV,
whereas in SK dots12,24 they are;20 meV.

The definitions given here in Eqs.~1!–~7! are operational,
model independent. A central question in the field is how
approximate these quantities through models. This requ
knowing how much of the energy involved in the proces
described by Eqs.~1!–~7! is due to ‘‘mean-field’’ effects,
which can be modeled relatively simply, and how much
due to interparticle correlation, which is more intricate
model. Figure 1 illustrates the steps required to model
electronic and optical properties of a quantum dot:~a! choos-
ing a structure~including size, shape, composition, an
strain!, ~b! solving a single-particle model, and~c! treating
interactions among the electrons and holes. In this pape
are concerned withgeneral trends in correlation in dots, s
we focus mainly on the choice of single-particle model, F
1~b!, and treatment of interactions, Fig. 1~c!.

As illustrated in Fig. 1~b!, the calculations of the quanti
ties of Eqs.~1!–~7! require one to assume an underlyin
single-particle model, which determines the single-parti
states~conduction electrons and holes!. The single-particle
model is cast as a Schro¨dinger equation with an effective
single-particle potential. This potential contains all structu
information about the system: the size, shape, composit
surfaces, interfaces of the dot system. Various levels
renormalization exist for the quantum dot single-parti
model. The simplest is an effective mass~‘‘particle-in-a-
box’’ ! model, in which the electron and hole excitatio
come from single parabolic bands. Better approximations
the multiband k•p, tight-binding, and pseudopotentia
methods.

The single-particle models do not usually contain t
Coulomb interactions between the single-particle excitati
~i.e., electron-electron, electron-hole, and hole-hole exc
15531
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tions!. Instead, these interactions must be added to
model, as shown in Fig. 1~c!. We classify the treatment o
interaction among the single-particle excitations in three l
els: ~i! first-order perturbation theory (PT),7,25–29which in-
cludes direct and exchange Coulomb interactions,J and K,
evaluated from fixed single-particle orbitals; ~ii ! self-
consistent mean-field (MF) theory,30 in which the direct and
exchange Coulomb terms are solved self-consistently@the
difference between~ii ! and~i! is called the ‘‘self-consistency
correction’’ DESC#; and~iii ! correlated methods, such as C
~Refs. 7,25–29! or QMC,31–41 which include all many-body
effects of interactions. The difference between the exact
ergy ~iii ! and the mean-field energy~ii ! is called the ‘‘corre-
lation correction’’DEcorr. Thus, the energy for a dot withM
holes andN electrons can be separated into three terms,

EM ,N
tot 5EM ,N

PT 1DEM ,N
SC 1DEM ,N

corr ~8!

which are the perturbation theory energyEM ,N
PT , the self-

consistent correctionsDEM ,N
SC , and the correlation correction

DEM ,N
corr .
Due to computational limitations, the methods availab

to calculate correlation are dependent on which sing
particle model is chosen~level of renormalization!. The com-
putational cost for accurately calculating correlation energ
increases rapidly with the number of electrons one need

FIG. 1. The three steps to modeling a quantum dot.~a! The
structure is modeled by choosing a size, shape, and compos
profile, and determining the strain.~b! Single-particle properties o
the electrons and holes are found by solving a Schro¨dinger equation
for a chosen level of renormalization~EMA, k•p, tight binding, or
pseudopotential!. ~c! Interactions between excitations~electron-
electron, electron-hole, hole-hole! are added to the single-particl
model, using either perturbation theoryEPT, self-consistent mean
field theory, which adds the self-consistent contributionDESC, or
full treatment~CI or QMC!, which adds the correlation correctio
DEcorr .
6-2
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CORRELATION VERSUS MEAN-FIELD CONTRIBUTIONS . . . PHYSICAL REVIEW B 63 155316
consider. The number of electrons depends on both the d
size and the type of renormalization one uses for the Ha
tonian. As summarized in Table I, three levels of renorm
ization are pertinent.

~a! The all-electron approach, where the number of el
trons per atom equals its atomic number. Thus, Si has
electrons per atom, and a 40 Å diameter spherical Si dot
1600314522 400 electrons. This is outside the reach
QMC, CI, and density functional methods.

~b! The valence-only pseudopotential approach, where
‘‘core’’ electrons are removed as dynamic variables and
placed by an~often nonlocal! ionic potential. Thus, Si has
four electrons per atom, and a 40 Å diameter spherical Si
has 16003456400 electrons. This is outside the reach
density functional methods, and too large for QMC calcu
tions, which are currently limited to about 25 Si atoms~100
electrons!.42 Note that ~in non-self-consistent calculations!
the all-valence pseudopotential approach can be further
plified with no additional approximations by searching f
eigensolutions in a fixed ‘‘energy window,’’43–45 e.g., near
the band edges. Thus, a 40 Å diameter Si dot would req
calculating;10 eigensolutions. This trick makes pseudop
tential calculations of dots feasible,26,30,46–48and CI may be
used to compute correlation energies from the single-par
solutions.26–29 It would be interesting if such folding tech
niques could be applied to QMC.

~c! The ‘‘active-electron-only’’ effective-mass approx
mation~EMA! approach, where all of the ‘‘indigenous’’ cor
and valence electrons are eliminated~replaced by dielectric
screening! and only additional, band-edge electrons an
holes are considered. Thus a 40 Å diameter Si dot has
electrons. One can studyadded electrons and holes. Thi
renormalization represents a severe approximation with
spect to levels~a! and~b! above. Both QMC and CI method
may be readily applied to single band EMA Hamiltonian
Some improvement can be made by using several band

TABLE I. Relationship between the choice of single-partic
model for quantum dots and the availability of QMC and CI me
ods to calculate correlation energy@see Figs. 1~b! and 1~c!#. This
information motivates our approach to studying correlation: first
test the convergence of CI against QMC calculations using a sim
single-band EMA model, and then we present CI calculations o
realistic multiband pseudopotential quantum dot model to illustr
features missed by the simple model.

Level of renormalization Model CIa QMC

All electron exact Hamiltonian nob no

Valence only multiband pseudopotential yes nob

tight-binding yes nob

Active electron only multibandk•p yes no
single-band EMA yes yes

aWhile CI may be applied to any model, it is often underconverg
bPossible for very small clusters of fewer than 100 atomsR
,10 Å!.
15531
t’s
il-
l-

-
4

as
f

e
-

ot
f
-

m-

re
-

le

ro

e-

.
to

describe the additional electrons and holes using thek•p
formalism,49,50 but current QMC methods do not treatk•p
Hamiltonians.

Most correlated calculations on quantum dots have u
such a single-band effective mass model@level ~c!, above#,
where multiband and intervalley couplings are ignored. T
particle-in-a-box description of the mean-field problem w
recently26,30,46–48contrasted with the pseudopotential sol
tion of the problem@~b! above# both for ‘‘free-standing’’
~colloidal! dots and for semiconductor-embedded SK dots
was found that for ‘‘free-standing’’ dots such as InP,46 and
CdSe,47 the effective-mass approach can lead to energy sh
of the order46,47 ;500 meV; lead to reverse order of (s,p)
levels;46 miss more than half of the single-particle eigenv
ues in a 0.5 eV energy range near the band edge;47 underes-
timate the Coulomb integralsJi j @Eq. ~11!# by30 ;20%; and
miss all the long-range part of the exchange integrals26 Ki j .
For pyramidal SK dots48 the errors are somewhat smalle
shifts in the energy levels for electrons and holes
;35 meV and;110 meV, respectively; energy spacing
from the EMA are about a factor of 2 too large; and t
polarization ratio for dipole transitions along the two dire
tions is 1 instead of 1.3. Such limitations in the EMA crea
a dilemma when modeling correlation as summarized
Table I. On one hand CI expansions may be applied to r
istic single-particle models~e.g., pseudopotentials!, but con-
verge slowly with the number of configurations. On the oth
hand, QMC methods can give numerically exact answers
cluding all correlation, but currently are limited to simp
single-band effective-mass models. This situation prompt
to use the following strategy to study correlation effec
First, we consider a simplified ‘‘particle-in-a-box’’ single
band EMA model that can be treated via both QMC and
Our best CI calculations for the EMA model include a
bound states, but neglect continuum states. Second, we
sider a CdSe dot whose single-particle properties are
scribed realistically by pseudopotentials, and the correla
is treated via CI only.

Our single-band EMA dot has been chosen to be rep
sentative of SK and colloidal dots. We summarize the pr
erties of our model dot in Table II. We find the followin
results for the single-band model dot.

~i! Typical exciton transition energies for our model do
are ;1 eV, and typical exciton binding energies a
;50 meV. Of this, the MF gives.95% of the binding en-
ergy. Correlation is only;2 meV, of which QMC provides
an accurate solution. Although CI misses half the correlat
energy, i.e.,;1 meV, it still captures;98% of the total
binding energy.

~ii ! Typical biexciton transition energies for our dots a
;2 eV and typical biexciton binding energies are;6 meV.
The biexciton binding energy from mean-field theory
slightly negative~unbound biexcitons!, so the positive biex-
citon binding is in fact due to;6 meV of correlation energy
QMC captures all the correlation energy, whereas our
captures only half~about 4 meV!, so that the CI estimate o
biexciton binding is only about 65% of the true value.

~iii ! Typical electron charging energies for our dots a
m1

(e)'150 meV, relative to the dot material conduction ba

-

e
le
a
e

.
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TABLE II. Measurable quantities for our single-band spherical model dot, with effective masseme

50.1 andmh50.5, dielectric constante512, dot material band gapEgap51 eV, and band offsetsDEv

5200 eV andDEc5400 meV. For each quantity we give the magnitude~as calculated by QMC!, the
mean-field value, the correlation correction, and the percent of the energy recovered by CI expansio
all bound states. All energies are given in meV, and electron charging and total energies are measured
to the dot material CBM.

Quantity Magnitude Mean field Correlation % CI

Exciton total energyE1,1(e0
1 ,h0

1) 1136.3 1138.3 2.0 100.1
Biexciton total energyE2,2(e0

2h0
2) 2266.5 2277.3 10.9 100.2

Total energy of two electronsE0,2(e0
2) 335.0 335.8 0.8 100.1

Exciton transition energyEX @Eq. ~1!# 1136.3 1138.3 2.0 100.1
Exciton binding energyDX @Eq. ~2!# 46.2 44.1 2.0 97.8
Biexciton binding energyDXX @Eq. ~3!# 6.2 -0.6 6.8 64.5
1st excitonchargingenergyW1 @Eq. ~4!# 1136.3 1138.3 2.0 100.1
2nd excitonchargingenergyW2 @Eq. ~4!# 1130.1 1139.0 8.9 100.2
1st excitonaddition energyD1,2

(X) @Eq. ~5!# -6.2 0.6 6.8 64.5
1st electronchargingenergym1

(e) @Eq. ~6!# 147.5 147.5 0.0 100.0
2nd electronchargingenergym2

(e) @Eq. ~6!# 187.5 188.3 0.8 100.1
1st electronaddition energyD1,2

(e) @Eq. ~7!# 40.0 40.8 0.8 101.4
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minimum ~CBM!, while addition energies areD1,2
(e)'40

meV. Of this, correlation energy is very small (;1 meV!, so
mean-field or even perturbation theory describes dot ch
ing and addition energies very well.

For our realistic CdSe dot we find that CI can be effe
tively combined with an accurate pseudopotential descrip
of the single-particle problem, thus incorporating surface
fects, hybridization, and multiband coupling. Furthermo
CI can calculate excited states easily, thus obtaining
many transitions seen experimentally, rather than only
ground-state–to–ground-state decay calculated by con
tional QMC ~note, however, that extensions of QMC to se
eral excited states are possible51,52!.

II. METHODS OF CALCULATION

A. Uncorrelated methods: perturbation theory and mean-field
methods

The first-order perturbation energyEM ,N
PT @Eq. ~8!# can be

written analytically as

EM ,N
PT 5E0,01S (

c
«c2(

v
«vD 1 (

v,v8
~Jv,v82Kv,v8!

1 (
c,c8

~Jc,c82Kc,c8!2(
v,c

~Jv,c2Kv,c!, ~9!

where« i are the single-particle energies,Ji , j are the direct
Coulomb energies, andKi , j are the exchange energies. T
single-particle energies« i are often obtained from the solu
tion of an effective single-particle Schro¨dinger equation,

H 2
1

2
¹21VeffJ c i5« ic i , ~10!
15531
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where Veff is an effective potential. The Coulomb and e
change energies are given in terms of the single-part
wave functionsc i by

Ji , j5E uc i~r !u2uc j~r 8!u2

e~r ,r 8!ur2r 8u
drdr 8,

Ki , j5E c i* ~r !c j* ~r !c i~r 8!c j~r 8!

e~r ,r 8!ur2r 8u
drdr 8, ~11!

wheree is the dielectric constant of the quantum dot.
The self-consistent contributionEM ,N

SC , given by the first
two terms on the right hand side of Eq.~8!, arises from the
self-consistent rearrangement of the single-particle w
function in response to the electrostatic field, Eq.~11!, gen-
erated by the excitation of electrons and holes.

B. The correlated, many-particle methods

1. Quantum Monte Carlo method

The original QMC method53 was based on the variationa
technique, a simple yet powerful theoretical tool. In a var
tional calculation, one proposes a parametrized trial w
function CT

$l%(R), where l represents a set of variationa
parameters andR represents the coordinates of all the pa
ticles. The energy expectation value

ET
$l%5

E dRCT
$l%* ~R!HCT

$l%~R!

E dRCT
$l%* ~R!CT

$l%~R!

~12!

may be minimized with respect to the variational paramet
l to give an estimate for the ground state energy and gro
state wave function. This integral may be evaluated anal
6-4
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cally, or Monte Carlo integration may be used. In this si
plest formulation, QMC is formally equivalent to the vari
tional techniques commonly applied to excitons
nanostructures.54 Because the integral is over all electron a
hole coordinatesR, variational QMC calculations resemb
classical simulations: a configuration of particle positionsR
undergoes a random walk through configuration space, u
the rules of Metropolis Monte Carlo integration. The s
quence of configurations,Ri ,Ri 11 , . . . , samples the density
uCT(R)u2.

The real power of QMC is that it can go beyond t
variational formalism and actually project the true grou
state energy from an input variational trial functionCT .55

By weighting the configuration as it samples configurat
space, the random walk can be identified with the imagin
time propagator exp(2Ht). In this diffusion Monte Carlo
algorithm,55,56 the random walk in configuration space act
ally samplesCT* F0 whereF0 is the true ground state wav
function. The energy expectation value along the walkE0
5^CTuHuF0&/^CTuF0& is then the true ground state ener
of the many-body Hamiltonian. That is, even though the t
ground state wave functionF0 is never explicitly calculated
its energy can be sampled from a random walk. In the
mainder of the paper, the term QMC will refer to the diff
sion Monte Carlo algorithm, unless explicitly noted othe
wise.

Applications of QMC to quantum dots have used var
tional QMC ~VMC!,31 diffusion QMC,32–37 and a path-
integral formulation, related to the diffusion algorithm an
based on Feynman path integrals.38–41 Harju et al.31 have
used both direct diagonalization and VMC to calculate
ground state energy of up to six electrons in a tw
dimensional harmonically confined dot. Diffusion QM
within the EMA has been used~1! by Austin32 to calculate
the binding energy of excitons in a spherical dot as a fu
tion of dot radius,~2! by Bolton33 to calculate the energy o
up to four electrons in a two-dimensional harmonically co
fined dot in the presence of a magnetic field,~3! by Shum-
way et al.34 to calculate total energies for electron addition
a pyramidal dot,~4! by Pederivaet al.35 to calculate ground
and excitation energies for up to 13 electrons in a thr
dimensional harmonically confined dot and compare to
sults from Hartree-Fock and the local spin density appro
mation, and~5! by Luczaket al.37 to study energies of up to
20 electrons confined to a two-dimensional harmonic pot
tial. Leeet al.36 have used QMC within the EMA to study
pair of electrons in a two-dimensional parabolic confini
potential. Path-integral~PI! QMC has been used by Egge
et al.39 to studied crossover from Fermi liquid to Wigne
molecule behavior using PIMC within the EMA on up
eight electrons in a two-dimensional harmonically confin
dot, and by Hartinget al.57 to calculate the total energy of u
to 12 electrons in a two-dimensional harmonically confin
dot.

2. Configuration interaction

In the CI approach, the solutions of the many-bo
Hamiltonian are expanded in terms of Slater determina
15531
-

ng
-

y

e

-

-

-

e
-

-

-

-
-

i-

-

d

d

ts

uF& obtained by removingM electrons from the valence
band and addingN electrons to the conduction band:

uC&5 (
h1 , . . . ,hM

(
e1 , . . . ,eN

A~h1 , . . . ,hM ,e1 , . . . ,eN!

3uFh1 , . . . ,hM ,e1 , . . . ,eN
&, ~13!

where

uFh1 , . . . ,hM ,e1 , . . . ,eN
&5dh1

†
•••dhM

† ce1

†
•••ceN

† uF0&.
~14!

Here dh1

† , . . . ,dhM

† createholes in the valence band state

h1 , . . . ,hM , while ce1

† , . . . ,ceN

† createelectronsin the con-

duction band statese1 , . . . ,eN . The Hamiltonian is then di-
agonalized in the basis of Slater determinantsuF&. This ap-
proach gives access to not only the ground state of
system, but also excited states.

Full CI ~FCI! includes all possible determinants from
given ~finite! set of single-particle basis functions, i.e.,Nh
hole orbitals andNe electron orbitals. In the limit of an infi-
nite set of basis functions, (Nh ,Ne)→(`,`), FCI provides
the exact many-body solution, which is equivalent to t
QMC results. However, most CI applications use a small a
finite basis set to solve the Schro¨dinger problem. Thus, even
including in the CI expansion all possible Slater determ
nants from a finite number of single-particle states~FCI!
does not provide an exact solution, in contrast to QMC. F
our calculations we also use only a small, finite basis se
bound states, denoted (Nh ,Ne); therefore ground state tota
energies from FCI will be above the true ground state to
energy. A useful truncated CI basis is singles and doub
configuration interaction~SDCI!, which is the set of all de-
terminants obtained by exciting at most two particles~elec-
trons or holes! from the ground state~or reference! determi-
nant. SDCI is equivalent to FCI for a single exciton~or two
electrons!, but is an approximation for two or more exciton
~or three or more electrons!.

The CI method has been used in the past to solve the
many-body Schro¨dinger equation in the EMA,9,25,58–61and
also in the tight-binding approximation.62 More recently, the
CI approach has been used in the context of the empir
pseudopotential method for single excitons,26 electron and
hole addition energies,27,28 and multiexcitons.29

III. APPLICATION OF QMC AND CI METHODS
TO A SINGLE-BAND EFFECTIVE-MASS DOT

WITH FINITE BARRIER

We first use a simplified single-band EMA model that c
be treated by both QMC and CI. Our reference system
spherical dot with radiusR540 Å, effective massesme
50.1 andmh50.5, dielectric constante512, and barriers
DEe50.4 eV andDEh50.2 eV. The energies of the optica
and electronic properties of this dot are summarized in Ta
II. We varied the radius from 0 to 80 Å, while keeping th
barriers fixed. This yields a range of bound electron and h
states. The energies of the lowest~i.e., band-edge! statese0
6-5
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andh0 as a function of dot radiusR are shown in Fig. 2~a!.
When the radiusR of the dot goes to infinity we have
three-dimensional~3D! bulk material called ‘‘material I’’
with me50.1, mh50.5, ande512. When the radiusR of the
dot goes to zero we have a 3D bulk material called ‘‘mate
II’’ with me , mh , ande identical to those of ‘‘material I.’’
The band offsets between the two materials areDEh50.2 eV
for the valence band andDEe50.4 eV for the conduction
band, so that the band gap of material II isDEh1DEe
50.6 eV larger than the band gap of material I. The b
exciton in both materials is the same, and has a radiusa0

FIG. 2. Exciton and biexciton binding energy versus dot rad
as calculated by QMC, for the dot geometry shown in the in
Panel~a! shows the energies of the noninteracting electron and h
band-edge states. Panel~b! shows the the exciton binding energ
DX @Eq. ~2!# and biexciton binding energyDXX @Eq. ~3!#. The bulk
exciton Rydberg energy and Bohr radius are denoteda057.6 nm
andER57.9 meV, respectively. Contributions to exciton and bie
citon binding energy versus dot radius are shown in~c! and ~d!,
respectively. Contributions are from first-order perturbation the
~PT!, self-consistency correction~SC!, and correlation~Corr.!.
15531
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576.2 Å and a binding energyER57.873 meV. Both bulk
materials have a bound biexciton with the same binding
ergy DXX

bulk50.716 meV50.9ER ~calculated by QMC!. In
some calculations we have varied the barrier energy fr
DEe50.05 eV to DEe51.6 eV andDEh50.025 eV to
DEh50.8 eV, while keeping the radius fixed at 40 Å. O
model system has thus been chosen to roughly capture s
properties of small SK or colloidal dots, as summarized
Table II.

A. Total energies for occupation by an exciton, a biexciton,
and two electrons

Figure 3 shows the total energy for~a! an exciton,
E1,1(e0

1 ,h0
1); ~b! a biexciton,E2,2(e0

2 ,h0
2); and ~c! two elec-

trons, E2,0(e0
2 ,h0

0). We have decomposed the total energ
into the three parts listed in Eq.~8!: first-order perturbation
theory (EPT), self-consistent mean-field theory (EPT
1DESC), and the exact QMC result (Etot5EPT1DESC
1DEcorr). We then plot the results of CI calculations as
function of the number of single-particle states (Nh ,Ne)
used to generate the CI basis set, taking either singles
doubles only~SDCI! or all possible determinants~FCI!. The
CI energies for one determinant are equivalent to the
result, and the FCI values must reach the QMC result in
limit of an infinite basis. The total number of CI determ
nants forM holes andN electrons occupyingNh hole states
and Ne electron states isCM

2NhCN
2Ne , whereCm

n 5n!/ @m!(n
2m)! #. The factors of 2 are due to the spin degeneracy
the single-particle states. Table III lists the actual numbe
determinants for each of the FCI and SDCI data points
Fig. 3. The first three lines of Table II give a summary of t
role of correlation energy and CI convergence in the to
energy of these three systems.

In each system, the total energy estimated by first-or
perturbation theory is above the true ground state energy~as
required by the variational principle!. Self-consistency im-
proves upon first-order perturbation theory, and correlat
provides additional improvement. For excitons, the se
consistency decreases the energy by;1 meV, and correla-
tion gives another;2 meV improvement. The total energy
however, isE1,151136 meV. So, although our CI only re
covers about half of the correlation energy, the total ene
is overestimated by only about 0.1%. For the case of a b
citon, self-consistency also lowers the energy by;2 meV,
while correlation lowers the energy by another;10 meV. In
calculations on a strain induced dot, Braske´n et al.61 found
that SDCI captured*90% of the correlation energy for mul
tiexcitons, based on comparison to FCI for one to four ex
tons. In our biexciton calculations, we also find that SD
recovers nearly as much correlation energy as FCI, but
represents only about half of the total correlation ener
Again, though, correlation represents a small part of the t
energy of the biexciton, so CI~FCI and SDCI! overestimate
the total energy by only;0.2%. For a dot containing two
electrons, corrections beyond first-order perturbation the
are much smaller,;1 meV. In fact, for the system calcu
lated here, we find only a 0.35 meV decrease in the tw
electron system with self-consistency, and correlation

s
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FIG. 3. CI convergence of the total energy for three cases:~a! an exciton,~b! a biexciton, and~c! two electrons. All energies are measure
relative to the center of the dot gap. For our CI expansion, we have used single and double substitutions~SDCI! and also all possible
determinants~FCI!. Note that SDCI is equivalent to FCI for cases~a! and ~c!. SDCI gives a good approximation to FCI for case~b!, and
involves far fewer determinants~see Table III below!. In all cases our CI expansion captures about half the correlation energy.
correlation energy~and hence CI error! is a very small fraction (,1%) of the total energy in all three cases.
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creases the total energy by about another 0.8 meV. Ou
expansion again captures about half this correlation ene
leading to a negligibly small overestimation of the total e
ergy (,0.1%).

TABLE III. Number of determinants used for each of the C
calculations shown in Figs. 3 and 4, using only single and dou
substitutions~SDCI!, or all possible Slater determinants~FCI!. Note
that SDCI is equivalent to FCI for the case of an exciton or t
electrons. For FCI the number of CI determinants forM holes andN
electrons occupyingNh hole states andNe electron states is
CM

2NhCN
2Ne .

Number of determinants
System (Nh , Ne) SDCI FCI

Exciton (h1e1) ~1,1! 4 4
~4,1! 16 16
~4,4! 64 64
~9,4! 144 144
~10,4! 160 160
~17,4! 262 262
~20,4! 320 320

Biexciton (h2e2) ~1,1! 1 1
~4,1! 28 28
~4,4! 199 784
~9,4! 564 4284
~10,4! 649 5320
~17,4! 1356 15708
~20,4! 1719 21840

Two Electrons(h0e2) ~0,1! 4 4
~0,4! 28 28
~0,5! 153 153
~0,10! 190 190
15531
CI
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B. Exciton and biexciton transition and binding energies

Measured quantities such as the exciton and biexc
binding energies representdifferencesbetween total ener-
gies. Even if the mean-field contributions dominate total e
ergies, the differences of total energies may have signific
contributions from correlation. Lines 4–6 of Table II sum
marize the roles of correlation and CI convergence for
exciton transition energyEX @Eq. ~1!#; the exciton binding
energyDX @Eq. ~2!#; and the biexciton binding energyDXX

@Eq. ~3!#. Correlation is only a small part~2 meV! of the
exciton transition energyEX51136.3 meV. So, even thoug
our underconverged CI fails to capture all the correlat
energy,EX is overestimated only by 0.1%. The same 2 m
of correlation energy is a much larger component of the
citon binding energyDX546.2 meV, so errors due to unde
convergence of CI are more significant, and CI undere
matesDX by more than 2%. The biexciton binding energ
DXX56.2 meV is due entirely to 6.8 meV of correlatio
energy, so CI underconvergence is much more serious.
CI calculation of biexciton binding is only 65% of the exa
QMC result.

In Fig. 4 we show the results of first-order perturbati
theory (EPT), self-consistent mean-field theory (EPT
1DESC), the exact QMC result (Etot5EPT1DESC
1DEcorr), and CI convergence vs basis size for~a! the exci-
ton transition energy and~b! the biexciton binding energy
For the exciton transition energy, Fig. 4~a!, increasing the CI
basis does improve the calculated energy, but it is onl
difference of;2 meV out of a much larger exciton trans
tion energy of 1.136 eV. On the other hand, the CI correct
is essential to even approximate the biexciton binding
ergy, shown in Fig. 4~b!. Note that the improvement of th
biexciton binding with CI basis size is not monotonic. This
because the biexciton binding is a difference of one- a
two-exciton energies. As the basis is increased, the rela
improvement in the one- and two-exciton total energies v

le
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FIG. 4. CI convergence of~a! exciton transition energyEX @Eq. ~1!#; ~b! biexciton binding energyDXX @Eq. ~3!#; and~c! second electron
addition energym2

(e) @Eq. ~6!#. For our CI expansion, we have used single and double substitutions~SDCI! and also all possible determinan
~FCI!. Note that SDCI is equivalent to FCI for cases~a! and~c!. SDCI gives a good approximation to FCI for case~b!, and involves far fewer
determinants~see Table III!. In all cases our CI expansion captures about half of the correlation energy. The correlation energy~and hence
CI error! is a significant fraction of the the total energy only for case~b!, biexciton binding.
al
he

lc
-

,

a-
o
th
x
n
i

n-

on
d
t
n

n

it
x

us

y
iz

i-
ns,
re
rom
ly

n
ar-

pt

ted
is

-
to

er-
lk-I

and
en-

m

or-
ept
e-
e-

ter-
the
lf-
lec-
n-
e

ies; thus the calculated biexciton binding energy can actu
decreasewhen the CI basis is improved. We also show t
results of SDCI in Fig. 4~b!.

1. Dependence on dot size

We have varied the dot radius fromR50 to R580 Å, all
in the strongly confined regime,R&a0576.2 Å. Figure 2~b!
shows the exciton and biexciton binding energies as ca
lated by QMC. Figures 2~c! and 2~d! decompose the contri
butions to the exciton and biexciton binding into~1! first-
order perturbation theory,~2! self-consistency corrections
and ~3! correlation corrections, as in Eq.~8!.

The smallR limit is the energy of a bulk-II material, and
all excitonic binding energy is from correlation. As the r
dius of the dot increases, the bulk-II exciton binds to the d
the exciton binding energy is enhanced, and most of
binding energy comes from perturbation theory. The ma
mum in the binding energy occurs when the electron a
hole are both individually bound to the dot, but the radius
small, so that the direct Coulomb interaction~from first-order
perturbation theory! is the strongest. The exciton binding e
ergy exhibits a clear peak at aroundR'20 Å, in similarity
with previous calculations by Austin.32 As the dot becomes
larger, the direct Coulomb interaction from perturbati
theory decreases, causing a decrease in the exciton bin
energy. Finally, as the dot becomes comparable in size to
bulk-I exciton radius, correlation begins to make significa
contributions to exciton binding. In the limitR@a0 ~not
shown!, the binding energy becomes that of a bulk-I excito

The biexciton binding energy is greatly enhanced in
quantum dot, except for the case of a very small dot w
only a single weakly bound exciton. We find that the bie
citon binding energy is remarkably insensitive to dot radi
having a valueDXX between 5.1 meV and 6.2 meV (0.7ER to
0.9ER) for dots with radiiR between 2 nm and 8 nm (0.3a0
and 1.1a0). This is in contrast to the exciton binding energ
DX , which exhibits a clear peak at small dot radius. The s
15531
ly

u-

t,
e

i-
d
s

ing
he
t

.
a
h
-
,

e

range 10&R&18 Å has a negative biexciton binding. Phys
cally, these are small dots that can weakly bind two excito
but with a higher total energy than if the two excitons a
separated on two noninteracting, identical dots. We see f
Fig. 2~d! that the biexciton binding energy is almost entire
due to correlation, as noted before.

2. Dependence on barrier height

To study the effect of finite confining barriers on excito
and biexciton binding energies, we have varied the dot b
riers from zero to infinity. In all calculations we have ke
DEe/DEh52 and used a radius of 40 Å. In Fig. 5~b! we plot
the binding energies of excitons and biexcitons calcula
with QMC as a function of barrier height. The 40 Å dot
able to bind an electron onceDEe*30 meV, and binds a
hole onceDEh*5 meV. Unlike the behavior seen on vary
ing the dot radius, increasing the confining potential leads
a monotonic increase in exciton and biexciton binding en
gies. For zero barrier potential, the exciton has the bu
exciton binding energyDX5ER

(I )57.9 meV. As the barrier
potential is increased enough to bind both electrons
holes, the exciton binding increases rapidly. The binding
ergy reaches a maximum ofDX555 meV57ER for infinite
barriers. Similarly, the biexciton binding energy starts fro
the bulk biexciton binding energyDXX50.7 meV50.1ER
and increases to a maximum ofDXX57.2 meV50.9ER for
infinite barriers. Figures 5~c! and 5~d! show the contributions
of perturbation theory, self-consistency correction, and c
relation to the exciton and biexciton binding energies. Exc
for very weakly confined dots, the exciton is very well d
scribed by first-order perturbation theory. For weak confin
ment, the electron is unable to bind, but self-consistent in
action with the hole is able to bind the electron, so that
exciton binding energy is almost entirely due to se
consistency. For the weakest confinement, neither the e
tron nor the hole is bound, and the excitonic binding is e
tirely due to correlation. Again, biexciton binding is du
entirely to correlation.
6-8
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C. Multiexciton energies

Figure 6 shows mean-field and exact~QMC! results for
the multiexciton charging energiesWN @Eq. ~4!#, and the
multiexciton addition energiesDN,N11

(X) @Eq. ~5!#. The most
prominent feature is the jump in the charging energy forW3,
which also appears as a peak in the addition energyD2,3

(X) .
This ‘‘shell effect’’ arises because only the first two excito
can occupy the lowest energye0 andh0 states. Starting with
the third exciton, Pauli exclusion requires the addition ex
tons to start filling the next energy shell,e1h1 throughe3h3.

FIG. 5. Exciton and biexciton binding energies~including cor-
relation! as calculated by QMC as a function of barrier energy, w
the constraintDEe /DEh52, for the dot geometry shown in th
inset. Panel~a! shows the single-particle energies of the nonint
acting electron and hole band-edge states. Panel~b! shows the the
exciton binding energyDX @Eq. ~2!# and biexciton binding energy
DXX @Eq. ~3!#. The bulk exciton Rydberg energy is denotedER

57.9 meV. Contributions to exciton and biexciton binding energ
versus barrier energy are shown in~c! and ~d!, respectively. Con-
tributions are from first-order perturbation theory~PT!, self-
consistency correction~SC!, and correlation~Corr.!.
15531
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This is a feature of the single-particle model, and does
require any treatment of correlation. Correlation is necess
to describe the decrease in charging energy for the sec
exciton,W2,W1, or equivalently the negative value of th
first exciton addition energyD1,2

(X)526.2 meV. This is the
positive biexciton binding energyDXX56.2 meV, discussed
earlier. As shown in lines 7–9 of Table II, the correlatio
contribution for the second charging energyW2 is 8.9 meV,
considerably larger than the 2.0 meV forW1. Our CI cap-
tures only about half the correlation energy, so it sligh
overestimates the exciton charging energies, and cons
ably underestimates the negative value ofD1,2

(X) .

D. Electron loading energies

Figure 7 shows mean-field and exact~QMC! results for
electron charging energiesmN @Eq. ~6!#, and the electron
addition energiesDN,N11

(e) @Eq. ~7!#. Because electrons ar
charged, Coulomb repulsion quickly limits the number
electrons that can be loaded into the dot. For our mo
shown in the inset to Fig. 7, it is only energetically favorab
to add four electrons; beyond this, electrons would rat
escape into the barrier material conduction band, shown
dashed horizontal line in Fig. 7~a!. There is a peak in the
electron addition energyD2,3

e in Fig. 7~b!. This is due the
filling of the e0 state by a spin-up and spin-down electr
~another ‘‘shell effect’’!. Both QMC and MF capture this
single-particle effect. As shown in Fig. 4~c!, our CI expan-
sion recovers about half the correlation energy for two el
trons. However, the correlation energy in a two-electron
is only about 1 meV, so CI errors are a negligible 0.5 me

-

s

FIG. 6. ~a! Exciton charging@Eq. ~4!# and~b! addition energies
@Eq. ~5!#, for the dot shown in the inset. Because excitons are n
tral, it is energetically favorable for a dot to hold many excitons
6-9



o
as

ll

th

le
le
o
d

ex
s
h
um

ch
ec
a
te
te
e
d
ec
n

r the
of

c-

l
In

-

o
r-
n be

e
is

t

ns

n-
, to

the

ned

nts

et.
ton
xci-
the
nd
n-

the
an

nd
s of

the

l
x-

ly
uc

J. SHUMWAY, A. FRANCESCHETTI, AND ALEX ZUNGER PHYSICAL REVIEW B63 155316
The small value of correlation and the good agreement of
CI calculations for dot charging are summarized in the l
three lines of Table II.

IV. APPLICATION OF CI TO A MULTIBAND DOT
DESCRIBED VIA PLANE-WAVE PSEUDOPOTENTIALS

QMC calculations are currently limited to either sma
systems containing up to a few hundreds of electrons,42,63,64

or highly simplified model Hamiltonians~such as the EMA!.
A more accurate description of the electronic structure~Fig.
1! of semiconductor quantum dots can be obtained using
pseudopotential approach.48 Unfortunately, QMC methods
are presently unable to deal with the large number of e
trons of a typical quantum dot, and CI is the only viab
approach to treat correlation effects in large quantum d
described by atomistic pseudopotentials. In addition, the
agonalization of the CI Hamiltonian gives access to the
cited states~unavailable in ground state QMC calculation!
as well as the ground state of the electronic system, t
enabling the calculation of the optical spectrum of quant
dots.

In order to illustrate the capabilities of the CI approa
combined with a pseudopotential description of the el
tronic structure, we consider a nearly spherical CdSe qu
tum dot having the wurtzite lattice structure and a diame
of 38.5 Å. The surface dangling bonds are fully passiva
using ligandlike atoms.47 This quantum dot is representativ
of CdSe nanocrystals grown by colloidal chemistry metho

We consider here only low energy excitations of the el
tronic system, which are obtained by promoting electro

FIG. 7. ~a! Electron charging energies@Eq. ~6!# and~b! addition
energies@Eq. ~7!#, for the dot shown in the inset. This dot can on
hold up to four electrons, due to Coulomb repulsion. The cond
tion band minimum energy of the barrier material,DEe5400 meV,
is shown in panel~a!.
15531
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from states near the top of the valence band to states nea
bottom of the conduction band. The band-edge solutions
Eq. ~10! can be efficiently obtained using the folded spe
trum method,43–45 which allows one to calculateselected
eigenstates of the Schro¨dinger equation with a computationa
cost that scales only linearly with the size of the system.
this approach, Eq.~10! is replaced by the folded-spectrum
equation

@2¹21Vps~r !1V̂NL2« re f#
2c i~r ,s!5~« i

02« re f!
2c i~r ,s!,

~15!

where« re f is anarbitrary reference energy. The lowest en
ergy eigenstate of Eq.~15! coincides with the solution of the
Schrödinger equation@Eq. ~10!# whose energy is closest t
the reference energy« re f . Therefore, by choosing the refe
ence energy in the band-gap, the band edge states ca
obtained by minimizing the functionalA@c#5^cu(Ĥ
2« re f)

2uc&.
The solution of Eq.~15! is performed by expanding th

wave functionsc i(r ,s) in a plane-wave basis set. For th
purpose, the total pseudopotentialVps(r ) is defined in a pe-
riodically repeated supercellV containing the quantum do
and a portion of the surrounding material. The supercellV is
sufficiently large to ensure that the solutions of Eq.~15! are
converged within 1 meV. The single-particle wave functio
can then be expanded asc i(r ,s)5(Gci(G,s)exp(iG•r ),
where the sum runs over the reciprocal lattice vectorsG of
the supercellV. The energy cutoff of the plane-wave expa
sion is the same used to fit the bulk electronic structure
ensure that the band structure consistently approaches
bulk limit. The minimization of the functionalA@c# is car-
ried out in the plane-wave basis set using a preconditio
conjugate-gradient algorithm.

In the next step we construct a set of Slater determina
uFh1 , . . . ,hN ,e1 , . . . ,eN

& @see Eq.~14!# obtained by creatingN
holes in the valence band andN electrons in the conduction
band, and diagonalize the CI Hamiltonian in this basis s
Using the CI approach, we have calculated the multiexci
spectrum of a CdSe dot. We consider here up to three e
tons and we use a CI basis set of 480 configurations for
single exciton, 43 890 configurations for the biexciton, a
20 384 configurations for the triexciton. All the relevant i
teractions~including electron-hole exchange! are included in
the CI calculations. We assume that when anN-exciton is
created in the quantum dot it relaxes nonradiatively to
ground state before decaying radiatively into
(N21)-exciton.

The calculated multiplet levels are shown in Fig. 8 a
the emission spectrum is shown in Fig. 9. The three panel
Fig. 9 correspond to the recombination of~a! a triexciton into
a biexciton (3→2), ~b! a biexciton into a single exciton (2
→1), and~c! a single exciton into the ground state (1→0),
respectively. We assume that the low energy states of
N-exciton are thermally populated (kT55 meV! before re-
combination. We see the following from Fig. 9.

~i! The single-exciton recombination spectrum, Fig. 9~a!,
shows a single peak (A1) centered at 2.154 eV. It is wel
known65 that in CdSe nanocrystals the electron-hole e

-
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change interaction splits the lowest energy excitonic s
(h0

1 ,e0
1) into two doublets, having total angular momentu

F52 andF51, respectively~see Fig. 8!. The lower energy
doublet (F52) is optically forbidden, while the higher en
ergy doublet (F51) is optically allowed. We find an energ
separation of;5 meV between the two doublets. The em
sion peakA1 observed in Fig. 9 comes from the recombin
tion of the higher energy doublet, which is thermally pop
lated. This explains the relatively weak intensity of t
single-exciton peak.

~ii ! The biexciton recombination spectrum, Fig. 9~b!,
shows a strong peak (A2) centered at 2.140 eV. This pea
originates from the recombination of a biexciton in t
ground state (h0

2 ,e0
2) into a single exciton in theF51 state.

The weak shoulder to the red of the main peak (A28) is due to
the recombination of a thermally occupied higher ene
biexciton state in the configuration (h0

1h2
1 ,e0

2). Note that sev-
eral transitions from the biexciton ground state to sing
exciton excited states are in principle possible, but have v
weak oscillator strength. These transitions would occur to
red of the fundamental transition. The calculated biexcit
binding energy is 2EX2EXX;4 meV. This value is prob-
ably underestimated due to the underconvergence of th
expansion. Interestingly, the ‘‘apparent’’ biexciton bindin
energy, i.e., the redshift of the main biexciton peakA2 with
respect to the single-exciton peakA1, is ;14 meV ~not
4 meV!. The reason is that the biexciton recombination ta

FIG. 8. Schematic illustration of the leading contributions
peaks (A3 ,B3 ,A28 ,A2 ,A1) appearing in Fig. 9. Solid horizonta
lines are energies ofN50 to N53 excitons, with dashed line
indicating one or more states that do not contribute to the m
peaks in Fig. 9.
15531
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the quantum dot into theF51 excited state, rather than th
F52 ground state~see Fig. 8!. Thus we have

E~A1!2E~A2!5~EX
F512E0,0!2~EXX2EX

F51!

5DXX12~EX
F512EX

F52!

541235 meV514 meV.

~iii ! In the case of three excitons we find that the ground s
wave function originates primarily from the non-Aufba
configurationh0

2h2
1 ;e0

2e1
1. In fact, the third hole prefers to

occupy thep-like h2 state rather than thes-like h1 state, due
to reduced Coulomb repulsion with the remaining two hol
Two main transitions are possible from the three-exci
ground state: thee0→h0 recombination, which leaves th
system in the excited biexciton configurationh0

1h2
1 ;e0

1e1
1,

leads to peakA3 located at 2.188 eV. Thee1→h2 recombi-
nation, which takes the system into the ground state bie
ton configurationh0

2 ;e0
2, is responsible for peakB3 centered

at 2.497 eV. Note that theB3 transition originates from an
exchange-split triexciton state~see Fig. 8! which is thermally
populated; hence the relatively weak oscillator strength
the B3 transition.

r

FIG. 9. Exciton transition energies for a CdSe dot for~a! decay
from three to two excitons,~b! decay from two to one excitons an
~c! decay of a single exciton. The intensity scale is different in ea
of the three panels, and weak transitions between peaksA3 andB3

in ~a! have been magnified320. Gray vertical lines indicate al
calculated transition energies, and solid black lines in the Gaus
broadened transitions weighted by calculated dipole transi
strengths.
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Note that a calculation considering only ground state
ground state transitions would miss most of the peaks
served in Fig. 9. The capability of the CI expansion to acc
excited states, coupled with the possibility of using a mu
band pseudopotential Hamiltonian for the calculation of
single-particle energies and wave functions, makes it
method of choice for calculating excited states of semic
ductor quantum dots.

V. CONCLUSION

We have studied the effects of correlation on a simplifi
single-band model dot using both QMC and CI, and ha
studied correlation in the multiexciton PL spectra of a re
istically modeled CdSe dot using CI. Our results for the si
plified, single-band model are summarized in Table II. W
find the following results for our model:~1! total energies for
an exciton, a biexciton, and two electrons are dominated
mean-field effects, so that correlation energies and CI c
vergence errors are less than 1%@see Fig. 3#; ~2! typical
exciton transition energies, which are;1 eV, can be calcu-
lated to closer than 1% by perturbation theory, with only
;2 meV correlation correction@see Fig. 4~a!#; ~3! typical
exciton binding energies are;46 meV, with only 2 meV
from correlation, and our CI captures roughly half of t
correlation to give exciton binding energies that are nea
98% of the exact QMC value;~4! typical biexciton binding
energies are positive;6 meV, almost entirely due to corre
lation energy, and our CI recovers only about 65% of
exact QMC value@see Fig. 4~b!#; ~5! exciton charging ener
gies are;1130 meV and well described by CI, while excito
addition energies can be due entirely to correlation, in wh
case our CI is only qualitatively correct; and~6! typical elec-
tron charging energies are;150 meV, of which correlation
contributes very little (;1 meV!; likewise, electron addition
energies are;40 meV with very little correlation contribu
tion, so that CI is accurate to about 1–2 % for electron ad
tion energies.

Although QMC is a good method for testing convergen
of CI on a simplified, single-band model, only CI may b
ts

,

ff

an

cı

15531
o
b-
s

-
e
e
-

,
e
-
-

y
n-

y

e

h

i-

e

used on our more realistic model of CdSe. Our multiba
pseudopotential model captures the correct symmetries
electronic structure of the dots, leading to qualitatively d
ferent predictions from those of single-band models. For
ample, the multiplet structure presented in Fig. 8 require
multiband description of the single-particle levels. Some
the details of our realistic CdSe calculation that are miss
from our single-band CI model are~1! different degeneracies
of the single-particle hole levels due to a multiband desc
tion of the valence band states,~2! electron-hole exchange
splitting of 5 meV in the ground state (h0

1 ,e0
1) exciton, and

~3! the existence of many weak transitions that are symm
forbidden in single band models. An additional benefit of
is that it gives excited state energies necessary to iden
some of the peaks that appear in single-dot photolumin
cence spectra.

We conclude that correlation effects are important
some quantities, such as exciton binding and exciton addi
energies, and essential to calculate positive binding energ
QMC methods are well suited for simple, single-band mo
els. Applications to realistic models that capture the pro
symmetries and electronic structure of quantum dots are
rently restricted to CI methods. We find that CI calculatio
including all bound states are accurate to better than 3%
many measurable properties, as listed in Table II. Even
biexciton binding, which is dominated by correlation, our
calculations are qualitatively correct, capturing about 65%
the QMC prediction for a simplified model. Therefore w
conclude that a realistic multiband model combined w
perturbation theory and a judicious use of CI for correlati
corrections is a computational approach well suited to re
istic modeling of interacting electrons and holes in SK a
colloidal semiconductor quantum dots.
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