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We show how particle-vortex duality implies the existence of a large non-Abelian discrete symmetry group
that relates the electromagnetic response for dual two-dimensional systems in a magnetic field. For conductors
with charge carriers satisfying Fermi statistios those related to fermions by the action of the gnouipe
resulting group is known to imply many, if not all, of the remarkable features of quantum Hall systems. For
conductors with boson charge carriénsodulo group transformatiops different group is predicted, implying
equally striking implications for the conductivities of these systems, including a superuniversality of the
critical exponents for conductor/insulator and superconductor/insulator transitions in two dimensions and a
hierarchical structure, analogous to that of the quantum Hall effect but different in its details. Our derivation
shows how this symmetry emerges at low energies, depending only weakly on the details of dynamics of the
underlying systems.
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I. INTRODUCTION In particular, our main result is to show that the twin opera-
tions of particle-vortex duality* and the addition of 2
Two-dimensional electron systems have remarkable propdnits of statistics to charge carriefwhich does not change
erties, including the quantum Hall effect and metal-insulatortheir statistics at alltake a very simple form when expressed
transitions, many features of which still resist theoretical exin terms of the material’s electromagnetigM) response
planation. The difficult part of describing these systems idunctions. See Refs. 5-8 for other approaches to duality in
that they involve strong correlations, and no small paramduantum Hall systems. These relations hold day system
eters present themselves to help with the analysis. This d€or Which the low-energy EM response is dominated by the

prives theorists of most of the tools in their conceptual tool-Motion of quasi-particles or vortices, and for which the dy-
boxes. namics of these quasiparticles and vortices are sinjitaa

Two kinds of theoretical tools which have proven usefulwaytWe rpake tr_nore deXpI'(t:'t In Wh?t f?rI]IOWSSmcetthese_ f.
for anaysing hse Kinds o songl-oupled praems ard [SEIOTALons oot ommute, ey geneiote a1
the exploitation of symmetries and of the simplifications group Y 9

: : . Iy . sponse functions, and it is this large group that underlies the
wh|tch are asst;_malted Wlth|'t|?e| Iotw-snergyfhlml_t. Dutahllty si/m-_ predictions that we shall find.
MELries, in partcuiar, are fikely to be usetul since these ypi= 1 ganeral, the duality transformations we find do not pre-

cally relate strongly coupled degrees of freedom to weakly<ane the momentum dependence of the EM response func-

coupled ones, and in two dimensions particles and vorticego and so, for instance, can relate materials whose response
make natural candidates for dual partners. Indeed, particlgg very different(such as by relating superconductors to in-
vortex duality has been used several times in the literature tulators. It turns out that conductors are mapped into them-
describe some aspects of both the quantum Hall effect angelves, however. When specialized to conductors, with the
conductor-insulator transitions in superconducting films. e|ectr0magnetic response characterized by the Ohmic and
Duality symmetries are unusual in that they are not symHall conductivities,o, and oy, the action of duality takes
metries in the usual sense that they need commute with thide form of subgroups of the modular group, PSE)2,act-
system’s Hamiltonian. Instead, they relate two differenting on the complex conductivityr= o, +ioyy, as follows:
kinds of systems to one anoth€Bystems for which dualities
commute with the Hamiltonian make up the special case of
self-dual systemg.This relationship is useful when one of o= ,
the two systems so related can be analyzed, permitting con- co+d
clusions to be drawn for its dual by acting with the duality
transformation. Alternatively, duality can be useful if it maps with the integersa throughd satisfyingad—bc=1 (the oc-
a family of systems into themselves, since duality invarianceurrence of this symmetry in a statistical mechanical model
then constrains how one flows amongst members of the fanwas first noticed in Ref. 9, in an investigation aimed at un-
ily as external parameters—such as temperature or magnetierstanding QCP We use units for whicte?/h=1. The
field—are varied. duality transformations as defined in E@) arenot symme-
Our aim is to show that both of these lines of argumentries of the Hamiltonian since, for instance, dual pairs differ
have very general applications to two-dimensional systemsn their electromagnetic response. Rather, these transforma-
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tions are symmetries of the flow obtained as external paranpossibly the quantum Hall effetThe action ofl",(2) on
eters, such as magnetic fields and temperatures, are variedongitudinal conductivities was written down in Ref. 24, al-
Which particular subgroup is important depends on thehough this was not extended to the whole upper-half com-
statistics of the charge-carrying quasiparticles of the probplex plane.
lem. If they are fermions, or related to them by the symme- Also introduced in this paper are the detailed predictions
tries we shall describe, then the subgrgdpnotedl’y(2) in  that follow for bosonic systems from the proposed symmetry
the mathematics literatuly is defined by the condition that group, and that are direct analogs of the symmetry conse-
the parametec must be even. For bose charge carriers, orquences that are already known for quantum Hall systems.
their symmetry partners, such as for superconducting films or To which real-life systems does our duality symmetry ap-
Josephson junction arrays, the symmetry is instég@®), ply? Just as it is difficult to computab initio whether a
defined by the condition thatandd are both odd an and  material will be a solid or not, it is difficult to answer from
c are both even, or vice versa. For both cases powerful prefirst principles which systems must be particle-vortex sym-
dictions follow from the fact that our derivation shows that metric. There are several things that can be said, however.
the symmetry constrains how the conductivities change aFbirst, if the symmetry holds, then all of its consequences
external variables are varied. follow together. For example, for quantum Hall systems the
For quantum Hall systems, the grolig(2) has been long semicircle law,p,,— 1/p,, duality, superuniversality of the
conjectured to be importaitt®® and has been derived for critical exponents, universality of the transition conductivi-
these systems within a mean-field approximatioRor these ties, odd-denominator fractional quantization ®f, when
systems our derivation accomplishes two new things. Firstg, =0, the selection rules for which plateaux may be related
although our arguments are modeled on those of Ref. 12y transitions, etc., must all come together as a package.
ours have a broader domain of validity since they explicitly ~ Second, since particle-vortex duality relies on the equiva-
assume only that quasiparticles or vortices dominate the lowtence of the kinematics and couplings of the charge-carrying
energy EM response, and that the systems are clean enougbasiparticles and vortices, it should be a good approxima-
to exclude any interactions that might distinguish quasipartition when the only quantities of interest in the Hamiltonian
cles from vortices, and so thereby ruin the duality symmetryare those describing the kinematics of these particles, and
that relates them. Because the fields we treat only arise in thieir couplings to the fields that describe the long-range vor-
effective theory and are not meant to describe the completgx interactions and the electromagnetic fields that are ap-
electron dynamics, the mean-field approximation is kept unplied to test the EM response. Duality could be ruined by
der better control. other microscopic interactions that treat quasiparticles and
Second, our derivation helps clarify the assumptions thayortices differently, such as from couplings with disorder or
underlie analyses of the consequenced’gf2) invariance  with other electronic degrees of freedom. Of course, disorder
for the renormalization-grougRG) flow in the o0y,  can also play other spoiling roles, such as by destroying the
plane, since we show that this only relies on the underlyingphase coherence on which the quantum regime that we as-
particle-vortex duality and on the long-wavelength limit. sume depends.
This is important because it has been shtiwi?that most of A sufficient condition for particle-vortex duality, and its
the unique features of quantum Hall electromagnetic reassociated non-Abelian extensions, might therefore be that
sponse follow from the consistency Bf(2) invariance with  the system be sufficiently clean to justify the neglect of other
RG flow in the o0y, plane, independent of the detailed particle and vortex interactions when calculating the electro-
form of the flow’s 8 function. (The constraints o8 that  magnetic response. Although this condition is not strictly
follow from this symmetry have also been considerablynecessary, since our derivation also applies in the presence of
explored**1%~1§ Previously the key assumption of two- any particle/vortex-democratic interactions, weak coupling is
dimensional flow, governed b¥/,(2) invariance, was just also implicit in our neglect of anomalous dimensions when
that: an assumption, although a plausible one motivated bgeciding the relevance or irrelevance of low-energy interac-
analogy with the two-dimensional scaling theory of tions. Notice that it is the weakness of the quasiparticle cou-
disorder?®=2% In particular, since the scaling theory strictly plings that are important in this decision, and the assumption
only applies near the system'’s critical points the scaling mothat these are weak does not imply that the underlying elec-
tivation could not explain why many of the predictions fol- trons must also be weakly coupled in the microscopic Hamil-
lowing fromI'¢(2)-invariant flow work extremely well, even tonian.
away from the flow’s critical points. Since the derivation Now to the main arguments. We organize our presenta-
presented here is not similarly restricted to scaling regions, ition as follows: First we describe the action describing the
explains why these otherwise surprisingly successful predidow-energy dynamics of a system of quasiparticles and vor-
tions work. tices and cast it into a form that emphasizes the similarities
The identification ofl"4(2) as the duality symmetry for between these two kinds of charge carriers. Next, we derive
two-dimensional conductors with bosonic charge carriers ishe action of the two basic symmetries-#2tatistics addi-
new, although some precursors of this idea exist. Implication and particle-vortex duality—for the electromagnetic re-
tions of the particle-vortex generator of the group for criticalsponse functions. Then, we specialize the result to the par-
behavior in a superconductor-insulator transition have beeticularly interesting case of a conductor to derive the action
examined: and the groufi” ,(2) was discussed as potentially of the symmetry on the conductivities;,, and oy . We
playing a role in two-dimensional systeris:® including  briefly review the quantum Hall case, where the charge car-
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riers are fermions, and then repeat the analysis for chargease shows all of the main features of duality, and is consid-
carriers satisfying bose statistics, listing many experimentagrably simpler to describe. We have checked that other fea-

predictions that follow from the symmetries. tures of a nonrelativistic treatment—such as the potential
appearance of kinetic terms linear in time derivatives—do
Il. PARTICLES AND VORTICES not substantially affect our arguments. It also happens that

the results for the nonrelativistic systems of practical interest

This sectipn has' two goals: First, we derive an expregsioean be read off directly from the relativistic answers using
for the effective action governing the low-energy interactionsihe trick outlined in Appendix B.

of charged quasiparticles and vortices for which the duality (4) Quasiparticle Lagrangian£,(¢,a+A) is the (first-
between these two kinds of objects is made explicit. Secomhuantize()l Lagrangian that describes the quasiparticle mo-
we compute the EM response for a system of such chargggn and their coupling to the effective electromagnetic field,
and vortices, for use when deriving the implications OfAM. A first-quantized representation is chosen because this

particle-vortex duality in the next section. makes the duality between particles and vortices most trans-
_ o _ parent later on. The detailed form of this Lagrangian is not
A. The effective quasiparticle-vortex action important in what follows, apart from the form of the cou-

Our starting point is the following Lagrangian, which de- Pling to the gauge field,a+A),,, whose form is important,

scribes the low-energy/long-wavelength interactions of a colPut which follows on grounds of gauge invariance. To be
lection of N, quasiparticles andN, vortices with a weak concrete, in the absence of other interactions the particle La-

electromagnetic fieldA,, : grangian might be given explicitly by
m m. . :
La=— 55€™2,0,8,+ Ly(£,a+A) o= 2 | S8 Eu A (atA) 06— (D), ()

K whereq, here denotes the quasiparticle charge, normalized
~sldud—ag(a,tA) I =@ + AN ]+ 5o thatg,=—1 for electrons.
(5) Dependence on external parameteid.of the depen-

2 dence on the external variables, such as the magnetidfjeld
which we write in the continuum approximation because ouenter through the parameters of the effective Lagrangian. For
interest is directed towards the low-frequency, long-instance, in the example where the quasiparticle dynamics is
wavelength EM response. described by Eq(3) they would enter through the quasipar-

Several features of this Lagrangian bear explanation, anticle massm and the parametet, and the parametex, as
since our final results ultimately depend on its validity, wewell as the total number of particles or vortices. The depen-
pause here to explain its form in some detail. dence would be more involved for more complicated quasi-

(1) Why both particles and vorticedPsually charged par- particle dynamics. The same is almost true for the depen-
ticles and vortices, in the way we define them, do not coexisdence on temperatuiie That is, the temperature dependence
in the low-energy theory, since the vortices presuppose theontributed when integrating out high-energy modes is em-
breaking of electromagnetic symmetries, which precludes thbedded in the system parameters, but there is also additional
existence of isolated electrically charged particles. Indeedemperature dependence associated with the integration over
our later applications only require the consideration of systhe low-energy degrees of freedom themselves, sudff as
tems containing one or the other. We nonetheless use tHgoth forms of temperature dependence are included in our
mathematical device of keeping both in Ef) since it per- later discussions of the temperature dependence of particle-
mits us to derive our results for particles only and vorticesvortex duality.
only by taking the appropriate limits of a single formula. (6) The Goldstone variabldf the difference between the

(2) Field contentA, is the effective electromagnetic field number of vortices and antivorticesl, , is nonzero, then
seen by the pseudoparticles and vortices. This will not, irthere is a complex order parameter somewhere in the system
general, be the same as the externally applied EM field—fothat typically vanishes at the positions of the vorti¢aad
example, some effects of the external magnetic field may bantivorticeg, and takes a nonzero value asymptotically far
incorporated into parameters in the effective Lagrangian andway. The numbeN, is then related to the winding of the
removed fromA,,, as described in Eq5) below. &(t) is  phase of this order parameter around a circle that encloses all
the position of thekth quasiparticle of the system as a func- of the vortex positions. The fielgh in Eq. (2) represents the
tion of time, anda,, is the usual statistical gauge potential phase of this order parameter. We assume, in writingBg.
that ensures that the interchange of two quasiparticles prdhat the order parameter carries nonzero electric chayge,
duces the phase'’.?® (§=2=n, for integern, corresponds #0, and so it spontaneously breaks the electromagnetic
to bosonic quasiparticles, whilg=(2n+ 1) describes fer- U(1) gauge group. The scale of the parametes of order
mionic quasiparticles. Appendix A briefly reviews our con- of the scale of the symmetry-breaking expectation value.
ventions concerning this statistics figld. Since the quanta o) are the Goldstone bosons for the

(3) Relativistic form.We use relativistic notation in Eq. assumed symmetry breaking, is guaranteed to be in the
(2) in order to most cleanly illustrate the logic of the argu- low-energy theory. Indee@ would be responsible for the
ment. This proves to be convenient because the relativistiong-range interactions experienced between vorticee, if
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were zero. Furthermore, its couplings ta+A), are dic- M. . mN,.
tated by gauge invariance. Finally, because it is a Goldstone L£,=> SYaYau~ —g Yabu|0X=Ya(), ()
variable¢ is guaranteed by Goldstone’s theorem to decouple a ¢
at low energiegmodulo the usual Coleman-Mermin-Wagner whereN, denotes the vorticityor winding number of each
caveaty thereby justifying its semiclassical treatment usingvortex. The coupling term betweerf andb,, falls directly
a derivative expansiof?. The ellipses in Eq(2) represent all oyt of the duality transformation, and so is quite generally
of the other effective interactions obtained when all highefknown. It should be noticed that although the kinetic term for
degrees of freedom are integrated out. Since these all involv% does not itself follow directly by dualizing Eq2), its
inverse powers of the higher-energy scales, such as the ordgjym, is fixed quite generally from symmetry argumetfs.
parameter scale, they are irre[evant for the present purpose$,is is because thg’’s may themselves be thought of as
compared to' thQSe epr'|C|tIy displayed. . Goldstone bosons for the breaking of translation invariance,
In the derivation of Kivelson-Lee-Zhaifg(KLZ) this or- \jhich is here broken by the positions of the vortices them-
der parameter was the bosonic field that described the eleggy a5 |n general there may also be other interactions to
trons, but for the present purposes it could equally well be & ,,51ement Eq(5), that describe the interactions of the vor-

bilinear of fermion fields, or something still more compli- tices with other degrees of freedom, such as disorder.
cated. All we need assume is that the order parameter spon- (4) A b, kinetic term of the form ’
)23

taneously breaks electromagnetic gauge invariance, and that
its boundary conditions at spatial infinity incorporate the

winding corresponding to vortex numbisl, . — fbv(fb)MV,
4in "
B. A dual description of the vortices with fﬁvzaﬂbv—avbw is also produced when performing

the dualization, but is not written in Ed4). It has been

In order to better display the particle-vortex duality, it is ropped since it is inversely proportional ko which is one
convenient to use the dual description of the vortex degree% pp Y Prop

of freedom?’~2*We here implement this duality transforma- Of the high-energy scales whose inverses we are ignoring in
tion by recognizing that it is a special case of a generawifh I(;V\;aerrrl]ergryo, :Srgg;wv;?\tlglfe ngth “n;étf'#lyt :gtil)d(viﬁr:rzete
dualization algorithr? (which also has applications to f ndE pr pth field tr(unv th f“]: ndA ) which
bosonization in one and two dimensidhsand is derived in ' ~” a pv are the fieid strengins e, a u) ¢

detall for the present system in Appendix @Ve repeat the was among the ellipses appearing n E2). (Alternatively,
derivation in a second-quantized format in Appendix D, us_both such terms may be absorbed into the general response

ing the same model—the nonrelativistic Abelian Higgsfuncnon’ which is obtained Wh_eak andy, are integrated
model supplemented with Chern Simons couplings—used b§ul: @ we are shortly to describe.

KLZ.) (5) With respect to equivalence, it is to be emphasized
The result, when applied to the quasiparticle/vortex acthat E_q.(4) IS just a change of varlgbles of E@’ and so
tion, Eq.(2), is describes precisely the same physics. In particular, both ex-

pressions reproduce precisely the same electromagnetic re-
sponse once all degrees of freedom exceptAprare inte-

B T v grated out:
£eﬁ: o EEM a,u&)\av_ et bM&)\(av+Ay)
T Ly(Eat A L (yb)+ (@ eiF(A):f [da, (0] [dgl':(t)]exr{if Ll £24)
The quantities in this equation are defined as follows. =f [da,(x)][db,()]]] [dys(t)]
a

(1) The fieldb,, is the new(gauge potentialfield, which
is the dual representation of the Goldstone field |t carries
all of the information about the long-range interactions xex;{if d3x Zeﬁ(y,a,b,A)}. (6)
amongst the vortices.

(2) The variablesy4(t) label the positions of the centers Although we present our results for real time and at zero
of the vortices and antivortices defined, for instance, as theemperature, our duality relations can be derived equally well
positions of the zeros of the underlying order parametefn imaginary time at nonzero temperature.
whose phase wag. As is seen in Appendix C, these posi-
tions naturally arise as variables during the duality transfor-

. . . Ill. PARTICLE-VORTEX DUALITY
mation once one takes into account the boundary conditions

satisfied by¢ in the presence of vortices. The importance of EqY3), (4), and(5) is that they dis-
(3) The vortex Lagrangiaif,(y,b) describes the dynam- play the quasiparticle and vortex degrees of freedom in a
ics of the vortices and their couplings to the fiddg. Al- way that emphasizes the similarity of the particles and vor-

though this action can be complicated, reflecting the potentices. For instance, if other interactions are negligible, so the
tially complicated dynamics of vortices in the material of particle and vortex dynamics is given by Eg8) and (5),
interest, it must have at least the following two terms: and in the absence of the Chern-Simons term invohing
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Eq. (4) has symmetry with respect to the interchangesproach, where all terms involving higher powers of fields are
&—yh, andb,—~a,+A,, so long as the quasi-particle irrelevant(in the RG senseand so may be neglected within
masses and charges are also interchangge:27N,/q,  the very-low-energy effective theory. This is true in the
andm—M. The same is also true if, and £, are more present instance so long as anomalous dimensions are small,
complicated, provided that the additional complications treag0 that relevance may be judged purely using naive dimen-
particles and vortices democratically, by contributing termssional analysis. It is here that we implicitly assume the qua-
of the same form to botlf, and L, . siparticles and vortices to be weakly coupled to other degrees
We may now be more precise as to what is meant by duadf freedom, although this does not also imply weak coupling
systems. Given a two-dimensional system whose EM refor the underlying electrons. In any case, we later provide an
sponse is governed byquasiparticleghaving massn, etc) alternative derivation of a subset of our results which does
and N vortices (having massM, etc), we define the dual to not rely on the quadratic approximation of E¢®). and(10).
be the system havindyl quasiparticlegwith massM, etc) We believe that our treatment of the quasiparticles purely
andn vortices(of massm, etc). The cases of real interest for Within an effective-theory framework represents an impor-
the applications which follow are the cases involving par-tant conceptual difference between the arguments formulated
ticles only or vortices onlyn=0 andN=0. here and those presented in the spirit of KLZ, expounded in
Appendix D. They differ because in the KLZ framework the
bosonic field whose phase describes the vortices is taken to

) , ) be a direct description of the underlying electrons, rather
We now wish to determine how the electromagnetic reyhgn a low-energy effective field. As a result a weak-

sponse of dual systems are related to one another. To do Sgypling mean-field analysis for the KLZ field is more di-

imagine integrating out the quasiparticles and vortices byectly tied to the strength of the couplings of the underlying
performing the path integral over their positiogg, andy? . electrons.

If we are only interested in the linear response, we need not Before quoting the result obtained in this way for the EM
actually evaluate these integrals, but may parametrize themgsponse, it is worth first defining some notation. The polar-
in terms of response function®*” and V*”, as follows. jzation tensor is usually taken to have the standard rotation-
That is, if we define ally invariant and gauge-invariant but nonrelativistic form,

e n= [ 1] [dgf“)]ex‘{if ng‘P(f’“A)}' P(A)= 5 [ @ Ly x B OB (X)
™

Expressions for the EM response

—ma(X—=X")B(X)B(X")
e”"“”=f l;[ [dyg(t)]exr{if d3xﬁv(y,b)}, ® — ma(x—X) ML () I,AX)],  (12)

defining the electromagnetic form factors; ,7,, and .
In what follows our main interest is iar; and 3, which
1 control the conductivitiesr,, anda,, . Because of this, and
Yp(@)=— Ef d*x d®’a,(x)P*"(x—x")a,(x'), (9  because of the greater simplicity of the resulting formulas,
we specialize instead to the relativistic version of EtR),
which we write in momentum space as

then for linear response it suffices to take

1
Yo(b)=— Ef d® d®'b,,(X)V#*(x—x")b,(x"), (10)
47 =TI;(p?) A#+T15(p?) I*7, (13
where P#"(x—x") and V#"(x—x") define the particle and
vortex response functions. Notice that for dual systems w
expectP#’=V*" andV**=P** where the tilde denotes the
result evaluated in the dual system.

gvhereA“V andJ*” are defined by\#,= 8“—p*p,/p? and
Jrr=ierrvp, [\/p?. Because the form factors of Eqdl2)
and (13) are related (in momentum spage by II;
a ; . =(p/h)%m = (plt)?m, andll;= \p?/#? 73, the relativistic
If Egs. (7)—(10) are used in Eq(4), then the remaining form is sufficient to follow how the quantities; and 5

integrals over, andb,, are Gaussian and so may be evaIu—transform under duality transformatiorislor nerally. re-
ated explicitly to obtain the electromagnetic response func- ality transtormationsiore generaily, re
tion, defined by sults _for the generic case,+ o, are easily obtained using
' the trick described in Appendix B.
1 The great utility of the relativistic expression, E@.3),
I'A)y=-— Ef d3x d3x’AM(x)H’”(x—x’)Ay(x’). follows because the tensors*, and J*” satisfy the identi-
(11) ties: A*, A%, =A*,, A* JI=J**NY ,=I*" and J**],,
=—A*#,. Since the tensord andJ are related to one an-
One might be queasy about the consistency of first expandther in the same way as are the bases, lianflcomplex
ing to quadratic order i, and then integrating, over all  numbers, tensor manipulations with*” can be greatly sim-
values, and this queasiness would be justified if the exparplified by reexpressing it as a complex variable:
sion to quadratic order was done becabigés small. Such a
calculation really presumes an effective-field theory ap- =11, +ill;. (14
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With this notation, and defining similar expressions for theto relatell to P for the original system, and using Ed.8) to
complex quantitie® andV in terms of the corresponding (e|ate Tl to V=P for the dual system. Eliminating from

form factorsPy, P, V,, andVs, we find the result of inte-  these two expressions gives the desired relation
grating the fieldsa, andb,, out of Eq.(4) to be

_ i iVp2(ml 6)—II
2+VP === , 19
H:i\/:pz(% _2+V[£+_\/:2( or (15) p?  p2+iVpi(wl 6+ 6l m)II 19
p IVp(m

directly expressing the dual response functibrin terms of
This is the general relation between the EM response and th@at of the original system.
partiCIe and vortex responje functions. To avoid EXp"Cit fac- The physica| interpretation of expressi(ﬂg) is obtained
tors of # we have definegp=p/# in this expression(The by using the connection between the snillimit of the
details of these integrations are given in Appendix Ehis  form factors,II; and Il;, and measurable electromagnetic
expression is the main result on which our later conclusiongjuantities. There are two main cases to consider, described in

are based. the following.
We now record the special cases of this expression that
will be used in the following sections. A. Superconductors and insulators

Addition of2 7 flux. Sinced represents the statistics of the
quasiparticles, the choicé=2k, with k an integer, can
have no physical effectdl( 6+ 2k#)~1II(6). Inspection of
Eq. (15) shows the implications of this statement for the EM
response:

If there is a gap at the relevant part of the spectrum, then
one expects the EM response function to be analytic in mo-
mentum space. This implies the functiols andIl; have
the following smallp? form:

1 1 1 2Ki I, =A;+Byp°+- - -, H3=\/?(A3+--~). (20)
1(6) T(6+2km) TI(6) N=3 (16)

(The \/’? here does not conflict withl#” being analytic as
p*— 0 because it cancels a similar factor in the definition of
which reproduces a well-known restit® the tensorJ*”.) The constanf\; is nonzero only for super-
Quasiparticles onlyShould there be no vortices partici- conductors, withA, inversely related to the medium’s elec-
pating in the EM response at dlivhich, because of the du- tromagnetic penetration depth.Af,=0 then the material is
ality transformation from¢ to b,, is equivalent toV an insulator andB is related to the dielectric response of the

—o0), then Eq.(15) simplifies to medium. The constamt; corresponds to a Hall conductivity
for the system, which may vanish but need not. There are
. T P two important subcases to consider.
Ve T 7
P+i \/ﬁ(’ﬂ/ 0) 1. Superconductors

which reduces tdI=P when #—0, corresponding to bose If A; is nonzero, then the material is a superconductor and
statistics for the charge-carrying quasiparticles. The correA;=m>= 1/ is the corresponding photon squared mass, or
sponding result for fermionic charge carriers is similarly inverse penetration length. In this case there is a gap because

found by choosing)= =* 7. of the Anderson-Higgs mechanism.
Vortices only.In the event that only vortices are involved  Inserting assumptiort20) for II (with A;#0) into the
in charge transport, expressi¢tb) reduces to duality expression, Eq19), impliesi also has an expansion
- of the form(20), with
p
n=—F7- (18 A, =0
V—iVp2(oim) e
. — . ~ 1
This also reduces to the usual resililt=p?/V, for bosonic Ag=——, (22)
charge carriers, for whicld—0. Olm+ml 6
IV. SOME CONSEQUENCES OF PARTICLE-VORTEX 'él:—l .
DUALITY [1+(0/7)%]?A,

In this section we derive the implications of particle- We see that the system dual to a superconductor is an insu-
vortex duality for the electromagnetic response of two-lator, whose Hall conductivity and dielectric function are re-
dimensional systems. We are interested in the situatiotated to the superconducting penetration length and the sta-
where quasiparticles only or vortices only are responsible fotistics of its quasiparticle charge carriers.
charge transport, in which case a very simple expression may Bosonic charge carriersA particularly interesting special
be derived for the action of particle-vortex duality on the EM instance of expressiof2l) is the case of bosonic charge
response functiobl. This may be derived by using E(L7) carriers(such as Cooper pajrsfor which 6=0. In this case
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we find as dual a dielectric with vanishing Hall conductivity which is the transformation that has been recogriz¢ad

and dielectric function given by, =1/A;. This is as ex- Imply the experimentally observed duality transformations

pected on physical grountisince the condensation of vorti- Pxx— Llpxx In the transitions between the,,=1 Hall pla-

ces in the dual system should produce an insulator. Notickeaus and the Hall insulator.

that Eq.(21) makes specific predictions as to the dependence Duality relations between more complicated Hall plateaus

of the dual dielectric functiorB;, as a function of tempera- may b.e similarly ob.talned by starting from the appropriate

ture since it is related to the temperature dependence of tHgyonic charge carriers, but the same result may.be obtained

penetration length in the superconducting system. more simply by combining Eq25) with transformation(16)
Fermionic charge carrierslf we instead choosé= 1, as (which expresses the absence of content of a shift of the

is appropriate for fermion charge carriers, we find the duaPtaistics parameter by specialized to conductors:

system is a dielectric, but has Hall conductivity, = 3. o

(26)

g~ .
2. Insulators 1-20

If A;=0 then the material is an insulator and the gapTransformationg25) and (26) together generate the group,
exists because of the absence of low-energy charged quadip(2), which is known to relate all of the allowetbdd-
particles that carry current. In this caBg is related to the denominator Hall states to one another, and so produces the
dielectric response of the medium and the duality transforanyonic quantum Hall duality relations from the simpler fer-

mation produces the following smai? EM response: mionic one we have just considered.
~ Boson charge carriersSpecializing Eq(24) to the case
A;=0, 6=0 also gives a simple relation between the dual conduc-
tivities:
= b ~ 1
31— (0lm+ 7l 6)A, o= 27)
B _ B, (7! 6)? This transformation, together with E@6), also generates an
! [1— (0l 7+l 9)A3]2. infinite group, denoted 4(2), which relates dual conductors

) ) ) ) with bosonic charge carriefsuch as superconducting films
We see that the image of an insulator is another insulatofy; josephson junction array¥:

although with different Hall conductivity and dielectric func-
tion. C. Duality and flow
B. Conductors To this point we have found how the EM response of dual
) _ 5 systems are related to one another. We wish now to under-
For conductors the form factglr"!l is not analytic ag stand how the duality transformations change as external pa-
—0. The limiting form for smallp~ is related to the conduc- yameters such as magnetic field and temperature are continu-

tivities by ously varied. The question of how systems change as
— > external variables are varied is particularly sharp for conduc-
1 (p )—><Txx\/a_+ Tty tors, since in this case both the original system and its dual
o are of the same typ@.e., they are both conductgrdf one
I13(p%) — oy, \/?-i— e (23) imagines a system tracing out a curve in the conductivity

o plane asT andB are varied, the position of the dual system
and so the complex quantitll is related to the complex 4ces out another curve in the same plane. We wish to argue
conductivity, o= oyy+ioyy, by II=i \/?a*. that the resulting flow commutes with the action of the two

In this case the duality transformation, Efj9), preserves duality transformations, Eq$25) and(26) [or Egs.(26) and
the momentum dependence of the form factors, impljihg (27)], in the conductivity plane. _ _
=i\/?77*, with the dual conductivities given by the holo- The magnetic field strength and other MICrOSCOpIC prop-
morphic relation: erties enter into the above arguments only by changing the
values that are taken by the masses and other parameters
_ lo—o appearing in the effective Lagrangian, E¢®.and(4). Tem-
o= 1= (Oln+ alO)o’ (24) perature partly appears in the same way, but also appears in
the integration over the low-energy degrees of freedsmch
Fermion charge carrierslf we assume the original charge as by rotating to Euclidean signature and imposing periodic-
carriers to be fermions, as would be appropriate for the inteity in imaginary timg. Now comes the main point. All of the
ger quantum Hall systems, then H@4) reduces to the ex- consequences of duality follow from the statemeRts”

pression: =V~" andV#”=P#*, which relate the response functions of
dual systemsor the analogous statement expressing the ad-

pi 1-o (25) dition of 27 statistics flux. And these statements are true for
1-2¢’ all values of magnetic field, temperature, etc., so long as
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these quantities do not introduce differences in form between On the other hand, the response function of the system
the particle and vortex Lagrangians, andZ, . related by particle-vortex duality to the original system in-
Suppose we now consider a system of quasiparticlesjolves integrating the dual Lagrangian
S(Ty,Bg), chosen for some specific temperatufg and
magnetic fieldBy, involving N particles of massn and
chargeq. Next, suppose tha8, and T, are chosen to pro-
duce the dual systers, ha\./lnglil‘ von[t|ces~, also with ma§$1 + Zany) T ()b, 29
and vortex charge. That is,S(Ty,Bg)=S(Ty,Bg). Notice
that the existence of suchia andB, is plausible given that where we have instead chosen to represent fermionic statis-
it involves the solution of two equations for two unknowns. tics by choosing= + 7. In order to relatd’(A) to I'(A) we
For instance, for particle-vortex interchange the twoexplicitly perform the Gaussian integration owvey in Eq.
equations are M(To,Bo)=m(Ty,By) and Q(T,,B,) (29 and shiftb,—b,+A,, in the result to get
=q(Ty,Bp), whereM and Q are the functions off and B, 1 1
which define the vortex mass and charge. L(y,b,A)=+ = €*"™b 3 b, — = "™ A 3, A\ + Liin(¥)
Now imagine changing the magnetic field and/or tempera- 2 . 2 .
ture, say toB'=By(1+ 8g) andT' =Ty(1+ &7). The ques- ~
tion we ask is this: if we change the dual system by the same +HMY)(b+A),. (30)

am(?unt, toB _BQ(1+ og) and T -—T0(1+ 5T.), |s~the~ re- To the extent thaiZy(y) and L(£) [and T4(y) and
su~lt|ng system still dual to the first? That is, &T',B") j#(¢)] have the same form, Eq30) differs from Eg.(28)
=S(T’,B')? The answer is "yes,” because the questiononly by the term—3€*"*A,d,A, , which does not depend at
asked of both systems is the same: what is the change ill on the integration variables. Performing the remaining
response of a system dfobjects of massn and charge) as integrations therefore relaté(A) to T'(A) by

T andB are varied? The only difference between the system

and its dual is that foBthe N objects are particles and f& ~ 1( s o

they are vortices. F(A)=T(A)- EJ dxe"" AL A, (31)
Arguing in the same way for the attachment af 2tatis-

tics flux, we see that the entire duality group must commuteévhich is the main result of this section.

with the flow through the conductivity plane 8sand T are Once specialized to the linear-response regime, (&4).

varied. For fermions this implies &,(2)-invariant flow, implies the relation

while for bosond ,(2)-invariant flow is implied.

- 1
L(y,a,b,A)=— Ee“””aMa,,aA— e*"b,d,(a+A),

#(p)=TI#"(p) +i e\ p, , (32)

D. Beyond linear response ~ . . . .
or o,,=0oy,+1. This agrees exactly with what is predicted

In this section we present a slightly different version of for fermions by a particle-vortex transformation followed by
part of the previous section’s derivation, whose aim is tog 2 statistics shift, Eq(25) followed by Eq.(26).
express the action of particle-vortex duality on the electro-

magnetic response without relying on the linear-response ap-
proximation, Egs.(9) and (10). The argument we present
assumes fermion charge carriers, since it relies on using a In this section we state some of the observable predictions
statistics parametef= =+ 7. Besides clarifying our deriva- that follow from the action of particle-vortex duality on the
tion, we present this separate line of argument because wshysical systems. We specialize in this section to the predic-
believe it will ultimately prove fruitful in its own right by tions for two kinds of conducting systems: those with fermi-
explaining the experimental evideriéeor current-voltage onic charge carriergor their images under repeated duality
duality seen in quantum Hall systems beyond the lineatransformations—corresponding to quantum Hall systems—
Ohm’s law approximation. and those with bosonic charge carrigier their duality
We continue with the findings of Sec. Il just before mak- images—such as those for superconducting thin films and/or
ing the linear-response approximations, E(. and (10).  Josephson junction arrays.
The response functioh(A) for the system of charged par-
ticles is given by functionally integrating the fields, and
&l weighted by the Lagrangian density,

V. APPLICATIONS TO CONDUCTORS

A. Fermions: The quantum Hall effect

We start with quantum Hall systems, for which the results
1 we derive are not new, having been derived from the as-
L(§,a,A)=+ Ee“”"aﬂa,,aﬁr/jkm(gﬁjf‘(g)(a+A)M, sumption of duality-invariant flows in Ref. 15. We include
(28) this case anyway for three reasons. First, this paper stren_gth-
ens the theoretical foundation of the assumption of duality-
where we have chosefi=— = and we need not be con- invariant flow, particularly away from the systems’ critical
cerned about the detailed form of the particle kinetic termpoints. Second, the experimental success of these predictions
Liin(&), or current,j*(&). establishes the existence of systems that are clean enough for
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o, ' ' ' ' ' ' ' ' alternative definition shows that when acting on the real axis,
ool i o=c*, it takes rational numbers to themselves, with odd-
denominator fractions going to odd-denominator fractions,
osr ] and even-denominator fractions mapping to even-
07k i denominator fractions. It is tantalizing that the same group,
I'o(2), plays a central role in the hierarchical structure of

osr 1 N=2 supersymmetric Yang-Mills theorié.

05 1

2. Predictions

041 q

The following consequences follow from the condition
that a flow in theo plane commutes with the grodpy(2):

(1) Universal critical point® are predicted for the flow at
any point,o,i;, which is mapped to itself under any mem-
ber of I'g(2), y(o¢it)=0git,» for which the denominator
c o+d is neither zero or infinité!'31The complete set of

5, S such points occurs ar.;=(1+i) and its images under
I'o(2). This prediction is borne out experimentaffysince
FIG. 1. Flow lines forl'4(2)-invariant flow. there is a one-to-one correspondence between the experimen-

tal critical points of the flow and the fixed points of the
our quasiparticle/vortex effective theory to apply. Third, wegroup. No experimental evidence exists for critical points not
may directly adapt many of the quantum Hall results to thecorresponding to fixed points of the group, although these
bosonic case. could exist in principle.
(2) Although the symmetry does not predict the critical
1. Some group theoretical facts exponents at the fixed point$these exponents must be the

H H H 11,13,16
In previous sections we have found the action of particleSame for all fixed points which are related by(2).”~
vortex duality and 2 statistics addition to both act on the This remarkable equivalence of critical exponents at differ-

complex conductivity in a fractional linear way, with integer €Nt fixed points is known as superuniversality, and was ar-
coefficients. That is, we have found the transformations to bgued for on more model-dependent grounds in Ref. 40. His-

a subgroup of the group PSL®, defined by torically, the experimental success of this “predictidfr*
stimulated the search for an underlying symmetry group.
ac+b (3) Exact flow lines in thes plane can be derived from
~Tord’ (33)  I'y(2) invariance plus invariance under particle-hole symme-

. . o try: o—1—c*. The existence and shape of these flow lines
with a, b, ¢, andd integers satisfyingd—bc=1. Any ele-  depend only on these symmetries and not on any other de-
ment of this group can be obtained as products of powers ails of the flow’s3 function!® Figure 1 shows some of the

the following two generators: flow lines predicted in this way, all of which are semicircles
1 or vertical lines in thes plane. The arrows indicate the di-

S(o)=—=, T(o)=o+1. (34)  rection of flow to the infraredwhose direction does not fol-

o low purely on symmetry groungisThis very general deriva-

We have found the subgroup of this group that is relevantion of the “semicircle law"—which had been earlier
to quantum Hall systems to be generated by predicted on more model-dependent grodfdss spectacu-
larly exhibited by experimental systerffs.

(o 4) Flow in the infrared is towards the real axis, terminat-
o— ———=STY0), @

1-20 ing on the real axis at attractive fixed points at odd-
denominator fractions. Even-denominator fractions similarly
1-o form repulsive fixed points of the flow. One finds in this way
UHE=TSTZS(U), (39  a robust explanation of the existence of odd denominator
Hall plateaus.
or, equivalently, byST?S and T. Any point in the upper (5) Since all allowed transitions between Hall plateaus

complexo plane can be reached from a fundamental regiongcorrespond to semicircles that may be obtained by the action
which we take to be the vertical strip betweer-0 ando  of I'g(2) from the basic semicircle connecting=0 to o
=1, with the interior of the disk with radius; centered at =1, one finds a selection rule that expresses which plateaus
o=1% removed. As we shall shortly see, the boundaries ofmay be obtained from which by varying external parameters
this fundamental domain are quite generally flow lines forsuch as magnetic field and temperattfr@he selection rule
I'p(2)-invariant flow, and so may be seen in Fig. 1. obtained in this way states that a fractim/q, can be

It turns out that the subgroup obtained from these twareached by a quantum Hall transition from a fractjor/q,,
generators, denoteldy(2), is equivalent to that defined by with g, andq, both odd integers, only ifp10,—p,g:|=1.
requiring the coefficient in Eq. (33) to be evert®'*3This  This agrees precisely with all the observed Hall sequences.
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(6) There is an element dfy(2) that maps each of the 2
flow lines to itself, with its ends reversed. For instance, the ?Xg_
elementy(o)=(o—1)/(20—1), which we here identify as '
the expression of particle-vortex duality for fermions, does 1.6} 1
so for the semicircle connecting=0 to o=1. When spe- al
cialized to transitions from Laughlin plateaus to the Hall \
insulator this symmetry element is precisely the experimen- 1.2} .
tally observed® duality p,,— Lip,x With py, fixed®

We regard the natural interpretation of the great experi-
mental success of these predictions to be that the electromago0.8f
netic response of these systems is dominated by quasiparti . .|
cles and vortices. Furthermore the systems are sufficiently ~
clean to justify the neglect of those particle and vortex inter- 0.41
actions that destroy the underlying particle-vortex duality, as
described here. Finally, the relevant quasiparticles are in the
fermionic equivalence class, in the sense that they are eithel
fermions, or are obtainable from fermions by the action of
I'y(2).

0.2

™ is al id f f Hall t f FIG. 2. Flow lines forl" ,(2)-invariant flow. Although this looks
hi herf? IS _a_sol Somde e\.”. ence or ahew _a Syls ea}: Ol§/ery much like Fig. 1, careful examination shows different posi-
which the critical conductivity is not at the universal valties tions for the fixed points and for the directions of flow along the

and for direct plateau-insulator transitions that do not corregjeg.
spond to semicircles as predicted h&end an understand-
ing of why patrticle-vortex duality fails here would be very 1. More group theoretical facts

instructive. Since these typically involve samples with the .. posonic charge carrietand those related to these by

most disorder, one possibility is that Landau-level mixing is,j5ity) the action of particle-vortex duality andr2statistics
not negligible in _these systerﬁ%. We be_lleve this to be an addition is generated by the following two PSLZL2,ele-
instance where interactions with the disorder ruin part'de'ments:
vortex duality, and so destroy the underlying symmetry of
the flow. o 5

Another potential difficulty often raised in connection 0= T, ST S0),
with this picture is the observed failure of scaling at very low
temperatures in some samgféss one passes through the 1
critical regime. We put these experiments aside, because al- o= S(o), (36)
though these are potentially very telling observations, since
scaling is an inevitable consequence of a vanisignignc-  or, equivalently, S and T2,
tion, it is not yet clear what their proper interpretation is, and  This group is called’,(2), and isequivalent to the con-
indeed there are other experiments that appear to suppddition thata andd are both odd antd andc are both even, or
scaling?® See, however, Ref. 17 for an alternative interpre-vice versa, in the fractional linear transformatiorg o
tation of the behavior near the critical points. +b)/(c c+d). Since bosons may be obtained from fermi-

There is, nevertheless, content in the above symmetry aens by shifting their statistics b 6= 7, this group may be
guments, since these imply an entire suite of predictions thaibtained from the quantum Hall groubg(2), by conjugat-
must all hold together if particle-vortex duality is valid. So ing by STSo)=0/(1—0c). Concretely:geI',(2) implies
we predict that the above consequenced gf2)-invariant g=STSh(ST9 2, for someheT'4(2). [The proof of this
flow should come as a package, with the validity of somestatement is easiest to see if the identi®T[3=1 is used]

implying the validity of the others. The simplest way to extract the predictions of the group
o I'y(2) is therefore to derive them from those Bf(2) by
B. Bosons: Superconducting films conjugating withSTS [Or, sinceSis in I'y(2) anyway, we

A fascinating consequence of the generality of thecan equally well getl's(2) by conjugatingl’o(2) with
particle-vortex duality arguments we present here is that they S(0) =1~ 1/ rather tharSTS] In particular, it is conve-
predict different, but equally striking, phenomena for thehientto choose the fundamental region to be the vertical strip
electromagnetic response of other clean two-dimensiondletweens=0 ando=—1, with the interior of the disk with
systems. In this section we describe these predictions fddius=3 centered atr=—3 removed, the boundaries of
systems whose charge-carrying quasiparticles have Bose st4hich again appear as particular flow lines in Fig. 2.
tistics (or the image of Bose statistics under a group that we
here specify. These predictions should have practical appli-
cations to superconducting thin films and Josephson junction In this way we obtain the following consequences of the
arrays, and some of them have been anticigetédor the  commuting ofl" ,(2) with the flow in theo plane, which are
metal-insulating and superconductor-insulator transitions othe direct analogs of those described above for quantum Hall
these systems. systems.

2. Predictions
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(1) Universal critical points are predicted for the flow at for particle-vortex duality, although its testing must wait un-
the fixed points ofl",(2), which lie ato,;;=1 and its im-  til these systems can be reliably manufactured in the quan-
ages, bd+ac+i)/(c?+d?), underI' ,(2). TheOhmic con-  tum regime. In this way particle-vortex duality might ulti-
ductivity is always 1/(odd integer) at these critical pointsmately provide a connection between quantum Hall systems
while the Hall conductivity is even/oddThese statements andoy,— /o, as seen in metal-insulator transitiotis.
are for bosonic charge carriers with the same electric charge As in the case of quantum Hall systems, these predictions
as an electron—these becore,;;=iq? and its images if require very few assumptions beyond the necessity to be in
the bosonic charge carriers have changén particular, the the quantum regime. First, the electromagnetic response
caseq= *+2 applies if the bosons are Cooper pairs, such agnust be dominated by quasiparticles and vortices, with the
considered in Ref. 1. guasiparticles being bosons or related to thesel'h{2)

(2) The critical exponents at all fixed points related by transformations. Second, the systems must be sufficiently
I'y(2) must all be the same. In this way the results of theclean to ensure the absence of interactions that distinguish
scaling theory of Ref. 1 for the fixed pointat,;;=i may be the quasiparticles from vortices and so ruin their similarity.
extended to all of the other fixed points that are predicted té&ubject to these conditions all of the above consequences
exist in the presence of magnetic fields. follow as a package from the quasiparticle-vortex duality

(3) Exact flow lines in ther plane are immediate conse- symmetry of the flow in the conductivity plane.
guences of " 4(2) invariance and particle-hole symmetry, in-
dependent of th_e dynamical details _of the rostunction. VI. CONCLUSIONS AND OUTLOOK
These are the images of the flow lines of Fig. 1 under the
conjugation bySTS The results are again semicircles or We have argued that a broad class of dual relationships
vertical lines in theo plane, implying a new semicircle law arise in two-dimensional systems for which the EM response
for these bosonic system&he semi-circle intersecting the is governed by particles and vortices whose properties are
critical point ato=i was anticipated in Ref. L Figure 2  similar (perhaps because they are weakly interagtitfgr
shows the flow lines that are predicted by the symmetry, wittsystems having fermions as the partioles those related to
the flow directions given which follow from those of Fig. 1 fermions by the dualitythe particle-vortex duality implies
(which successfully describe quantum Hall systeriotice  the duality group is a level-two subgroup of PSI{Rcalled
that the resulting flow on the imaginary axis agrees with thd’o(2). We argue that this duality has been observed, since
interpretation ofe=i as a metal-insulator transition, with this group has been previously identified as explaining many
o, increasing or decreasing into the infrared on oppositedf the observed properties of the EM response in quantum
sides of the transition. Hall systems.

(4) More generally, for nonzero magnetic fields the flow The generality of our arguments lead us to propose a simi-
in the infrared is towards the real axis, terminating on thelar, but distinct, set of properties for clean two-dimensional
attractive fixed points that are fractions=p/q. The attrac-  systems whose EM response is controlled by bosons as the
tive fixed points of the flow therefore exhibit the fractional particles (or those related to bosons by the dualitfhe
quantum Hall effect, but with fractions for whighq is even ~ group implied in this case is another level-two subgroup of
(as opposed to having odd, as was the case for fermions PSL(2Z) called I' y(2). The observation of these specific
Fractions with oddpbq are repulsive fixed points. In particu- predictions in these systems would be the definitive test of
lar, odd integers are repulsive while even integers are attra®ur ideas.
tive. One might ask whether other duality symmetries apart

(5) There is a selection rule expressing which fractionsfrom those described above might arise in other systems.
may be obtained from which by varying external parameterdviore concretely, there are precisely five level-two subgroups
like magnetic field and temperature. The selection rule obof SL(22Z),'° so one might wonder if other choices for qua-
tained in this way states that fractiops/q, can be obtained siparticle statistics might generate these other three groups
from p,/q, only if (i) p; is odd andq;, is even whilep, is  not yet used? In fact, two of these groups can be ruled out
even andj, is odd(or vice versa with the subscripts 1 and 2 as symmetries acting on the complex conductivity, because
interchangepand (i) |p10,— p.gq| =1. they do not contain the generator corresponding to the addi-

(6) There is an element df ,(2) that maps flow lines to tion of 27 statistics flux. However, because these groups are
themselves, with their ends reversed. For flow along théelated tol'o(2) andI'4(2) by conjugating byg, they can be
imaginary axis the element is simp§(o)=—1/o, or oy, ~ thought of as the action of these latter groups in the complex
—1loy,, Which is again the expression of particle-vortex resistivity, rather than conductivity, plane. The third group,
duality for bosons. I'(2), is contained in the other four, and has been proposed

We are led to predict the above startling properties forelsewhere to play a role for quantum Hall systethis par-
bosonic quantum Hall systems, such as someday might écular when the splitting between electron spins is much
obtained from superconductor-insulator transitions in thinsmaller than the gap between successive Landau &els.
films, or from Josephson-junction array’s>* Unfortunately,
these predictions cannot yet be.tested \(v_ith ordinary super- ACKNOWLEDGMENTS
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: h 6
APPENDIX A: THE STATISTICAL GAUGE FIELD a,(x): = . E ) VS)QD” , (A3)
ii#

In this appendix we review the concept of the statistical _ N .
gauge field This serves not only to remind the reader of thewhere the gradient operator acts on the position ofithe
construction, but also to set up the notation. This Appendixarticle. The new gauge transformed Hamiltonian is then
is based on the review article by Zhafigbut there is a 1
fundamental difference of philosophy here—our second A== > [—iaVD—eA(x)—eay,(x)]?
guantization is second quantization of the effective degrees i
of freedom associated with the pseudoparticles, and not nec-
essarily of the fundamental electrons. +e2> V(x— X])+e2 U(x). (A4)

i<j
1. First-quantized formulation It is stressed that the physics of this new Hamiltonian is
Consider a configuration & charged particles, each with identical to the old one, provide@2= is an integer.

the same charge and massn moving in a two dimensional
plane with position,, . .. Xy and separations; —xI X| 2. Second-quantized formulation
= Allowing for partlcle particle interactionsg?V(x;
—x]) and the possibility of random static impurities giving,
rise to an electric potentidl(r), the Hamiltonian for the
system can be written as

We now reformulate the above first-quantized treatment
in second-quantized form, ignoring spin. Accordingly, define

~ 1
H:f d2x\I’T(x)(ﬁ[—|hV—eA(x)—ea(x)]2
o 2 [(ZIAVE —eA(x)) P +e2 X V(xi—x) 1
' = +eU(x))‘I’(x)+§f d2xd2x’ Sp(x)V(x—x") Sp(x'),
+e2i U(x;), (A1) (A5)
— oyt i ; _
where=1,2 and we use units in which the speed of IightV_Vherep(X)_eqf ()W (x) is the charge density angp=p
c=1. One can include a neutralizing background field if

desired, without changing any of the subsequent analysis sig-
nificantly. The particles here are pseudoparticles whose mass 5o
a(x )_ - ( )

p).
Equation(A3) can be expressed as

—x.\B
26 M (AB)

and charge may depend on the external field, as well as other B | E ,
j#i ri— Xj

parameters like temperature. The electromagnetic potential
A, is that of the residual effective electromagnetic field seefynich in continuum form is
by the pseudoparticles and vortices.

Following Girvin and MacDonal§! a gauge transforma- (XB X' B)
tion to a new Hamiltonian is defined as follows. Lgjf be a,(x) ( )f d?x’ aﬁ
the angle between the vectqr and an arbitrary fixed direc- x'|?
tion, e.g., thex axis, so thatp;; — ¢;; +  if the two particles  Erom this follows
i andj are interchanged. A gauge transformation from the
multiparticle Schrdinger wave functiony(xy, . .. X,) to a

new wave functionj(xy, . .. X,) is defined as follows:

— 5 pX). (A7)

2ho
€V ga,(x) =~ p(X), (A8)

B ) sinceV2In(jx—x’'|) =26 (|x—x'|). The curl ofa is non-
p(Xq, .- -XN):eXp(i— > QDij)lﬂ(Xl, eXN) zero here, despite its original definition as a gradient, be-
i (Az) cause of Aharanov-Bohm type singularities in H&3).
These manifest themselves &gunction singularities in the
for a constanty, as yet arbitrary. Under interchange of any curl of a in the first-quantized theory but are spread into a
two particles;j andj, the phase factor changes &Y. Thus,  smooth distribution on the right hand side of E48) in the
if 6=2km for some integek, the phase factor is unity and second-quantized theory. Equati@8) is a dynamical equa-
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tion of motion for the statistical gauge fietd, , but it is not
yet covariant, as it lackay terms. To include these alloay,
and p to depend on time, then differentiating E&8) and
expressing the result covariantly gives

Sa 2% 6. 2h60
€°“dg(dpa,—daag) = 2P g7 %l (A9)
wherej® is a current. This integrates to
p 2h6
e ((90a5—(93a0)=—?j“. (AlO)

This equation can be obtained, together with E&8), by
treatinga,, as a dynamical field in the action

S= ¢
~ \ane

fdtdzx e““aﬂ&yaﬁf dt d®xa,j*,
(A11)

which is the Chern-Simons action for the statistical gauge

field coupled to a source.

The problem can now be rewritten in path integral form.
Define the original Lagrangian density for the matter fields:

1
Ly=VT(iho,—eA)¥—PT ﬁ(—ihV—eA)z—eu ¥

—% d?x" Sp(X)V(x—x") 8p(x"). (A12)
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So far all manipulations have been exact. Fot 2k,
with integralk, the theory described by EGA16) is identical

to that with no statistical gauge field at all, i.@[A]
=NZ[A], where \ is an irrelevant constant that will be
ignored in the sequel.

APPENDIX B: THE RELATIVISTIC TRICK

We now follow Kivelson, Lee, and Zhahgand integrate
out the matter fields. This cannot be done exactly, of course,
but on general grounds one expects the effective action to be
invariant under local gauge transformations. Firstly ignore
the statistical gauge field and consider the partition function,
Eqg. (A15). Naive power counting arguments then imply that
the most relevant terms, at least in the infrared limit, are

Feff[A]:f dSXdSX,{(%)FiO(X)Wl(X_X,)FiO(X,)
1 ! !
_(E)Flz(x)ﬂ'z(x_x JF1A(X")
(B1)

1
S EPALO XX )AL,

whereF;,=E;, i=1,2, is the electric field an&,=B the
magnetic fieldthe measure hem@®x is shorthand fodt d?x
and Greek indices, and, v, and\ take three values 0, 1,

After introducing the statistical gauge field the new Lagrang-and 2). Note the presence of the nonlocal form facters

ian is

Ly=YTiha—e(Ag+tag) V-

1
XV —(—-iAV—eA—ea)’—eU|¥
2m
1
- EJ d?x’ Sp(x)V(x—x") 8p(x"), (A13)
together with the Chern-Simons Lagrangian
2
— N JTADN
L= —(m) €“"a,d,a, . (A14)

Then the effective action for the gauge figlg is obtained,
in the original formalism, from the path integral

eil“eff[A]:Z[A]: f D\I}TD\P eiS\y[AM,\IITy‘I’], (A]_S)

whereSy, = [dt d?xLy, . On the other hand, after introducing

the statistical gauge field, the partition function is

Z[A]:f DaMD\IfTD\If eiSala ] +iSy[A, +a, Wi W]

= f Da,e'Sal®dz[A+a], (A16)

whereS,= [dtd?*x.,.

a,, andmrs, where the argument—x’ includes time as well
as space.

There is an implicit assumption here that the terms that
are most relevant by naive power counting are also the most
relevant in the full theory, at least in the infrared limit. This
is a very strong assumption, as naive power counting gives
the most relevant operators of the free field theory and we
have here a strongly interacting theory. One of the underly-
ing assumptions of the argument of Kivelson, Lee, and
Zhang is therefore that any anomalous dimensions in the
strongly interacting theory do not change the conclusions of
naive power counting. In fact the forB1) is rather more
general than that—it will be argued below that this is the
most general possible form in a momentum expansion, inde-
pendently of any power counting arguments, provided one
allows the polarizations to depend on the magnitudes of the
effective fieldsE? and B2,

The mathematical manipulations involving E@®1) can
be simplified by writing it in relativistic form using the fol-
lowing trick. We introduce a “metric” on three-dimensional
space-time defined by

-1 0 0
g, (x=x)=[ 0 mi/m, 0 (B2)
0 0 7T1/772

and write
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1
reff[A]=J d3x d3x’[—ZTr1(X—X')
X —de'(g)g'“”g”FM,,(X)FpT(X’)
1
_EE#MA#(X)Wg(x—x’)avAx(x’) , (B3

where all metric components are functions>of x’. Note
that the metric does not appear in the Chern-Simons term
all—as is well known it is independent of the metric.

The calculation can be simplified by settimg =7, and
working in the relativistic formalism with the three-
dimensional Minkowski metric,7,,=diag(—1,1,1), and
relativistic action

Feff[A]=f d®x dsx’[ _(‘1_1) T (X=X (X)F 4, (X")
1
- 5GMVAA,L(X)Ws(X—X')ﬁvAA(X’)], (B4)

whereF#"= P ""F .. Provided everything is kept cova-

riant the nonrelativistic expressions can be recovered by re- i , X
| formation from Eq(2) to Eq.(4), which we do following the

instating the metridB2) at the end. From now on we shal
use the simpler relativistic notation of E@4).
In relativistic notation we can argue that E§4) actually
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1
Fet Al= —j dsqiﬂl(p)Au(—p)A“”Av(p)

1
+ 5 1(P)I*"AL(=PIALP) |, (B6)

where A*,=6" —p*p,Ip? J*'=ie"'p, [\p% 11
=m,p?/h?, andIl;=m3\/p?/%. This form is useful, since
é}“a/\%:/\“w A# JOT=JFCNY,=J*, and J*4],,
=—A*,, which makes Gaussian integrals particularly
simple. Note thatl is a Hermitian matrix for spacelike mo-
menta, but anti-Hermitian for timelike momenta—however,
Jp?J is always Hermitian, which is all that is necessary to
ensure that the momentum space expression is always Her-
mitian.

It is stressed that E¢B6) is the most general form of the
effective action in the long-wavelength limit, even for strong
effective fields, providedl, andIl; are allowed to depend
on |E|? and|BJ>2.

APPENDIX C: THE DUALITY PRESCRIPTION
The purpose of this appendix is to derive the duality trans-

general duality prescriptiotf. Our starting point is an ex-
tended Lagrangian that is obtained by couplihgo a new

encodes higher-order terms too. In strong fields one woul@auge field.A, , which is constrained to be pure gauge:

expect terms such aE“,,F”pFF’AFA and other Lorentz-

w

invariant powers to be present in the effective action even in

the low-momentum regime—though terms IiItSéF“”FW
are definitely ignored.
F#,F” FPy\F, can be absorbed into E¢B4) by allowing
the polarizations to depend on the Lorentz scégpF*".

This is because we can always exchange the antisymmetric

tensorF ,, for the vectorF#= €""’F,,, and the only way to
make a Lorentz scalar from products Bft- - -F#n is to
contract the indices in paifandn must be eve)) so all such
terms can simply be incorporated into the statement hat
depends analytically on the Lorentz scaffdr= F*'F,, and
then Taylor expandingr; in powers ofF2. In general, this

™ Av
55 € a0\a,+ Ly(€,atA)

‘Cext: - 20

In three dimensions terms like

K
—sloub—as@,+A+ AP

+e*"™b,d, A\t (Cy
where the fieldb,, is a Lagrange-multiplier field that is in-
troduced to enforce the vanishing of the field strength,
d,A,—d,A,.

That this extended action is precisely equivalent to the
original action may be seen by first performing the integra-

would necessitate the introduction of multipoint interactionstion overb,,, which produces a functionaf function that

with n points, Xy, ... X5, but in the long-wavelength limit

enforces the constraiet***3,.4, = 0. This, together with the

two point interactions suffice to extract conductivities. Angauge fixing condition, implies that the integration ovéy

exactly similar statement applies to;. We shall continue

is equivalent to settingd,, =0 everywhere in the path inte-

with the form (B4), bearing in mind that when the external gral, which reduces EqC1) to Eq.(2), as claimed.
fields are strong the polarizations may depend on them ex- The dual version of the Lagrangian is found by instead

plicitly.

performing the functional integrals in a different order, inte-

It will be more convenient to work in momentum space grating out¢ and.A,, and leavingb, as the dual variable.

where Eq.(B4) reads

1
Feff[A]:f d35[_(z> m(P)F*"(=P)F ..(P)
i

2h B9

Eﬂv}\AM( - p) 773(p) pVA)\( p) ’

with d3p=d3p/#3.
A more compact way of writing EqB5) is

Care must be taken when performing these integrals to prop-
erly handle the vortex boundary condition which is satisfied
by ¢, namely,

d(I+2m)=(9)+2mqy>, Na, (C2)

whereN, are integers labeling the vorticity of each vortex
and? is the angular polar coordinate taken at spatial infinity,
a long distance away from the vortex positions.
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To integrate overp it is convenient to writep=w+ ¢, 1. The flux attachment transformation

wherew is a particular configuration having the same bound- e effective action involving the statistical gauge field

ary condition as doesp, so ¢ is simply periodic:¢(9  ghoyld reproduce the same physics as B6), if =2k

+27)= (). For o we choose To examine this further we first observe that the statistical
gauge fielda only ever appears in the actidiD2) in the

), (C3) combinationA+a, so definea=7A+a (at the momenty
=1, but it is introduced here for later convenienclow

. integrating the matter fields out of EGA16) gives rise to an

wherey , i=1,2 are the coordinates of the positions of eacheffective action forA, anda,, of the form

vortex, with the index labeling the two space directions.
Notice that the gauge potential defined by=4,», has

vanishing field strengthexceptat the positions of the vorti-

ces, where it hag-function singularities, so

27 xt—yl
X)=— N, arcta
w(X) a0 ; a r(xz_ya

1 ~ ~
r@aal-- | dﬁznma#(—pmwxm

1
2T . - Va [ n\na
b, 0,0, == = 3 Nay5(Db, 5~ Ya(1)). (C4 o 1a(p)Ia,l p)av<p>’
¢ a
2 2
This term appears in the dual Lagrangian, and provides the —(e—Tr)f d3_—\/p_J“”aM(—p)aV(p).
minimal coupling of the vortex positions to the potentigl. 2heo h
With these definitions, the integrations ovyeand.A, are (D3)

straightforward. It is simplest to choose=0 as a gauge
condition, and then directly perform the unconstrained
Gaussian integral oved,, . The result is Eq(4), without the
vortex kinetic term.

Even though the matter integrations cannot be done explic-
itly, the construction ensures that the form factbrg and

I1; appearing in Eq(D3) must be identical to those appear-
ing in Eq. (B6). They could be functions of the field

strengths foraﬂ in general but, provide&# is small (i.e.,
provideda, almost exactly cancels the external figjé ,),

In this appendix we derive the duality transformation be-they can be evaluated E;L:O.
tween pseudo-particles and vortices, but within a second- Now Eq. (D3) should describe exactly the same physics
guantized path-integral frameworkSee also Ref. 63 for a as Eq.(B6), aftera is integrated out, and this is what gives
more detailed discussion of particle/vortex physics within therise to the flux attachment transformation, as we now de-
Abelian Higgs model supplemented by a Chern Simonsscribe. Integrating the statistical gauge field out of H2R)
term) The treatment here is based on Ref. 62, except that Wg easily achieved Wheﬁlﬂ is set to zero idl; andIls, as it

use a relativistic notation since this makes the manipulationg then quadratic im,, . The resulting effective action fak,
simpler and, as shown in Appendix B, the non-relativisticyjj| have the same form as EB6) with I, andIl, evalu-

form is easily recovered from the relativistic form. As in gted atA =0, but with different form factors, which we
Appendix B, the fields here are those of the pseudoparticles hall denl:)te b)ﬁ and
1 3-

whose properties may depend on the external magnetic fielg, X ) L . .
and A, is the residual effective field seen by these A subtlety in the integration is that in the quadratic from

o M ; . ;
pseudoparticles. Cigenvalue, However 1 is only really nocessary o find
We start from the action for a complex scalar field Y ' y y y

with chargee, coupled to an effective electromagnetic field matrix M Sl;;?pt_hgi’_m rel?/tlvzls.t ¢ fo(jrmatllsmtln m:)mebr&tum
A, with a statistical gauge field,, , 'Sl'mcreeﬁlﬂéz = 0~ PP7/PT IN Order to integrate oLa.

APPENDIX D: PARTICLE-VORTEX DUALITY
AND LANDAU LEVEL ADDITION

2

= — 3 E mvp 3
S &,Aa] fd X >oh € a,d,a,|+Sy[P,a], _ 1~
(D1) et Al=— f d°p) 1L (P)AL(=P)A*"AL(P)
with 1~
+51La(p)I*A (= p)Av(p)} , (D4)
~ 1 ~ ~
sm[cb,a]=—§f &X[(ih9,— €a,) D] [(iho"— a") D]
where
+ S |P[7], (D2)
wherea=A+a, and S, is an interaction term, possibly T.= e’ ymr|? p?lly
including a mass term. Y\ he | D
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2 formation. For example, the critical exponents at related

2 /a2, 2
H3=T\/p—(e :GW) - p_2 second-order phase transitions should be identical.
h It should be remembered that, and o, represent the
2 2 2 components of a tensor. It may at first sight seem unnatural
x( € 7777) I +(Jp?/h) (e W/ha)) (D5)  to be applying a nonlinear map which mixes up the different
ho D ' components of a tensor—what about covariance of the tensor
with components? In fact Eq$D10) are very natural from this
point of view. If we define a complex coordinate=x+iy,
o Jp? | e?n 2_ p?[p? , e’m\? and its conjugateg=x—iy, then the conductivity tensor in
D=II+| Is+ 2=\ 15 7|7 ™t ™s T g | these coordinates is reduced to a single quantity oy,

+ioy, With a positive imaginary part, since,,>0. The
(D6 transformation reduces, in this coordinate system, to

The nonrelativistic transformation is obtained by reintro-

ducing the metridB2) and noting tha’p2=g‘”pﬂpy= —p2 ~ o
+ (7, /1) p?, and Eqs(D5) become o=n 1+(6lm)o’ (D11)
~ 627777' 2771 ) . - .
™=\ "he | ad° which giveso=a/(1+2ko) for =1 and #=2kw. This
last form can be obtained Wy iterations of the generating
2 2 transformation
~ |€nm T2
772_( ho ) d’
~ (o
~ e’n’m e?nm\%[ w3+ (e?mw/h6) D7 T 1+ 20 (B12)
™7\ "he | | he d L

as is easily checked. Equatid®12) is the transformation

_(_ 2.2 2 2 2 2
where d=(—mipg+ mmp?)/h°+ (w3 +e“mw/ho)°, and ST 25 in the text.

this is the form of the transformation given in Ref. (&-
cept it is given in Euclidean signature in that reference
For a Hall conductor the transverse conductivity is related 2. Particle-vortex duality

to the polarization tensdi; by We could consider EqD2) as either(i) a bosonic prob-

L _ 2 lem that is transformed from another bosonic probletn (
Txy™ T3 hH3/J—, (Dg) =2kr) or (ii) a bosonic problem transformed from a fermi-
while the transverse conductivity involves breaking theonic problem[ #=(2k+ 1)a]—only in the former case is
three-momentum up into frequency and spatial momentunthe statistical gauge field transformation a symmetry.

p,=(fhw,p) and taking the limit It will be argued in this section, following Ref. 62, that
there is a second symmetry in the bosonic cdseven, o
Txx=lim [Vp?my 17 ]y o= lim [#11,/\pZ]p0 ——1/o. This is aZ, symmetry, which maps an insulator
=0 w=0 o=0 to a superconductar=i~ and haso,,=e?/h, Ty
i =0 as a fixed point.
=—ilim[Il;/w],=0. D9 X . .
leﬂo[ 1/olp-o0 (09) We derive the second duality transformation as follows:

firstly write Eq.(D1) in terms of the pseudoparticle paramag-

The transformed conductivities,, and}}xy are related to the netic current , = (ieﬁ/Z)[CIJTaMCD— (aﬂ(I))T(D], as
transformed polarization tensdrk; andIl; in a similar way.
Equation(D7) then gives, withy=1, 6=2k# and units 5 el
in which e?/h=1, S®,Aa]= —J d°x %E“V’Jaﬂé’yap
pap Oxx 3 #? _—
XA (0t 0gy) — Ak + 17 +J d* — (9,9 7)("®)
2
- 2K(o%t 05 + oy & s = ,
0= . (D10) — o |®[*a*a,+a"j, |+ Sl |P[].
VAR (02 + 02— Akt 1 2
(D13

It is stressed here that the above analysis represents a sym-
metry under certain conditions, as discussed in Ref. 12, such

as very low temperatures. In the long-wavelength, zero- Alternatively the action(D1) can be written in terms of
frequency limit, the phase diagram of the quantum Hall efthe vortex current by splittingb into a smooth part and a
fect is symmetric at low temperatures under the above transrortex part as
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D(r)=Dg(r)e "Oy(r), (D14)

where®(r) is real,J(r) is real, positive, and single valued

and

., (D19

2 xt—yl
v(r):exp{iq—WE Naarctar< . y:)

¢ a X"=VYa

where /1 ,y2) denote the position of the vortex labeleddy
which should be summed over in the path integral. In these

variables the matter action reads
A 1 3 2 2
Sy Py, 9,a]=— > d°x[ (%9, Do)+ P5(hd, O

+ifiv* 9,0 —ea,)?]+ Sinl|P[7],
(D16)

where indices are understood to be contracted with the

Minkowski metric (—1,+1,+1).

We can now perform the integral oveér by introducing
an auxiliary vector field\ ,=%4,4, and imposing the con-

straintaﬂ)\_,,— d,\,=0 with a Lagrange multiplier fieldy,, .
So we write

i ~
J Dﬁex;(—%J dExDj(hd, d+ihv*d,v—ea,)?
i ~
:fD)\Dbex%—ﬁf d3x®§(>\ﬂ+iﬁv*ﬁﬂv—eaﬂ)2

i ~
— 3 v
f d*xe"b,a,\,

e . (D17)

Performing the functional integral ovar, puts Eq.(D1)
in the form

T €° e
— 57 —€""a,d,a,

S[d)O,A,a,b]:f d3x

260 h
_ vp A T TuR Fb Fbyuv
80,8, 411, = T
1 2 o ’ 2
~ 52,0 Do | + S, [®F],  (D18)

wheref> ,=4,b,—d,b,, is the field strength fob,, and the
vortex current isj“= (i%/e) e (d,0*)(d,v). The integra-
tion overA also induces a functional determinant, In(de)
and this has been absorbed into the interaction terndfgr
as indicated by the prime o/, [®3].

Now integratea, out of Eq.(D18). The only terms in-
volving a are

2
S=—fd3xle—e"“”aaa+ rha d.b
a JIRETON € v

26 h
(D19)

So integrating out we get a term
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3 0 h2 \ R g
d=x ZFEM bﬂa,,b)\ . (DZO)
The action in terms ob is now
SO0y ABI= [ a3 - nni o
[ 017\ ]_ nge ;/,(911 p
1 ~
+ | d3| - fo,(fo)r
J’ 4e°d3 w1
— A, 0B, +B],
h2
- f d3x & 3,000 P +S/ [ D3],
(D21)

Now letb=b-+ (e?/h)(7/6)A and the action becomes

r 2
SO[d,,A b]=—f x| = = oA, A
oA, 200 € Pl

B PN AL
T A

I .
+fd3x - f° )*+b jﬂ]
| 4e?D3 " ’

+ Sl P31,

(D22)

2
—f d3x 5 9, PPy

where 9= — 7%/ 6.

For comparison Eq(D13) reads, writingb=®,e"'? so
that the pseudoparticle paramagnetic current jis
=ehd33,?,

S@[d Aa]=—f d3x-1e—25””f]a d,a
0 260 € NS

22
ecdg. .
+f d3x| — > aual+alj,

[ 22
_fd3x h_(a o )2+;j JM
2T g2t

+ S P3]. (D23)

The duality symmetry that we seek lies in the symmetry
between Eqs(D22) and(D23). One way to see this is to fix
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the effective fieldA, at some background value and tréaf
as a classical field. Ifb, is a nonzero constant the action Ffaaf)f[A,a]:—f dx d®x’
(D23) describes a superconductor while EQ22) describes

an insulator—as argued in Ref. 1 vortices condense to give ~ ~
an insulator. If the gauge symmetry is not broke® and X(F (") + EGMV}\aM(X)
S describe conductors dual to one another. To examine
this situation we analytically continu®3 to complex values
and sete’®3~(e?/h)(\/p?/#)C=(ie?/h)wC, whereC is
dimensionlessthis is the leading term in the Fourier expan-

1\ -
(Z)ua)w(x)wi‘(x—x')

X?T%(X—X’)ﬂyax(x’)]

2
sion of(bz_, in the Iong-wavelength_ Iimit when the_ gauge _ e_(l f d3x E”V”aﬂ(x)ayax(x),
symmetry is not broken So the longitudinal conductivity is h\26
[settingp#= (% w,0)] (D26)

e’ e? with "f";faﬂ?av_—avéfa#(a_,,J_rAV)—av(aﬁAM) (we
=C1 (D249 have setrd=? in the relativistic form—the superscript
indicates that these are polarization tensors associated with

[see Eq.(D9) with m;=#2e?d§/p?]. Similarly S®) de- the fielda,). As before integrating ot& now gives an ef-

ol =he’®3/\[p?= lim (
w—0

iw

scribes a conductor with longitudinal conductivity fective action for the effective field,
> i [ 42| L " D25 TorAl=- > | dsdp—imm (~PIARA,(p)

UXX_wITQ ez(I)S _6?1 ( ) 2 h H
For a fixed external magnetic fiel®, ®,, and so the 7 T(PIALPIALR) (

conductivitieso?, and o2, depend orB, as well as other \yith polarizations

external parameters, such as the temperature. In general,

therefore, it should be possible to find pairs of values for the ~ e?n\?7ns

external parameters, labeled generically Xy such that wl(w,p)=(h—6> REE

C(X)=1/C(X') (this is equivalent to setting/=P in

Sec. IV). Then the effective actionéD22) and (D23) are _ e?r [e27\2 w§+(e27-r/h0)

identical except for the extra Chern-Simons term Agy in m3(w,p) = W_(W> ——, (D29
Eq. (D22). d

In particular if we takef=— in Eq. (D22 and m in  where d®=(7%)%(— p2+p?)/h2+[ 7+ (e?m/h6)]2. This
Eqg. (D23) (these two values of are of course indistinguish- |eads to complex conductivities that are related by
able in the statistical gauge field transformajighe sole
effect of the extra term on the effective action is to shift the ~ ol
transverse conductivity by,,— o,,+1 (where we have set o= m
e’/h=1). Of coursed=+ 7 means that we started from (6l m)o
fermions and transformed to bosons using the statisticakith o?=lim,_ (73— w73 and e’ h=1 (remember
gauge field so we can argue that we have derivedTthe lim,_o(0md)=—ic2).
transformation(which corresponds to the Landau-Level ad- Similarly integrating out®, and summing over vortex

dition in the first-quantized theo)’yas follows: start with a Configurations in Eq(DZZ) must lead, in the |0ng wave-
fermionic system and transform to a bosonic system usingength limit, to

0=+, then use the above argument to show that o

+1 is a symmetry and then transform back to fermions. This
shows thar— o+ 1 is a symmetry for the fermionic system
(it is not a symmetry for a bosonic system, becadse

(D29

I'{PLAb]=— j d3xdPx’

1\
(Z)ab)#y(x)w?(x—x')

+ 7 does not keep bosons as bogofihis argument, while X (FO) 27 (x") + EEWWB (x)
lausible, has i d th ts and the functional int - 2 #
plausible, has ignored the currents and the functional integra
tion over®dy,.
A more convincing argument takes the currents, both Xwg(x—x’)& B)\(x’)]
pseudoparticle and vortex, into account. Pseudoparticles and :

vortices are massive and so should decouple in the long- o2 -

wavelength limit. Just as in the derivation of the flux attach- - _j d3x=— e*"PA 9. A

ment transformation we can argue that, in the long- h 20 e

wavelength limit, integrating outb, from Eq. (D23) and

summing over pseudoparticle currents must lead to an effec- T EJ' d3x €"\b ,(x)3,by(x). (D30)
tive action for the external gauge field of the form 20 e a N
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Remember that here %) ,,=d,[b,+(e?/h)(w/6)A,] T ,
—(7V[b,u+(62/h)(77/9)AM]. S So= —J d3x 2—66‘”‘ a,da,+e'b,d\(at+A),

Now we can integrat® out of Eq.(D30) in exactly the
same way as was integrated out of EqD26)—the only [ a s vio
differences are(i) the presence of the term involving 7 | dxdyl(@+A), ()P (x=y)(@a+A),y)
—(€?/h)(m/20) e***A,3,A,, Which subtract®?w/h6 from »
the right-hand side o§r3 in Eq. (D29), (i) e?#/hé is re- +D,(OVE(Xx=y)b,(Y)]. (ED
placed withhm/€?8 with §=—=2/6 in Eq. (D28); (iii) we _ ,
should usep=e?n/h6, and(iv) the =2 are replaced byr?. Our task is to perform the integrals ovey andb,,, and
The resulting effective action is our interest is in the dependence of the result’gn Be-

cause none of the functional determinants that arise in the
= 110 p’~ integrations depend oA, , these may be neglected as con-
Perd Al=— Ef d°p) 72m(P)AL(—P)A*A,(P) tributing anA ,-independent additive constant to the EM re-
sponse functionl'[A].

\Fz . Performing first theb,, integration, the saddle-point con-
+ 777303)3 A(=P)ALP) [, (D3] dition may be written as

with different polarization transformations to E@28) [see

Eq. (D7)] b,00= = [ Py V,ulx-y)e i at My, €2
=~ o 2[ 277?_ ’7Tk1)
mi(w,p)= 9\ d® d where the kernel,,, satisfies the definition
=~ 6271' 271' v 2 v z 3 N Y
m3(w,p)= w3 \8) |3 f A%y Vi (Xx=y)V*"(y=2)=A (X~ 2), (E3)
wg+(hw/ezb)> N e’ for the projection operator
db he

_ (hole?m)— AL(x=2)=(8},~3,3"15%) &%(x—2).

b ) (D32
d The result for the effective action then becomes
whered®= (72)2(— p3+p?)/h2+[ m5— (hole?w) ]2
In terms of complex conductivities, ED32) results in sl T e
(again withe?/h=1) Sl__J d* 55 € "a,d\a,
= 1 1( 5 4 .
T, (033 -5 ] ex v ), 0Py @A),
O'b_ -
T (E4)
with o®=lim,_ o(75— w7Y). If 6=27k then this equation
represents a symmetry of a bosonic theooy-—1/(c  Where
—2k), which is equivalent to the modular transformation
0o 1 prr=prr—etrrg Y ePrp. (E5)
7:( —1 2k)'

The construction of kernels likg,, is dramatically sim-
plified by working in momentum space, and expanding the
kernels in terms of the basis of tensokg andJ*”, as in-
troduced in the text. For instance, N*"(p)=A;A*”
+AyJ*", thenV,,(p)=B1A ,,+ByJ,, with

The particular cas&=0 is o— —1/0.

Together with the flux attachment transformati@l2)
this generates the grodp, for bosons. Conjugating witB T
as described in the text givég(2) for fermions.

APPENDIX E: THE GAUSSIAN INTEGRALS

. . . . o A A
In this appendix we perform in detail the Gaussian inte- B, ! B,= 2 (E6)

grations that lead to our central formula, Ef5). Our start- Arf+A§' ? A§+A§'

ing point is Eq.(4) after the integration over the positions of

the quasiparticles and vortices has been performed, usinghich is more compactly written in terms of the complex
Egs.(9) and(10). This starting point may be written variablesA=A;+iA, andB=B;+iB, asB=1/A.
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Proceeding in the same vein, the saddle point foraje response function of Eq11) with the EM response tensor
integration is I1#” given by

2= [ @y r.Lpray, E7) Tv= puv— prr, Por, (E8)

wherelCMK”=AZ and K#¥= P~ + (1r/ 6) e*\g, . Using  Once expressed in terms of complex variables, as above, this
this in the integration ovem, gives the electromagnetic result gives Eq(15).
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