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Correlation versus mean-field contributions to excitons, multiexcitons, and charging energies
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Single-dot spectroscopy is now able to resolve the energies of excitons, multiexcitons, and charging of
semiconductor quantum dots withl meV resolution. We discuss the physical content of these energies and
show how they can be calculated via quantum Monte G&MC) and configuration interactiofCl) methods.

The spectroscopic energies have three pieGeésa “perturbative part” reflecting carrier-carrier direct and
exchange Coulomb energies obtained friiwed single-particle orbitals(ii) a “self-consistency correction”

when the single particle orbitals are allowed to adjust to the presence of carrier-carrier interacti6i) and
“correlation correction.” We first apply the QMC and CI methods to a model single-particle Hamiltonian: a
spherical dot with a finite barrier argingle-bandeffective mass. This allows us to test the convergence of the
Cl and to establish the relative importance of the three téimsiii ) above. Next, we apply the Cl method to

a realistic single-particle Hamiltonian for a CdSe dot, including via a pseudopotential description the atomistic
features,multiband coupling spin-orbit effects, and surface passivation. We include all bound diapeto
40000 Slater determinantis the Cl expansion. Our study shows tlia} typical exciton transition energies,
which are ~1 eV, can be calculated to better than 95% by perturbation theory, with onh2ameV
correlation correction(?) typical electron addition energies are40 meV, of which correlation contributes

very little (~1 meV); (3) typical biexciton binding energies are positive and0 meV and almost entirely due

to correlation energy, and exciton addition energies-aB® meV with nearly all contribution due to correla-

tion; (4) while QMC is currently limited to a single-band effective-mass Hamiltonian, CI may be used with
much more realistic models, which capture the correct symmetries and electronic structure of the dots, leading
to qualitatively different predictions from effective-mass models; &)dCl gives excited state energies
necessary to identify some of the peaks that appear in single-dot photoluminescence spectra.
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I. INTRODUCTION: THE PHYSICAL CONTENT Ex=E1(e},hd) —Eqp. 1)
OF EXCITON, MULTIEXCITON, _ o N o
AND CHARGING ENERGIES IN DOTS Typical excitonic transition energies in IlI-V or II-VI dots,

measured experimentally’ by photoluminescencéPL) or
Small semiconductor dots, such as semiconductor?y absorption, are 1-3 eV. Thexciton binding energiy is
embedded Stranski-Krastan@®K) dots or “free-standing” f[he d'ﬁEfe.”C.e _betvveen the toFaI energy of a system consist-
colloidal dots, are engineered and studied for their optica|ng of two infinitely separated identical dots, one with a hole

1.3 In hy and the other with an electron ig,, and the total

and transport propertiés® Measurements on these dots have . 0
" o energy of a quantum dot with an exciton:
centered around quantiies such as excifofis,
v 7-11 ; :12-16

mul_tlexcnons, _and charging engrgle@. Advanced ex- Ax=E1¢+Eg1—E11—Eqp, 2
perimental techniques, such as single-dot spectroscopy, are Lo o1
able to resolve such energies 01 meV resolution. This Where E; o 1Stflnd3 for By o(hoeo), Eo1=Eoa(hogs), and
article discusses the physical content of such measured quahks,1= E11(hg€p). Typical exutonﬂbmdmg energies in Ill-V
tities in terms of the mean-fieltlirect and exchangeCou- ~ and II-VI dots are 10-200 mg‘?/. . o
lomb energies, which are relatively simple to model, and (b) Biexciton energiesThebiexciton binding energy
correlation energies, which we calculate by two leading's the difference between twice the exciton enefgy the
methods in the field—quantum Monte Carl@®MC) and  energy of a system of two infinitely separated dots, each with
configuration-interactioriCl) methods. an electron-hole pair and the biexciton energy:

Let us consider a quantum dot with holes in the valence
band andN electrons in the conduction band. The total en-
ergy of the dot isEy (@), wherea is a quantum number whereE,, stands forE,,(h3e3). The biexciton binding en-
that identifies the state of the system. Only differences irergy is positive(“bound biexciton”) when the total energy
energy are accessible to experiment. We focus on four physbf two excitons in the same dot is lower than the energy of
cal quantities. B the two excitons in two separate dots. A bound biexciton

(a) Exciton energiesTheexciton transition energy&g) iS  appears as a redshifting of the exciton luminescence energy
the difference in total energy of a dot having as a dominantvhen a second exciton is present. This was seen in single-dot
configuration an electron in leve}, and a hole in leveh,  spectroscopy e.g., for InAs/GaA§:*'®Biexciton binding
and a dot in the ground state, energies in IlI-V dots are 1-6 mel#-%

Axx=2E;11—E»>—Eqpo, (3
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(c) Multiexciton energiesThe Nth exciton charging en-

. L | Modeling the Electronic and Optical Properties of a Quantum Dot
ergy W, is the minimum energy needed to add to a dot

having N—1 electron-hole pairgexcitonsg in their ground 7
state one additional exciton, @ _ Structure .
\(shape, size, compositon, and strain)
Wn=Enn—En-1n-1- (4)
Physically,Wy is the highest possible energy for a photon 2
emitted in the transition from the lowest energy stateNof Single-Particle Models
H H _ H H (b) Single particle orbitals, {oj}: [---»
excitons to a state witiN—1 excitons. The difference be- velectrons™and "holes”
tween successive multiexciton charging energies isNtre o il
exciton addition energx&f\f?\lﬂ, pseudopotential
AR =Wy—Wy_,=E +En_1n-1—2Enn-
N.N+1 N N-1 N+1N+1 N-1N-1 N.N 5 Excitation Interactions
( ) (C) electron-electron,
i i i elgcc:)tls;:-orﬁie Etot = EpT + AESC + AEcorr
(d) Electron loading energiesThe electron charging en- ‘
ergy,u(Ne) is the chemical potential needed to add an electron :
. Y
to a dot already havingl— 1 electrons, Perturbation Theory EﬂAEsc AEo)
e) __
/-LF\I)_EO,N_EO,N—L (6)
Mean-Field
Full Treatment of Interactions (Cl, QMC) ),

whereas theelectron addition energys the difference be-

tween two successive chemical potentials, FIG. 1. The three steps to modeling a quantum dat.The

©® _ ., (&_, (e _ _ structure is modeled by choosing a size, shape, and composition
ANn+1= AN~ un=1 = Boneat Bon-1= 280N (1) profile, and determining the straifb) Single-particle properties of

Electron addition energies in colloidal dbtare~200 mev, the electrons and holes are found by solving a Sdinger equation

whereas in SK doté?*they are~20 meV. for a chosen level of renormalizatidEMA, k- p, tight binding, or

The definitions given here in Eq€l)—(7) are operational, pseudopotential (c) Interactions between excitationglectron-

model independent. A central question in the field is how toelectron, electron-hole, hole-hglare added to the single-particle
odel, using either perturbation thedByr, self-consistent mean-

approximate these quantities through models. This requweleld theory, which adds the self-consistent contributiosc, or

knowing how much of the energy involved in the processes . ) .
. . . I I M hich h I
described by Eqs(1)—(7) is due to “mean-field” effects, ull treatment(Cl or QMC), which adds the correlation correction

which can be modeled relatively simply, and how much is
due to interparticle correlation, which is more intricate to;

. . . tions).
model. Figure 1 illustrates the steps required to model th
electronic and optical properties of a quantum datchoos-

ing a structure(including size, shape, composition, and gg. (i) first-order perturbation theory (PT}25-2which in-

strain, (b) solving a single-particle model, ar(d) treating ), qes direct and exchange Coulomb interactighand K,
interactions among the electrons and holes. In this paper wg, o ated from fixed single-particle orbitals: (i) self-
are concerned witigeneraltrends in correlation in dots, so ., nsistent mean-field (MF) theg#)/in which the direct and
we focus mainly on thg choicg of single—particle model, Fig'exchange Coulomb terms are solved self-consistelikig
1(b), and treatment of interactions, Figcl _difference betweefii) and(i) is called the “self-consistency
As illustrated in Fig. 1b), the calculations of the quanti- correction” AESC]: and(iii) correlated methods, such as CI
ties of Egs.(1)—(7) require one to assume an underlying (Refs. 7 25—290r'QMC31‘41which include all Fnany-body
single-particle model, which determines the single-particleyfocts of interactions. The difference between the exact en-
states(conduction electrons and ho)esThe single-particle ergy (i) and the mean-field enerdii) is called the “corre-
model is cast as a Schiimger equation with an effective lation correction” AE®". Thus, the energy for a dot witkl

§|ngle-p§1rt|cle potential. This potenﬂgl contains all Strucm.r"’“holes andN electrons can be separated into three terms,
information about the system: the size, shape, composition,
surfaces,_ int_erfaceg of the dot system. Vari(_)us Ievel_s of EE\%N:E&TN_F AE?A(,:N+ AEW’; (8)
renormalization exist for the quantum dot single-particle _ o1

model. The simplest is an effective ma€tparticle-in-a-  Which are the perturbation theory energy;, v, the self-

box”) model, in which the electron and hole excitations consistent correctionAEﬁ?N, and the correlation correction

come from single parabolic bands. Better approximations ar& Ey}’y, .

the multiband k- p, tight-binding, and pseudopotentials  Due to computational limitations, the methods available

methods. to calculate correlation are dependent on which single-
The single-particle models do not usually contain theparticle model is choseftevel of renormalization The com-

Coulomb interactions between the single-particle excitationputational cost for accurately calculating correlation energies

(i.e., electron-electron, electron-hole, and hole-hole excitaincreases rapidly with the number of electrons one needs to

corr -

Instead, these interactions must be added to the
fodel, as shown in Fig.(&¢). We classify the treatment of
interaction among the single-particle excitations in three lev-
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TABLE |. Relationship between the choice of single-particle describe the additional electrons and holes using kthe
model for quantum dots and the availability of QMC and CI meth- formalism?®° but current QMC methods do not trelatp
ods to calculate correlation enerfisee Figs. (b) and Xc)]. This Hamiltonians.
information motivates our approach to studying correlation: firstwe  \15st correlated calculations on quantum dots have used
tgst the convergence of Cl against QMC calculations using asimplguch a single-band effective mass moflelel (c), abové,
single-band EMA model, and then we present CI calculations on & a6 myitiband and intervalley couplings are ignored. This
realistic mL_JItlband pseud_opotentlal guantum dot model to IlIUStratepartiCIe-in—a—bOX description of the mean-field problem was
features missed by the simple model. recently®3%46-48contrasted with the pseudopotential solu-
tion of the problem[(b) abovd both for “free-standing”
(colloidal) dots and for semiconductor-embedded SK dots. It
All electron exact Hamiltonian o no was found that for “free-standing” dots such as IffPand

CdSe?’ the effective-mass approach can lead to energy shifts

Level of renormalization Model ¢él QMC

Valence only multiband pseudopotential yes no of the ordef®*’ ~500 meV; lead to reverse order of,p)
tight-binding yes nb levels#® miss more than half of the single-particle eigenval-
ues in a 0.5 eV energy range near the band édgederes-
Active electron only multibandk- p yes no timate the Coulomb integral; [Eq. (11)] by*® ~20%; and

single-band EMA  yes yes Miss all the long-range part of the exchange integfas .

For pyramidal SK dof$ the errors are somewhat smaller:

While CI may be applied to any model, it is often underconvergedshifts in the energy levels for electrons and holes are

bPossible for very small clusters of fewer than 100 atorRs ( ~35 meV and~110 meV, respectively; energy spacings

<10 A). from the EMA are about a factor of 2 too large; and the
polarization ratio for dipole transitions along the two direc-

consider. The number of electrons depends on both the dotiPns 1 1 instead of 1.3. _SUCh I|m|tat|_ons in the EMA_creat_e
a dilemma when modeling correlation as summarized in

size and the type of renormalization one uses for the Ham”TabIe L On one hand Cl expansions mav be anolied to real-
tonian. As summarized in Table |, three levels of renormal- .~~~ . xpansi y be appli
o . istic single-particle modelée.g., pseudopotentialsbut con-
ization are pertinent.

(a) The all-electron approach, where the number of elecverge slowly with the number of configurations. On the other

Is i . ber. Th Si h 1hand, QMC methods can give numerically exact answers in-
trons per atom equals its atomic number. Thus, Si has 1g,qing all correlation, but currently are limited to simple

electrons per atom, and a 40 A diameter spherical Si dot hagpgje_hand effective-mass models. This situation prompts us
1600x 14=22 400 electrons. This is outside the reach ofy, yse the following strategy to study correlation effects:
QMC, ClI, and density functional methods. First, we consider a simplified “particle-in-a-box” single-

(b) The valence-only pseudopotential approach, where thgand EMA model that can be treated via both QMC and CI.
“core” electrons are removed as dynamic variables and reour best Cl calculations for the EMA model include all
placed by an(often nonlocal ionic potential. Thus, Si has bound states, but neglect continuum states. Second, we con-
four electrons per atom, and a 40 A diameter spherical Si daider a CdSe dot whose single-particle properties are de-
has 160x4=6400 electrons. This is outside the reach ofscribed realistically by pseudopotentials, and the correlation
density functional methods, and too large for QMC calcula-is treated via CI only.
tions, which are currently limited to about 25 Si atof@§0 Our single-band EMA dot has been chosen to be repre-
electron$.*? Note that(in non-self-consistent calculations sentative of SK and colloidal dots. We summarize the prop-
the all-valence pseudopotential approach can be further singrties of our model dot in Table Il. We find the following
plified with no additional approximations by searching for results for the single-band model dot.
eigensolutions in a fixed “energy window!>*°e.g., near (i) Typical exciton transition energies for our model dots
the band edges. Thus, a 40 A diameter Si dot would requirére ~1 eV, and typical exciton binding energies are
calculating~ 10 eigensolutions. This trick makes pseudopo-~50 meV. Of this, the MF gives>95% of the binding en-
tential calculations of dots feasitt®3%46-8and CI may be ergy. Correlation is only~2 meV, of which QMC provides
used to compute correlation energies from the single-particlén accurate solution. Although CI misses half the correlation
solutions?®=2° It would be interesting if such folding tech- energy, i.e.,~1 meV, it still captures~98% of the total
nigues could be applied to QMC. binding energy.

(c) The “active-electron-only” effective-mass approxi- (i) Typical biexciton transition energies for our dots are
mation(EMA) approach, where all of the “indigenous” core ~2 €V and typical biexciton binding energies aré meV.
and valence electrons are eliminat@eplaced by dielectric The biexciton binding energy from mean-field theory is
screening and only additional band-edge electrons and slightly negative(unbound biexcitons so the positive biex-
holes are considered. Thus a 40 A diameter Si dot has zewton binding is in fact due te-6 meV of correlation energy.
electrons. One can studydded electrons and holes. This QMC captures all the correlation energy, whereas our ClI
renormalization represents a severe approximation with resaptures only halfabout 4 meV, so that the Cl estimate of
spect to levelga) and(b) above. Both QMC and CI methods biexciton binding is only about 65% of the true value.
may be readily applied to single band EMA Hamiltonians. (iii) Typical electron charging energies for our dots are
Some improvement can be made by using several bands mo(le)~150 meV, relative to the dot material conduction band
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TABLE Il. Measurable quantities for our single-band spherical model dot, with effective magses
=0.1 andm,=0.5, dielectric constanté=12, dot material band gaRg,,=1 eV, and band offsetaE,
=200 eV andAE.=400 meV. For each quantity we give the magnituds calculated by QML the
mean-field value, the correlation correction, and the percent of the energy recovered by Cl expansion using
all bound states. All energies are given in meV, and electron charging and total energies are measured relative
to the dot material CBM.

Quantity Magnitude Mean field Correlation % CI
Exciton total energyE; 4(e5,hg) 1136.3 1138.3 2.0 100.1
Biexciton total energyE, ,(e3h3) 2266.5 2277.3 10.9 100.2
Total energy of two eIectronEoyz(eg) 335.0 335.8 0.8 100.1
Exciton transition energyEy [Eq. (1)] 1136.3 1138.3 2.0 100.1
Exciton binding energyAy [Eq. (2)] 46.2 44.1 2.0 97.8

Biexciton binding energyAxx [Eq. (3)] 6.2 -0.6 6.8 64.5

1st excitonchargingenergyW, [Eq. (4)] 1136.3 1138.3 2.0 100.1
2nd excitonchargingenergyW, [Eq. (4)] 1130.1 1139.0 8.9 100.2
1st excitonaddition energyA %) [Eq. (5)] 6.2 0.6 6.8 64.5

1st electrorchargingenergyu(® [Eq. (6)] 147.5 147.5 0.0 100.0
2nd electrorchargingenergyut® [Eq. (6)] 187.5 188.3 0.8 100.1
1st electroraddition energyA () [Eq. (7)] 40.0 40.8 0.8 101.4

minimum (CBM), while addition energies are\(f%w40 where V¢ is an effective potential. The Coulomb and ex-
meV. Of this, correlation energy is very smai#t (. meV), so  change energies are given in terms of the single-particle
mean-field or even perturbation theory describes dot chargvave functionsy; by

ing and addition energies very well.

For our realistic CdSe dot we find that CI can be effec- [ ()] 4(r )2
tively combined with an accurate pseudopotential description i PN
of the single-particle problem, thus incorporating surface ef-
fects, hybridization, and multiband coupling. Furthermore, . . , )
Cl can calculate excited states easily, thus obtaining the K. _:f Y (D7 (i) (v )d dr’
many transitions seen experimentally, rather than only the bl e(r,r)|r—r’| '
ground-state—to—ground-state decay calculated by conven-
tional QMC (note, however, that extensions of QMC to sev-Wheree is the dielectric constant of the quantum dot.
eral excited states are possiiéd. The self-consistent contributiolEffN, given by the first

two terms on the right hand side of E@), arises from the
self-consistent rearrangement of the single-particle wave

drdr’,
e(r,r)|r—r’|

11

Il. METHODS OF CALCULATION function in response to the electrostatic field, Ef), gen-
A. Uncorrelated methods: perturbation theory and mean-field ~ erated by the excitation of electrons and holes.
methods
The first-order perturbation enerdf;"y [Eqg. (8)] can be B. The correlated, many-particle methods

written analytically as 1. Quantum Monte Carlo method

The original QMC methotf was based on the variational
technique, a simple yet powerful theoretical tool. In a varia-
+ E/ (Jo,0r =Ky o) tional calculation, one proposes a parametrized trial wave
s function \I'{T”(R), where \ represents a set of variational
parameters an® represents the coordinates of all the par-

PT
Ewn=Eoot

> s 8y
Cc v

+C§;, (Jeor— KC~°’)_U§; (Ju,c =Ky ), ©)  ticles. The energy expectation value
wheree; are the single-particle energiey,; are the direct J dR\p{r}\}*(R)H\piI]\}(R)
Coulomb energies, and; ; are the exchange energies. The E{TA}= (12)
single-particle energies; are often obtained from the solu- f ARV (RYWI(R)
tion of an effective single-particle Schtimger equation, T T

may be minimized with respect to the variational parameters
(10) \ to give an estimate for the ground state energy and ground

1
— _V2+ =i . .. :
[ ZV Veri| i =2, state wave function. This integral may be evaluated analyti-
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cally, or Monte Carlo integration may be used. In this sim-|®) obtained by removingVl electrons from the valence

pleSt formulation, QMC is fOI’mally eqUiVaIent to the varia- band and add|ng| electrons to the Conduction band:
tional techniques commonly applied to excitons in

nanostructure¥’ Because the integral is over all electron and

hole coordinatesR, variational QMC calculations resemble |q’>:h 2 . 2 . Alhy, hwer, ooen)
classical simulations: a configuration of particle positiéhs S Mo "

undergoes a random walk through configuration space, using X |<1>h1 ,,,,, €15 - - s eN>, (13
the rules of Metropolis Monte Carlo integration. The se-

quence 2of configuration®; ,R; . 1, . . . , samples the density Where

V.(R)|°.

| 'TI'(he)lreaI power of QMC is that it can go beyond the [Py, oy e eN>:dE1"’dEMC£1' ' 'CZN|®°>'
variational formalism and actually project the true ground (14
state energy from an _input _variatio_nal trial functid{}r_55 . _Here dﬁ e ,dﬁ createholesin the valence band states
By weighting the configuration as it samples configuration 1 M s .

space, the random walk can be identified with the imaginany'1+ - - - (v, whilece , ... ce createelectronsin the con-

time propagator expfHq7). In this diffusion Monte Carlo duction band states,, . .. ,ey. The Hamiltonian is then di-
algorithm>®°® the random walk in configuration space actu- agonalized in the basis of Slater determingdt$. This ap-
ally samples?; ®, where®, is the true ground state wave proach gives access to not only the ground state of the
function. The energy expectation value along the wajk  system, but also excited states.
=(W|H|®o)/(¥{|D,) is then the true ground state energy Full CI (FCI) includes all possible determinants from a
of the many-body Hamiltonian. That is, even though the truegiven (finite) set of single-particle basis functions, i.&,
ground state wave functio® is never explicitly calculated, hole orbitals andN,, electron orbitals. In the limit of an infi-
its energy can be sampled from a random walk. In the renite set of basis functionsN ,Ng) —(,=), FCI provides
mainder of the paper, the term QMC will refer to the diffu- the exact many-body solution, which is equivalent to the
sion Monte Carlo algorithm, unless explicitly noted other-QMC results. However, most Cl applications use a small and
wise. finite basis set to solve the Schlinger problem. Thus, even
Applications of QMC to quantum dots have used varia-including in the CI expansion all possible Slater determi-
tional QMC (VMC),3! diffusion QMC32-3" and a path- nants from a finite number of single-particle stat&<l)
integral formulation, related to the diffusion algorithm and does not provide an exact solution, in contrast to QMC. For
based on Feynman path integriis*! Harju et al3! have our calculations we also use only a small, finite basis set of
used both direct diagonalization and VMC to calculate theoound states, denotedN,N,); therefore ground state total
ground state energy of up to six electrons in a two-energies from FCI will be above the true ground state total
dimensional harmonically confined dot. Diffusion QMC energy. A useful truncated Cl basis is singles and doubles
within the EMA has been used) by Austir? to calculate ~ configuration interactioiSDCI), which is the set of all de-
the binding energy of excitons in a spherical dot as a functerminants obtained by exciting at most two partidlekec-
tion of dot radius,2) by Boltor™ to calculate the energy of trons or holesfrom the ground statéor referencgdetermi-
up to four electrons in a two-dimensional harmonically con-nant. SDCI is equivalent to FCI for a single excit@r two
fined dot in the presence of a magnetic figl8), by Shum-  electrong, but is an approximation for two or more excitons
way et al®*to calculate total energies for electron addition to (or three or more electrons
a pyramidal dot(4) by Pederivaet al® to calculate ground The Cl method has been used in the past to solve the the
and excitation energies for up to 13 electrons in a threemany-body Schidinger equation in the EMA?>%%-®'and
dimensional harmonically confined dot and compare to realso in the tight-binding approximatidi.More recently, the
sults from Hartree-Fock and the local spin density approxi-Cl approach has been used in the context of the empirical
mation, and’5) by Luczaket al®’ to study energies of up to pseudopotential method for single excitdfislectron and
20 electrons confined to a two-dimensional harmonic potenhole addition energie¥;?® and multiexcitons?
tial. Leeet al3® have used QMC within the EMA to study a

pair of electrons in a two-dimensional parabolic confining 1. APPLICATION OF QMC AND CI METHODS
potential. Path-integralPl) QMC has been used by Egger TO A SINGLE-BAND EFFECTIVE-MASS DOT
et al®® to studied crossover from Fermi liquid to Wigner WITH EINITE BARRIER

molecule behavior using PIMC within the EMA on up to i o )
eight electrons in a two-dimensional harmonically confined ~We first use a simplified single-band EMA model that can
dot, and by Hartingt al®” to calculate the total energy of up be treated by both QMC and CI. Our reference system is a

to 12 electrons in a two-dimensional harmonically confinegsPherical dot with radiuR=40 A, effective massesn,
dot. =0.1 andm,=0.5, dielectric constané=12, and barriers

AE.=0.4 eV andAE,,=0.2 eV. The energies of the optical
and electronic properties of this dot are summarized in Table
Il. We varied the radius from 0 to 80 A, while keeping the
In the CI approach, the solutions of the many-bodybarriers fixed. This yields a range of bound electron and hole
Hamiltonian are expanded in terms of Slater determinantstates. The energies of the lowése., band-edgestatese,

2. Configuration interaction
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@) | T r T r T =76.2 A and a binding energir=7.873 meV. Both bulk

o 400 Single Particle Energies | materials have a bound biexciton with the same binding en-
.EE 200 | \ 1 ergy ABK=0.716 me\=0.%R (calculated by QMG In
ey o- EbulkTI ®o Ebulk-] some calculations we have varied the barrier energy from
22 o | ho #* 1 AE.=0.05 eV to AE,=1.6 eV andAE,=0.025 eV to
&5& 000 " | AE,=0.8 eV, while keeping the radius fixed at 40 A. Our

P S T S S SRR model system has thus been chosen to roughly capture some
LI B B I SO SO N | properties of small SK or colloidal dots, as summarized in

. =041 y
Exciton, Ax | mo =Me\/ i Table II.

A. Total energies for occupation by an exciton, a biexciton,
and two electrons

Binding Energies

{with correlation) Figure 3 shows the total energy fdm) an exciton,

Binding Energy (meV)
W
o

20 .
10, _ Biexciton, Axx R E1.1(e3.he); (b) a biexciton,E, »(e5,hg); and (c) two elec-
Y L - . trons, Ezvo(eg,hg). We have decomposed the total energies
i ao 4 into the three parts listed in E¢Q): first-order perturbation
P S S SN S R theory (Epy7), self-consistent mean-field theoryEg;
@ T +AEgo), and the exact QMC resultE(,=Epr+AEgc
100 £ SC PT - +AE.,). We then plot the results of Cl calculations as a
L —— function of the number of single-particle stately(Ng)
N v/ ‘( used to generate the Cl basis set, taking either singles and
S S0k 1 doubles only(SDCI) or all possible determinant&Cl). The
S H A Cl energies for one determinant are equivalent to the MF
@ 9 result, and the FCI values must reach the QMC result in the
] limit of an infinite basis. The total number of ClI determi-
@ e — nants forM holes andN electrons occupyindj;, hole states
g 100 _(d) Corr _____ | and N, electron states iQfANhCﬁ,Ne, whereC=n!/[m!(n
'.g —m)!]. The factors of 2 are due to the spin degeneracy of
S — — the single-particle states. Table Il lists the actual number of
; 50 |B'exc“°n Binding - determinants for each of the FCI and SDCI data points in
sc Fig. 3. The first three lines of Table Il give a summary of the
ol AN PT role of correlation energy and CI convergence in the total
! ﬁv—— ” energy of these three systems.
A L In each system, the total energy estimated by first-order
6 1 2 3 4 5 6 7 8 9 perturbation theory is above the true ground state en@gy
Dot Radius (nm) required by the variational principleSelf-consistency im-

proves upon first-order perturbation theory, and correlation

FIG. 2. Exciton and biexciton binding energy versus dot radius id dditi L tE it th If
as calculated by QMC, for the dot geometry shown in the inset.prOV'. es a dl lona |mpLovemen .~b or ei(/C' ong,, € Ise )
Panel(a) shows the energies of the noninteracting electron and hoigonsistency decreases the energy-by meV, and correla-

band-edge states. Par@) shows the the exciton binding energy 10N gives another-2 meV improvement. The total energy,
Ay [Eq. (2)] and biexciton binding energitxy [Eq. (3)]. The bulk  however, isE; ;=1136 meV. So, although our CI only re-
exciton Rydberg energy and Bohr radius are denaigd 7.6 nm  covers about half of the correlation energy, the total energy
andEg=7.9 meV, respectively. Contributions to exciton and biex- iS overestimated by only about 0.1%. For the case of a biex-
citon binding energy versus dot radius are showr(dnand (d), ~ Citon, self-consistency also lowers the energy-b2 meV,
respectively. Contributions are from first-order perturbation theorywhile correlation lowers the energy by anothet0 meV. In
(PT), self-consistency correctiof8C), and correlatio(Corr). calculations on a strain induced dot, Brasket al®! found

that SDCI captured=90% of the correlation energy for mul-
andhg as a function of dot radiuR are shown in Fig. @).  tiexcitons, based on comparison to FCI for one to four exci-
When the radiuRR of the dot goes to infinity we have a tons. In our biexciton calculations, we also find that SDCI
three-dimensional3D) bulk material called “material I” recovers nearly as much correlation energy as FCI, but this
with m,=0.1, m,,=0.5, ande=12. When the radiuR of the  represents only about half of the total correlation energy.
dot goes to zero we have a 3D bulk material called “materialAgain, though, correlation represents a small part of the total
II” with mg, m;,, ande identical to those of “material I.”  energy of the biexciton, so GFCI and SDCJ overestimate
The band offsets between the two materialslg=0.2 eV  the total energy by only-0.2%. For a dot containing two
for the valence band andE.=0.4 eV for the conduction electrons, corrections beyond first-order perturbation theory
band, so that the band gap of material Il AE,+AE,  are much smaller,-1 meV. In fact, for the system calcu-
=0.6 eV larger than the band gap of material I. The bulklated here, we find only a 0.35 meV decrease in the two-
exciton in both materials is the same, and has a radjus electron system with self-consistency, and correlation de-
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| Cl convergence for total energy of an exciton, biexciton, and charged dot |
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FIG. 3. Cl convergence of the total energy for three cag@sin exciton(b) a biexciton, andc) two electrons. All energies are measured
relative to the center of the dot gap. For our Cl expansion, we have used single and double subst8m@hsind also all possible
determinantgFCI). Note that SDCI is equivalent to FCI for cas@s and(c). SDCI gives a good approximation to FCI for caéeg, and
involves far fewer determinantsee Table Il below In all cases our Cl expansion captures about half the correlation energy. The
correlation energyand hence ClI errdiis a very small fraction £1%) of the total energy in all three cases.

creases the total energy by about another 0.8 meV. Our Cl B. Exciton and biexciton transition and binding energies

expansion again captures about half this correlation energy, \easured quantities such as the exciton and biexciton
leading to a negligibly small overestimation of the total e”'binding energies represenifferencesbetween total ener-
ergy (<0.1%). gies. Even if the mean-field contributions dominate total en-
ergies, the differences of total energies may have significant
contributions from correlation. Lines 4—6 of Table Il sum-
marize the roles of correlation and CI convergence for the
TABLE Ill. Number of determinants used for each of the Cl ayciton transition energfy [Eq. (1)]; the exciton binding
calcul_atic_)ns shown in Figs. 3 _and 4, using onIy_ single and dOUbleenergyAx [Eq. (2)]; and the biexciton binding energyyy
subsntuuon_iSDC_I),or all possible SlaterdetermmaniFeCI_). Note [Eq. (3)]. Correlation is only a small paf2 meV) of the
ﬂ;attSDCI ,is elgg'lvt?]lem tObFCI ff(():rl t:et case Oft a,\;]bﬁxlcnon g\rl tWoexciton transition energigy=1136.3 meV. So, even though
electrons. For e number o eterminants oles an !
electrons occupyingN, hole states andN, electron states is OUr underc_onverged_ Cl fails to capture all the correlation
C;thilNe_ energy,Ex_|s overestw_nated only by 0.1%. The same 2 meV
of correlation energy is a much larger component of the ex-
Number of determinants citon binding energyAy=46.2 meV, so errors due to under-

System Nh. No) SDCI FCI convergence of Cl are more significant, and Cl underesti-
: T matesAy by more than 2%. The biexciton binding energy
Exciton (h“e’) 83 146 f6 Ayx=6.2 meV is due entirely to 6.8 meV of correlation

energy, so Cl underconvergence is much more serious. Our

4.4 64 64 ClI calculation of biexciton binding is only 65% of the exact
9.4 144 144 QMC result.
(10.4 160 160 In Fig. 4 we show the results of first-order perturbation
(17,4 262 262 theory (Epy), self-consistent mean-field theory E4r
(20,4 320 320 +AEs), the exact QMC result Hy=Epr+AEgc
Biexciton (h’e?) 1,0 1 1 +AE,,,), and Cl convergence vs basis size farthe exci-
(CY 28 28 ton transition energy antb) the biexciton binding energy.
(4.9 199 784 For the exciton transition energy, Figa}, increasing the ClI
9.9 564 4284 basis does improve the calculated energy, but it is only a
(10,9 649 5320 difference of~2 meV out of a much larger exciton transi-
(17,9 1356 15708 tion energy of 1.136 eV. On the other hand, the CI correction
(20,9 1719 21840 is essential to even approximate the biexciton binding en-
Two Electronsh®?) 0,9 4 4 ergy, shown in Fig. é). Note that the improvement of the
0,9 28 28 biexciton binding with CI basis size is not monotonic. This is
(0,5 153 153 because the biexciton binding is a difference of one- and
(0,10 190 190 two-exciton energies. As the basis is increased, the relative

improvement in the one- and two-exciton total energies var-
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| Cl convergence for exciton transition, biexciton binding, and electron charging energies |
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FIG. 4. Cl convergence df) exciton transition energlx [Eq. (1)]; (b) biexciton binding energ xx [Eq. (3)]; and(c) second electron
addition energy:$? [Eq. (6)]. For our Cl expansion, we have used single and double substit{&&®I) and also all possible determinants
(FCI). Note that SDCI is equivalent to FCI for cag@sand(c). SDCI gives a good approximation to FCI for cdbg and involves far fewer
determinantgsee Table Il). In all cases our Cl expansion captures about half of the correlation energy. The correlation(andrggnce
Cl errop is a significant fraction of the the total energy only for céisg biexciton binding.

ies; thus the calculated biexciton binding energy can actuallyange 16sR<18 A has a negative biexciton binding. Physi-
decreasevhen the Cl basis is improved. We also show thecally, these are small dots that can weakly bind two excitons,

results of SDCI in Fig. ®). but with a higher total energy than if the two excitons are
separated on two noninteracting, identical dots. We see from
1. Dependence on dot size Fig. 2(d) that the biexciton binding energy is almost entirely

. . due to correlation, as noted before.
We have varied the dot radius froR=0 to R=80 A, all

in the strongly confined regim&=a,=76.2 A. Figure 2b) 2. Dependence on barrier height

shows the exciton and biexciton binding energies as calcu- g study the effect of finite confining barriers on exciton
lated by QMC. Figures &) and 2d) decompose the contri- anq piexciton binding energies, we have varied the dot bar-
butions to the exciton and biexciton binding intd) first-  riers from zero to infinity. In all calculations we have kept
order perturbation theory2) self-consistency corrections, AEJAE,=2 and used a radius of 40 A. In Fig(th we plot
and(3) correlation corrections, as in E(B). the binding energies of excitons and biexcitons calculated

The smallR limit is the energy of a bulk-Il material, and with QMC as a function of barrier height. The 40 A dot is
all excitonic binding energy is from correlation. As the ra- able to bind an electron onc&E.=30 meV, and binds a
dius of the dot increases, the bulk-1l exciton binds to the dothole onceAE;,=5 meV. Unlike the behavior seen on vary-
the exciton binding energy is enhanced, and most of théng the dot radius, increasing the confining potential leads to
binding energy comes from perturbation theory. The maxi-a monotonic increase in exciton and biexciton binding ener-
mum in the binding energy occurs when the electron andjies. For zero barrier potential, the exciton has the bulk-I
hole are both individually bound to the dot, but the radius isexciton binding energyAy=E{%’=7.9 meV. As the barrier
small, so that the direct Coulomb interactidrom first-order  potential is increased enough to bind both electrons and
perturbation theoryis the strongest. The exciton binding en- holes, the exciton binding increases rapidly. The binding en-
ergy exhibits a clear peak at arouRd=20 A, in similarity ergy reaches a maximum dfy, =55 meV=7E for infinite
with previous calculations by Austitf.As the dot becomes barriers. Similarly, the biexciton binding energy starts from
larger, the direct Coulomb interaction from perturbationthe bulk biexciton binding energyyyx=0.7 meV=0.1E
theory decreases, causing a decrease in the exciton bindia@d increases to a maximum Af = 7.2 meV=0.9Ey for
energy. Finally, as the dot becomes comparable in size to th@finite barriers. Figures(6) and §d) show the contributions
bulk-I exciton radius, correlation begins to make significantof perturbation theory, self-consistency correction, and cor-
contributions to exciton binding. In the limiR>a, (not  relation to the exciton and biexciton binding energies. Except
shown), the binding energy becomes that of a bulk-I exciton.for very weakly confined dots, the exciton is very well de-

The biexciton binding energy is greatly enhanced in ascribed by first-order perturbation theory. For weak confine-
quantum dot, except for the case of a very small dot withment, the electron is unable to bind, but self-consistent inter-
only a single weakly bound exciton. We find that the biex-action with the hole is able to bind the electron, so that the
citon binding energy is remarkably insensitive to dot radiusexciton binding energy is almost entirely due to self-
having a valuel xx between 5.1 meV and 6.2 meV (Efto  consistency. For the weakest confinement, neither the elec-
0.9ER) for dots with radiiR between 2 nm and 8 nm (&8  tron nor the hole is bound, and the excitonic binding is en-
and 1.B,). This is in contrast to the exciton binding energy tirely due to correlation. Again, biexciton binding is due
Ay, which exhibits a clear peak at small dot radius. The sizeentirely to correlation.
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Electron Barrier AEe (eV) Multi-Exciton Energies
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'12 | FIG. 6. (a) Exciton chargindEq. (4)] and(b) addition energies
o [Eg. (5)], for the dot shown in the inset. Because excitons are neu-
f2) L 44 tral, it is energetically favorable for a dot to hold many excitons.
S T T 46
2 @) Corr
3 100 "t This is a feature of the single-particle model, and does not
'g Biexciton Binding 1 require any treatment of co_rrelatlon_. Correlation is necessary
o to describe the decrease in charging energy for the second
R exciton, W,<W,, or equivalently the negative value of the
ol Pl e first exciton addition energ{*)=—6.2 meV. This is the
SC . ‘e ) positive biexciton binding energfyx=6.2 meV, discussed
0 0.5 " e earlier. As shown in lines 7-9 of Table Il, the correlation
Hole Barrier AEp, (eV) contribution for the second charging eneiyy is 8.9 meV,

considerably larger than the 2.0 meV féf,. Our Cl cap-

FIG. 5. Exciton and biexciton binding energiéiacluding cor-  tures only about half the correlation energy, so it slightly
relation as calculated by QMC as a function of barrier energy, withoverestimates the exciton charging energies, and consider-
the constraintAE/AE,=2, for the dot geometry shown in the ably underestimates the negative valueA§t) .
inset. Panela) shows the single-particle energies of the noninter- ’
acting electron and hole band-edge states. P@melhows the the
exciton binding energy\y [Eq. (2)] and biexciton binding energy D. Electron loading energies
Axx [EQ. (3)]. The bulk exciton Rydberg energy is denotEgd ) ]
=7.9 meV. Contributions to exciton and biexciton binding energies Figure 7 shows mean-field and exa@MC) results for

versus barrier energy are shown () and (d), respectively. Con-  €lectron charging energiegy [Eqg. (6)], and the electron
tributions are from first-order perturbation theofT), self-  addition energieS&F\ﬁ)NH [Eq. (7)]. Because electrons are
consistency correctiofSC), and correlatior(Corr.). charged, Coulomb repulsion quickly limits the number of
electrons that can be loaded into the dot. For our model,
shown in the inset to Fig. 7, it is only energetically favorable
to add four electrons; beyond this, electrons would rather
Figure 6 shows mean-field and exd@MC) results for  escape into the barrier material conduction band, shown as a
the multiexciton charging energié&/y [Eq. (4)], and the dashed horizontal line in Fig.(@. There is a peak in the
multiexciton addition energieA ()., [Ed. (5)]. The most  electron addition energy$ 5 in Fig. 7(b). This is due the
prominent feature is the jump in the charging energyi;  filling of the e, state by a spin-up and spin-down electron
which also appears as a peak in the addition enérg?(. (another “shell effect’). Both QMC and MF capture this
This “shell effect” arises because only the first two excitons single-patrticle effect. As shown in Fig(@}, our Cl expan-
can occupy the lowest energy andh, states. Starting with  sion recovers about half the correlation energy for two elec-
the third exciton, Pauli exclusion requires the addition exci-trons. However, the correlation energy in a two-electron dot
tons to start filling the next energy shed,h; througheshs. is only about 1 meV, so CI errors are a negligible 0.5 meV.

C. Multiexciton energies
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from states near the top of the valence band to states near the
bottom of the conduction band. The band-edge solutions of

- T . . . Eqg. (10) can be efficiently obtained using the folded spec-
400 .{8). Condution Barrier Edge trum method?*=*° which allows one to calculateelected
L s eZele] eigenstates of the Sc'h_frmger equation with a computational
< 300 - . cost that scales only linearly with the size of the system. In
“E’ 200 r this approach, Eq(10) is replaced by the folded-spectrum
zZ S 3 [Charging Energy| equation
100 o 1 [ V24 VD + V= e 21, 0) = (9= e 25(1,0),
0 L \ mg=0.1 0.4eV] | (15)
Mh=05"47ml 1.0ev - -
. T e ce 12 . where_sref is anarbitrary ref_ergnce energy. The !owest en-
150 [ (b) ““ ] ergy eigenstate of Eq15) coincides with the solution of the
S . \ Schralinger equatiorfEq. (10)] whose energy is closest to
g 100 F |Addition Energy| 1 the reference energy,.;. Therefore, by choosing the refer-
‘.5 5 ence energy in the band-gap, the band edge states can be
= 0 7 N ] obtained by minimizing the functionalA[ 4= (|(H
< L — 2
0 1 L L L Eref) |¢>

1 2 3 4
Number of Electrons, N

The solution of Eq.(15) is performed by expanding the
wave functionsy;(r,o) in a plane-wave basis set. For this
purpose, the total pseudopotentigl(r) is defined in a pe-

FIG. 7. (a) Electron charging energi¢&q. (6)] and(b) addition  riodically repeated superceld containing the quantum dot
energiegEq. (7)], for the dot shown in the inset. This dot can only and a portion of the surrounding material. The supeiQel
hold up to four electrons, due to Coulomb repulsion. The conducsufficiently large to ensure that the solutions of Etp) are
tion band minimum energy of the barrier materiaE.=400 meV,  converged within 1 meV. The single-particle wave functions
is shown in panel(a). can then be expanded ag(r,o)==5ci(G,0)exp(G-r),

where the sum runs over the reciprocal lattice vec@rsf
The small value of correlation and the good agreement of outhe supercelf). The energy cutoff of the plane-wave expan-
ClI calculations for dot charging are summarized in the lassion is the same used to fit the bulk electronic structure, to
three lines of Table II. ensure that the band structure consistently approaches the
bulk limit. The minimization of the functionad\[ ] is car-
ried out in the plane-wave basis set using a preconditioned
conjugate-gradient algorithm.

In the next step we construct a set of Slater determinants

OMC calculations are currently limited to either small |Ph,, .. hy.e,, .. e, [S€€ Eq(14)] obtained by creatingy
systems containing up to a few hundreds of electffi&®*  holes in the valence band ahdelectrons in the conduction
or highly simplified model Hamiltonianguch as the EMA  band, and diagonalize the CI Hamiltonian in this basis set.
A more accurate description of the electronic strucitig. Using the CI approach, we have calculated the multiexciton
1) of semiconductor quantum dots can be obtained using thepectrum of a CdSe dot. We consider here up to three exci-
pseudopotential approath.Unfortunately, QMC methods tons and we use a Cl basis set of 480 configurations for the
are presently unable to deal with the large number of elecsingle exciton, 43 890 configurations for the biexciton, and
trons of a typical quantum dot, and Cl is the only viable 20 384 configurations for the triexciton. All the relevant in-
approach to treat correlation effects in large quantum dotteractions(including electron-hole exchanpare included in
described by atomistic pseudopotentials. In addition, the dithe CI calculations. We assume that when Nwexciton is
agonalization of the Cl Hamiltonian gives access to the excreated in the quantum dot it relaxes nonradiatively to the
cited stategunavailable in ground state QMC calculatipns ground state before decaying radiatively into an
as well as the ground state of the electronic system, thugN—1)-exciton.
enabling the calculation of the optical spectrum of quantum The calculated multiplet levels are shown in Fig. 8 and
dots. the emission spectrum is shown in Fig. 9. The three panels of

In order to illustrate the capabilities of the Cl approachFig. 9 correspond to the recombination(af a triexciton into
combined with a pseudopotential description of the eleca biexciton (3—2), (b) a biexciton into a single exciton (2
tronic structure, we consider a nearly spherical CdSe quan—1), and(c) a single exciton into the ground state-{D),
tum dot having the wurtzite lattice structure and a diameterespectively. We assume that the low energy states of the
of 38.5 A. The surface dangling bonds are fully passivatedN-exciton are thermally populateck T=5 meV) before re-
using ligandlike atomé&’ This quantum dot is representative combination. We see the following from Fig. 9.
of CdSe nanocrystals grown by colloidal chemistry methods. (i) The single-exciton recombination spectrum, Fi¢a)9

We consider here only low energy excitations of the elecshows a single peakA;) centered at 2.154 eV. It is well
tronic system, which are obtained by promoting electronknowrf® that in CdSe nanocrystals the electron-hole ex-

IV. APPLICATION OF CI TO A MULTIBAND DOT
DESCRIBED VIA PLANE-WAVE PSEUDOPOTENTIALS
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FIG. 8. Schematic illustration of the leading contributions to
peaks @;,B;,A;,A,,A;) appearing in Fig. 9. Solid horizontal FIG. 9. Exciton transition energies for a CdSe dot f@rdecay
lines are energies dl=0 to N=3 excitons, with dashed lines from three to two excitongb) decay from two to one excitons and
indicating one or more states that do not contribute to the majofC) decay of a single exciton. The intensity scale is different in each
peaks in Fig. 9. of the three panels, and weak transitions between paaksidB;
in (@) have been magnifiek 20. Gray vertical lines indicate all

. . . o calculated transition energies, and solid black lines in the Gaussian
Chf‘n%e Interaction splits the Ilowest energy excitonic statg padened transitions weighted by calculated dipole transition
(hg,€p) into two doublets, having total angular momentum strengths.

F=2 andF=1, respectivelysee Fig. 8 The lower energy

doublet F=2) is optically forbidden, while the higher en- {he quantum dot into thE=1 excited state, rather than the

ergy doublet E=1) is optically allowed. We find an energy p—=2 ground statésee Fig. 8 Thus we have
separation of~5 meV between the two doublets. The emis-

sion peakA; observed in Fig. 9 comes from the recombina-

_(pF=1 F=1
tion of the higher energy doublet, which is thermally popu- E(AD)—E(A2)=(Ex "~ Eoo —(Exx—Ex ")
Iqted. Th|§ explains the relatively weak intensity of the :AXX+2(E>F<:1_E>F<:2)
single-exciton peak.

(i) The biexciton recombination spectrum, Fig(bp =4+2X5meV=14meV.

shows a strong peakA¢) centered at 2.140 eV. This peak ) ]
originates from the recombination of a biexciton in the("') In the case of three excitons we find that the ground state

ground statemg,eé) into a single exciton in thE =1 state. wave function originates primarily from the non-Aufbau

The weak shoulder to the red of the main peak)(is due to configurationh3h}:e3el. In fact, the third hole prefers to

the recombination of a thermally occupied higher energyPCCUPY thep-like h; state rather than thelike h, state, due
biexciton state in the configuratiom(]{hl,eg). Note that sev- to reduced Coulomb repulsion with the remaining two holes.

eral transitions from the biexciton ground state to single-1WO main transitions are possible from the three-exciton

exciton excited states are in principle possible, but have ver§round state: the,—ho recombination, which Ielav?slthe
weak oscillator strength. These transitions would occur to th8ystem in the excited biexciton configuratidrh; ; eger,

red of the fundamental transition. The calculated biexcitonleads to peald; located at 2.188 eV. The;— h, recombi-
binding energy is Ex—Eyx~4 meV. This value is prob- nation, which takes the system into the ground state biexci-
ably underestimated due to the underconvergence of the @on configuratiorh3;ej, is responsible for peaR; centered
expansion. Interestingly, the “apparent” biexciton binding at 2.497 eV. Note that thB; transition originates from an
energy, i.e., the redshift of the main biexciton pegkwith exchange-split triexciton statsee Fig. 8 which is thermally
respect to the single-exciton pedlq, is ~14 meV (not  populated; hence the relatively weak oscillator strength of
4 meV). The reason is that the biexciton recombination takeshe B; transition.
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Note that a calculation considering only ground state taused on our more realistic model of CdSe. Our multiband
ground state transitions would miss most of the peaks obpseudopotential model captures the correct symmetries and
served in Fig. 9. The capability of the Cl expansion to accesslectronic structure of the dots, leading to qualitatively dif-
excited states, coupled with the possibility of using a multi-ferent predictions from those of single-band models. For ex-
band pseudopotential Hamiltonian for the calculation of theample, the multiplet structure presented in Fig. 8 requires a
single-particle energies and wave functions, makes it thénultiband description of the single-particle levels. Some of

method of choice for calculating excited states of semiconthe details of our realistic CdSe calculation that are missing
ductor quantum dots. from our single-band Cl model afé) different degeneracies

of the single-particle hole levels due to a multiband descrip-
tion of the valence band state®) electron-hole exchange
splitting of 5 meV in the ground statéh},e}) exciton, and
We have studied the effects of correlation on a simplified(3) the existence of many weak transitions that are symmetry
single-band model dot using both QMC and CI, and havdorbidden in single band models. An additional benefit of ClI
studied correlation in the multiexciton PL spectra of a real-is that it gives excited state energies necessary to identify
istically modeled CdSe dot using CI. Our results for the sim-some of the peaks that appear in single-dot photolumines-
plified, single-band model are summarized in Table Il. Wecence spectra.
find the following results for our mode(1) total energies for We conclude that correlation effects are important to
an exciton, a biexciton, and two electrons are dominated bgome quantities, such as exciton binding and exciton addition
mean-field effects, so that correlation energies and Cl corenergies, and essential to calculate positive binding energies.
vergence errors are less than I%ee Fig. 3 (2) typical QMC methods are well suited for simple, single-band mod-
exciton transition energies, which arel eV, can be calcu- els. Applications to realistic models that capture the proper
lated to closer than 1% by perturbation theory, with only asymmetries and electronic structure of quantum dots are cur-
~2 meV correlation correctiofisee Fig. 4a)]; (3) typical  rently restricted to Cl methods. We find that ClI calculations
exciton binding energies are 46 meV, with only 2 meV including all bound states are accurate to better than 3% for
from correlation, and our CI captures roughly half of the many measurable properties, as listed in Table Il. Even for
correlation to give exciton binding energies that are nearlybiexciton binding, which is dominated by correlation, our CI
98% of the exact QMC valug#) typical biexciton binding calculations are qualitatively correct, capturing about 65% of
energies are positive 6 meV, almost entirely due to corre- the QMC prediction for a simplified model. Therefore we
lation energy, and our CI recovers only about 65% of theconclude that a realistic multiband model combined with
exact QMC valudsee Fig. 4b)]; (5) exciton charging ener- perturbation theory and a judicious use of CI for correlation
gies are~1130 meV and well described by CI, while exciton corrections is a computational approach well suited to real-
addition energies can be due entirely to correlation, in whichistic modeling of interacting electrons and holes in SK and
case our Cl is only qualitatively correct; af®) typical elec-  colloidal semiconductor quantum dots.
tron charging energies are150 meV, of which correlation
contrll_)utes very little (vl_ meV); I|k_eW|se, eIecFron addlpon ACKNOWLEDGMENTS
energies are-40 meV with very little correlation contribu-
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