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Symmetry-adapted BCS-type trial wave functions for mesoscopic rings
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In mesoscopic systems, the symmetry of the wave function cannot be broken and must be considered. We
construct symmetry-adapted trial wave functions of the Bardeen-Cooper-Schrieffer-type for mesoscopic rings
described by an extended-Hubbard model at half-filling. The comparison with exact numerical~Lanczos!
diagonalization in small rings indicates that this variational approach is reasonably accurate. Within this
approach, we demonstrate a crossover from a weak-correlation regime to a strong correlation one. Particularly
interesting is the behavior of the lowest-excitation energy, which switches from a highest-occupied-molecular-
orbital–lowest-unoccupied-molecular-orbital gap to a splitting energy related to a collective tunneling of elec-
trons.
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I. INTRODUCTION

In condensed matter physics, variational approac
based on, e.g., BCS-type trial wave functions turned ou
be very useful for describing various ordered phases
superconductivity or excitonic insulators.1 These approache
are transparent physically but approximate. To test their
lidity for nontrivial models, the comparison with exact~or
almost exact! results obtained by numerical methods@quan-
tum Monte Carlo, exact diagonalization, density mat
renormalization group~DMRG!# is necessary.2,3 Usually, the
interest of such numerical studies on strong correlations
in infinite systems. Although inherently carried out in fini
systems, they investigated the size~N! dependence only to
deduce, via finite-size scaling analysis, results forN→`. In
view of recent advances in the fields of nanostructures
synthesis of larger molecules, theN dependence can also b
considered a problem of interest by itself. This was co
firmed by the results of several recent studies on mesosc
Peierls rings.4,5

Besides exact numerical methods,controlledapproximate
treatments are useful for mesoscopic systems as well. C
puter storage problems impose severe~disc space and/o
computation time! limitations on the largest size in quantu
Monte Carlo and exact diagonalization calculatio
(N;10–50!. Larger systems (N;100) can be studied
within DMRG, but mesoscopic rings are difficult to stud
since convergence problems arise when applying perio
boundary conditions.3 On the other side, it is unlikely to
expect predictions in a certain field without the understa
ing in terms of simple physical concepts.

For mesoscopic systems, it is impossible to employ
rectly trial functions used for infinite systems, since th
describe ordered states withbrokensymmetry. A certain type
of ordering could develop in the ground state of a fin
system, but this should occurwithout symmetry breaking. A
concrete situation of this kind is encountered in mesosco
Peierls rings and has been discussed recently.5 In this paper,
we shall demonstrate the importance of incorporating
correct symmetry in the wave function of mesoscopic s
tems of strongly correlated electrons. Moreover, we sh
that these systems can be described reasonably well with
0163-1829/2001/63~15!/155308~8!/$20.00 63 1553
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variational treatment based on trial functions appropriat
constructed. To illustrate this, we shall consider here fin
rings described by an extended-Hubbard model at h
filling. Various Hubbard models have been often used
examine strongly correlated electrons in numerous lo
dimensional compounds ranging from conducting polym
to cuprates. The one-dimensional extended-Hubbard m
is interesting because its ground state displays various ty
of orderings. Out of these, charge- and spin-density-wa
~CDW, SDW! are most relevant phases for quasi-on
dimensional compounds.

II. MODEL AND GENERAL PROPERTIES

Let us considerN electrons onN sites ~half-filling case!
described by an extended-Hubbard Hamiltonian,

H52t(
j 51

N

(
s5↑,↓

~cj ,s
† cj 11,s1cj 11,s

† cj ,s!

1(
j 51

N

~Unj ,↑nj ,↓1Vnjnj 11!. ~1!

Here, c (c†) denotes creation~annihilation! operators for
electrons,nj ,s[cj ,s

† cj ,s , nj[nj ,↑1nj ,↓ , t is the hopping in-
tegral between nearest neighbors~unless otherwise specified
set throughout to unity!, U and V are on-site and neares
neighbor potentials, respectively. Numerous methods~in-
cluding mean field, quantum Monte Carlo exact numeri
diagonalization, DMRG! have been employed previously t
study the phase diagram of the model~1!, but they were
ultimately applied to the limitN→`.6–9

In a sense, finite~mesoscopic! systems are more interes
ing than infinite systems. Besides the model parameterst,
U, V) characterizing the latter, the sizeN represents an extra
parameter that can modify the physical properties of
former.

Physical insight into the model~1! can be gained by ex
amining the ~classical! limit t→0. Then, for 0,U,2V,
there are two equivalent multielectronic configuratio
uCDW1,2& for which the energy is the lowest, correspondi
©2001 The American Physical Society08-1
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TABLE I. Symmetries of the ideal-ordered states characterizing the CDW and SDW orderings in c
and open-shell systems.

State N54n12 ~PBC! N54n ~ABC! N54n ~PBC! N54n12 ~ABC!

CDW1 T1R1C1F2 T1R1C1F1 T1R1C1F1 T1R1C1F2

CDW2 T2R1C2F2 T2R1C2F1 T2R1C2F1 T2R1C2F2

SDW1 T2R1C2F1 T1R1C1F1 T2R2C1F1 T1R2C2F1

SDW2 T1R1C1F2 T2R1C2F2 T1R2C2F2 T2R2C1F2
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to doubly occupied sites and unoccupied sites alternating
riodically ~the bipolaronic limit of a CDW!. In occupation
number representation, they are expressed asuCDW1&
5u . . . 0202 . . .& and uCDW2&5u . . . 2020 . . .&. For 0
,2V,U, the lowest energy is obtained if each site is occ
pied exactly by one electron with either up or down spin; t
possible states are those where the spin orientations alte
between adjacent sites, i.e.,uSDW1&5u•••↑↓↑↓•••& and
uSDW2&5u•••↓↑↓↑•••& ~the antiferromagnetic limit of an
SDW!. The critical point (U52V) of the CDW-SDW tran-
sition expected within this oversimplified analysis is not ve
far from what quantum calculations7–9 predict for infinite
systems (U&2V).

The limiting configurationsuCDW1,2& and uSDW1,2& rep-
resent dimerized states, i.e. states of broken symmetry.
is possible only in infinite systems. In finite ones, when
exact ground state is nondegenerate—a fact confirmed
our results for small rings studied by exact~Lanczos!
diagonalization—it should preserve the symmetry of
Hamiltonian. TheN-site ring described by Eq.~1! is invari-
ant under the following symmetry transformations:cj ,s

→cj 11,s ~elementary translationT̂), cj ,s→cN2 j ,s ~space in-
version R̂), cj ,s→(21) j cj ,s

† ~charge conjugationĈ) and

cj ,s→cj ,2s ~spin flip F̂). Under the aforementioned tran
formations, the nondegenerate eigenstatesuCm& of ~1! should
be either of even or of odd parity (uCm&→6uCm&). We shall
use, e.g.,C6 to denote an eigenstate that is symmetric~an-
tisymmetric! with respect to charge conjugation. Out of th
above multielectronic configurations that are classica
equivalent, one can construct the following states compat
with the original symmetry: uDW6&}uDW1&6uDW2&
(DW is eitherCDW or SDW). Their symmetries are indi
cated in Table I for systems withN54n12 and N54n,
both for periodic~PBC! and antiperiodic~ABC! boundary
conditions.

Several previous studies on weakly correlat
systems like cyclic polyenes~annulenes!10 and finite
Peierls rings4,5 demonstrated that closed and op
shell systems behave quite differently. By definition,
closed ~open! shell system possesses a nondegene
~degenerate! ground state in the absence of interaction. R
phrasing, the so-called highest-occupied-molecular-orbit
lowest-unoccupied-molecular-orbital~HOMO-LUMO! gap
~i.e., the energy difference between the lowest-unoccup
orbital and the highest-occupied orbital! is finite for closed
shells, but vanishes for open shells. Our results obtained
means of the exact numerical diagonalization for small s
systems described by the Hamiltonian~1! confirm that no-
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table differences between closed (N54n12 with PBC and
N54n with ABC! and open (N54n with PBC andN54n
12 with ABC! shells also exist in the presence of stro
correlations. Therefore, we shall discuss closed and o
shells separately. Since the approach proposed in this p
is particularly suitable for closed shells, we shall mainly e
amine this case and consider for specificityN54n12 and
PBC. Open shells will be analyzed in Sec. VI.

For N54n12 and PBC, a straightforward analysis r
veals that both statesuCDW1& and uSDW2& are of symme-
try T1R1C1F2. For small rings, we have computed th
exact ground stateuC0& by numerical~Lanczos! diagonaliza-
tion. It turns out thatuC0& contains, besides the terms ente
ing uCDW1& anduSDW2&, other contributions, but its sym
metry is the sameT1R1C1F2 in the whole (U/t,V/t)
plane. This is whyuC0& can change gradually from a CDW
type state to an SDW-type one, e.g., by decreasingV at fixed
U and t. The smoothness of the CDW-SDW transition
periodic (4n12)-site rings is illustrated in Fig. 1~a! by exact
~Lanczos! diagonalization results for the ground state CD
correlation functionKc ,

Kc[2(
j 51

N

~21! j^njn1&. ~2!

FIG. 1. Results obtained by exact~Lanczos! diagonalization for
ten site periodic rings andt/U50.2;0.5;1~solid, dashed, and dotte
lines, respectively!. ~a! The CDW correlation functionsKc reveal a
smooth CDW-SDW transition.~b! The energy« of the lowest ex-
citation.
8-2



th
f

W

i-

a

i-

la

l,

u

lly

is
wn

tu

to
or
b

te
ia

it
A

a

te

f

in

e-
ions

by

i-

etry

ach
the
ere
s. In
uld

all
nd

ive
for

e
-
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The inspection of the curves in Fig. 1~a! reveals the influence
of quantum fluctuations on the CDW-SDW transition. Wi
increasingt at fixed U, the transition occurs at values o
2V/U substantially larger than in infinite systems (2V/U
*1); the transition is significantly pushed towards the CD
region. The larger the quantum fluctuations (t), the broader
is the transition region.

For V/U@1 and V/t@1, uC0& tends to the symmetric
superpositionuCDW1&. This demonstrates that the class
cally equivalent configurationsuCDW1,2& contribute to the
exact ground state and there exists a tunneling involving
electrons between them. To our knowledge, such acollective
quantum electron tunnelinghas not been discussed by prev
ous investigators. If so, an eigenstateuC1& tending to the
antisymmetric superpositionuCDW2& in the same limit
should also exist. This expectation is confirmed by calcu
tions that show thatuC1& has the symmetryT2R1C2F2, in
agreement with Table I. The tunneling splitting«
[^C1uHuC1&2^C0uHuC0& becomes vanishingly smal
e.g., by increasingV at fixedU and t @cf. Fig. 1~b!#.

Unlike uCDW1&, the superpositionuSDW2& can never
exhaust the expansion of the exact ground state, altho
there are parameter regions whereuSDW2& gives the largest
contribution touC0&. This can be understood both classica
and quantum mechanically. As discussed above, fort→0
and 0,2V,U, the lowest energy is obtained if each site
occupied exactly by one electron with either up or do
spin. uSDW1,2& are only two states out of (N/2

N ) such configu-
rations. On the other side, the total spin is a good quan
number for model~1!, but ~unlike uCDW6&) uSDW6& are
not eigenstates of the total spin operatorS2. This suggests
that, in the SDW regime, the significant contributions
uC0& should be more numerous and, hence, a m
complicated-variational ansatz than that used employed
low would be necessary. Therefore, we shall focus our at
tion in this paper only on the CDW part of the phase d
gram.

III. SYMMETRY ADAPTED BCS-TRIAL FUNCTIONS FOR
MESOSCOPIC RINGS IN THE CDW REGIME

Within a mean-field picture, a CDW is represented by
nonvanishing site-independent average (21) j^nj21&. This
means that the charge excess at each even-numbered s
equal to the charge deficit at each odd-numbered site.
noted, there also exists another equivalent configuration~ob-
tained by interchanging the words even and odd above!. To
describe such states, one could choose a BCS-type trial w
functions of the form@k[(N22)/4, u0&—vacuum state#

uw1,2&5)
s

)
p52k

k

~ap,s
† cosup,s6bp,s

† sinup,s!u0&, ~3!

where a certain ordering of the factors should be adop
~e.g.,p increases by 1 from right to left!, up,s are adjustable
~real! parameters andap,s

† (bp,s
† ) are creation operators o

right- ~left-! moving electrons,
15530
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cj ,s5N21/2 (
p52k

k

@ap,s exp~2p i jp /N!

1~21! jbp,s exp~2p i jp /N!#. ~4!

A straightforward analysis reveals that, by imposing,

up,s5up,2s5up , ~5!

the functionsuw1& and uw2& are eigenstates of the total sp
S2 (S50) and their symmetry under spin flipF2 coincides
to that of the statesuC0,1& anduCDW6&. However, bothuw1&
anduw2& correspond to states with brokenT̂, R̂, andĈ sym-
metries. They cannot describe directly CDW ordering in m
soscopic systems, but can be used to construct trial funct
whose symmetry is correct. The linear combinationsuw1&
6uw2& are eigenstates ofT̂ andĈ, but their transformationR̂
is still incorrect. This last drawback can be eliminated
using the following functions:11

uCA,B&[CA,B
21/2@ uw1&1uc1&6uw2&6uc2&], ~6!

where the functionsuc1,2& are obtained replacing the quant
ties up,s by u2p,s in the expressions~3! for uw1,2&. The nor-
malization constant is expressed by

CA,B[4F16 )
p52k

k

cos2 2up1 )
p52k

k

cos2~up2u2p!

6 )
p52n

n

cos2~up1u2p!G . ~7!

One can show that these trial functions possess the symm
properties of the exact eigenstatesuC0,1& ~cf. Sec. II!: uCA&
has the symmetries ofuC0& (T1R1C1F2), while uCB& has
the symmetries ofuC1& (T2R1C2F2).12

The trial functionsuCA,B& defined by Eq.~6! represent the
starting point of the presently proposed variational appro
for closed-shell systems. The essential difference from
case of infinite systems is that the trial functions used h
are adapted to the symmetry of the mesoscopic system
order to compute physical properties of interest, one sho
determine$up% (N/2 independent values foreachstate! by
minimizing numerically the energy functionalsEA,B
[^CA,BuHuCA,B& obtained by combining Eqs.~1!, ~6!, and
~7!. Because the expressions ofEA,B are lengthy, they will be
omitted.

IV. EXACT DIAGONALIZATION VERSUS
SYMMETRY-ADAPTED BCS-TRIAL FUNCTIONS

FOR SMALL RINGS

We have performed extensive computations on sm
rings by means of both exact numerical diagonalization a
the trial functions defined in Sec. III. Some representat
results are collected in Fig. 2. By inspecting the curves
the CDW and SDW correlation functions (Kc and Ks , re-
spectively! of Figs. 2~a! and 2~b!, one can conclude that th
symmetry adapted trial functionsuCA,B& are reasonably ac
curate. Ks is defined by replacing the operatorsnj[nj ,↑
8-3
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IOAN BÂLDEA, HORST KÖPPEL, AND LORENZ S. CEDERBAUM PHYSICAL REVIEW B63 155308
1nj,↓ in the expression~2! of Kc by nj ,↑2nj ,↓ (1< j <N).
One should note at this point that the SDW correlation fu
tion Ks decreases progressively with increasingV ~i.e., when
moving deeper into the CDW regime!. This behavior illus-
trates alternatively the smoothness of the CDW-SDW tra
tion in finite systems. The fact thatKs does not vanish ex
actly ~as is with the case within a mean-field approach! is a
result of quantum fluctuations. Besides, we also compare
absolute error in the ground state obtained variationa
dE5^CAuHuCA&2^C0uHuC0&, to the total correlation en
ergy, Ecorr5EHF2^C0uHuC0& (EHF is the total Hartree-
Fock ground state energy!; see the curve ford5dE/Ecorr in
Fig. 2~c!. The trial state that possesses the correct symm
uCA& represents a better approximation—both qualitativ
and quantitatively—for the exact ground stateuC0& than that
with broken symmetry (uw1,2&). Notice also thatd vanishes
exponentially in the strong coupling limit. In this limit, th
function uCA& provides accurate estimates of the ex
ground state properties.

Summarizing the comparison reveals that unlike the st
with broken symmetryuw1,2&, the symmetry-adapted BCS
trial wave functionsuCA,B&, provide a satisfactory frame

FIG. 2. Results for ten site periodic rings (t51). ~a!,~b! CDW
and SDW correlation functionsKc,s obtained by means of the exa
eigenstatesuC0,1& ~solid and dashed lines, respectively! and the
symmetry-adapted trial functionsuCA,B& ~circles and crosses, re
spectively!. ~c! Absolute error in the ground state energy divided
the exact correlation energyd[(^CAuHuCA&2^C0uHuC0&)/(EHF

2^C0uHuC0&) for U55;2.5;1 ~solid, dashed, and dotted lines, r
spectively!.
15530
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work for describing finite rings. The reason is that, althou
approximate, the expressions~6! of the functionsuCA,B& ac-
count for the collective tunneling of electrons. As expect
from intuitive physical reasons~Sec. II!, this effect should
play an important role at mesoscopic sizes.

V. WEAK VERSUS STRONG CORRELATIONS IN
MESOSCOPIC RINGS

Two limits are encountered in the study of interacti
systems. In the limit of weak correlations, a system can
described in terms of~almost! independent quasiparticles
Such a description does not hold any more in the oppo
limit of strong correlations. Usually, one moves from th
former case to the latter by starting with a collection of fr
particles and switching on interaction~s! between them. From
this standpoint, mesoscopic systems are more interes
than infinite systems, because there exists another route
tween the two limits: not only by increasing interactio
strengths~like U and/orV) but also by increasing the sizeN
of the system.

In this section, we shall demonstrate this explicitly for t
chosen model~1!. This is possible within the variational ap
proach based on the symmetry-adapted trial functions~6!,
because this method can be applied to rings of mesosc
sizes, much larger than those for which numerical exact
agonalization can be carried out. Calculations clearly in
cate the crossover from a weak-correlation regime to
strong-correlation regime with increasing size. To illustra
this, we present in Fig. 3 theN dependence of the lowes
excitation energy«[^CBuHuCB&2^CAuHuCA&.

By inspecting the curves forU5V51 of Figs. 3~a! and
3~b!, one can see that the linear dependence of«(N) on 1/N

FIG. 3. For closed-shell systems, the lowest excitation energ«
behaves as a HOMO-LUMO gap («;1/N) for small sizes~N! and
as a tunneling splitting (ln«;2N)) for largeN, indicating a cross-
over from weak to strong correlations. The parameter values at
51 and, increasing downwards,U5V50.5;1;2.Lines are guides
to the eye.
8-4
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for small sizes (N,Nc) changes to an exponential depe
dence, ln«(N);2N, beyond a certain size (N.Nc). The
crossover valueNc is very sensitive to changes of interactio
strengths. The stronger the coupling, the higher is the va
of Nc . The crossover value is larger than all the sizes e
ployed in Fig. 3 forU5V50.5, while it is smaller forU
5V52. This is why, in thewhole Nrange shown in Fig. 3
the «(N) curve is practically linear in Fig. 3~a! for U5V
50.5, and in Fig. 3~b! for U5V52. This behavior of«
5«(N) has a clear physical interpretation. ForN,Nc ~weak
correlation or single-particle regime!, the main interaction
effect is to renormalize the single-particle gap. There,«(N)
plays the role of a~renormalized! HOMO-LUMO gap («
;t/N for U5V50). In the opposite case,N.Nc ~strong
correlation or collective regime!, «(N) is the result of the
tunneling of electrons through an energy barrier. Semicla
cally, the tunnel-splitting energy should be proportional
the transmission coefficientt over a distance of the order o
the lattice constanta through a barrier of heightEB'Ecorr
~see below! of an object of massM'Nm @m'\2/(2ta2)
being the electron mass#. This yields logt;2aA2EBM /\
;2AEcorrN/t}N. The proportionality toN is the result of
the fact that for larger sizesEcorr}N. The size-dependenc
ln «;2N, similar to that of lnt, is a clear indication of the
collectivenature~i.e., M}N) of this effect, in accord with
the qualitative analysis of Secs. I and II. The above con
erations also allow us to unravel the physical meaning of
critical size Nc . The crossover between weak and stro
correlation regimes~alternatively, between single particl
and collective excitations! occurs when the exponent ente
ing the expression oft is of the order of unity, i.e.,Ecorr
;t/N. This relation has a clear physical interpretation:
N;Nc , the system can rapidly tunnel between the two cl
sically equivalent configurations, because the energy
single electron-hole excitations (;t/N) is comparable to the
energy barrier (;Ecorr). This is analogous to the crossov
between normal~undimerized! and dimerized regimes en
countered in mesoscopic Peierls rings.5 In that case, the criti-
cal size corresponds to an energy barrierV(Q50)
2V(QMF) as determined by the symmetric adiabatic dou
well potentialV(Q)5V(2Q) @Q is the dimerization coor-
dinate andVmin5minQV(Q)] which is comparable to the
phonon frequencyV; see Ref. 5 for details. The correspo
dence between the case of Ref. 5 and the present one i
following: V(Q50)
EHF , Vmin
^CAuHuCA&, and
t/N
V. Unfortunately, unlikeVmin , the ~almost! exact en-
ergy ^CAuHuCA& cannot be evaluated analytically, so tha
straightforward estimation ofEcorr , and hence, of the
present quantityNc is impossible.

It is also interesting to examine the size dependence
relevant average properties, like the CDW and SDW co
lation functionsKc,s . To understand the results collected
Figs. 4~a! and 4~b!, one should first remember that, for th
values used there (U5V), an infinite system would be in th
CDW regime (U,2V). The twofold degenerate mean-fie
ground state would be a CDW condensate characterize
an extensive CDW correlation function (Kc}N) and vanish-
ing SDW correlations (Ks50). As illustrated in Fig. 4, dif-
15530
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ferences exist between the properties of the statesuCA& and
uCB& for sufficiently small sizes. The weaker the couplin
the broader is theN range where the properties are signi
cantly size dependent and the larger are the differences
tween the statesuCA& and uCB&: compare the curves forU
5V50.5, 1, and 2 in Fig. 4.

In Fig. 4~a!, we show theN dependence of the normalize
CDW correlation functionKc /N. Kc /N saturates forN
→`, indicating the presence of a well-defined CDW co
densate in infinite systems. The semiclassic~mean-field! pic-
ture becomes qualitatively correct in the thermodynam
limit. At large enough sizes, the tunneling splitting« be-
comes vanishingly small. The statesuCA& anduCB& become
almost degenerate and are characterized by almost e
CDW correlations, in agreement with the qualitative discu
sion of Sec. I.

It is also useful to compare the different behaviors exh
ited by the curves of Figs. 4~a! and 4~b!. Notice that the
former refers to thenormalizedCDW correlation function
Kc /N, whereas the latter refers to theabsoluteSDW corre-
lation functionKs . Both quantities saturate in the thermod
namic limit. The CDW condensate becomes more p
nounced with increasingN, while the SDW is not condensed
unlike in the mean-field description, weak SDW correlatio
exist (KsÞ0) but are practically determined solely by siz
independent quantum fluctuations. This behavior resem
that of the mean-square lattice displacement^Q2&5^(a
1a†)2& (a anda† are phonon operators!. For a condensed
phonon field~static lattice distortion!, ^Q2& is proportional to
N, whereas for normal~noncondensed phonons! it tends to a
N-independent value determined by quantum-phonon fl
tuations (̂ Q2&51 for free phonons!; see, e.g., Ref. 5. The
picture emerging from this analysis is consistent to that o

FIG. 4. The size dependence of the normalized CDW corre
tion functionKc /N ~a! and absolute SDW correlation functionKs

~b! for closed-shell systems in the lowest energy statesuCA& and
uCB& ~triangles and circles, respectively!. Lines are guides to the
eye. The parameter valuesU/t5V/t50.5;1;2 increase upwards in
~a! and downwards in~b! for N>50.
8-5
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smooth CDW-SDW transition discussed in Sec. II and in
cates two alternative routes towards a well-defined CD
state: by increasing the size~for V.U/2) or the coupling
strength~e.g.,V at fixedU).

VI. OPEN SHELL CASE

So far, we have shown that the symmetry-adapted t
functions ~6! are suitable to describe periodic~PBC! rings
with N54n12 sites in the CDW regime. This is also th
case of antiperiodic~ABC! rings withN54n sites. There are
only several minor differences between the casesN54n
12 with PBC andN54n with ABC. In the latter case, the
ground state also has, in the whole (U/t,V/t)-plane, the
same symmetries: they are those of the statesuCDW1& and
uSDW2& ~not uSDW1&, cf. Table I!. The functionsuCA& and
uCB& have the same symmetries as the statesuCDW1& and
uCDW2&, respectively. The different spin-flip symmetr
(F2 for N54n12 with PBC, butF1 for N54n with ABC!

is the consequence of the fact that the transformationF̂ in-
terchanges an odd~even! number of parentheses in Eq.~6! in
the former~latter! case, sincek is ~half-! integer. The physi-
cal properties forN54n12 with PBC andN54n and ABC
are quite similar, because both correspond to closed sh
the ground state of the noninteracting systems is nonde
erate~the HOMO-LUMO gap does not vanish!. Analogous
to the situation encountered in Peierls mesoscopic rings,5 the
points on the curves displaying theN dependence of relevan
physical properties for the caseN54n12 and PBC
smoothly interpolates between those for the caseN54n and
ABC.

As already noted in Sec. II, our results obtained by me
of the exact numerical diagonalization for small sizes in
cated that notable differences between closed (N54n12
with PBC andN54n with ABC! and open (N54n with
PBC andN54n12 with ABC! shells, known from previous
investigations on weakly correlated systems,10,4,5 also exist
in the case of strong correlations. To exemplify, one c
refer to the CDW-SDW transition. According to the qualit
tive analysis of Sec. II, one can conclude that a CDW-SD
transition should necessarily occur by changing the mo
parameters from 1!U/t,2V/t to U/t.2V/t@1. The in-
spection of Table I shows that a transitio
uCDWm&
uSDWn& in open-shell rings must be accomp
nied by a change in the ground state symmetry (m,n56).
This indicates asharpCDW-SDW transition in these case
as explicitly shown in Ref. 13, contrasting to the smooth o
found in Sec. II.

Trial functions possessing the symmetries of the sta
uCDW6& can also be constructed for open shells. Howev
their form is more complicated than those of Sec. III, ju
because of the ground state degeneracy of the free ele
gas. To illustrate the difficulty, one should note that to co
struct two singlet states with the symmetries ofuCDW1& and
uCDW2& in the absence of interaction, one should superp
each time two distinct states out of the six degenerate gro
states. In view of the above considerations, instead ofuw1,2&
and uc1,2&, one can try to use the functions
15530
-

al

lls:
n-

s
-

n

el

e

s
r,
t
ron
-

e
nd

uj1,2&5@6Ar↓
†r ↑

†6Bl↓
†l ↑

†1C~r ↓
†l ↑

†2r ↑
†l ↓

†!#

3)
s,k

~ak,s
† cosuk6bk,s

† sinuk!u0&,

uh1,2&5@6Br↓
†r ↑

†6Al↓
†l ↑

†1C~r ↓
†l ↑

†2r ↑
†l ↓

†!#

3)
s,k

~ak,s
† cosu2k6bk,s

† sinu2k!u0&,

where k increases by unity from2N/411/2 to N/421/2,
r s5b2N/421/2,s , l s5a2N/421/2,s , A5sina cosb, B
5sina sinb andC5221/2cosa (A21B212C251). These
functions are of broken symmetry, but they can be used
define the trial functions with correct symmetries:

uFA,B&}uj1&1uh1&6uj2&6uh2&. ~8!

Straightforward analysis shows that the functionsuFA& and
uFB& represent singlet states with the symmetries
uCDW1& and uCDW2&, respectively. We have used th
functions uFA,B& to minimize the total energy by adjustin
the variational parameters$up%, a andb. For small systems
we have compared the results of exact numeri
diagonalization13 with those deduced variationally by usin
the functionsuFA,B&. Although not as accurate as in th
closed-shell case, the proposed variational approach can
reproduce exact ground state properties of open-shell
tems within a few percent; see Fig. 5~a! for illustration.

In the presence of an Aharonov-Bohm~AB! magnetic flux
f ~flux unit hc/e) threading a ring, the first term in paren
thesis of Eq. ~1! should be replaced by
cj ,s

† cj 11,s exp(2pif/N)1cj11,s
† cj ,s exp(22pif/N).14 This

yields a flux-dependent ground state varying periodica
with the flux EG(f)5EG(f11) and a persistent electri
current j }2]EG /]f oscillating withf. The average over a
half-period of the latterj av}EG(1/2)2EG(0) can be taken
as a measure of the amplitude ofj oscillations. The above
f-dependent phase factor can be accounted for by twis
the boundaries; the differenceEG(1/2)2EG(0) represents
the difference between the ground state energies comp
with periodic and antiperiodic boundary conditions at ze
flux; see, e.g., the second part of Ref. 5 and references c
therein. Figure 5~b! illustrates that thej av curve obtained
variationally reasonably reproduces the exact one in
CDW region relatively close to the CDW-SDW transitio
(2V/U*1). For such a case, we also present in Fig. 5~c! the
size dependence ofj av obtained by using the trial function
~6! and~8!. Figures 5~b! and 5~c! also show a fact importan
for observability: for moderate couplings, the persistent c
rent is not very much diminished with respect to the valu
for free electrons.

However, some important properties of open-shell rin
cannot be correctly described by means of the functi
uFA,B&. A spectacular finding we reported recently for ope
shell clusters described by model~1! is the occurrence of
quantum-phase transitions driven by tunneling.13 As a result
of quantum tunneling, by varying the parametersU/t and
V/t, the ground state can change, e.g., from a state with
8-6
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symmetry ofuCDW1& to a state with theuCDW2& symme-
try. This result has been obtained for small clusters for wh
the numerical exact diagonalization can be carried out, an
would be desirable to investigate such unusual phenomen
larger sizes as well. To this purpose, a physically transpa
and reliable approach of the type proposed here would
very useful. Unfortunately, such CDW-to-CDW quantum
phase transitions cannot be described by means of Eq.~8!.
We found that the stateuFA& is alwaysenergetically lower
than stateuFB&. As such, one should expect variational r
sults significantly deviating from exact ones in the regi
where the ground state has the symmetry ofuFB&. Therefore,
the disagreement between the twoj av-curves of Fig. 5~b! for
V values beyond the pointV50.75 of the CDW-to-CDW
transition is not surprising.

VII. SUMMARY AND OUTLOOK

In this paper, we have developed an approach base
symmetry-adapted trial functions of BCS-type that is reas

FIG. 5. ~a! Absolute error in the ground state energy divided
the exact correlation energy for antiperiodic ten site clustersd
[(^CAuHuCA&2^C0uHuC0&)/(EHF2^C0uHuC0&) for U
55;2.5;1 ~solid, dashed, and dotted lines, respectively!. The com-
parison with Fig. 2 illustrates that the variational results for op
shells are much less accurate than for closed shells.~b!,~c! Persis-
tent current averaged over an AB half-period normalized to
value for free electrons att5U51: ~b! exact versus variationa
results forN510 ~solid and dashed lines, respectively!; ~c! N de-
pendence of the variational results forV50.7.
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ably accurate, and applied it to mesoscopic rings descri
by an extended-Hubbard model at half-filling. To demo
strate its usefulness, we have applied this method to point
and investigate a phenomenon occurring in the systems
der consideration that was ignored by previous investigat
the collective tunneling of electrons between two CDW co
figurations that are classically equivalent. Recently, a qu
tum tunneling of electrons has been inferred from expe
ments on double layers in gallium arsenide quantum well15

There, the two lowest energy states can also be expre
approximately as the symmetric and antisymmetric super
sitions of two wave functions, analogous to the present c
Similar situations are encountered, e.g., in NH3 molecules16

and dimerized systems,5 where the symmetry, broken within
semiclassical~mean-field! approximations, is restored b
quantum tunneling. What makes the difference betwe
those cases and ours is the origin of the tunneling~phononic
and not electronic!.

We have shown that the symmetry-adapted trial functio
of BCS-type proposed here can be used to describe reli
mesoscopic systems with closed shells. Most of the inte
in mesoscopic rings stems from the Aharonov-Bohm eff
and the related persistent currents. Therefore, it would
useful to develop a reliable and physically transparent
proach able to provide the flux dependence of relevant qu
tities. As discussed in Sec. VI, a quantitative treatment of
flux dependence would require, first, a reliable description
the open-shell case and, second, trial functions chang
continuously between the closed- and open-shell cases
view of the limitations of the approach based on Eq.~8!,
further investigations on a suitable choice of symmet
adapted trial wave functions to describe open-shell syst
with mesoscopic sizes represent a necessary first step.

The different symmetries of the two statesCA,B of lowest
energy can be exploited in optical studies for a correct c
sification of the excited states. For low temperatu
T(,«), only optical transitions from the stateCA are pos-
sible, while forT;« the transitions from the stateCB also
contribute to the spectrum. The optical absorption in the s
CB could be extracted by comparing the two spect
In weakly correlated systems, the tunneling also yie
pairs Cm,n of excited states that are nearly degenera
(uEm2Enu;«) and of different symmetries. Out of them,
single transition can contribute to either spectrum~say CA
→Cm andCB→Cn). Strong correlations may yield excita
tions that do not necessarily consist of pairs of almost deg
erate states; hence, one can expect a more significant d
ence between the two aforementioned spectra. Of course
is possible only for sizes corresponding to sufficiently lar
values of the tunneling splitting. According to the prese
evaluations~cf. Fig. 3!, «;1 meV («;10 K! for N;50 at
moderate couplings (t,U,V;1 eV!. The strong dependenc
of « on the interaction strengths@cf. Fig. 1~b!# could be
exploited once it is possible to fabricate ordered nanostr
tures of rings consisting of quantum dots. Controlled mo
fications of the model parameters (t,U,V) could be achieved
by controlled modifications in size and spacing of su
quantum-dot systems.

The present theoretical study shows interesting effe
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due to quantum tunneling in commensurate systems
strongly correlated electrons. We hope that this will a
stimulate the experimental interest in investigations on s
systems. A direct experimental study of such phenomena
comes imaginable in view of the recent achievements
nanometer-scale site-control techniques for the growths
individual quantum dots on semiconductor surfaces.17
,
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