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Particle-vortex duality and the modular group: Applications to the quantum Hall effect
and other two-dimensional systems
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We show how particle-vortex duality implies the existence of a large non-Abelian discrete symmetry group
that relates the electromagnetic response for dual two-dimensional systems in a magnetic field. For conductors
with charge carriers satisfying Fermi statistics~or those related to fermions by the action of the group!, the
resulting group is known to imply many, if not all, of the remarkable features of quantum Hall systems. For
conductors with boson charge carriers~modulo group transformations! a different group is predicted, implying
equally striking implications for the conductivities of these systems, including a superuniversality of the
critical exponents for conductor/insulator and superconductor/insulator transitions in two dimensions and a
hierarchical structure, analogous to that of the quantum Hall effect but different in its details. Our derivation
shows how this symmetry emerges at low energies, depending only weakly on the details of dynamics of the
underlying systems.
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I. INTRODUCTION

Two-dimensional electron systems have remarkable p
erties, including the quantum Hall effect and metal-insula
transitions, many features of which still resist theoretical
planation. The difficult part of describing these systems
that they involve strong correlations, and no small para
eters present themselves to help with the analysis. This
prives theorists of most of the tools in their conceptual to
boxes.

Two kinds of theoretical tools which have proven use
for analyzing these kinds of strongly-coupled problems
the exploitation of symmetries and of the simplificatio
which are associated with the low-energy limit. Duality sym
metries, in particular, are likely to be useful since these ty
cally relate strongly coupled degrees of freedom to weak
coupled ones, and in two dimensions particles and vort
make natural candidates for dual partners. Indeed, part
vortex duality has been used several times in the literatur
describe some aspects of both the quantum Hall effect
conductor-insulator transitions in superconducting films.

Duality symmetries are unusual in that they are not sy
metries in the usual sense that they need commute with
system’s Hamiltonian. Instead, they relate two differe
kinds of systems to one another.~Systems for which dualities
commute with the Hamiltonian make up the special case
self-dual systems.! This relationship is useful when one o
the two systems so related can be analyzed, permitting
clusions to be drawn for its dual by acting with the dual
transformation. Alternatively, duality can be useful if it ma
a family of systems into themselves, since duality invarian
then constrains how one flows amongst members of the f
ily as external parameters—such as temperature or mag
field—are varied.

Our aim is to show that both of these lines of argum
have very general applications to two-dimensional syste
0163-1829/2001/63~15!/155309~21!/$20.00 63 1553
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In particular, our main result is to show that the twin ope
tions of particle-vortex duality1–4 and the addition of 2p
units of statistics to charge carriers~which does not change
their statistics at all! take a very simple form when expresse
in terms of the material’s electromagnetic~EM! response
functions. See Refs. 5–8 for other approaches to duality
quantum Hall systems. These relations hold forany system
for which the low-energy EM response is dominated by
motion of quasi-particles or vortices, and for which the d
namics of these quasiparticles and vortices are similar~in a
way we make more explicit in what follows!. Since these
two transformations do not commute, they generate an i
nite discrete group of duality relations amongst the EM
sponse functions, and it is this large group that underlies
predictions that we shall find.

In general, the duality transformations we find do not p
serve the momentum dependence of the EM response f
tion and so, for instance, can relate materials whose resp
is very different~such as by relating superconductors to
sulators!. It turns out that conductors are mapped into the
selves, however. When specialized to conductors, with
electromagnetic response characterized by the Ohmic
Hall conductivities,sxx andsxy , the action of duality takes
the form of subgroups of the modular group, PSL(2,Z), act-
ing on the complex conductivity,s5sxy1 isxx , as follows:

s̃5
a s1b

c s1d
, ~1!

with the integersa throughd satisfyingad2bc51 ~the oc-
currence of this symmetry in a statistical mechanical mo
was first noticed in Ref. 9, in an investigation aimed at u
derstanding QCD!. We use units for whiche2/h51. The
duality transformations as defined in Eq.~1! arenot symme-
tries of the Hamiltonian since, for instance, dual pairs dif
in their electromagnetic response. Rather, these transfo
©2001 The American Physical Society09-1
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tions are symmetries of the flow obtained as external par
eters, such as magnetic fields and temperatures, are var

Which particular subgroup is important depends on
statistics of the charge-carrying quasiparticles of the pr
lem. If they are fermions, or related to them by the symm
tries we shall describe, then the subgroup@denotedG0(2) in
the mathematics literature10# is defined by the condition tha
the parameterc must be even. For bose charge carriers,
their symmetry partners, such as for superconducting film
Josephson junction arrays, the symmetry is insteadGu(2),
defined by the condition thata andd are both odd andb and
c are both even, or vice versa. For both cases powerful
dictions follow from the fact that our derivation shows th
the symmetry constrains how the conductivities change
external variables are varied.

For quantum Hall systems, the groupG0(2) has been long
conjectured to be important11–13 and has been derived fo
these systems within a mean-field approximation.12 For these
systems our derivation accomplishes two new things. F
although our arguments are modeled on those of Ref.
ours have a broader domain of validity since they explic
assume only that quasiparticles or vortices dominate the l
energy EM response, and that the systems are clean en
to exclude any interactions that might distinguish quasipa
cles from vortices, and so thereby ruin the duality symme
that relates them. Because the fields we treat only arise in
effective theory and are not meant to describe the comp
electron dynamics, the mean-field approximation is kept
der better control.

Second, our derivation helps clarify the assumptions t
underlie analyses of the consequences ofG0(2) invariance
for the renormalization-group~RG! flow in the sxx-sxy
plane, since we show that this only relies on the underly
particle-vortex duality and on the long-wavelength lim
This is important because it has been shown13–15that most of
the unique features of quantum Hall electromagnetic
sponse follow from the consistency ofG0(2) invariance with
RG flow in thesxx-sxy plane, independent of the detaile
form of the flow’s b function. ~The constraints onb that
follow from this symmetry have also been considera
explored.14,16–19! Previously the key assumption of two
dimensional flow, governed byG0(2) invariance, was jus
that: an assumption, although a plausible one motivated
analogy with the two-dimensional scaling theory
disorder.20–23 In particular, since the scaling theory strict
only applies near the system’s critical points the scaling m
tivation could not explain why many of the predictions fo
lowing from G0(2)-invariant flow work extremely well, even
away from the flow’s critical points. Since the derivatio
presented here is not similarly restricted to scaling region
explains why these otherwise surprisingly successful pre
tions work.

The identification ofGu(2) as the duality symmetry fo
two-dimensional conductors with bosonic charge carrier
new, although some precursors of this idea exist. Impli
tions of the particle-vortex generator of the group for critic
behavior in a superconductor-insulator transition have b
examined,1 and the groupGu(2) was discussed as potential
playing a role in two-dimensional systems,11,13 including
15530
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possibly the quantum Hall effect.5 The action ofGu(2) on
longitudinal conductivities was written down in Ref. 24, a
though this was not extended to the whole upper-half co
plex plane.

Also introduced in this paper are the detailed predictio
that follow for bosonic systems from the proposed symme
group, and that are direct analogs of the symmetry con
quences that are already known for quantum Hall system

To which real-life systems does our duality symmetry a
ply? Just as it is difficult to computeab initio whether a
material will be a solid or not, it is difficult to answer from
first principles which systems must be particle-vortex sy
metric. There are several things that can be said, howe
First, if the symmetry holds, then all of its consequenc
follow together. For example, for quantum Hall systems
semicircle law,rxx→1/rxx duality, superuniversality of the
critical exponents, universality of the transition conductiv
ties, odd-denominator fractional quantization ofsxy when
sxx50, the selection rules for which plateaux may be rela
by transitions, etc., must all come together as a package

Second, since particle-vortex duality relies on the equi
lence of the kinematics and couplings of the charge-carry
quasiparticles and vortices, it should be a good approxim
tion when the only quantities of interest in the Hamiltoni
are those describing the kinematics of these particles,
their couplings to the fields that describe the long-range v
tex interactions and the electromagnetic fields that are
plied to test the EM response. Duality could be ruined
other microscopic interactions that treat quasiparticles
vortices differently, such as from couplings with disorder
with other electronic degrees of freedom. Of course, disor
can also play other spoiling roles, such as by destroying
phase coherence on which the quantum regime that we
sume depends.

A sufficient condition for particle-vortex duality, and it
associated non-Abelian extensions, might therefore be
the system be sufficiently clean to justify the neglect of oth
particle and vortex interactions when calculating the elec
magnetic response. Although this condition is not stric
necessary, since our derivation also applies in the presen
any particle/vortex-democratic interactions, weak coupling
also implicit in our neglect of anomalous dimensions wh
deciding the relevance or irrelevance of low-energy inter
tions. Notice that it is the weakness of the quasiparticle c
plings that are important in this decision, and the assump
that these are weak does not imply that the underlying e
trons must also be weakly coupled in the microscopic Ham
tonian.

Now to the main arguments. We organize our presen
tion as follows: First we describe the action describing
low-energy dynamics of a system of quasiparticles and v
tices and cast it into a form that emphasizes the similari
between these two kinds of charge carriers. Next, we de
the action of the two basic symmetries—2p statistics addi-
tion and particle-vortex duality—for the electromagnetic r
sponse functions. Then, we specialize the result to the
ticularly interesting case of a conductor to derive the act
of the symmetry on the conductivities,sxx and sxy . We
briefly review the quantum Hall case, where the charge c
9-2
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riers are fermions, and then repeat the analysis for cha
carriers satisfying bose statistics, listing many experime
predictions that follow from the symmetries.

II. PARTICLES AND VORTICES

This section has two goals. First, we derive an express
for the effective action governing the low-energy interactio
of charged quasiparticles and vortices for which the dua
between these two kinds of objects is made explicit. Seco
we compute the EM response for a system of such cha
and vortices, for use when deriving the implications
particle-vortex duality in the next section.

A. The effective quasiparticle-vortex action

Our starting point is the following Lagrangian, which d
scribes the low-energy/long-wavelength interactions of a c
lection of Np quasiparticles andNv vortices with a weak
electromagnetic field,Am :

Leff52
p

2u
emlnam]lan1Lp~j,a1A!

2
k

2
@]mf2qf~am1Am!#@]mf2qf~am1Am!#1•••,

~2!

which we write in the continuum approximation because
interest is directed towards the low-frequency, lon
wavelength EM response.

Several features of this Lagrangian bear explanation,
since our final results ultimately depend on its validity, w
pause here to explain its form in some detail.

~1! Why both particles and vortices?Usually charged par-
ticles and vortices, in the way we define them, do not coe
in the low-energy theory, since the vortices presuppose
breaking of electromagnetic symmetries, which precludes
existence of isolated electrically charged particles. Inde
our later applications only require the consideration of s
tems containing one or the other. We nonetheless use
mathematical device of keeping both in Eq.~2! since it per-
mits us to derive our results for particles only and vortic
only by taking the appropriate limits of a single formula.

~2! Field content. Am is the effective electromagnetic fiel
seen by the pseudoparticles and vortices. This will not
general, be the same as the externally applied EM field—
example, some effects of the external magnetic field may
incorporated into parameters in the effective Lagrangian
removed fromAm , as described in Eq.~5! below. jk

m(t) is
the position of thekth quasiparticle of the system as a fun
tion of time, andam is the usual statistical gauge potent
that ensures that the interchange of two quasiparticles
duces the phaseeiu.25 (u52pn, for integern, corresponds
to bosonic quasiparticles, whileu5(2n11)p describes fer-
mionic quasiparticles. Appendix A briefly reviews our co
ventions concerning this statistics field.!

~3! Relativistic form.We use relativistic notation in Eq
~2! in order to most cleanly illustrate the logic of the arg
ment. This proves to be convenient because the relativ
15530
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case shows all of the main features of duality, and is con
erably simpler to describe. We have checked that other
tures of a nonrelativistic treatment—such as the poten
appearance of kinetic terms linear in time derivatives—
not substantially affect our arguments. It also happens
the results for the nonrelativistic systems of practical inter
can be read off directly from the relativistic answers usi
the trick outlined in Appendix B.

~4! Quasiparticle Lagrangian.Lp(j,a1A) is the ~first-
quantized! Lagrangian that describes the quasiparticle m
tion and their coupling to the effective electromagnetic fie
Am . A first-quantized representation is chosen because
makes the duality between particles and vortices most tra
parent later on. The detailed form of this Lagrangian is n
important in what follows, apart from the form of the cou
pling to the gauge field, (a1A)m , whose form is important,
but which follows on grounds of gauge invariance. To
concrete, in the absence of other interactions the particle
grangian might be given explicitly by

Lp5(
k

Fm

2
j̇k

mj̇km2qkj̇k
m~a1A!mGd„x2jk~ t !…, ~3!

whereqk here denotes the quasiparticle charge, normali
so thatqk521 for electrons.

~5! Dependence on external parameters.All of the depen-
dence on the external variables, such as the magnetic fieB,
enter through the parameters of the effective Lagrangian.
instance, in the example where the quasiparticle dynamic
described by Eq.~3! they would enter through the quasipa
ticle massm and the parameterk, and the parameterk, as
well as the total number of particles or vortices. The dep
dence would be more involved for more complicated qua
particle dynamics. The same is almost true for the dep
dence on temperatureT. That is, the temperature dependen
contributed when integrating out high-energy modes is e
bedded in the system parameters, but there is also additi
temperature dependence associated with the integration
the low-energy degrees of freedom themselves, such asjk

m .
Both forms of temperature dependence are included in
later discussions of the temperature dependence of part
vortex duality.

~6! The Goldstone variable.If the difference between the
number of vortices and antivortices,Nv , is nonzero, then
there is a complex order parameter somewhere in the sys
that typically vanishes at the positions of the vortices~and
antivortices!, and takes a nonzero value asymptotically
away. The numberNv is then related to the winding of th
phase of this order parameter around a circle that enclose
of the vortex positions. The fieldf in Eq. ~2! represents the
phase of this order parameter. We assume, in writing Eq.~2!,
that the order parameter carries nonzero electric chargeqf
Þ0, and so it spontaneously breaks the electromagn
U(1) gauge group. The scale of the parameterk is of order
of the scale of the symmetry-breaking expectation value.

Since the quanta off are the Goldstone bosons for th
assumed symmetry breaking,f is guaranteed to be in th
low-energy theory. Indeedf would be responsible for the
long-range interactions experienced between vortices ifqf
9-3



on
p
er
ng

e
ol
r

os

le
e
li-
po
t

he

is
e

a-
ra

o

s
gs

b

ac

ns

s
th
te
i-

fo
io

-

e
of

lly
for

.
s
ce,
m-
s to
r-

g

g in
te

onse

ed

ex-
c re-

ero
ell

n a
or-
the

C. P. BURGESS AND BRIAN P. DOLAN PHYSICAL REVIEW B63 155309
were zero. Furthermore, its couplings to (a1A)m are dic-
tated by gauge invariance. Finally, because it is a Goldst
variablef is guaranteed by Goldstone’s theorem to decou
at low energies~modulo the usual Coleman-Mermin-Wagn
caveats!, thereby justifying its semiclassical treatment usi
a derivative expansion.26 The ellipses in Eq.~2! represent all
of the other effective interactions obtained when all high
degrees of freedom are integrated out. Since these all inv
inverse powers of the higher-energy scales, such as the o
parameter scale, they are irrelevant for the present purp
compared to those explicitly displayed.

In the derivation of Kivelson-Lee-Zhang12 ~KLZ ! this or-
der parameter was the bosonic field that described the e
trons, but for the present purposes it could equally well b
bilinear of fermion fields, or something still more comp
cated. All we need assume is that the order parameter s
taneously breaks electromagnetic gauge invariance, and
its boundary conditions at spatial infinity incorporate t
winding corresponding to vortex numberNv .

B. A dual description of the vortices

In order to better display the particle-vortex duality, it
convenient to use the dual description of the vortex degr
of freedom.27–29We here implement this duality transform
tion by recognizing that it is a special case of a gene
dualization algorithm30 ~which also has applications t
bosonization in one and two dimensions31!, and is derived in
detail for the present system in Appendix C.~We repeat the
derivation in a second-quantized format in Appendix D, u
ing the same model—the nonrelativistic Abelian Hig
model supplemented with Chern Simons couplings—used
KLZ.!

The result, when applied to the quasiparticle/vortex
tion, Eq. ~2!, is

L̃eff52
p

2u
emlnam]lan2emlnbm]l~an1An!

1Lp~j,a1A!1Lv~y,b!1•••. ~4!

The quantities in this equation are defined as follows.
~1! The fieldbm is the new~gauge potential! field, which

is the dual representation of the Goldstone field,f. It carries
all of the information about the long-range interactio
amongst the vortices.

~2! The variablesya
m(t) label the positions of the center

of the vortices and antivortices defined, for instance, as
positions of the zeros of the underlying order parame
whose phase wasf. As is seen in Appendix C, these pos
tions naturally arise as variables during the duality trans
mation once one takes into account the boundary condit
satisfied byf in the presence of vortices.

~3! The vortex LagrangianLv(y,b) describes the dynam
ics of the vortices and their couplings to the fieldbm . Al-
though this action can be complicated, reflecting the pot
tially complicated dynamics of vortices in the material
interest, it must have at least the following two terms:
15530
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Lv5(
a

FM

2
ẏa

mẏam2
2pNa

qf
ẏa

mbmGd„x2ya~ t !…, ~5!

whereNa denotes the vorticity~or winding number! of each
vortex. The coupling term betweenya

m andbm falls directly
out of the duality transformation, and so is quite genera
known. It should be noticed that although the kinetic term
ya

m does not itself follow directly by dualizing Eq.~2!, its
form is fixed quite generally from symmetry arguments32

This is because theya
m’s may themselves be thought of a

Goldstone bosons for the breaking of translation invarian
which is here broken by the positions of the vortices the
selves. In general there may also be other interaction
supplement Eq.~5!, that describe the interactions of the vo
tices with other degrees of freedom, such as disorder.

~4! A bm kinetic term of the form

2
1

4kqf
2

f mn
b ~ f b!mn,

with f mn
b 5]mbn2]nbm , is also produced when performin

the dualization, but is not written in Eq.~4!. It has been
dropped since it is inversely proportional tok, which is one
of the high-energy scales whose inverses we are ignorin
the low-energy, long-wavelength limit. It would compe
with a term proportional to (f mn1Fmn)( f mn1Fmn) ~where
f mn and Fmn are the field strengths foram and Am), which
was among the ellipses appearing in Eq.~2!. ~Alternatively,
both such terms may be absorbed into the general resp
function, which is obtained whenjk

m and ya
m are integrated

out, as we are shortly to describe.!
~5! With respect to equivalence, it is to be emphasiz

that Eq.~4! is just a change of variables of Eq.~2!, and so
describes precisely the same physics. In particular, both
pressions reproduce precisely the same electromagneti
sponse once all degrees of freedom except forAm are inte-
grated out:

eiG(A)5E @dam~x!#)
k

@djk
m~ t !#expF i E d3x Leff~j,a,A!G

5E @dam~x!#@dbm~x!#)
a

@dya
m~ t !#

3expF i E d3x L̃eff~y,a,b,A!G . ~6!

Although we present our results for real time and at z
temperature, our duality relations can be derived equally w
in imaginary time at nonzero temperature.

III. PARTICLE-VORTEX DUALITY

The importance of Eqs.~3!, ~4!, and ~5! is that they dis-
play the quasiparticle and vortex degrees of freedom i
way that emphasizes the similarity of the particles and v
tices. For instance, if other interactions are negligible, so
particle and vortex dynamics is given by Eqs.~3! and ~5!,
and in the absence of the Chern-Simons term involvingu,
9-4
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Eq. ~4! has symmetry with respect to the interchang
jk

m↔ya
m , and bm↔am1Am , so long as the quasi-particl

masses and charges are also interchanged:qk↔2pNa /qf
and m↔M . The same is also true ifLp and Lv are more
complicated, provided that the additional complications tr
particles and vortices democratically, by contributing ter
of the same form to bothLp andLv .

We may now be more precise as to what is meant by d
systems. Given a two-dimensional system whose EM
sponse is governed byn quasiparticles~having massm, etc.!
andN vortices~having massM, etc.!, we define the dual to
be the system havingN quasiparticles~with massM, etc.!
andn vortices~of massm, etc.!. The cases of real interest fo
the applications which follow are the cases involving p
ticles only or vortices only:n50 andN50.

Expressions for the EM response

We now wish to determine how the electromagnetic
sponse of dual systems are related to one another. To d
imagine integrating out the quasiparticles and vortices
performing the path integral over their positions,jk

m andya
m .

If we are only interested in the linear response, we need
actually evaluate these integrals, but may parametrize t
in terms of response functions,Pmn and Vmn, as follows.
That is, if we define

eigp(a1A)5E )
k

@djk
m~ t !#expF i E d3x Lp~j,a1A!G ,

~7!

eigv(b)5E )
a

@dya
m~ t !#expF i E d3x Lv~y,b!G , ~8!

then for linear response it suffices to take

gp~a!52
1

2E d3x d3x8am~x!Pmn~x2x8!an~x8!, ~9!

gv~b!52
1

2E d3x d3x8bm~x!Vmn~x2x8!bn~x8!, ~10!

where Pmn(x2x8) and Vmn(x2x8) define the particle and
vortex response functions. Notice that for dual systems
expectPmn5Ṽmn andVmn5 P̃mn, where the tilde denotes th
result evaluated in the dual system.

If Eqs. ~7!–~10! are used in Eq.~4!, then the remaining
integrals overam andbm are Gaussian and so may be eva
ated explicitly to obtain the electromagnetic response fu
tion, defined by

G~A!52
1

2E d3x d3x8Am~x!Pmn~x2x8!An~x8!.

~11!

One might be queasy about the consistency of first expa
ing to quadratic order inbm and then integratingbm over all
values, and this queasiness would be justified if the exp
sion to quadratic order was done becausebm is small. Such a
calculation really presumes an effective-field theory a
15530
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proach, where all terms involving higher powers of fields a
irrelevant~in the RG sense!, and so may be neglected withi
the very-low-energy effective theory. This is true in th
present instance so long as anomalous dimensions are s
so that relevance may be judged purely using naive dim
sional analysis. It is here that we implicitly assume the q
siparticles and vortices to be weakly coupled to other degr
of freedom, although this does not also imply weak coupl
for the underlying electrons. In any case, we later provide
alternative derivation of a subset of our results which do
not rely on the quadratic approximation of Eqs.~9! and~10!.

We believe that our treatment of the quasiparticles pur
within an effective-theory framework represents an imp
tant conceptual difference between the arguments formul
here and those presented in the spirit of KLZ, expounded
Appendix D. They differ because in the KLZ framework th
bosonic field whose phase describes the vortices is take
be a direct description of the underlying electrons, rat
than a low-energy effective field. As a result a wea
coupling mean-field analysis for the KLZ field is more d
rectly tied to the strength of the couplings of the underlyi
electrons.

Before quoting the result obtained in this way for the E
response, it is worth first defining some notation. The po
ization tensor is usually taken to have the standard rotat
ally invariant and gauge-invariant but nonrelativistic form

G~A!5
1

2E d3x d3x8@p1~x2x8!Ei~x!Ei~x8!

2p2~x2x8!B~x!B~x8!

2p3~x2x8!emnlAm~x!]nAl~x8!#, ~12!

defining the electromagnetic form factors,p1 ,p2, and p3.
In what follows our main interest is inp1 and p3, which
control the conductivitiessxx andsxy . Because of this, and
because of the greater simplicity of the resulting formul
we specialize instead to the relativistic version of Eq.~12!,
which we write in momentum space as

Pmn5P1~p2!Lmn1P3~p2!Jmn, ~13!

whereLm
n andJmn are defined byLm

n5dn
m2pmpn /p2 and

Jmn5 i emlnpl /Ap2. Because the form factors of Eqs.~12!
and ~13! are related ~in momentum space! by P1

5(p/\)2p15(p/\)2p2 andP35Ap2/\2 p3, the relativistic
form is sufficient to follow how the quantitiesp1 and p3
transform under duality transformations.~More generally, re-
sults for the generic casep1Þp2, are easily obtained using
the trick described in Appendix B.!

The great utility of the relativistic expression, Eq.~13!,
follows because the tensorsLm

n and Jmn satisfy the identi-
ties: Lm

a La
n5Lm

n , Lm
aJan5JmaLn

a5Jmn and JmaJan

52Lm
n . Since the tensorsL and J are related to one an

other in the same way as are the bases, 1 andi, of complex
numbers, tensor manipulations withPmn can be greatly sim-
plified by reexpressing it as a complex variable:

P5P11 iP3 . ~14!
9-5
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With this notation, and defining similar expressions for t
complex quantitiesP and V in terms of the correspondin
form factorsP1 , P3 , V1, andV3, we find the result of inte-
grating the fieldsam andbm out of Eq.~4! to be

P5 iAp̄2S p

u
D p̄21V P

p̄21V@P1 iAp̄2~p/u!#
. ~15!

This is the general relation between the EM response and
particle and vortex response functions. To avoid explicit f
tors of \ we have definedp̄5p/\ in this expression.~The
details of these integrations are given in Appendix E.! This
expression is the main result on which our later conclusi
are based.

We now record the special cases of this expression
will be used in the following sections.

Addition of2p flux.Sinceu represents the statistics of th
quasiparticles, the choiceu52kp, with k an integer, can
have no physical effects:P(u12kp)'P(u). Inspection of
Eq. ~15! shows the implications of this statement for the E
response:

1

P~u!
'

1

P~u12kp!
5

1

P~u!
2

2ki

Ap̄2
, ~16!

which reproduces a well-known result.12,33

Quasiparticles only.Should there be no vortices partic
pating in the EM response at all~which, because of the du
ality transformation fromf to bm , is equivalent toV
→`), then Eq.~15! simplifies to

P5 iAp̄2S p

u
D P

P1 iAp̄2~p/u!
. ~17!

which reduces toP5P whenu→0, corresponding to bos
statistics for the charge-carrying quasiparticles. The co
sponding result for fermionic charge carriers is simila
found by choosingu56p.

Vortices only.In the event that only vortices are involve
in charge transport, expression~15! reduces to

P5
p̄2

V2 iAp̄2~u/p!
. ~18!

This also reduces to the usual result,P5 p̄2/V, for bosonic
charge carriers, for whichu→0.

IV. SOME CONSEQUENCES OF PARTICLE-VORTEX
DUALITY

In this section we derive the implications of particl
vortex duality for the electromagnetic response of tw
dimensional systems. We are interested in the situa
where quasiparticles only or vortices only are responsible
charge transport, in which case a very simple expression
be derived for the action of particle-vortex duality on the E
response functionP. This may be derived by using Eq.~17!
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to relateP to P for the original system, and using Eq.~18! to
relate P̃ to Ṽ5P for the dual system. EliminatingP from
these two expressions gives the desired relation

P̃

p̄2
5

iAp̄2~p/u!2P

p̄21 iAp̄2~p/u1u/p!P
, ~19!

directly expressing the dual response functionP̃ in terms of
that of the original system.

The physical interpretation of expression~19! is obtained
by using the connection between the small-p2 limit of the
form factors,P1 and P3, and measurable electromagne
quantities. There are two main cases to consider, describe
the following.

A. Superconductors and insulators

If there is a gap at the relevant part of the spectrum, th
one expects the EM response function to be analytic in m
mentum space. This implies the functionsP1 and P3 have
the following small-p2 form:

P15A11B1p̄21•••, P35Ap̄2~A31••• !. ~20!

~TheAp̄2 here does not conflict withPmn being analytic as
pm→0 because it cancels a similar factor in the definition
the tensorJmn.! The constantA1 is nonzero only for super-
conductors, withA1 inversely related to the medium’s elec
tromagnetic penetration depth. IfA150 then the material is
an insulator andB1 is related to the dielectric response of th
medium. The constantA3 corresponds to a Hall conductivit
for the system, which may vanish but need not. There
two important subcases to consider.

1. Superconductors

If A1 is nonzero, then the material is a superconductor
A15mg

251/l is the corresponding photon squared mass
inverse penetration length. In this case there is a gap bec
of the Anderson-Higgs mechanism.

Inserting assumption~20! for P ~with A1Þ0) into the
duality expression, Eq.~19!, impliesP̃ also has an expansio
of the form ~20!, with

Ã150,

Ã35
1

u/p1p/u
, ~21!

B̃15
1

@11~u/p!2#2A1

.

We see that the system dual to a superconductor is an i
lator, whose Hall conductivity and dielectric function are r
lated to the superconducting penetration length and the
tistics of its quasiparticle charge carriers.

Bosonic charge carriers.A particularly interesting specia
instance of expression~21! is the case of bosonic charg
carriers~such as Cooper pairs!, for which u50. In this case
9-6
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we find as dual a dielectric with vanishing Hall conductivi
and dielectric function given byB̃151/A1. This is as ex-
pected on physical grounds1 since the condensation of vort
ces in the dual system should produce an insulator. No
that Eq.~21! makes specific predictions as to the depende
of the dual dielectric function,B̃1, as a function of tempera
ture since it is related to the temperature dependence o
penetration length in the superconducting system.

Fermionic charge carriers.If we instead chooseu5p, as
is appropriate for fermion charge carriers, we find the d
system is a dielectric, but has Hall conductivitysxy5

1
2 .

2. Insulators

If A150 then the material is an insulator and the g
exists because of the absence of low-energy charged q
particles that carry current. In this caseB1 is related to the
dielectric response of the medium and the duality trans
mation produces the following small-p2 EM response:

Ã150,

Ã35
p/u2A3

12~u/p1p/u!A3
, ~22!

B̃15
B1~p/u!2

@12~u/p1p/u!A3#2
.

We see that the image of an insulator is another insula
although with different Hall conductivity and dielectric func
tion.

B. Conductors

For conductors the form factorP1 is not analytic asp2

→0. The limiting form for smallp2 is related to the conduc
tivities by

P1~ p̄2!→sxxAp̄21•••,

P3~ p̄2!→sxy Ap̄21•••, ~23!

and so the complex quantityP is related to the complex

conductivity,s5sxy1 isxx , by P5 iAp̄2 s* .
In this case the duality transformation, Eq.~19!, preserves

the momentum dependence of the form factors, implyingP̃

5 iAp̄2 s̃* , with the dual conductivities given by the holo
morphic relation:

s̃5
p/u2s

12~u/p1p/u!s
. ~24!

Fermion charge carriers.If we assume the original charg
carriers to be fermions, as would be appropriate for the in
ger quantum Hall systems, then Eq.~24! reduces to the ex
pression:

s̃5
12s

122 s
, ~25!
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which is the transformation that has been recognized15 to
imply the experimentally observed duality transformatio
rxx→1/rxx in the transitions between thesxy51 Hall pla-
teaus and the Hall insulator.

Duality relations between more complicated Hall platea
may be similarly obtained by starting from the appropria
anyonic charge carriers, but the same result may be obta
more simply by combining Eq.~25! with transformation~16!
~which expresses the absence of content of a shift of
statistics parameter by 2p) specialized to conductors:

s'
s

122s
. ~26!

Transformations~25! and ~26! together generate the group
G0(2), which is known to relate all of the allowed~odd-
denominator! Hall states to one another, and so produces
anyonic quantum Hall duality relations from the simpler fe
mionic one we have just considered.

Boson charge carriers.Specializing Eq.~24! to the case
u50 also gives a simple relation between the dual cond
tivities:

s̃52
1

s
. ~27!

This transformation, together with Eq.~26!, also generates an
infinite group, denotedGu(2), which relates dual conductor
with bosonic charge carriers~such as superconducting film
or Josephson junction arrays!.34,35

C. Duality and flow

To this point we have found how the EM response of d
systems are related to one another. We wish now to un
stand how the duality transformations change as externa
rameters such as magnetic field and temperature are con
ously varied. The question of how systems change
external variables are varied is particularly sharp for cond
tors, since in this case both the original system and its d
are of the same type~i.e., they are both conductors!. If one
imagines a system tracing out a curve in the conductiv
plane asT andB are varied, the position of the dual syste
traces out another curve in the same plane. We wish to a
that the resulting flow commutes with the action of the tw
duality transformations, Eqs.~25! and~26! @or Eqs.~26! and
~27!#, in the conductivity plane.

The magnetic field strength and other microscopic pr
erties enter into the above arguments only by changing
values that are taken by the masses and other param
appearing in the effective Lagrangian, Eqs.~2! and~4!. Tem-
perature partly appears in the same way, but also appea
the integration over the low-energy degrees of freedom~such
as by rotating to Euclidean signature and imposing period
ity in imaginary time!. Now comes the main point. All of the
consequences of duality follow from the statementsPmn

5Ṽmn andVmn5 P̃mn, which relate the response functions
dual systems~or the analogous statement expressing the
dition of 2p statistics flux!. And these statements are true f
all values of magnetic field, temperature, etc., so long
9-7
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these quantities do not introduce differences in form betw
the particle and vortex Lagrangians,Lp andLv .

Suppose we now consider a system of quasipartic
S(T0 ,B0), chosen for some specific temperatureT0 and
magnetic fieldB0, involving N particles of massm and
chargeq. Next, suppose thatB̃0 and T̃0 are chosen to pro
duce the dual system,S̃, havingN vortices, also with massm
and vortex chargeq. That is,S(T̃0 ,B̃0)5S̃(T0 ,B0). Notice
that the existence of such aT̃0 andB̃0 is plausible given that
it involves the solution of two equations for two unknown
For instance, for particle-vortex interchange the tw
equations are M (T̃0 ,B̃0)5m(T0 ,B0) and Q(T̃0 ,B̃0)
5q(T0 ,B0), whereM and Q are the functions ofT and B,
which define the vortex mass and charge.

Now imagine changing the magnetic field and/or tempe
ture, say toB85B0(11dB) andT85T0(11dT). The ques-
tion we ask is this: if we change the dual system by the sa
amount, toB̃85B̃0(11dB) and T̃85T̃0(11dT), is the re-
sulting system still dual to the first? That is, isS(T̃8,B̃8)
5S̃(T8,B8)? The answer is ‘‘yes,’’ because the questi
asked of both systems is the same: what is the chang
response of a system ofN objects of massm and chargeq as
T andB are varied? The only difference between the syst
and its dual is that forS theN objects are particles and forS̃
they are vortices.

Arguing in the same way for the attachment of 2p statis-
tics flux, we see that the entire duality group must comm
with the flow through the conductivity plane asB andT are
varied. For fermions this implies aG0(2)-invariant flow,
while for bosonsGu(2)-invariant flow is implied.

D. Beyond linear response

In this section we present a slightly different version
part of the previous section’s derivation, whose aim is
express the action of particle-vortex duality on the elect
magnetic response without relying on the linear-response
proximation, Eqs.~9! and ~10!. The argument we presen
assumes fermion charge carriers, since it relies on usin
statistics parameteru56p. Besides clarifying our deriva
tion, we present this separate line of argument because
believe it will ultimately prove fruitful in its own right by
explaining the experimental evidence36 for current-voltage
duality seen in quantum Hall systems beyond the lin
Ohm’s law approximation.

We continue with the findings of Sec. III just before ma
ing the linear-response approximations, Eqs.~9! and ~10!.
The response functionG(A) for the system of charged pa
ticles is given by functionally integrating the fieldsam and
jk

m weighted by the Lagrangian density,

L~j,a,A!51
1

2
emnlam]nal1Lkin~j!1 j m~j!~a1A!m ,

~28!

where we have chosenu52p and we need not be con
cerned about the detailed form of the particle kinetic ter
Lkin(j), or current,j m(j).
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On the other hand, the response function of the sys
related by particle-vortex duality to the original system i
volves integrating the dual Lagrangian

L̃~y,a,b,A!52
1

2
emnlam]nal2emnlbm]n~a1A!l

1L̃kin~y!1 j̃ m~y!bm , ~29!

where we have instead chosen to represent fermionic st
tics by choosingu51p. In order to relateG̃(A) to G(A) we
explicitly perform the Gaussian integration overam in Eq.
~29! and shiftbm→bm1Am in the result to get

L̃~y,b,A!51
1

2
emnlbm]nbl2

1

2
emnlAm]nAl1L̃kin~y!

1 j̃ m~y!~b1A!m . ~30!

To the extent thatL̃kin(y) and Lkin(j) @and j̃ m(y) and
j m(j)# have the same form, Eq.~30! differs from Eq.~28!
only by the term2 1

2 emnlAm]nAl , which does not depend a
all on the integration variables. Performing the remaini
integrations therefore relatesG̃(A) to G(A) by

G̃~A!5G~A!2
1

2E d3xemnlAm]nAl , ~31!

which is the main result of this section.
Once specialized to the linear-response regime, Eq.~31!

implies the relation

P̃mn~p!5Pmn~p!1 i emlnpl , ~32!

or s̃xy5sxy11. This agrees exactly with what is predicte
for fermions by a particle-vortex transformation followed b
a 2p statistics shift, Eq.~25! followed by Eq.~26!.

V. APPLICATIONS TO CONDUCTORS

In this section we state some of the observable predicti
that follow from the action of particle-vortex duality on th
physical systems. We specialize in this section to the pre
tions for two kinds of conducting systems: those with ferm
onic charge carriers~or their images under repeated duali
transformations!—corresponding to quantum Hall systems
and those with bosonic charge carriers~or their duality
images!—such as those for superconducting thin films and
Josephson junction arrays.

A. Fermions: The quantum Hall effect

We start with quantum Hall systems, for which the resu
we derive are not new, having been derived from the
sumption of duality-invariant flows in Ref. 15. We includ
this case anyway for three reasons. First, this paper stren
ens the theoretical foundation of the assumption of dual
invariant flow, particularly away from the systems’ critic
points. Second, the experimental success of these predic
establishes the existence of systems that are clean enoug
9-8
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our quasiparticle/vortex effective theory to apply. Third, w
may directly adapt many of the quantum Hall results to
bosonic case.

1. Some group theoretical facts

In previous sections we have found the action of partic
vortex duality and 2p statistics addition to both act on th
complex conductivity in a fractional linear way, with integ
coefficients. That is, we have found the transformations to
a subgroup of the group PSL(2,Z), defined by

s→ a s1b

c s1d
, ~33!

with a, b, c, andd integers satisfyingad2bc51. Any ele-
ment of this group can be obtained as products of power
the following two generators:

S~s!ª2
1

s
, T~s!ªs11. ~34!

We have found the subgroup of this group that is relev
to quantum Hall systems to be generated by

s→ s

122s
5ST2S~s!,

s→ 12s

122s
5TST2S~s!, ~35!

or, equivalently, byST2S and T. Any point in the upper
complexs plane can be reached from a fundamental regi
which we take to be the vertical strip betweens50 ands
51, with the interior of the disk with radius51

2 centered at
s5 1

2 removed. As we shall shortly see, the boundaries
this fundamental domain are quite generally flow lines
G0(2)-invariant flow, and so may be seen in Fig. 1.

It turns out that the subgroup obtained from these t
generators, denotedG0(2), is equivalent to that defined b
requiring the coefficientc in Eq. ~33! to be even.10,11,13This

FIG. 1. Flow lines forG0(2)-invariant flow.
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alternative definition shows that when acting on the real a
s5s* , it takes rational numbers to themselves, with od
denominator fractions going to odd-denominator fractio
and even-denominator fractions mapping to eve
denominator fractions. It is tantalizing that the same gro
G0(2), plays a central role in the hierarchical structure
N52 supersymmetric Yang-Mills theories.37

2. Predictions

The following consequences follow from the conditio
that a flow in thes plane commutes with the groupG0(2):

~1! Universal critical points38 are predicted for the flow a
any point,scrit , which is mapped to itself under any mem
ber of G0(2), g(scrit)5scrit , for which the denominator
c s1d is neither zero or infinite.11,13,16The complete set of
such points occurs atscrit5

1
2 (11 i ) and its images unde

G0(2). This prediction is borne out experimentally,39 since
there is a one-to-one correspondence between the experi
tal critical points of the flow and the fixed points of th
group. No experimental evidence exists for critical points n
corresponding to fixed points of the group, although the
could exist in principle.

~2! Although the symmetry does not predict the critic
exponents at the fixed points,19 these exponents must be th
same for all fixed points which are related byG0(2).11,13,16

This remarkable equivalence of critical exponents at diff
ent fixed points is known as superuniversality, and was
gued for on more model-dependent grounds in Ref. 40. H
torically, the experimental success of this ‘‘prediction’’41,42

stimulated the search for an underlying symmetry group.
~3! Exact flow lines in thes plane can be derived from

G0(2) invariance plus invariance under particle-hole symm
try: s→12s* . The existence and shape of these flow lin
depend only on these symmetries and not on any other
tails of the flow’sb function.15 Figure 1 shows some of th
flow lines predicted in this way, all of which are semicircle
or vertical lines in thes plane. The arrows indicate the d
rection of flow to the infrared~whose direction does not fol
low purely on symmetry grounds!. This very general deriva-
tion of the ‘‘semicircle law’’—which had been earlie
predicted on more model-dependent grounds43—is spectacu-
larly exhibited by experimental systems.44

~4! Flow in the infrared is towards the real axis, termina
ing on the real axis at attractive fixed points at od
denominator fractions. Even-denominator fractions simila
form repulsive fixed points of the flow. One finds in this wa
a robust explanation of the existence of odd denomina
Hall plateaus.

~5! Since all allowed transitions between Hall platea
correspond to semicircles that may be obtained by the ac
of G0(2) from the basic semicircle connectings50 to s
51, one finds a selection rule that expresses which plate
may be obtained from which by varying external paramet
such as magnetic field and temperature.14 The selection rule
obtained in this way states that a fractionp2 /q2 can be
reached by a quantum Hall transition from a fractionp1 /q1,
with q1 andq2 both odd integers, only ifup1q22p2q1u51.
This agrees precisely with all the observed Hall sequenc
9-9
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~6! There is an element ofG0(2) that maps each of th
flow lines to itself, with its ends reversed. For instance,
elementg(s)5(s21)/(2s21), which we here identify as
the expression of particle-vortex duality for fermions, do
so for the semicircle connectings50 to s51. When spe-
cialized to transitions from Laughlin plateaus to the H
insulator this symmetry element is precisely the experim
tally observed36 duality rxx→1/rxx with rxy fixed.15

We regard the natural interpretation of the great exp
mental success of these predictions to be that the electrom
netic response of these systems is dominated by quasip
cles and vortices. Furthermore the systems are sufficie
clean to justify the neglect of those particle and vortex int
actions that destroy the underlying particle-vortex duality,
described here. Finally, the relevant quasiparticles are in
fermionic equivalence class, in the sense that they are e
fermions, or are obtainable from fermions by the action
G0(2).

There is also some evidence for a few Hall systems
which the critical conductivity is not at the universal values44

and for direct plateau-insulator transitions that do not co
spond to semicircles as predicted here,45 and an understand
ing of why particle-vortex duality fails here would be ve
instructive. Since these typically involve samples with t
most disorder, one possibility is that Landau-level mixing
not negligible in these systems.46,47 We believe this to be an
instance where interactions with the disorder ruin partic
vortex duality, and so destroy the underlying symmetry
the flow.

Another potential difficulty often raised in connectio
with this picture is the observed failure of scaling at very lo
temperatures in some samples48 as one passes through th
critical regime. We put these experiments aside, becaus
though these are potentially very telling observations, si
scaling is an inevitable consequence of a vanishingb func-
tion, it is not yet clear what their proper interpretation is, a
indeed there are other experiments that appear to sup
scaling.49 See, however, Ref. 17 for an alternative interp
tation of the behavior near the critical points.

There is, nevertheless, content in the above symmetry
guments, since these imply an entire suite of predictions
must all hold together if particle-vortex duality is valid. S
we predict that the above consequences ofG0(2)-invariant
flow should come as a package, with the validity of so
implying the validity of the others.

B. Bosons: Superconducting films

A fascinating consequence of the generality of t
particle-vortex duality arguments we present here is that t
predict different, but equally striking, phenomena for t
electromagnetic response of other clean two-dimensio
systems. In this section we describe these predictions
systems whose charge-carrying quasiparticles have Bose
tistics ~or the image of Bose statistics under a group that
here specify!. These predictions should have practical app
cations to superconducting thin films and Josephson junc
arrays, and some of them have been anticipated1,2,4 for the
metal-insulating and superconductor-insulator transitions
these systems.
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1. More group theoretical facts

For bosonic charge carriers~and those related to these b
duality! the action of particle-vortex duality and 2p statistics
addition is generated by the following two PSL(2,Z) ele-
ments:

s→ s

122s
5ST2S~s!,

s→2
1

s
5S~s!, ~36!

or, equivalently,S andT2.
This group is calledGu(2), and isequivalent to the con-

dition thata andd are both odd andb andc are both even, or
vice versa, in the fractional linear transformation, (a s
1b)/(c s1d). Since bosons may be obtained from ferm
ons by shifting their statistics byDu5p, this group may be
obtained from the quantum Hall group,G0(2), by conjugat-
ing by STS(s)5s/(12s). Concretely:gPGu(2) implies
g5STS h(STS)21, for somehPG0(2). @The proof of this
statement is easiest to see if the identity (ST)351 is used.#
The simplest way to extract the predictions of the gro
Gu(2) is therefore to derive them from those ofG0(2) by
conjugating withSTS. @Or, sinceS is in Gu(2) anyway, we
can equally well getGu(2) by conjugatingG0(2) with
TS(s)5121/s rather thanSTS.# In particular, it is conve-
nient to choose the fundamental region to be the vertical s
betweens50 ands521, with the interior of the disk with
radius51

2 centered ats52 1
2 removed, the boundaries o

which again appear as particular flow lines in Fig. 2.

2. Predictions

In this way we obtain the following consequences of t
commuting ofGu(2) with the flow in thes plane, which are
the direct analogs of those described above for quantum
systems.

FIG. 2. Flow lines forGu(2)-invariant flow. Although this looks
very much like Fig. 1, careful examination shows different po
tions for the fixed points and for the directions of flow along t
lines.
9-10
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~1! Universal critical points are predicted for the flow
the fixed points ofGu(2), which lie at scrit5 i and its im-
ages, (bd1ac1 i )/(c21d2), underGu(2). TheOhmic con-
ductivity is always 1/(odd integer) at these critical poin
while the Hall conductivity is even/odd.~These statement
are for bosonic charge carriers with the same electric cha
as an electron—these becomescrit5 iq2 and its images if
the bosonic charge carriers have chargeq. In particular, the
caseq562 applies if the bosons are Cooper pairs, such
considered in Ref. 1.!

~2! The critical exponents at all fixed points related
Gu(2) must all be the same. In this way the results of
scaling theory of Ref. 1 for the fixed point atscrit5 i may be
extended to all of the other fixed points that are predicted
exist in the presence of magnetic fields.

~3! Exact flow lines in thes plane are immediate conse
quences ofGu(2) invariance and particle-hole symmetry, i
dependent of the dynamical details of the flow’sb function.
These are the images of the flow lines of Fig. 1 under
conjugation bySTS. The results are again semicircles
vertical lines in thes plane, implying a new semicircle law
for these bosonic systems.~The semi-circle intersecting th
critical point at s5 i was anticipated in Ref. 1.! Figure 2
shows the flow lines that are predicted by the symmetry, w
the flow directions given which follow from those of Fig.
~which successfully describe quantum Hall systems!. Notice
that the resulting flow on the imaginary axis agrees with
interpretation ofs5 i as a metal-insulator transition, wit
sxx increasing or decreasing into the infrared on oppo
sides of the transition.

~4! More generally, for nonzero magnetic fields the flo
in the infrared is towards the real axis, terminating on
attractive fixed points that are fractions,s5p/q. The attrac-
tive fixed points of the flow therefore exhibit the fraction
quantum Hall effect, but with fractions for whichpq is even
~as opposed to havingq odd, as was the case for fermions!.
Fractions with oddpq are repulsive fixed points. In particu
lar, odd integers are repulsive while even integers are att
tive.

~5! There is a selection rule expressing which fractio
may be obtained from which by varying external paramet
like magnetic field and temperature. The selection rule
tained in this way states that fractionsp2 /q2 can be obtained
from p1 /q1 only if ~i! p1 is odd andq1 is even whilep2 is
even andq2 is odd~or vice versa with the subscripts 1 and
interchanged! and ~ii ! up1q22p2q1u51.

~6! There is an element ofGu(2) that maps flow lines to
themselves, with their ends reversed. For flow along
imaginary axis the element is simplyS(s)521/s, or sxx
→1/sxx , which is again the expression of particle-vort
duality for bosons.

We are led to predict the above startling properties
bosonic quantum Hall systems, such as someday migh
obtained from superconductor-insulator transitions in t
films, or from Josephson-junction arrays.50–54Unfortunately,
these predictions cannot yet be tested with ordinary su
conductors, because charge carrier densities and mobiliti
these systems do not put them into the quantum H
regime.55 Their verification would be conclusive evidenc
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for particle-vortex duality, although its testing must wait u
til these systems can be reliably manufactured in the qu
tum regime. In this way particle-vortex duality might ult
mately provide a connection between quantum Hall syste
andsxx→1/sxx as seen in metal-insulator transitions.56,57

As in the case of quantum Hall systems, these predicti
require very few assumptions beyond the necessity to b
the quantum regime. First, the electromagnetic respo
must be dominated by quasiparticles and vortices, with
quasiparticles being bosons or related to these byGu(2)
transformations. Second, the systems must be sufficie
clean to ensure the absence of interactions that disting
the quasiparticles from vortices and so ruin their similari
Subject to these conditions all of the above consequen
follow as a package from the quasiparticle-vortex dua
symmetry of the flow in the conductivity plane.

VI. CONCLUSIONS AND OUTLOOK

We have argued that a broad class of dual relationsh
arise in two-dimensional systems for which the EM respo
is governed by particles and vortices whose properties
similar ~perhaps because they are weakly interacting!. For
systems having fermions as the particles~or those related to
fermions by the duality! the particle-vortex duality implies
the duality group is a level-two subgroup of PSL(2,Z) called
G0(2). We argue that this duality has been observed, sin
this group has been previously identified as explaining m
of the observed properties of the EM response in quan
Hall systems.

The generality of our arguments lead us to propose a s
lar, but distinct, set of properties for clean two-dimension
systems whose EM response is controlled by bosons as
particles ~or those related to bosons by the duality!. The
group implied in this case is another level-two subgroup
PSL(2,Z) called Gu(2). The observation of these specifi
predictions in these systems would be the definitive tes
our ideas.

One might ask whether other duality symmetries ap
from those described above might arise in other syste
More concretely, there are precisely five level-two subgrou
of SL(2,Z),10 so one might wonder if other choices for qu
siparticle statistics might generate these other three gro
not yet used.58 In fact, two of these groups can be ruled o
as symmetries acting on the complex conductivity, beca
they do not contain the generator corresponding to the a
tion of 2p statistics flux. However, because these groups
related toG0(2) andGu(2) by conjugating byS, they can be
thought of as the action of these latter groups in the comp
resistivity, rather than conductivity, plane. The third grou
G(2), is contained in the other four, and has been propo
elsewhere to play a role for quantum Hall systems,59 in par-
ticular when the splitting between electron spins is mu
smaller than the gap between successive Landau levels.60
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APPENDIX A: THE STATISTICAL GAUGE FIELD

In this appendix we review the concept of the statisti
gauge field.25 This serves not only to remind the reader of t
construction, but also to set up the notation. This Appen
is based on the review article by Zhang,29 but there is a
fundamental difference of philosophy here—our seco
quantization is second quantization of the effective degr
of freedom associated with the pseudoparticles, and not
essarily of the fundamental electrons.

1. First-quantized formulation

Consider a configuration ofN charged particles, each wit
the same chargee and massm moving in a two dimensiona
plane, with positionsx1 , . . . ,xN and separationsr i j 5xi2xj
52r j i . Allowing for particle-particle interactions,e2V(xi
2xj ), and the possibility of random static impurities givin
rise to an electric potentialU(r ), the Hamiltonian for the
system can be written as

H5
1

2m (
i

@~2 i\¹a
( i )2eAa~xi !!#21e2(

i , j
V~xi2xj !

1e(
i

U~xi !, ~A1!

wherea51,2 and we use units in which the speed of lig
c51. One can include a neutralizing background field
desired, without changing any of the subsequent analysis
nificantly. The particles here are pseudoparticles whose m
and charge may depend on the external field, as well as o
parameters like temperature. The electromagnetic pote
Am is that of the residual effective electromagnetic field se
by the pseudoparticles and vortices.

Following Girvin and MacDonald,61 a gauge transforma
tion to a new Hamiltonian is defined as follows. Letw i j be
the angle between the vectorr i j and an arbitrary fixed direc
tion, e.g., thex axis, so thatw i j →w i j 1p if the two particles
i and j are interchanged. A gauge transformation from
multiparticle Schro¨dinger wave function,c(x1 , . . . ,xn) to a
new wave functionc̃(x1 , . . . ,xn) is defined as follows:

c̃~x1 , . . . ,xN!5expS i
u

p (
i , j

w i j Dc~x1 , . . . ,xN!

~A2!

for a constantu, as yet arbitrary. Under interchange of a
two particles,i and j, the phase factor changes byeiu. Thus,
if u52kp for some integerk, the phase factor is unity an
15530
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the new wave function has exactly the same statistics as
old one—if it was symmetric under interchange of two pa
ticles before it remains so, if it was antisymmetric und
interchange of two particles before it remains so. Ifu were
an odd multiple ofp a bosonic wave function would b
transformed into a fermionic one and vice versa.

The gauge transformation~A2! can be incorporated into
the vector potentialAm , m50,1,2, for the electromagneti
field by defining a new field~the statistical gauge field!

aa~xi !ª
\

e

u

p (
$ j ; j Þ i %

¹a
( i )w i j , ~A3!

where the gradient operator acts on the position of thei th
particle. The new gauge transformed Hamiltonian is then

H̃5
1

2m (
i

@2 i\¹a
( i )2eAa~xi !2eaa~xi !#

2

1e2(
i , j

V~xi2xj !1e(
i

U~xi !. ~A4!

It is stressed that the physics of this new Hamiltonian
identical to the old one, providedu/2p is an integer.

2. Second-quantized formulation

We now reformulate the above first-quantized treatm
in second-quantized form, ignoring spin. Accordingly, defi

H̃5E d2x C†~x!S 1

2m
@2 i\“2eA~x!2ea~x!#2

1eU~x! DC~x!1
1

2E d2xd2x8dr~x!V~x2x8!dr~x8!,

~A5!

wherer(x)5eC†(x)C(x) is the charge density anddr5r
2^r&.

Equation~A3! can be expressed as

aa~xi !52S \u

ep D(
j Þ i

eab

~r i2xj !
b

ur i2xj u2
, ~A6!

which in continuum form is

aa~x!52S \u

e2p D E d2x8
eab~xb2x8b!

ux2x8u2
r~x8!. ~A7!

From this follows

eba¹baa~x!5
2\u

e2 r~x!, ~A8!

since¹2ln(ux2x8u)52pd (2)(ux2x8u). The curl ofa is non-
zero here, despite its original definition as a gradient,
cause of Aharanov-Bohm type singularities in Eq.~A3!.
These manifest themselves asd-function singularities in the
curl of a in the first-quantized theory but are spread into
smooth distribution on the right hand side of Eq.~A8! in the
second-quantized theory. Equation~A8! is a dynamical equa-
9-12
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tion of motion for the statistical gauge fieldam , but it is not
yet covariant, as it lacksa0 terms. To include these allowaa
and r to depend on time, then differentiating Eq.~A8! and
expressing the result covariantly gives

eba]b~]0aa2]aa0!5
2\u

e2 ṙ52
2\u

e2 ]a j a, ~A9!

where j a is a current. This integrates to

eab~]0ab2]ba0!52
2\u

e2 j a. ~A10!

This equation can be obtained, together with Eq.~A8!, by
treatingam as a dynamical field in the action

S52S e2

4\u D E dt d2x emnlam]nal1E dt d2xam j m,

~A11!

which is the Chern-Simons action for the statistical gau
field coupled to a source.

The problem can now be rewritten in path integral for
Define the original Lagrangian density for the matter field

LC5C†~ i\] t2eA0!C2C†F 1

2m
~2 i\“2e A!22eUGC

2
1

2E d2x8dr~x!V~x2x8!dr~x8!. ~A12!

After introducing the statistical gauge field the new Lagran
ian is

L̃C5C†@ i\] t2e~A01a0!#C2

3C†F 1

2m
~2 i\“2eA2ea!22eUGC

2
1

2E d2x8dr~x!V~x2x8!dr~x8!, ~A13!

together with the Chern-Simons Lagrangian

La52S e2

4\u D emnlam]nal . ~A14!

Then the effective action for the gauge fieldAm is obtained,
in the original formalism, from the path integral

eiGe f f[A]5Z@A#5E DC†DC eiSC[Am ,C†,C] , ~A15!

whereSC5*dt d2xLC . On the other hand, after introducin
the statistical gauge field, the partition function is

Z̃@A#5E DamDC†DC eiSa[am] 1 iSC[Am1am ,C†,C]

5E DameiSa[am]Z@A1a#, ~A16!

whereSa5*dtd2xLa .
15530
e
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So far all manipulations have been exact. Foru52kp,
with integralk, the theory described by Eq.~A16! is identical

to that with no statistical gauge field at all, i.e.Z̃@A#
5NZ@A#, where N is an irrelevant constant that will b
ignored in the sequel.

APPENDIX B: THE RELATIVISTIC TRICK

We now follow Kivelson, Lee, and Zhang12 and integrate
out the matter fields. This cannot be done exactly, of cou
but on general grounds one expects the effective action t
invariant under local gauge transformations. Firstly igno
the statistical gauge field and consider the partition functi
Eq. ~A15!. Naive power counting arguments then imply th
the most relevant terms, at least in the infrared limit, are

Geff@A#5E d3xd3x8H S 1

2DFi0~x!p1~x2x8!Fi0~x8!

2S 1

2DF12~x!p2~x2x8!F12~x8!

2
1

2
emnlAm~x!p3~x2x8!]nAl~x8!J , ~B1!

whereFi05Ei , i 51,2, is the electric field andF125B the
magnetic field~the measure hered3x is shorthand fordt d2x
and Greek indices, andm, n, andl take three values 0, 1
and 2). Note the presence of the nonlocal form factorsp1 ,
p2, andp3, where the argumentx2x8 includes time as well
as space.

There is an implicit assumption here that the terms t
are most relevant by naive power counting are also the m
relevant in the full theory, at least in the infrared limit. Th
is a very strong assumption, as naive power counting gi
the most relevant operators of the free field theory and
have here a strongly interacting theory. One of the unde
ing assumptions of the argument of Kivelson, Lee, a
Zhang is therefore that any anomalous dimensions in
strongly interacting theory do not change the conclusions
naive power counting. In fact the form~B1! is rather more
general than that—it will be argued below that this is t
most general possible form in a momentum expansion, in
pendently of any power counting arguments, provided o
allows the polarizations to depend on the magnitudes of
effective fieldsE2 andB2.

The mathematical manipulations involving Eq.~B1! can
be simplified by writing it in relativistic form using the fol
lowing trick. We introduce a ‘‘metric’’ on three-dimensiona
space-time defined by

gmn~x2x8!5S 21 0 0

0 p1 /p2 0

0 0 p1 /p2

D ~B2!

and write
9-13
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Ge f f@A#5E d3x d3x8H 2
1

4
p1~x2x8!

3A2det~g!gmrgntFmn~x!Frt~x8!

2
1

2
emnlAm~x!p3~x2x8!]nAl~x8!J , ~B3!

where all metric components are functions ofx2x8. Note
that the metric does not appear in the Chern-Simons term
all—as is well known it is independent of the metric.

The calculation can be simplified by settingp15p2 and
working in the relativistic formalism with the three
dimensional Minkowski metric,hmn5diag(21,1,1), and
relativistic action

Ge f f@A#5E d3x d3x8H 2S 1

4Dp1~x2x8!Fmn~x!Fmn~x8!

2
1

2
emnlAm~x!p3~x2x8!]nAl~x8!J , ~B4!

whereFmn5hmrhntFrt . Provided everything is kept cova
riant the nonrelativistic expressions can be recovered by
instating the metric~B2! at the end. From now on we sha
use the simpler relativistic notation of Eq.~B4!.

In relativistic notation we can argue that Eq.~B4! actually
encodes higher-order terms too. In strong fields one wo
expect terms such asFm

nFn
rFr

lFl
m and other Lorentz-

invariant powers to be present in the effective action eve
the low-momentum regime—though terms like]2FmnFmn

are definitely ignored. In three dimensions terms li
Fm

nFn
rFr

lFl
m can be absorbed into Eq.~B4! by allowing

the polarizations to depend on the Lorentz scalarFmnFmn.
This is because we can always exchange the antisymm
tensorFmn for the vectorF̃m5emnrFnr , and the only way to
make a Lorentz scalar from products ofF̃m1

•••F̃mn is to
contract the indices in pairs~andn must be even!, so all such
terms can simply be incorporated into the statement thatp1
depends analytically on the Lorentz scalarF25FmnFmn and
then Taylor expandingp1 in powers ofF2. In general, this
would necessitate the introduction of multipoint interactio
with n points,x1 , . . . ,xn , but in the long-wavelength limit
two point interactions suffice to extract conductivities. A
exactly similar statement applies top3. We shall continue
with the form ~B4!, bearing in mind that when the extern
fields are strong the polarizations may depend on them
plicitly.

It will be more convenient to work in momentum spa
where Eq.~B4! reads

Ge f f@A#5E d3p̄H 2S 1

4Dp1~p!Fmn~2p!Fmn~p!

2
i

2\
emnlAm~2p!p3~p!pnAl~p!J , ~B5!

with d3p̄5d3p/\3.
A more compact way of writing Eq.~B5! is
15530
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Ge f f@A#52E d3p̄H 1

2
P1~p!Am~2p!LmnAn~p!

1
1

2
P3~p!JmnAm~2p!An~p!J , ~B6!

where Lm
n5dm

n2pmpn /p2, Jmn5 i emlnpl /Ap2, P1

5p1p2/\2, and P35p3Ap2/\. This form is useful, since
Lm

aLa
n5Lm

n , Lm
aJan5JmaLn

a5Jmn, and JmaJan

52Lm
n , which makes Gaussian integrals particula

simple. Note thatJ is a Hermitian matrix for spacelike mo
menta, but anti-Hermitian for timelike momenta—howev
Ap2J is always Hermitian, which is all that is necessary
ensure that the momentum space expression is always
mitian.

It is stressed that Eq.~B6! is the most general form of the
effective action in the long-wavelength limit, even for stron
effective fields, providedP1 andP3 are allowed to depend
on uEu2 and uBu2.

APPENDIX C: THE DUALITY PRESCRIPTION

The purpose of this appendix is to derive the duality tra
formation from Eq.~2! to Eq.~4!, which we do following the
general duality prescription.30 Our starting point is an ex-
tended Lagrangian that is obtained by couplingf to a new
gauge field,Am , which is constrained to be pure gauge:

Lext52
p

2u
emlnam]lan1Lp~j,a1A!

2
k

2
@]mf2qf~am1Am1Am!#2

1emnlbm]nAl1•••, ~C1!

where the fieldbm is a Lagrange-multiplier field that is in
troduced to enforce the vanishing of the field streng
]mAn2]nAm .

That this extended action is precisely equivalent to
original action may be seen by first performing the integ
tion over bm , which produces a functionald function that
enforces the constraintemnl]nAl50. This, together with the
gauge fixing condition, implies that the integration overAm
is equivalent to settingAm50 everywhere in the path inte
gral, which reduces Eq.~C1! to Eq. ~2!, as claimed.

The dual version of the Lagrangian is found by inste
performing the functional integrals in a different order, int
grating outf and Am and leavingbm as the dual variable
Care must be taken when performing these integrals to p
erly handle the vortex boundary condition which is satisfi
by f, namely,

f~q12p!5f~q!12p qf(
a

Na , ~C2!

whereNa are integers labeling the vorticity of each vorte
andq is the angular polar coordinate taken at spatial infini
a long distance away from the vortex positions.
9-14
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To integrate overf it is convenient to writef5v1w,
wherev is a particular configuration having the same boun
ary condition as doesf, so w is simply periodic: w(q
12p)5w(q). For v we choose

v~x!5
2p

qf
(

a
Na arctanS x12ya

1

x22ya
2D , ~C3!

whereya
i , i 51,2 are the coordinates of the positions of ea

vortex, with the indexi labeling the two space directions.
Notice that the gauge potential defined byvm5]mv, has

vanishing field strength,exceptat the positions of the vorti-
ces, where it hasd-function singularities, so

emnlbm]nvl52
2p

qf
(

a
Naẏa

m~ t !bmd„x2ya~ t !…. ~C4!

This term appears in the dual Lagrangian, and provides
minimal coupling of the vortex positions to the potentialbm .

With these definitions, the integrations overw andAm are
straightforward. It is simplest to choosew50 as a gauge
condition, and then directly perform the unconstrain
Gaussian integral overAm . The result is Eq.~4!, without the
vortex kinetic term.

APPENDIX D: PARTICLE-VORTEX DUALITY
AND LANDAU LEVEL ADDITION

In this appendix we derive the duality transformation b
tween pseudo-particles and vortices, but within a seco
quantized path-integral framework.~See also Ref. 63 for a
more detailed discussion of particle/vortex physics within
Abelian Higgs model supplemented by a Chern Simo
term.! The treatment here is based on Ref. 62, except tha
use a relativistic notation since this makes the manipulati
simpler and, as shown in Appendix B, the non-relativis
form is easily recovered from the relativistic form. As
Appendix B, the fields here are those of the pseudopartic
whose properties may depend on the external magnetic fi
and Am is the residual effective field seen by the
pseudoparticles.

We start from the action for a complex scalar fieldF,
with chargee, coupled to an effective electromagnetic fie
Am with a statistical gauge fieldam ,

S@F,A,a#52E d3xF pe2

2uh
emnram]narG1Sm@F,ã#,

~D1!

with

Sm@F,ã#52
1

2E d3x@~ i\]m2eãm!F#†@~ i\]m2eãm!F#

1Sint@ uFu2#, ~D2!

where ã5A1a, and Sint is an interaction term, possibl
including a mass term.
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1. The flux attachment transformation

The effective action involving the statistical gauge fie
should reproduce the same physics as Eq.~B6!, if u52kp.
To examine this further we first observe that the statisti
gauge fielda only ever appears in the action~D2! in the
combinationA1a, so defineã5hA1a ~at the momenth
51, but it is introduced here for later convenience!. Now
integrating the matter fields out of Eq.~A16! gives rise to an
effective action forAm andam of the form

Ge f f
(a) @A,a#52E d3p̄H 1

2
P1~p!ãm~2p!Lmnãn~p!

1
1

2
P3~p!Jmnãm~2p!ãn~p!J

2S e2p

2hu D E d3p̄
Ap2

\
Jmnam~2p!an~p!.

~D3!

Even though the matter integrations cannot be done exp
itly, the construction ensures that the form factorsP1 and
P3 appearing in Eq.~D3! must be identical to those appea
ing in Eq. ~B6!. They could be functions of the field
strengths forãm in general but, providedãm is small ~i.e.,
providedam almost exactly cancels the external fieldhAm),
they can be evaluated atãm50.

Now Eq. ~D3! should describe exactly the same phys
as Eq.~B6!, after a is integrated out, and this is what give
rise to the flux attachment transformation, as we now
scribe. Integrating the statistical gauge field out of Eq.~D3!

is easily achieved whenãm is set to zero inP1 andP3, as it
is then quadratic inam . The resulting effective action forAm
will have the same form as Eq.~B6! with P1 andP3 evalu-
ated atAm50, but with different form factors, which we

shall denote byP̃1 andP̃3.
A subtlety in the integration is that in the quadratic fro

amMmnan the matrixMmn is not invertible as it has a zer
eigenvalue. However it is only really necessary to find
matrix M such that, in relativistic formalism in momentum
space,M mnM nr5dm

r 2pmpr/p2 in order to integrate outa.
The result is12

G̃e f f@A#52E d3p̄H 1

2
P̃1~p!Am~2p!LmnAn~p!

1
1

2
P̃3~p!JmnAm~2p!An~p!J , ~D4!

where

P̃15S e2hp

hu D 2 p2P1

\2D
9-15
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P̃35
Ap2

\ S e2h2p

hu D2S p2

\2D
3S e2hp

hu D 2S P31~Ap2/\!~e2p/hu!

D D , ~D5!

with

D5P1
21FP31

Ap2

\ S e2p

hu D G2

5
p2

\ Fp2

\
p1

21S p31
e2p

hu D 2G .
~D6!

The nonrelativistic transformation is obtained by reintr
ducing the metric~B2! and noting thatp25gmnpmpn52p0

2

1(p2 /p1)p2, and Eqs.~D5! become

p̃15S e2hp

hu D 2 p1

d
,

p̃25S e2hp

hu D 2 p2

d
,

p̃35S e2h2p

hu D2S e2hp

hu D 2S p31~e2p/hu!

d D , ~D7!

where d5(2p1
2p0

21p1p2p2)/\21(p31e2p/hu)2, and
this is the form of the transformation given in Ref. 12~ex-
cept it is given in Euclidean signature in that reference!.

For a Hall conductor the transverse conductivity is rela
to the polarization tensorP3 by

sxy5p35\P3 /Ap2, ~D8!

while the transverse conductivity involves breaking t
three-momentum up into frequency and spatial momen
pm5(\v,p) and taking the limit

sxx5 lim
v→0

@Ap2p1 /\#p505 lim
v→0

@\P1 /Ap2#p50

52 i lim
v→0

@P1 /v#p50 . ~D9!

The transformed conductivitiess̃xx ands̃xy are related to the

transformed polarization tensorsP̃1 andP̃3 in a similar way.
Equation~D7! then gives, withh51, u52kp and units

in which e2/h51,

s̃xx5
sxx

4k2~sxx
2 1sxy

2 !24ksxy11
,

s̃xy5
2k~sxx

2 1sxy
2 !1sxy

4k2~sxx
2 1sxy

2 !24ksxy11
. ~D10!

It is stressed here that the above analysis represents a
metry under certain conditions, as discussed in Ref. 12, s
as very low temperatures. In the long-wavelength, ze
frequency limit, the phase diagram of the quantum Hall
fect is symmetric at low temperatures under the above tra
15530
-

d

m

m-
ch
-
-
s-

formation. For example, the critical exponents at rela
second-order phase transitions should be identical.

It should be remembered thatsxx and sxy represent the
components of a tensor. It may at first sight seem unnat
to be applying a nonlinear map which mixes up the differe
components of a tensor—what about covariance of the te
components? In fact Eqs.~D10! are very natural from this
point of view. If we define a complex coordinatezªx1 iy ,
and its conjugatez̄5x2 iy , then the conductivity tensor in
these coordinates is reduced to a single quantity,sªsxy
1 isxx , with a positive imaginary part, sincesxx.0. The
transformation reduces, in this coordinate system, to

s̃5h2
s

11~u/p!s
, ~D11!

which gives s̃5s/(112ks) for h51 and u52kp. This
last form can be obtained byk iterations of the generating
transformation

s̃5
s

112s
, ~D12!

as is easily checked. Equation~D12! is the transformation
ST22S in the text.

2. Particle-vortex duality

We could consider Eq.~D2! as either~i! a bosonic prob-
lem that is transformed from another bosonic problemu
52kp) or ~ii ! a bosonic problem transformed from a ferm
onic problem@u5(2k11)p#—only in the former case is
the statistical gauge field transformation a symmetry.

It will be argued in this section, following Ref. 62, tha
there is a second symmetry in the bosonic case (k even!, s
→21/s. This is aZ2 symmetry, which maps an insulato
s50 to a superconductors5 i` and hassxx5e2/h, sxy
50 as a fixed point.

We derive the second duality transformation as follow
firstly write Eq.~D1! in terms of the pseudoparticle parama
netic current,j m5( ie\/2)@F†]mF2(]mF)†F#, as

S@F,A,a#52E d3xF pe2

2uh
emnram]narG

1E d3xF2
\2

2
~]mF†!~]mF!

2
e2

2
uFu2ãmãm1ãm j mG1Sint@ uFu2#.

~D13!

Alternatively the action~D1! can be written in terms of
the vortex current by splittingF into a smooth part and a
vortex part as
9-16
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F~r !5F0~r !e2 iq(r )v~r !, ~D14!

whereF0(r ) is real,q(r ) is real, positive, and single value
and

v~r !5expF i
2p

qf
(

a
NaarctanS x12ya

1

x22ya
2D G , ~D15!

where (ya
1 ,ya

2) denote the position of the vortex labeled bya,
which should be summed over in the path integral. In th
variables the matter action reads

Sm@F0 ,q,ã#52
1

2E d3x@~\]mF0!21F0
2~\]mq

1 i\v* ]mv2eãm!2#1Sint@ uFu2#,

~D16!

where indices are understood to be contracted with
Minkowski metric (21,11,11).

We can now perform the integral overq by introducing
an auxiliary vector field,lm5\]mq, and imposing the con
straint]mln2]nlm50 with a Lagrange multiplier field,b̃m .
So we write

E Dq expS 2
i

2\E d3xF0
2~\]mq1 i\v* ]mv2eãm!2D

5E Dl Db expS 2
i

2\E d3xF0
2~lm1 i\v* ]mv2eãm!2

2
i

\eE d3xemnrb̃m]nlrD . ~D17!

Performing the functional integral overlm puts Eq.~D1!
in the form

S@F0 ,A,a,b#5E d3xF2
p

2u

e2

h
emnram]nar

2emnrãm]nb̃r1 j̃ mb̃m2
1

4e2F0
2
f̃ mn

b ~ f̃ b!mn

2
1

2
\2]mF0]mF0G1Sint8 @F0

2#, ~D18!

where f̃ mn
b 5]mb̃n2]nb̃m is the field strength forb̃m and the

vortex current isj̃ m5( i\/e)emnl(]nv* )(]lv). The integra-
tion overl also induces a functional determinant, ln(detF0)
and this has been absorbed into the interaction term forF0,
as indicated by the prime onSint8 @F0

2#.
Now integrateam out of Eq. ~D18!. The only terms in-

volving a are

Sa52E d3xF p

2u

e2

h
emnlam]nal1emnlam]nb̃lG .

~D19!

So integrating outa we get a term
15530
e

e

E d3xF u

2p

h2

e
emnlb̃m]nb̃lG . ~D20!

The action in terms ofb̃ is now

S(b)@F0 ,A,b̃#5E d3xF u

2p

h

e2
emnrb̃m]nb̃rG

1E d3xF2
1

4e2F0
2
f̃ mn

b ~ f̃ b!mn

2emnlAm]nb̃l1b̃m j̃ mG
2E d3xF\2

2
]mF0]mF0G1Sint8 @F0

2#.

~D21!

Now let b̃5b1(e2/h)(p/u)A and the action becomes

S(b)@F0 ,A,b#52E d3xF p

2u

e2

h
emnrAm]nArG

2E d3xF p

2ũ

h

e2
emnrbm]nbrG

1E d3xF2
1

4e2F0
2
f̃ mn

b ~ f̃ b!mn1b̃m j̃ mG
2E d3xF\2

2
]mF0]mF0G1Sint8 @F0

2#,

~D22!

whereũ52p2/u.
For comparison Eq.~D13! reads, writingF5F0e2 iq so

that the pseudoparticle paramagnetic current isj m

5e\F0
2]mq,

S(a)@F0 ,A,a#52E d3xF p

2u

e2

h
emnram]narG

1E d3xF2
e2F0

2

2
ãmãm1ãm j mG

2E d3xF\2

2
~]mF0!21

1

2e2F0
2

j m j mG
1Sint@F0

2#. ~D23!

The duality symmetry that we seek lies in the symme
between Eqs.~D22! and~D23!. One way to see this is to fix
9-17
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the effective fieldAm at some background value and treatF0
as a classical field. IfF0 is a nonzero constant the actio
~D23! describes a superconductor while Eq.~D22! describes
an insulator—as argued in Ref. 1 vortices condense to g
an insulator. If the gauge symmetry is not brokenS(a) and
S(b) describe conductors dual to one another. To exam
this situation we analytically continueF0

2 to complex values
and sete2F0

2'(e2/h)(Ap2/\)C5( ie2/h)vC, where C is
dimensionless~this is the leading term in the Fourier expa
sion of F0

2, in the long-wavelength limit when the gaug
symmetry is not broken!. So the longitudinal conductivity is
@settingpm5(\v,0)#

sxx
a 5\e2F0

2/Ap25 lim
v→0

S e2F0
2

iv D 5C
e2

h
~D24!

@see Eq. ~D9! with p15\2e2F0
2/p2#. Similarly S(b) de-

scribes a conductor with longitudinal conductivity

sxx
b 5 lim

v→0
S iv

e2F0
2D 5

1

C

h

e2
, ~D25!

@Eq. ~D9! with p151/(eF0)2#.
For a fixed external magnetic field,B, F0 , and so the

conductivitiessxx
a and sxx

b , depend onB, as well as other
external parameters, such as the temperature. In gen
therefore, it should be possible to find pairs of values for
external parameters, labeled generically byX, such that
C(X)51/C(X8) ~this is equivalent to settingṼ5P in
Sec. IV!. Then the effective actions~D22! and ~D23! are
identical except for the extra Chern-Simons term forAm in
Eq. ~D22!.

In particular if we takeu52p in Eq. ~D22! and p in
Eq. ~D23! ~these two values ofu are of course indistinguish
able in the statistical gauge field transformation! the sole
effect of the extra term on the effective action is to shift t
transverse conductivity bysxy→sxy11 ~where we have se
e2/h51). Of courseu56p means that we started from
fermions and transformed to bosons using the statist
gauge field so we can argue that we have derived thT
transformation~which corresponds to the Landau-Level a
dition in the first-quantized theory! as follows: start with a
fermionic system and transform to a bosonic system us
u56p, then use the above argument to show thats→s
11 is a symmetry and then transform back to fermions. T
shows thats→s11 is a symmetry for the fermionic system
~it is not a symmetry for a bosonic system, becauseu5
6p does not keep bosons as bosons!. This argument, while
plausible, has ignored the currents and the functional inte
tion overF0.

A more convincing argument takes the currents, b
pseudoparticle and vortex, into account. Pseudoparticles
vortices are massive and so should decouple in the lo
wavelength limit. Just as in the derivation of the flux attac
ment transformation we can argue that, in the lon
wavelength limit, integrating outF0 from Eq. ~D23! and
summing over pseudoparticle currents must lead to an ef
tive action for the external gauge field of the form
15530
e

e
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e
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Ge f f
(a) @A,a#52E d3x d3x8H S 1

4D ~ f̃ a!mn~x!p1
a~x2x8!

3~ f̃ a!mn~x8!1
1

2
emnlãm~x!

3p3
a~x2x8!]nãl~x8!J

2
e2

h S p

2u D E d3x emnlam~x!]nal~x!,

~D26!

with f̃ mn
a 5]mãn2]nãm5]m(an1An)2]n(am1Am) ~we

have setp2
a5p1

a in the relativistic form—the superscripta
indicates that these are polarization tensors associated
the field am). As before integrating outã now gives an ef-
fective action for the effective fieldA,

G̃e f f@A#52
1

2E d3p̄H p2

\2p̃1~p!Am~2p!LmnAn~p!

1Ap2

\
p̃3~p!JmnAm~2p!An~p!J , ~D27!

with polarizations

p̃1~v,p!5S e2p

hu D 2 p1
a

da ,

p̃3~v,p!5
e2p

hu
2S e2p

hu D 2S p3
a1~e2p/hu!

da D , ~D28!

where da5(p1
a)2(2p0

21p2)/\21@p3
a1(e2p/hu)#2. This

leads to complex conductivities that are related by

s̃5
sa

11~u/p!sa
, ~D29!

with sa5 limv→0(p3
a2vp1

a) and e2/h51 ~remember
limv→0(vp1

a)52 isxx
a ).

Similarly integrating outF0 and summing over vortex
configurations in Eq.~D22! must lead, in the long wave
length limit, to

Ge f f
(b) @A,b#52E d3xd3x8H S 1

4D ~ f̃ b!mn~x!p1
b~x2x8!

3~ f̃ b!mn~x8!1
1

2
emnlb̃m~x!

3p3
b~x2x8!]nb̃l~x8!J

2
e2

h E d3x
p

2u
emnrAm]nAr

2
p

2ũ

h

e2E d3x emnlbm~x!]nbl~x!. ~D30!
9-18
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Remember that here (f̃ b)mn5]m@bn1(e2/h)(p/u)An#
2]n@bm1(e2/h)(p/u)Am#.

Now we can integrateb out of Eq. ~D30! in exactly the
same way asa was integrated out of Eq.~D26!—the only
differences are~i! the presence of the term involvin
2(e2/h)(p/2u)emnrAm]nAr , which subtractse2p/hu from
the right-hand side ofp̃3 in Eq. ~D28!, ~ii ! e2p/hu is re-
placed withhp/e2ũ with ũ52p2/u in Eq. ~D28!; ~iii ! we
should useh5e2p/hu, and~iv! thep i

a are replaced byp i
b .

The resulting effective action is

G̃
˜

e f f@A#52
1

2E d3p̄H p2

\2p̃̃1~p!Am~2p!LmnAn~p!

1Ap2

\
p̃̃3~p!JmnAm~2p!An~p!J , ~D31!

with different polarization transformations to Eq.~D28! @see
Eq. ~D7!#,

p̃̃1~v,p!5S p

u D 2S p

ũ
D 2

p1
b

db 5
p1

b

db

p̃̃3~v,p!5S e2p

hu D 2 p

ũ
2S p

u D 2S p

ũ
D 2

3S p3
b1~hp/e2ũ !

db D 1
e2p

hu

5
~hu/e2p!2p3

b

db
, ~D32!

wheredb5(p1
b)2(2p0

21p2)/\21@p3
b2(hu/e2p)#2.

In terms of complex conductivities, Eq.~D32! results in
~again withe2/h51)

s̃̃52
1

sb2
u

p

, ~D33!

with sb5 limv→0(p3
b2vp1

b). If u52pk then this equation
represents a symmetry of a bosonic theory,s→21/(s
22k), which is equivalent to the modular transformation

g5S 0 1

21 2kD .

The particular casek50 is s→21/s.
Together with the flux attachment transformation~D12!

this generates the groupGu for bosons. Conjugating withST
as described in the text givesG0(2) for fermions.

APPENDIX E: THE GAUSSIAN INTEGRALS

In this appendix we perform in detail the Gaussian in
grations that lead to our central formula, Eq.~15!. Our start-
ing point is Eq.~4! after the integration over the positions
the quasiparticles and vortices has been performed, u
Eqs.~9! and ~10!. This starting point may be written
15530
-

ng

S052E d3xF p

2u
emlnam]lan1emlnbm]l~a1A!nG

2
1

2E d3x d3y@~a1A!m~x!Pmn~x2y!~a1A!n~y!

1bm~x!Vmn~x2y!bn~y!#. ~E1!

Our task is to perform the integrals overam andbm , and
our interest is in the dependence of the result onAm . Be-
cause none of the functional determinants that arise in
integrations depend onAm , these may be neglected as co
tributing anAm-independent additive constant to the EM r
sponse function,G@A#.

Performing first thebm integration, the saddle-point con
dition may be written as

bm~x!52E d3y Vmn~x2y!enab]a~a1A!b~y!, ~E2!

where the kernelVmn satisfies the definition

E d3y Vml~x2y!Vln~y2z!5Lm
n ~x2z!, ~E3!

for the projection operator

Lm
n ~x2z!5~dm

n 2]m]n/]2! d3~x2z!.

The result for the effective action then becomes

S152E d3xF p

2u
emlnam]lanG

2
1

2E d3x d3y~a1A!m~x!P̂mn~x2y!~a1A!n~y!,

~E4!

where

P̂mn5Pmn2emlr]lVra eabn]b . ~E5!

The construction of kernels likeVmn is dramatically sim-
plified by working in momentum space, and expanding
kernels in terms of the basis of tensorsLm

n and Jmn, as in-
troduced in the text. For instance, ifVmn(p)5A1Lmn

1A2Jmn, thenVmn(p)5B1Lmn1B2Jmn with

B15
A1

A1
21A2

2 , B252
A2

A1
21A2

2 , ~E6!

which is more compactly written in terms of the comple
variablesA5A11 iA2 andB5B11 iB2 asB51/A.
9-19
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Proceeding in the same vein, the saddle point for theam
integration is

am52E d3y K mnP̂nlAl , ~E7!

whereK mlKln5Lm
n and Kmn5 P̂mn1(p/u)emln]l . Using

this in the integration overam gives the electromagneti
15530
response function of Eq.~11! with the EM response tenso
Pmn given by

Pmn5 P̂mn2 P̂mlKlrP̂rn. ~E8!

Once expressed in terms of complex variables, as above,
result gives Eq.~15!.
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