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Spin and charge dynamics of the ferromagnetic and antiferromagnetic
two-dimensional half-filled Kondo lattice model

S. Capponi and F. F. Assaad
Institut für Theoretische Physik III, Universita¨t Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

~Received 26 October 2000; published 30 March 2001!

We present a detailed numerical study of ground state and finite temperature spin and charge dynamics of
the two-dimensional Kondo lattice model with hoppingt and exchangeJ. Our numerical results stem from
auxiliary field quantum Monte Carlo simulations formulated in such a way that the sign problem is absent at
half-band filling thus allowing us to reach lattice sizes up to 12312. At T50 and antiferromagnetic couplings
J.0 the competition between the Ruderman-Kittel-Kasuya-Yosida interaction and the Kondo effect triggers a
quantum phase transition between antiferromagnetically ordered and magnetically disordered insulators:Jc /t
51.4560.05. At J,0 the system remains an antiferromagnetically ordered insulator and irrespective of the

sign of J, the quasiparticle gap scales asuJu. The dynamical spin structure factorS(qW ,v) evolves smoothly

from its strong-coupling form with spin gap atqW 5(p,p) to a spin-wave form. ForJ.0, the single-particle

spectral functionA(kW ,v) shows a dispersion relation following that of hybridized bands as obtained in the
noninteracting periodic Anderson model. In the ordered phase this feature is supplemented by shadows, thus
allowing an interpretation in terms of the coexistence of Kondo screening and magnetic ordering. In contrast,
at J,0 the single-particle dispersion relation follows that of noninteracting electrons in a staggered external
magnetic field. At finite temperatures spinTS and chargeTC scales are defined by locating the maximum in the
charge and spin uniform susceptibilities. For weak to intermediate couplings,TS marks the onset of antiferro-
magnetic fluctuations—as observed by a growth of the staggered spin susceptibility—and follows aJ2 law. At
strong couplingsTS scales asJ. On the other handTC scales asJ both in the weak- and strong-coupling regime.
At and slightly belowTC we observe~i! the onset of screening of the magnetic impurities,~ii ! a rise in the
resistivity as a function of decreasing temperature,~iii ! a dip in the integrated density of states at the Fermi

energy, and finally~iv! the occurrence of hybridized bands inA(kW ,v). It is shown that in the weak-coupling
limit, the charge gap of orderJ is formed only atTS and is hence of magnetic origin. The specific heat shows
a two-peak structure. The low-temperature peak followsTS and is hence of magnetic origin. Our results are
compared to various mean-field theories.

DOI: 10.1103/PhysRevB.63.155114 PACS number~s!: 71.27.1a, 71.10.Fd
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I. INTRODUCTION

The Kondo lattice model~KLM ! as well as the periodic
Anderson model~PAM! are the prototype Hamiltonians t
describe heavy fermion materials1 and Kondo insulators.2

The physics under investigation is that of a lattice of ma
netic impurities embedded in a metallic host. The symme
PAM reads

HPAM5(
kW ,s

«~kW !ckW ,s
†

ckW ,s2V(
iW,s

~ciW,s
†

f iW,s1 f iW,s
†

ciW,s!

1U f(
iW

~niW,↑
f

21/2!~niW,↓
f

21/2!. ~1!

The unit cell, denoted byiW, contains an extended and a l
calized orbital. The fermionic operatorsckW ,s

† ( f kW ,s
† ) create

electrons on extended~localized! orbitals with wave-vectorkW
and z component of spins. The overlap between extende
orbitals generates a conduction band with dispersion rela
«(kW ). There is a hybridization matrix elementV between
both orbitals in the unit cell and the Coulomb repulsion
modeled by a HubbardU f—is taken into account on th
0163-1829/2001/63~15!/155114~20!/$20.00 63 1551
-
ic

n

localized orbitals. In the limit of largeU f , charge fluctua-
tions on the localized orbitals are suppressed and the P
maps onto the KLM:3

HKLM5(
kW ,s

«~kW !ckW ,s
†

ckW ,s1J(
iW

SW iW
c
•SW iW

f . ~2!

Here, SW iW
c
5 1

2 (s,s8ciW,s
†

sW s,s8ciW,s8 , where sW are the Paulis

51/2 matrices. A similar definition holds forSW iW
f . A magnetic

energy scaleJ58V2/U emerges and there is a constraint
one electron per localized orbital. Although this constra
forbids charge fluctuations on the localized orbitals, tho
fluctuations are implicitly taken into account leading to t
above form and sign of the exchange interaction. On
other hand, when charge fluctuations on the localized orbi
are absent, the exchange interaction follows from Hun
rule and is ferromagnetic. The ferromagnetic KLM has
tracted much attention in conjunction with manganites.4 In
this paper we will consider both ferromagnetic and antif
romagnetic exchange interactions with emphasis on the a
ferromagnetic case.

The physics of the single impurity Anderson and Kon
models atJ/t.0 is well understood.5 In the temperature
rangeJ,T,U, charge is localized on thef orbital, but the
spin degrees of freedom are essentially free, thus leading
©2001 The American Physical Society14-1
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Curie-Weiss law for the impurity spin susceptibility. Belo
the Kondo temperatureTK}« fe

21/JN(« f ) the impurity spin is
screened by the conduction electrons. Here,« f is the Fermi
energy andN(« f) the density of states taken at the Fer
energy. The transition from high to low temperatures is n
perturbative and corresponds to the Kondo problem with
known resistivity minimum6 and orthogonality catastrophe7

At low temperatures,TK is the only energy scale in the prob
lem.

A lattice of magnetic impurities introduces new ener
scales. In the spin sector, the Ruderman-Kittel-Kasu
Yosida ~RKKY ! interaction8 couples impurity spins via po
larization of the conduction electrons. This interaction tak

the form of a Heisenberg model with exchangeJe f f(qW )}

2J2 Rex(qW ,v50) wherex(qW ,v) corresponds to the spi
susceptibility of the conduction electrons. Since this inter
tion favors magnetic ordering, it freezes the impurity sp
and, hence, competes with the Kondo effect. By compar
energy scales, one expects the RKKY interaction~Kondo
effect! to dominate at weak~strong! couplings. As suggeste
by Doniach,9 this leads to a quantum phase transition b
tween ordered and disordered magnetic phases.

As a function of dimension, contrasting results are o
tained for the PAM and KLM. We first consider the limit o
large dimensions10,11 and the Gutzwiller approximation.12

The Gutzwiller approximation leads to an noninteracti
PAM with renormalized hybridizationV. At half filling an
insulating state is obtained, with quasiparticle g
;e21/2JN(« f ) in the largeU f limit. Both the Gutzwiller and
dynamical mean-field approaches yield charge and spin g
equal to each other. As a function of temperature, optical
quasiparticle gaps start appearing at an energy s
;e21/2JN(« f ).10 In the doped phase, the Luttinger volume i
cludes thef electrons, and due to the renormalization of t
hybridization, the effective mass of charge carriers is
hanced. The above quoted results stem from calculations
the PAM. However, similar results are obtained in the fram
work of the KLM at J/t!1 in the limit of large
dimensions.11 The above approximations predict an instab
ity to magnetic ordering in the largeU f or smallJ limit. The
occurrence of this instability has been observed in the fra
work of quantum Monte Carlo~QMC! simulations of the
PAM in two dimensions.13,14 In the one-dimensional case,
good understanding of the phase diagram of the KLM a
function of electronic density and coupling has be
achieved.15,16 In particular, at half filling, a spin liquid phas
is obtained irrespective of the value ofJ/t. In the weak-
coupling limit the spin gap follows a Kondo form, where
the charge gap tracksJ.

In this paper, we present a detailed numerical study
ground-state and finite-temperature properties of the
filled KLM in intermediate dimensions,d52. Our T50
simulations are aimed at understanding the competition
interplay of the Kondo effect and RKKY interaction. Ou
finite temperature simulations provide insight into the te
perature evolution of spin and charge degrees of freedom

Our main results and structure of the article is as follow
Details of the numerical technique are presented in the n
15511
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section. We use a path integral auxiliary field quantu
Monte Carlo~QMC! method.17 Our approach is based on
simple technical innovation that allows us to avoid the s
problem at least at half band filling where the model
particle-hole symmetric. Both finite- and zero-temperatu
versions of the algorithm are presented. In both cases im
nary time displaced correlations functions can be compu
The continuation to real time is then carried out via the u
of the maximum entropy~ME! method.18 We note that the
algorithms may be applied irrespective of the sign ofJ.

In Sec. III, ground-state equal time and dynamical pro
erties of the ferromagnetic and antiferromagnetic KLM a
presented. Our main results include the following.~i! In the
spin sector, a quantum phase transition between antife
magnetically ordered and disordered ground states occu
J/t51.4560.05. The dynamical spin structure factor is an
lyzed across the transition. As a function of decreasing v
ues ofJ/t, the spin gap at the antiferromagnetic wave vec
closes and the magnon spectrum evolves towards a s
wave form. This spin-wave form persists for ferromagne
couplings since in the limitJ/t→`, the model maps onto the
s51 antiferromagnetic Heisenberg model. Our results
J/t.0 are compared to a bond-operator mean-field theor
the Kondo necklace model.~ii ! In the charge sector, the sys
tem remains an insulator. To a first approximation, the q
siparticle gap tracksJ both in the antiferromagnetic and fe
romagnetic KLM. For all values ofJ/t.0 the single-particle
spectral function shows a feature whose dispersion rela
follows the one obtained in the noninteracting PAM. In
mean-field approach, this feature results solely from Kon
screening of the magnetic impurities. In the magnetically
dered phase, this feature is supplemented by shadow ba
Thus, and as confirmed by a mean-field approach, the s
tral function in the ordered phase may only be understoo
terms of the coexistence of Kondo screening and the RK
interaction. On the other hand, atJ/t,0, where Kondo
screening is absent, the single-particle dispersion rela
follows that of free electrons in a external staggered m
netic field.

Section IV is devoted to finite temperature properties
the KLM. We define chargeTC , as well as spinTS scales
from the location of the maximum in the charge and sp
susceptibilities. In the weak- and strong-coupling limit, t
charge scale tracksJ. On the other hand the spin scale—
expected form the energy scale associated to the RK
interaction—follows aJ2 law up to intermediate couplings
At strong couplingsTS}J. SinceTC corresponds to the en
ergy scale at which a minimum in the resistivity is observe
we conclude that it describes the energy scale at which s
tering is enhanced due to the screening of the impurity sp
Furthermore a reduction of the integrated density of state
the Fermi level is observed atTC . The spin scale up to
intermediate couplings~i.e., J/t<W whereW corresponds to
the bandwidth! marks the onset of short-range antiferroma
netic correlations. This is confirmed by the calculation of t
staggered spin susceptibility that shows a strong increas
TS . In the weak-coupling limit, it is shown that the quas
particle gap of magnitude}J is formed only at the magnetic
energy scaleTS and, is thus, of magnetic origin. In the tem
4-2
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perature rangeTS,T,TC hybridized band are seen in th
single-particle spectral function with quasiparticle gap lyi
beyond our resolution. Finally, the specific heat is compu
and shows a two-peak structure. The low-energy peak tra
the spin scale and, is hence, of magnetic origin. In the
section, we discuss our results, as well as links with exp
ments.

II. AUXILIARY FIELD QUANTUM MONTE CARLO
ALGORITHM FOR THE KONDO LATTICE MODEL

Auxiliary field QMC simulations of the KLM, as well as
the two-impurity Kondo model have already been carried
by Fye and Scalapino.19,20 However, their formulation leads
to a sign problem even in the half-filled case where
model is invariant under a particle-hole transformation.
this section we present an alternative formulation of
problem that is free of the sign problem in the particle-h
symmetric case. In order to achieve our goal, we take a
tour and consider the Hamiltonian:

H5(
kW ,s

«~kW !ckW ,s
†

ckW ,s2
J

4 (
iW

F(
s

ciW,s
†

f iW,s1 f iW,s
†

ciW,sG2

.

~3!

As we will see below, at vanishing chemical potential, th
Hamiltonian has all the properties required to formulate
sign-free auxiliary field QMC algorithm. Here, we are inte
ested in the ground-state properties ofH that we obtain by
filtering out the ground stateuC0& by propagating a trial
wave functionuCT& along the imaginary time axis:

^C0uOuC0&

^C0uC0&
5 lim

Q→`

^CTue2QHOe2QHuCT&

^CTue22QHuCT&
. ~4!

The above equation is valid, provided that^CTuC0&Þ0 and
O denotes an arbitrary observable.

To see howH relates toHKLM, we compute the square i
Eq. ~3! to obtain

H5(
kW ,s

«~kW !ckW ,s
†

ckW ,s1J(
iW

SW iW
c
•SW iW

f

2
J

4 (
iW,s

~ciW,s
†

ciW,2s
†

f iW,2s f iW,s1H.c.!

1
J

4 (
iW

~niW
c
niW

f
2niW

c
2niW

f
!. ~5!

As apparent, there are only pair-hopping processes betw
the f andc sites. Thus, the total number of doubly occupi
and emptyf sites is a conserved quantity:

FH,(
iW

~12niW,↑
f

!~12niW,↓
f

!1niW,↑
f

niW,↓
f G50. ~6!

If we denote byQn the projection onto the Hilbert space wit
( iW(12niW,↑

f )(12niW,↓
f )1niW,↑

f
niW,↓

f
5n then
15511
d
ks
st
i-

t

e

e

e-

a

en

HQ05HKLM1
JN

4
, ~7!

since in theQ0 subspace thef sites are singly occupied and
hence, the pair-hopping term vanishes. Here,N corresponds
to the number of unit cells. Thus, it suffices to choose

Q0uCT&5uCT&, ~8!

to ensure that

^CTue2QHOe2QHuCT&

^CTue22QHuCT&
5

^CTue2QHKLMOe2QHKLMuCT&

^CTue22QHKLMuCT&
.

~9!

It is interesting to note that there is an alternative route
obtain the KLM. Instead of projecting onto theQ0 Hilbert
space, we can project onto theQN Hilbert space by suitably
choosing the trial wave function,

HQN5(
kW ,s

«~kW !ckW ,s
†

ckW ,s2
J

4 (
iW,s

~ciW,s
†

ciW,2s
†

f iW,2s f iW,s1H.c.!

1
J

4 (
iW

~niW
c
niW

f
2niW

c
2niW

f
!. ~10!

Since in theQN subspace thef-sites are doubly occupied o
empty, the exchange termSW iW

c
•SW iW

f vanishes. To see the relatio
with the KLM, we define the spin-1/2 operators:

S̃iW
1, f

52~21! i x1 i y f iW,↑
†

f iW,↓
† ,

S̃iW
2, f

52~21! i x1 i y f iW,↓ f iW,↑ , S̃iW
z, f

5
1

2
~niW

f
21!, ~11!

which operate on the states:u⇑& iW, f52(21)i x1 i y f iW,↑
†

f iW,↓
† u0&

and u⇓& iW, f5u0& as well as the fermion operators:

c̃ iW,↑
†

5ciW,↑
† , c̃ iW,↓

†
5~21! i x1 i yciW,↑ . ~12!

With those definitions,

HQN5(
kW ,s

«~kW !c̃kW ,s
†

c̃kW ,s1
J

2 (
iW

~S̃iW
1,c

S̃iW
2, f

1S̃iW
2,c

S̃iW
1, f

!

1JS̃iW
z,c

S̃iW
z, f

1
JN

4
, ~13!

which is nothing but the KLM.

A. Basic formalism

Having shown the relationship betweenH andHKLM we
now discuss some technical aspects of the QMC evalua
of ^CTue2QHOe2QHuCT&/^CTue22QHuCT&. With the use of
the Trotter formula we obtain

^CTue22QHuCT&5K CTU)
t51

M

eDtHte2DtHJUCTL 1O~Dt2!.

~14!
4-3
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Here, Ht52t(^ iW, jW&,sciW,s
†

cjW,s1H.c., HJ52J/4( iWSW iW
c
•SW iW

f ,
and MDt52Q. Strictly speaking, the systematic error pr
duced by the above Trotter decomposition should be of o
Dt. However, if the trial wave function, as well asHt and
HJ are simultaneously real representable, it can be sh
that the prefactor of the linearDt error vanishes.21,22

Since we will ultimately want to integrate out the ferm
onic degrees of freedom, we carry out a Hubba
Stratonovitch ~HS! decomposition of the perfect squa
term:23

e2DtHJ5)
iW

eDtJ/4$((sc
iW,s

†
f iW,s1H.c.)2%,

5)
iW

S (
l 561,62

g~ l !eADtJ/4h( l )(sc
iW,s

†
f iW,s1H.c.

1O~Dt4! D , ~15!

where the fieldsh andg take the values:

g~61!511A6/3, g~62!512A6/3,

h~61!56A2~32A6!, h~62!56A2~31A6!.

As indicated, this transformation is approximate and p
duces on each time slice a systematic error proportiona
Dt4. This amounts to a net systematic error of ord
MDt4;2QDt3, which for constant values of the projectio
parameter, is an order smaller that the error produced by
Trotter decomposition.

The trial wave function is required to be a Slater determ
nant factorizable in the spin indices:

uCT&5uCT
↑& ^ uCT

↓&, with

uCT
s&5 )

y51

Ns S (
x

ax,s
† Px,y

s D u0&. ~16!

Here, we have introduced the notationx[( iW,n) where iW de-
notes the unit cell andn the orbital ~i.e., a( iW,1),s

†
5ciW,s

† and

a( iW,2),s
†

5 f iW,s
† ). It is convenient to generateuCT

s& from a
single particle HamiltonianH0

s5(x,yax
†(h0

s)x,yay , which
has the trial wave function as non-degenerate ground s
To obtain a trial wave function that satisfies the requireme
Q0uCT&5uCT&, we are forced to chooseH0 of the form:

H05 (
^ iW, jW&,s

~ t iW, jWciW,s
†

cjW,s1H.c.!

1hz(
iW

eiQW • iW~ f iW,↑
†

f jW,↑2 f iW,↓
†

f jW,↓!, ~17!

which generates a Ne´el state@QW 5(p,p)# on the localized
orbitals. To obtain a non-degenerate ground state, we imp
the dimerization
15511
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5H 2t~11d! if i x52n11

2t~12d! if i x52n
,

t iW, iW1aW y
52t~11d!, ~18!

with d!t.
We are now in a position to integrate out the fermion

degrees of freedom to obtain:

^CTue22QHuCT&5(
$ l %

S )
iW,t

g~ l iW,t!D
3)

s
detS Ps†)

t51

M

e2DtT̂eĴ(t)PsD ,

~19!

where the matricesT̂ and Ĵ(t) are defined via:

Ht5(
kW ,s

e~kW !ckW ,s
†

ckW ,s5 (
x,y,s

ax,s
† T̂x,yay,s ,

(
x,y,s

ax,s
† Ĵ~t!x,yay,s .5ADtJ/4(

iW,s

h~ l iW,t!~ciW,s
†

f iW,s1H.c.!.

~20!

The HS fieldl has acquired a spaceiW and timet index.
The basic ingredients to compute observables are eq

time Green functions. They are given by

^CTue2QHax,say,s
† e2QHuCT&

^CTue22QHuCT&

5(
$ l %

Pr~ l !^^ax,say,s
† &&~ l !, with

Š^ax,say,s
† &&~ l !5@12Us,l

. ~Us,l
, Us,l

. !21Us,l
, #x,y ,

Us,l
. 5)

t51

M /2

e2DtT̂eĴ(t)Ps

Us,l
, 5Ps† )

t5M

M /211

e2DtT̂eĴ(t), and

Pr~ l !5

F)
iW,t

g~ l iW,t!G)
s

det~Us,l
, Us,l

. !

(
$ l %

F)
iW,t

g~ l iW,t!G)
s

det~Us,l
, Us,l

. !

. ~21!

Since, for a given set of HS fields, we are solving a fre
electron problem interacting with an external field, a Wi
theorem applies. Hence, from the knowledge of the
single-particle Green function at fixed HS configuration, w
may evaluate all observables. Imgaginary time displaced
relation functions may equally be calculated.24,25

We are left with the summation over the HS fields, whi
we will carry out with Monte Carlo methods. In order to d
4-4
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so without further complication, we have to be able to int
pret Pr(l ) as a probability distribution. This is possible on
provided that Pr(l )>0 for all HS configurations. In the
particle-hole symmetric case, the above statement is v
Starting from the identity:

det~U↑,l
, U↑,l

. !5 lim
b→`

TrS e2bH0
↑
)
t51

M

e2DtHt
↑
eHJ

↑(t)D
Tr~e2bH0

↑
!

,

~22!

we can carry out a particle-hole transformation

ciW,↑
† →~21! i x1 i yciW,↓ and f iW,↑

† →2~21! i x1 i y f iW,↓ .
~23!

Here, Ht
s5(x,yax,s

† T̂x,yay,s and HJ
s(t)

5(x,yax,s
† Ĵ(t)x,yay,s . Since Eq.~23! corresponds to a ca

nonical transformation, the trace remains invariant andH0
↑ ,

Ht
↑ , as well asHJ

↑(t), map ontoH0
↓ , Ht

↓ , andHJ
↓(t), respec-

tively. Thus, we have shown that: det(U↑,l
, U↑,l

. )
5det(U↓,l

, U↓,l
. ), which leads to Pr(l )>0 for all values of the

HS fields. Away from half filling~which would correspond
to adding a chemical potential term inH0), particle hole-
symmetry is broken and Pr(l ) may become negative. Thi
leads to the well-known sign problem. It is clear that
choosingH0

↑5H0
↓ thus leading toP↑5P↓ would produce

positive values of Pr(l ) for all HS configurations and irre
spective of particle-hole symmetry. This stands in analogy
the absence of the sign problem in the attractive Hubb
model. However, this choice of the trial wave function
incompatible with the requirementQ0uCT&5uCT&.

For the Monte Carlo sampling of the probability distrib
tion Pr(l ), we adopt a sequential single spin-flip algorith
The details of the upgrading procedure, as well as of
numerical stabilization of the code, are similar to those u
for auxiliary field QMC simulations of the Hubbard model.26

B. Optimizing the algorithm

The above straightforward approach for the QMC sim
lation of H turns out to be numerically inefficient. The majo
reason for this stems from the choice of the trial wave fu
tion. The coupled constraints~i! Q0uCT&5uCT& and ~ii !
uCT& is a Slater determinant factorizable in the spin indic
make it impossible to choose a spin-singlet trial wave fu
tion ~the trial wave function generated by the single parti
HamiltonianH0 of Eq. ~17! orders thef electrons in a Ne´el
state that is not a spin singlet!. Since we know that the
ground state of the KLM on a finite-size system is a s
singlet,27,28 we have to filter out all the spin excited stat
from the trial wave function to obtain the ground state. T
is certainly not a problem when we are investigating
physics of a problem with a large spin gap, as is the cas
the limit J/t@1. However, in the limit of smallJ/t, the
long-range magnetic order is present, and hence, one ex
finite-size spin-gap to scale asvs /L where vs is the spin
15511
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velocity andL the linear size of the system. In this cas
starting with a spin-singlet trial wave function is important
obtain reliable convergence.24

In order to circumvent the above problem, we relax t
constraintQ0uCT&5uCT& and add a Hubbard term for thef
sites to the Hamiltonian.

H5(
kW ,s

«~kW !ckW ,s
†

ckW ,s2
J

4 (
iW

F(
s

ciW,s
†

f iW,s1 f iW,s
†

ciW,sG2

1U f(
iW

~niW,↑
f

21/2!~niW,↓
f

21/2!. ~24!

This Hamiltonian is again block diagonal in theQn sub-
spaces. During the imaginary time propagation, the com
nentsQnuCT& of the trial wave function will be suppresse
by a factor e2QU fn/2 in comparison to the componen
Q0uCT&.

The usual procedure to incorporate the Hubbard term
the QMC simulation relies on Hirsch’s HS transformation29

expF2DtU(
iW

S niW,↑
f

2
1

2D S niW,↓
f

2
1

2D G
5C̃ (

s1 , . . . ,sN561
expF ã(

iW
siW~niW,↑

f
2niW,↓

f
!G ,

~25!

where cosh(ã)5exp(DtU/2). As apparent from the abov
equation, for a fixed set of HS fields,s1 . . . sN , SU~2! spin
symmetry is broken. Clearly SU~2! spin symmetry is re-
stored after summation over the HS fields.

Alternatively, one may consider29

expF2DtU(
iW

S niW,↑2
1

2D S niW,↓2
1

2D G
5C (

s1 , . . . ,sN561
expF ia(

iW
siW(niW,↑1niW,↓21)G ,

~26!

where cos(a)5exp(2DtU/2) andC5exp(DtUN/4)/2N. With
this choice of the HS transformation, SU~2! spin invariance
is retained for any given HS configuration. Even taking in
account the overhead of working with complex numbers, o
of the authors has argued30 that this choice of HS transfor
mation produces a more efficient code.

Having relaxed the conditionQ0uCT&5uCT&, we are now
free to choose a spin singlet trial wave function that we g
erate from:

H05(
kW ,s

«~kW !ckW ,s
†

ckW ,s2
J

4 (
iW,s

~ciW,s
†

f iW,s1 f iW,s
†

ciW,s!,

~27!

which is nothing but the noninteracting PAM with hybridiza
tion V5J/4. The ground state at half filling is clearly a sp
singlet. With this choice of the trial wave function, and th
Hubbard-Stratonovitch transformation of Eq.~26!, the
4-5
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particle-hole transformation of Eq. ~23! maps
det(U↑,l ,s

, U↑,l ,s
. ) on det(U↓,l ,s

, U↓,l ,s
. ). Hence, no sign prob

lem occurs at half filling.
Figure 1 demonstrates the importance of using a s

singlet trial wave function. Starting from a Ne´el order for the
f- electrons, convergence to the ground state follows appr
matively e2Dsp2Q, whereDsp corresponds to the spin gap
When the spin gap is small, convergence is poor and
remedy is to consider a spin singlet trial wave function.

Having optimized the trial wave function we now co
sider convergence as a function ofJ/t. As apparent from Fig.
2, for small values ofJ/t, increasingly large projection pa
rameters are required to obtain convergence. The origin
this behavior may be traced back to the energy scale of
RKKY interaction that follows aJ2 law. At J/t50.4, 2Qt
;40 is enough to obtain convergence whereas atJ/t50.2, a
value of 2Qt;170 is required.

The systematic error produced by the Trotter decomp
tion scales as (Dt)2. This behavior is shown in Fig. 3. Al
our calculations were carried out at values ofDt small
enough so as to neglect this systematic error.

C. Ferromagnetic exchange

Until now, we have implicitly considered an antiferro
magnetic exchange,J.0. It is straightforward to generaliz
the above case to a ferromagnetic one. The only point to
care of is the choice of the trial wave function in order

FIG. 1. Spin-spin correlations as a function of the project

parameter Q. Here, S(QW )5
4
3 ^SW f(QW )•SW f(2QW )&, Sz

f(QW )

54^SW z
f(QW )•SW z

f(2QW )&, and Sxy
f (QW )52„^SW x

f (QW )•SW x
f (2QW )&

1^SW y
f (QW )•SW y

f (2QW )&…. The trial wave function withSW 2uCT&Þ0

(SW 2uCT&50) corresponds to the ground state of the Hamiltonian
Eq. ~27! @Eq. ~17!#. In the large Q limit, the results are independen
on the choice of the trial wave function. In particular, starting fro
a broken-symmetry state the symmetry is restored atlarge values of
Qt. For this system, the spin gap is given byDsp50.16960.004

~Ref. 31!. Starting with a trial wave function withSW 2uCT&Þ0, con-
vergence to the ground state follows approximatively the forma
1be2Dsp2Q. The solid lines correspond to a least-square fit to t
form.
15511
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avoid the sign problem. In this case, the noninteract
Hamiltonian that generates the trial wave function has to
invariant under the particle-hole transformation:

ciW,↑
† →~21! i x1 i yciW,↓ and f iW,↑

† →1~21! i x1 i y f iW,↓ .
~28!

Note that in comparison to Eq.~23!, there is an overall sign
difference in the particle-hole transformation of thef opera-
tors. With this condition one has: det(U↑,l ,s

, U↑,l ,s
. )

5det(U↓,l ,s
, U↓,l ,s

. ) so that no sign problem occurs. The tri
wave function is thus generated from the noninteract
Hamiltonian:

H05(
kW ,s

«~kW !ckW ,s
†

ckW ,s2
J

4 (
^ iW, jW&,s

~ciW,s
†

f jW,s1 f jW,s
†

ciW,s!.

~29!

n

s

FIG. 2. Spin structure factor atQW 5(p,p) for the f electrons

@Sf f(QW )# at various values ofJ/t and as a function of the projectio
parameterQt. Here we consider a spin singlet trial wave functio

FIG. 3. Systematic error produce by the Trotter decompositi
In our simulations, we have usedDt50.1 and Dt50.2. Here,

S(QW ) corresponds to the spin structure factor of the total spin

QW 5(p,p).
4-6
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D. Finite-temperature algorithm

The QMC method presented above may be generalize
finite temperatures to compute expectation values of obs
ables in the grand-canonical ensemble:

^O&5
Tr~e2bHO!

Tr~e2bH!
. ~30!

Since the step from theT50 approach to the finite-T algo-
rithm is similar to the one for the standard Hubbard mod
we refer the reader to the Ref. 26. We note however, tha
finite temperatures, the projection onto theQ0 subspace may
only be achieved via the inclusion of the Hubbard te
U f ( iW(niW,↑

f
21/2)(niW,↓

f
21/2) in the Hamiltonian. At this

point, it is very convenient to choose the SU~2! invariant HS
decomposition of Eq.~26! since one can take the limitU f
→` by settinga5p/2. Hence, irrespective of the consid
ered temperature, we are guaranteed to be in the correct
bert space.

III. SPIN AND CHARGE DEGREES
OF FREEDOM AT TÄ0

The different phases occurring at half filling are summ
rized in Fig. 4. All quantities have been extrapolated to
thermodynamic limit.31 We have considered sizes rangin
from 434 to 12312 with periodic boundary conditions. Th
staggered moment

ms5 lim
L→`

A4

3
^SW ~QW !•SW ~2QW !&, ~31!

indicates the presence of long-range magnetic order. H
SW (QW )5(1/L)( jWe

iQW • jWSW ( jW) where SW ( jW)5SW f( jW)1SW c( jW) is the
total spin,QW 5(p,p) the antiferromagnetic wave vector, an
L corresponds to the linear size of the system. This quan
is maximal atJ/t52` and vanishes atJc /t;1.45, thus
signaling a phase transition. The onset of a spin gap,

Dsp5 lim
L→`

E0
L~S51, Np52N!2E0

L~S50, Np52N!,

~32!

is observed when magnetic order disappears. H
E0

L(S,Np) is the ground-state energy on a square lattice w
N5L2 unit cells,Np electrons, and spinS. Finally, the sys-
tem remains an insulator for all considered coupling c
stants. This is supported by a nonvanishing quasiparticle

Dqp5 lim
L→`

E0
L~S51/2, Np52N11!2E0

L~S50, Np52N!.

~33!

We will first discuss the spin degrees of freedom and th
turn our attention to charge degrees of freedom.

A. Spin degrees of freedom

To investigate the spin degrees of freedom, we comp
the dynamical spin susceptibility,
15511
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S~qW ,v!5p(
n

z^nuSW ~qW !u0& z2d@v2~En2E0!#, ~34!

where the sum runs over a complete set of eigenstates
u0& corresponds to the ground state. This quantity is rela
to the imaginary time spin-spin correlations that we comp
with the QMC method:31

^0uSW ~qW ,t!•SW ~2qW !u0&5
1

pE dve2tvS~qW ,v!. ~35!

Here,SW (qW ,t)5etHSW (qW )e2tH. We use the maximum entrop
~ME! method to accomplish the above numerically i
defined inverse Laplace transform.18

In the strong coupling limitJ→`, the model becomes
trivial, since eachf spin captures a conduction electron
form a singlet. In this limit, the ground state corresponds t
direct product of singlets on thef-c bonds of a unit cell.
Starting from this state, one may create a magnon excita
by breaking a singlet to form a triplet. In second-order p
turbation in t/J, this magnon acquires a dispersion relati
given by

Esp~qW !5J2
16t2

3J
1

4t2

J
g~qW !, ~36!

FIG. 4. ~a! Staggered momentms , spin gapDsp , and quasipar-
ticle gap for the ferromagnetic and antiferromagnetic KLM. A
quantities have been extrapolated to the thermodynamic limit ba
on results on lattice sizes up to 12312. The data forJ.0 stems
from Ref. 31. The staggered moment corresponds to that of the
spin @see Eq.~31!#. The solid line corresponds to the value of th
staggered moment for thes51 antiferromagnetic model as obtaine
in a spin-wave approximation~Ref. 8!. ~b! Staggered moment of the
f andc electrons after extrapolation to the thermodynamic limit.
4-7



ights
data, see

.

S. CAPPONI AND F. F. ASSAAD PHYSICAL REVIEW B63 155114
FIG. 5. Dynamical spin structure factor atT50 for the ferromagnetic and antiferromagnetic KLM. We have normalized the peak he
to unity. The numbers on the left-hand side of the figures correspond to the normalization factor. The vertical bars are fits to the

text. Due to finite-size effects, the peak atQW 5(p,p) in the antiferromagnetic phase (J/t51.2 andJ/t524) is shifted to finite frequencies
ng
-
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a

a-
where g(qW )5cos(qx)1cos(qy).
15 At QW 5(p,p), Esp(qW ) is

minimal and is nothing but the spin gap. In Fig. 5~a!, we plot
the dynamical spin structure factor forJ/t52.0. The solid
bars in the plot correspond to a fit to the above stro
coupling functional form:a1bg(qW ). As apparent, this func
tional form reproduces well the QMC data. We note that t
magnon mode lies below the particle-hole continuum loca
at 2Dqp ~see Fig. 4!.

As we approach the antiferromagnetically ordered pha
one expects that the above magnon mode evolves towa
spin-wave form:

Esw~qW !5
Jsp

2
A12g~qW !2/4. ~37!

As apparent from Fig. 5~b!, as one approachesJc the spin
gap vanishes and the magnon mode softens aroundqW 50W . In
15511
-

s
d

e,
s a

the antiferromagnetic phase@see Fig. 5~c!# the data follow
well the above spin-wave form.

In the limit of large ferromagnetic couplings, the mod
maps onto theS51 antiferromagnetic Heisenberg model. A
J/t52`, the ground state is macroscopically degener
since thef-c bonds are effectively decoupled and occupi
by a triplet with arbitraryz component of spin. This degen
eracy is lifted in second-order perturbation theory, yielding
S51 antiferromagnetic Heisenberg model:

He f f5
2t2

J (
^ iW, jW&

SW iW•SW jW . ~38!

Here, SW iW5(m,m8t iW,m
†

sW m,m8
(1) t iW,m8 , t iW,15ciW,↑

†
f iW,↑

† , t iW,0

51/A2(ciW,↑
†

f iW,↓
†

1ciW,↓
†

f iW,↑
† ), and t iW,215ciW,↓

†
f iW,↓

† . sW (1) corre-
spond to thes51 Pauli spin matrices. The magnetic excit
4-8
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SPIN AND CHARGE DYNAMICS OF THE . . . PHYSICAL REVIEW B 63 155114
tions are clearly spin waves as confirmed by the QMC d
of Fig. 5~d!. In the limit of large negativeJ, the staggered
moment should scale to the value obtained for theS51
Heisenberg model. Within a spin-density wa
approximation,8 this quantity takes the value 0.93. As appa
ent from Fig. 4, the QMC data approaches smoothly t
value asJ/t decreases.

The quantum phase transition in the spin degrees of f
dom atJc /t;1.45 may be described in the framework of t
Kondo necklace model given by

HKN5t(
iW, jW

~SiW
c,x

SjW
c,x

1SiW
c,y

SjW
c,y

!1J(
iW

SW iW
c
•SW iW

f . ~39!

This model neglects charge fluctuations, and the spin-
processes between conduction electrons mimic the kin
energy. Although the Kondo necklace model has a low
symmetry@U~1!# than the KLM@SU~2!# one may expect this
model to give a reasonable description of the spin degree
freedom at energy scales smaller than the charge gap
mean-field solution is obtained in terms of bond singlet a
triplet operators.32 Both the conduction and impurity spin
are represented by singlets,D iW

† , and triplets tW iW on the f-c
bonds of the unit cell. The bond operators obey bosonic c
mutation rules and are subject to the constraintD iW

†
D iW1 tW i tW i

51. At the mean-field level and generalizing the work
Zhanget al.33 to finite temperatures, one obtains the pha
diagram shown in Fig. 6. The condensation of singlets
5^DiW

†
&.0 occurs at a temperature scaleTs , which, to a first

approximation, tracksJ. At J.Jc , the triplet excitations re-
main gapped and have a dispersion relation given by:v(qW )

5aA11s2tg(qW )/a with a5s2t(11A11Dsp
2 /t2s2). Here,

Dsp corresponds to the spin gap plotted in Fig. 6. The gap
the magnon spectrum atqW 5(p,p)[QW vanishes atJc /t
;1.4 in remarkable agreement with the QMC results. W
note that this mean-field approach shows no phase trans
in the one-dimensional case consistently with numer
calculations.15,33 For J,Jc, the ground state has both co

FIG. 6. Mean field of the two-dimensional Kondo neckla
model.Ts (Tt) corresponds to the energy scale below that the b
singlets~triplets! condense.Dsp denotes the spin gap.
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densation of singlets (s.0) and of triplets at the antiferro
magnetic wave vector (t̄ 5AN^tQW

†,x
&.0). The energy scale

below which the triplet excitations condense is denoted byTt
in Fig. 6. In terms of the KLM, the condensation of triple
~singlets! follows from the RKKY interaction~Kondo ef-
fect!. Thus, the fact that at the mean-field level, boths and t̄
do not vanish may be interpreted as the coexistence
Kondo screening and antiferromagnetism in the orde
phase. We will confirm this point of view in the study of th
charge degrees of freedom.

B. Charge degrees of freedom: the single-particle
spectral function

To study the charge degrees of freedom, we compute
spectral functionA(kW ,v) which is related to the imaginary
time Green function via:

^ckW
†
~t!ckW&5

1

pE0

`

dve2tvA~kW ,2v!. ~40!

The Maximum Entropy~ME! method is used to extrac
A(kW ,v). Starting from the bond-singlet ground state valid
the strong coupling limit, one can create a quasiparticle
citation, which to first order int/J has the dispersion relatio

Eqp~kW !53J/41tg~kW !. ~41!

Eqp(kW ) is a minimal atkW5(p,p) so that the quasiparticle
gap takes the valueDqp5Eqp@kW5(p,p)#. Comparison with
Eq. ~36! leads to Dc52Dqp.Dsp in the strong-coupling
limit. This marks the difference to a standard band insula
that satisfiesDc5Dsp . In accordance with the strong
coupling limit, the numerical data of Figs. 7~a!–~c! show that
irrespective ofJ/t, the quasiparticle gap is defined by thekW
5(p,p) wave vector. Furthermore, comparison with Fig.
shows that the inequalityDc.Dsp is valid for all considered
coupling constants.

For antiferromagnetic couplings (J.0), the spectral
function shows similar features in the ordered (J,Jc) and
disordered (J.Jc) magnetic phases, thus lending supp
that Kondo screening, which is responsible for the functio
form of the dispersion relation at strong couplings, is equa
present in the ordered phase. However, upon closer anal
shadow features are seen in the antiferromagnetically
dered phase. Shadows are most easily understood by co
ering the self-energy((kW ,vm)}g2/Nb(nm ,qWx(qW ,nm)G0(kW

2qW ,vm2nm) describing electrons with propagato
G0(kW ,vm) scattering off spin fluctuations with coupling con
stant g. Long-range magnetic order at wave vectorQW
5(p,p) and staggered momentms justify the Ansatz
x(qW ,nm)}ms

2Nbdnm,0dqW ,QW for the spin susceptibility. The

Green function is then given by:G(kW ,vm)51/@G0
21(kW ,vm)

2aG0(kW1QW ,vm)# with a}(gms)
2. It is then easy to see

that if G(kW ,v) has a pole atv0 thenG(kW1QW ,v) also has a
pole atv0, i.e., the shadow. Numerically, it is convenient
establish the existence of shadows by considering the im
nary time Green function. Figure 8 plots^ckW

†(t)ckW& for k

d

4-9
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FIG. 7. Single-particle spectral function atT50 for the ferromagnetic and antiferromagnetic KLM. We have normalized the peak he
to unity. The numbers on the left-hand side of the figures correspond to the normalization factor. The vertical bars are fits to the
text.
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5~p,p!. At large values oftt this quantity follows an expo-
nential law e2tDqp. This exponential decay generates t
pole in A(kW ,v) at v52Dqp @see Eq.~40!#. As argued
above, due to the long-range antiferromagnetic order one
pects a pole inA(kW1QW ,v) at v52Dqp , i.e., the shadow.
As demonstrated in Fig. 8,^ckW1QW

† (t)ckW1QW & shows the same

asymptotic behavior aŝckW
†(t)ckW&. Thus, the low-energy fea

ture aroundkW5(0,0) in Fig. 7~c! corresponds to the shado
of the band in the vicinity ofkW5(p,p). We note that
shadow features at high energies are hard to resolve w
the ME. Close to the phase transition in the disordered ph
precursors features of the shadow bands are seen@see Fig.
7~b!#. As is apparent, they are shifted by an energy scale
corresponds approximately to the spin gap.

To obtain further insight into the charge degrees of fr
dom we will consider a mean-field theory of the KLM re
15511
x-

in
se

at

-

cently introduced by Zhang and Yu.34 This mean-field theory
is appealing since~i! it takes into account both Kondo
screening and magnetic ordering of thef andc electrons and
~ii ! a phase where both Kondo screening and magnetic
dering emerges in a narrow region around the phase tra
tion.

Following Zhang and Yu,34 we write the KLM as

HKLM5(
kW ,s

«~kW !ckW ,s
†

ckW ,s

1
J

4 (
iW

~ f iW,↑
†

f iW,↑2 f iW,↓
†

f iW,↓!~ciW,↑
†

ciW,↑2ciW,↓
†

ciW,↓!

2
J

4 (
iW

@~ f iW,↓
†

ciW,↓1ciW,↑
†

f iW,↑!2

1~ f iW,↑
†

ciW,↑1ciW,↓
†

f iW,↓!2#, ~42!
4-10
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FIG. 8. ^ckW1QW
† (t)ckW1QW & and ^ckW

†(t)ckW& as a function oftt on a

838 lattice atT50. Both consideredkW points follow ae2Dqpt law
~solid lines!, thus confirming the existence of shadows.

FIG. 9. Solution of the mean-field equations in Eq.~46!. The
solid line in ~a! corresponds to the quasiparticle gap as obtai
with the mean-field order parameters plotted in~b!. The dashed line
corresponds to the quasiparticle gap obtained in the absenc
magnetic ordering~i.e., we consider the solution of the mean-fie
equations withmc ,mf50 but VÞ0. In the weak-coupling limit,
those solutions produce higher energy values than when mag
ordering is allowed.!
15511
with the constraint:f iW,↑
†

f iW,↑1 f iW,↓
†

f iW,↓51. The second term o
Eq. ~42! describes the polarization of the conduction ele
trons by the impurity spins and leads to a magnetic insta
ity. The third term term is nothing but a rewriting of th
spin-flip processes:

J

2 (
iW

~ f iW,↑
†

f iW,↓ciW,↓
†

ciW,↑1 f iW,↓
†

f iW,↑ciW,↑
†

ciW,↓!, ~43!

which are at the origin of the screening of the impurity sp
by the conduction electrons. The mean-field approximat
proposed by Zhang and Yu34 is based on the order param
eters:

^ f iW,↑
†

f iW,↑2 f iW,↓
†

f iW,↓&5mfe
iQW • iW,

^ciW,↑
†

ciW,↑2ciW,↓
†

ciW,↓&52mce
iQW • iW and

^ f iW,↓
†

ciW,↓1ciW,↑
†

f iW,↑&5^ f iW,↑
†

ciW,↑1ciW,↓
†

f iW,↓&52V. ~44!

Here,QW is the antiferromagnetic wave vector,mf andmc are,
respectively, the staggered moments of the impurity sp
and conduction electrons, andV is the hybridization order
parameter that leads to the screening of the impurity sp
With the above Ansatz, one obtains the mean field Ham
tonian:

H̃5(
kW ,s S ckW ,s

ckW1QW ,s

f kW ,s

f kW1QW ,s

D †

3S «~kW !
Jmfs

4

JV

2
0

Jmfs

4
2«~kW ! 0

JV

2

JV

2
0 0 2

Jmcs

4

0
JV

2
2

Jmcs

4
0

D
3S ckW ,s

ckW1QW ,s

f kW ,s

f kW1QW ,s

D 1NJ~mfmc/41V2/2!, ~45!

where thekW sum runs over the magnetic Brillouin zone. W
note that due to particle-hole symmetry present in the h
filled case, the constraint of no double occupancy of thf
sites is satisfied on average:^ f iW,↑

†
f iW,↑1 f iW,↓

†
f iW,↓&51. The

saddle point equations,

K ]H̃

]mf
L 5K ]H̃

]mc
L 5K ]H̃

]VL 50, ~46!
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may then be solved.34

Solutions to the saddle-point equations atT50 and as a
function ofJ/t are plotted in Fig. 9. As is apparent, solutio
with mc ,mfÞ0, V50, as well as withmc ,mf50, VÞ0 and
most interestingly withmc ,mf ,VÞ0 are obtained. Each so
lution predicts very different functional forms for the quas
particle dispersion relation of the conduction electrons. Th
by comparing with the numerical data, we can deduce wh
values of the mean-field order parameters are appropria
best describe each phase.

We start by considering the spin-gap phase withJ.Jc .
Here, magnetic order is absent and the impurity spins
completely screened by the conduction electrons. It is t
appropriate to setmc5mf50 butVÞ0. This yields two qua-
siparticle bands with dispersion relation:

E6~kW !5
1

2
„«~kW !6E~kW !…, with E~kW !5A«~kW !21~JV!2.

~47!

The quasiparticle weights are given by the coherence fac
u6(kW )25 1

2 @16«(kW )/E(kW )#. We can use this form to fit the
b
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QMC data shown in Fig. 7~a!. As is apparent, the functiona
form of the dispersion relation is well reproduced.

We now considerJ,Jc . Here, antiferromagnetic order i
present both in the conduction electrons and localized s
so that:mcÞ0 as well asmfÞ0. Following the idea that the
spin degrees of freedom are frozen due to the magnetic
dering, we setV50 to obtain

E6~kW !56E~kW !, with E~kW !5A«~kW !21~Jmf /4!2.
~48!

The residues of the poles of the Green function follo

u6(kW )25 1
2 @16«(kW )/E(kW )#. This clearly does not reproduc

the QMC results since the very flat quasiparticle band

served numerically aroundkW5(p,p) is absent@see Fig.
7~c!#. Assuming, on the other hand, that magnetic order
and Kondo screening coexist, we setVÞ0 to obtain four
quasiparticle bands:
E6,6~kW !56
1

A2
H E~kW !6AE~kW !22

J4

4
~mcmf /41V2!22J2mc

2/4«~kW !2J 1/2

, with

E~kW !5«~kW !21J2~mc
2/41mf

2/412V2!/4. ~49!
sus-

the
d
tem-
e

ts

de-
take
on
let,
n

An acceptable account of the numerical data is obtained
using the QMC values of the staggered moments andV as a
fit parameter@see Fig. 7~c!#. We are thus led to the interpre
tation that the localized spins play a dual role. On one ha
they are partially screened by the conduction electrons.
the other hand, the remnant magnetic moment orders du
the RKKY interaction.

It is now interesting to consider the ferromagnetic KLM
WhenJ,0, Kondo screening is not present. Thus, we exp
the appropriate mean-field solution to havemcÞ0, as well as
mfÞ0 butV50. This choice of mean-field parameters lea
to the dispersion relation given in Eq.~48!. As apparent, and
using mf as a fit parameter, we can reproduce the QM
results@see Fig. 7~d!#.

IV. SPIN AND CHARGE DEGREES OF FREEDOM
AT FINITE TEMPERATURE

The aim of this section is to define relevant energy sca
for both spin and charge degrees of freedom as a functio
J/t. In doing so, we will discuss the behavior of the optic
conductivity, staggered spin susceptibility, single parti
spectral functions, as well as the specific heat as a functio
temperature. We will put the emphasis on the behavior
those quantities at the spin and charge energy scales.
y

d,
n
to

ct

s

s
of
l

of
f

A. Spin and charge energy scales

To define the charge scale, we consider the charge
ceptibility xc5b/L2(^N2&2^N&2), whereN corresponds to
the particle number operator. It suffices to consider only
conduction electrons since thef electrons are localized an
have no charge fluctuations. Since we are discussing the
perature dependence ofxc , let us recall the high-temperatur
result:

xc5
1

2T F12
1

8T2 S 3J2

8
18t2D G . ~50!

From that behavior, it appears thatJxc will exhibit some
approximative scaling form as a function ofT/J only for
largeJ/t@8/A3;4.62. In Fig. 10, we find consistent resul
at high temperature with Eq~50!.

We can define a characteristic charge temperatureTC in a
precise way by looking at the maximum ofxc . In the weak-
coupling limit, our numerical results are consistent withTC
;J ~See Figs. 10 and 19!. In the largeJ limit ( J. band-
width!, the physics becomes local and one can consider
coupled sites. For each site, there are only eight states to
into account for computing the grand-canonical partiti
function: the singlet state, the threefold degenerate trip
the fourfold degenerateS51/2 state containing either a
4-12



it

g

, w
e

ia

tu
ta

t
m
te
-
n

ig
ry
re

t a

t
w

asi-
tes

d

ns is
ning

t

al-
he

ies.

nt

SPIN AND CHARGE DYNAMICS OF THE . . . PHYSICAL REVIEW B 63 155114
empty conduction site or a doubly occupied one, and w
the two different spin configurations. In this limit,Dsp5J,
Dqp /J53/4, and

xc5b
4

413e2bJ/41e3bJ/4
, ~51!

which exhibits a peak atTC50.386J. Hence, and apart from
different numerical prefactors at weak and strong couplin
TC scales asJ in both limits ~see Fig. 19!.

To best understand the meaning of the charge scale
consider the real part of the optical conductivity as obtain
from the Kubo formula,s(v,T). This quantity is related to
the imaginary time current-current correlation functions v

^J~t!J~0!&5E dvK~v,t!s~v,T!, with

K~v,t!5
1

p

e2tvv

12e2bv
. ~52!

Here,J is the current operator along thex or y lattice direc-
tion and^& represents an average over the finite-tempera
ensemble. The above inverse Laplace transform, to ob
the optical conductivity is carried out with the ME~Ref. 18!
method. The default model is chosen as follows. We star
high temperature with a flat default and then, for lower te
peratures, we take as default the result obtained at the
perature just above.35 This allows us to obtain smoother re
sults, but emphasizes the fact that the ME method depe
on the default that is used.

The overall features of the conductivity are shown in F
11 for a givenJ. At high temperatures, there is only a ve
broad lorentzian Drude peak. By lowering the temperatu
we first observe an enhancement of the Drude weigh
expected for a metal. At temperature scales lower thanTC ,
there is a transfer of spectral weight from the Drude peak
finite frequencies and finally, at very low temperatures,

FIG. 10. Charge susceptibilityJxc vs T/J for various couplings
on theL56 lattice. For very largeJ, we obtain good agreemen
with the large-J expression~51! plotted with a dashed line.
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observe the opening of an optical gap related to the qu
particle gap observed in the single-particle density of sta
~DOS!.

The resistivity is defined asr(T)51/s(0,T). In Fig. 12,
we plot r(T) for variousJ. We observe a minimum locate
at approximatelyTC . Thus, we will conclude thatTC corre-
sponds to an energy scale where scattering of the electro
enhanced, while decreasing temperature due to the scree
of magnetic impurities.

FIG. 11. Optical conductivitys(v,T) versusv on a logarithmic
scale forJ/t50.8 and various temperatures (Dt50.2, L58 lat-
tice!. The peak height has been normalized to unity and the norm
ization factor is listed on the left-hand side of the figure. As t
temperature is decreased below the charge scaleTC /t;0.16 spec-
tral weight is transferred from the Drude peak to finite frequenc

FIG. 12. Normalized dc resistivityr as a function ofT/J for
various couplings. We have checked forJ/t50.8 that the results do
not depend onDt. To a first approximation, and taking into accou
the scatter of the data atJ/t51.6, the temperature of the minimum
in r tracksTC : TC /J;0.2,0.2,0.25 forJ/t50.4, 0.8, and 1.6, re-
spectively.
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This scenario is reinforced by the behavior of the lo
spin-spin correlation functionC5^SW f•SW c&(T)/u^SW f•SW c&(T
50)u plotted in Fig. 13. As the temperature is lowered, th
quantity decreases indicating the formation of local single
Since the curves are almost identical as a function ofT/J and
for various couplings, we deduce that the typical ene
scale isJ and that the formation of those singlets are resp
sible for the enhancement of the resistivity which occurs a
similar temperature.

Before considering the characteristic energy scale for
spin degrees of freedom, we comment on the relation
tween the optical gap—as obtained from the low-tempera
conductivity data—and quasiparticle gap~see Sec. III!. They
are not directly related since optical transitions involve o
zero-momentum transfer. Starting from the hybridizati
picture, we can represent the band structure as in Fig.

FIG. 13. Normalized local spin-spin correlation functionC

5^SW f•SW c&(T)/u^SW f•SW c&(T50)u as a function ofT/J for various
couplings. To a first approximation, the temperature scale of
onset of correlations tracksJ .

FIG. 14. Schematic 1D band structure showing the hybridi
bands.k varies fork50 to k5p and as apparent charge gapDC

;2Dqp is smaller than the optical gapDopt .
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Generalizing this figure to 2D, we clearly see that the sm
est optical gap is atkW5(p,0) ~or equivalent points! and is
larger than the charge gapDc.2Dqp . We recall that the
quasiparticle gap corresponds to a transfer from a particl
k5(p,p) in the lower band to the chemical potential. W
then expect from that naive argumentDopt.DC.2Dqp .
More precisely, we can relate the optical gap to the gap
kW5(0,p) as observed in Fig. 15.

To define a characteristic energy for the spin degrees
freedom, we compute the uniform spin susceptibility,xs

5b/L2(^mz
2&2^mz&

2). Here,mz5( iW(niW,↑2niW,↓) with niW,s

5ciW,s
†

ciW,s1 f iW,s
†

f iW,s . In order to observe magnetic prope
ties, it can be necessary to go to very low temperatures w
J is small. With our algorithm, which is free from the sig
problem, we can go down toT50.01t for L56 or T
50.02t for L58.

In a high-temperature expansion,xs takes the form:

xs5
3

8T S 12
J

6TD . ~53!

From this expansion, one expects to observe a scaling p
erty Jxs5 f (T/J) in this regime. This is indeed what is ob
served in Fig. 16 forT/J>0.6. We define the magnetic cha
acteristic temperatureTS via the position of the maximum in
xs . At large coupling, the physic of the Kondo lattice b
comes local. In that limit, the susceptibility is easily com
puted@see a similar calculation for the charge susceptibi
in Eq. ~51!# and takes the form:

e

d

FIG. 15. Various gaps as a function ofJ. We have considered
low enough temperatures so as to reproduce ground-state re
andL56. The quasiparticle gap is obtained from the DOS, the g
at (p,p) and (0,0) are seen in the spectral functions at those po
the optical gap,Ds stems from the optical conductivity and finally
the spin gapDsp is taken from Ref. 31. As apparent, in the wea
coupling limit, where the quasiparticle dispersion is very flat alo

thekW5(p,p) to kW5(0,p) direction, the optical and charge gaps a
comparable~see Fig. 7!.
4-14
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xs5b
112e2bJ/4

413e2bJ/41e3bJ/4
, ~54!

which exhibits a maximum atTS.0.453J. In contrast, for
smaller J, the position of the maximum clearly increas
more slowly thanJ ~see Fig. 17!. As is apparent from Fig. 17
and for the considered values ofJ/t, TS scales approximately
asJ2.

Figure 19 plotsTS as a function ofJ. In the large coupling
region, we have excellent agreement with the expansion
Eq. ~54!; but, for couplings up to;5 ~or bandwidth, which
is the physical case!, TS is well fitted by;J2.

The meaning of the energy scaleTS is elucidated by con-
sidering the spin susceptibility at the antiferromagnetic wa
vectorQW 5(p,p). This quantity measures the antiferroma

FIG. 16. Uniform spin susceptibilityJxs as a function ofT/J
for various couplings and lattice sizes. The high-temperature ex
sion ~53! is shown with filled circles and the large-coupling expa
sion ~54! is plotted in dashed line.

FIG. 17. Uniform spin susceptibilityJ2xs as a function ofT/J2

for various couplings andL58. For J<6, the maximumTS /J2 is
roughly constant.
15511
of

e
-

netic correlation length. Indeed, writing the spin-spin cor
lation functions in space and imaginary time asS(rW,t)
5A exp(irW•QW )exp(2r/j)exp(2t/jt), we find that the stag-
gered susceptibility xs(QW )5*o

bdt*drW exp(2iQW •rW)S(rW,t)
;jDjt in D dimensions. For the Heisenberg model, the d
namical exponentz defined byjt;jz is equal to 1.36,37Since
the charge degrees of freedom are gapped, we expect tha
model is in the same universality class as the O~3! model.
We then obtain in our casexs(QW );j3.

xs(QW ) is plotted in Fig. 18. As apparent and for the co
sideredJ/t range, the energy scaleTS marks the onset of

n-

FIG. 18. Staggered spin susceptibilityxs(QW ) for various cou-

plings and sizes. Sincexs(QW );j3, we can extract the behavior o
the antiferromagnetic correlation lengthj. TS.0.017,0.05,0.22 for
J/t50.4,0.8,1.6.
4-15
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short-range antiferromagnetic fluctuations. At low tempe
tures in the ordered phase, one expectsj to grow exponen-
tially as a function of decreasing temperature. On the ot
hand, in the spin-gap phase,J/t.1.45, the antiferromagneti
correlation length saturates to a constant.37

The results of this section are summarized in Fig. 19.
have defined both a charge,TC and a spinTS scales. The
charge scale corresponds to the onset of enhanced scat
as a function of decreasing temperature due to the scree
of the magnetic impurities. Apart from different numeric
prefactorsTC scales asJ in the weak- and strong-couplin
limits. From weak to intermediate couplings, the spin sc
defines the onset of short-range antiferromagnetic fluc
tions and follows aJ2 law in agreement with the energ
scale associated to the RKKY interaction. At strong co
plings, TS tracks the spin gap. We note that we find go
agreement with exact diagonalizations studies at fin
temperatures.38 This approach is, however, limited to ver
small cluster sizes and consequently to high temperat
and/or large values ofJ/t where the local approximation
becomes valid. Thus, those studies cannot extract the be
ior of TS in the weak coupling limit.

B. Temperature dependence of spectral functions
and origin of quasiparticle gap

The origin of the quasiparticle gap in the strong-coupli
limit is the formation of Kondo singlets. In the weak
coupling limit, the situation is nota priori clear. In the mean-
field theory presented in Fig. 9, and retaining only Kon
screening, we obtain an exponentially small gap correspo
ing to the dashed line in Fig. 9~a!. On the other hand, retain
ing only magnetic ordering, the quasiparticle gap takes
value J/4t in good agreement with the numerical data. W
note that an exponentially small gap is equally obtained w
~i! Gutzwiller approximation;12 ~ii ! dynamical mean-field
theory;10 ~iii ! 1/N expansion39 since those approximation
neglect magnetic fluctuations. In this section, we argue
at or slightly belowTC a small gap emerges leading to th

FIG. 19. Characteristic spinTS and chargeTC temperatures as
defined by the maximum ofxs andxc as a function ofJ for L56
andL58 when available. At largeJ, the asymptotic behavior ofTS

is 0.453J @Eq. ~54! shown in full line# with no adjustable paramete
at smallJ, TS is well fitted by the formJ2/11 ~dashed line!.
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quasiparticle dispersion relation12 „«(kW )6A«2(kW )1D2
…/2

and that the quasiparticle gap of orderJ is formed only at
TS .

We start by considering the integrated DOS,N(v) ob-
tained with the ME method. Results are shown in Fig. 20
J/t50.8. In the vicinity of the charge scale,TC50.16t, one
observes a reduction of spectral weight at the Fermi ene
Within the mean-field approximation of the KLM presente
in Eqs.~42! and~44!, this dip in the DOS of the conduction
electrons follows directly from the occurrence of Kond
screening, i.e.,VÞ0. Hence, this feature inN(v) at TC
stands in agreement with our interpretation of the cha
scaleTC . As the temperature is lowered belowTC , the den-
sity of states at the Fermi level is further depleted and a
opens in the low temperature limit.

In order to gain more insight into the distribution of spe
tral weight, it is convenient to compute the momentu
dependent DOS,A(kW ,v). The integrated density of state
merely corresponds to the sum over allkW of A(kW ,v). There-
fore, we expect the same behavior by decreasing the t
perature but we have more information on the dispers
relations of the excitations for example. Fig. 21~a! plots
A(kW ,v) again forJ/t50.8 and at a temperatureT50.083t
corresponding toTS,T,TC . For comparison, we have in
cluded theT50 data@see Fig. 21~b!#. As apparent the sub
stantial spectral weight of thekW points on the non-interacting
Fermi line, i.e.,kW5(0,p),(p/2,p/2) has shifted to lower en
ergies. This is the origin of the decrease in spectral wei
observed at the Fermi level in the integrated DOS atT

.TC . However, the flat dispersion relation aroundkW
5(p,p)—with significantly less spectral weight—remain
pinned at the Fermi level. The dominant features of the q
siparticle dispersion relation are well reproduced by the

„«(kW )6A«2(kW )1D2
…/2 with D50.5t. This value ofD pro-

duces a quasiparticle gapDqp5D2/16t.0.016t that lies be-

FIG. 20. Integrated DOS forJ/t50.8 on theL58 lattice for
various temperatures shown on the plot. The peak height is nor
ized to unity and normalization factor is listed on the left-hand s
of the figure.
4-16
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FIG. 21. ~a! Spectral functions forJ/t50.8 andbt512 (Dt50.2, L58 lattice!. Normalization factors are written on the vertical ax
At this temperature,TS,T,TC50.2t, there is a clear formation of hybridized bands with quasiparticle gap lying beyond our resolution
vertical bars correspond to a fit of the data~see text!. For comparison, we have included theT50 results~b!.
a

en
-g
d
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of
At

or-
rin-
yond our resolution. As seen in Fig. 21~b!, Dqp50.28
60.02 in the zero-temperature limit.

Since the quasiparticle gap is determined by thekW
5(p,p) wave vector we concentrate on thisk point to ana-
lyze the temperature evolution. As is apparent in Fig. 22
J/t50.8, the quasiparticle gap of orderJ is formed approxi-
mately at the magnetic scaleTS50.05t. Since the model is
particle-hole symmetricA(kW ,v)5A(kW1QW ,2v). Thus, the
fact that the peak splits symmetrically around the Fermi
ergy confirms the presence of shadow bands. In the spin
phase, the quasiparticle gap originates solely from Kon
screening. In the mean-field approximation presented in E
~42! and ~44! and retaining only Kondo screening, the qu
siparticle gap will grow continuously as a function of d
15511
t

-
ap
o
s.

-

creasing temperatures below the charge scale. This me
reflects the temperature dependence of the mean-field o
parameterV. Precisely this behavior is seen in Fig. 22
J/t51.6.

The evolution of the quasiparticle gap as a function
temperature is equally seen in the charge susceptibility.
low temperatures one expectsxc5b exp(2Dqpb). As is ap-
parent from Fig. 23, it is only belowTS that the data follows
the above exponential form.

C. Specific heat

Finally, we consider the specific heat that contains inf
mation on both spin and charge degrees of freedom. In p
ciple, one can obtain the specific heatCv(T) by direct cal-
FIG. 22. Spectral functions at (p,p) for various couplings andb ~increasing from down to up! (Dt50.2, L58 lattice!. At J/t50.8, the
quasiparticle gap of orderJ/4t opens at a temperature scale comparable toTS50.05. In the spin-gap phase, atJ/t51.6 the quasiparticle gap
grows smoothly as a function of decreasing temperature.
4-17
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culation of the fluctuations of the internal energyE(T):
Cv(T)51/NdE/dT51/N(^H2&2^H&2)/T2. However, this
method produces very poor results at low temperatures.
have thus used a ME method to computeCv as proposed in
Ref. 40. In Fig. 24, we showCv(T) as well as the uniform
spin an charge susceptibilities for various couplings a
function of temperature.

At J/t50, the specific heat is given by the sum of a de
function atT50 for the localized spins and the specific he
of free fermions. By switching on the coupling, they a
combined to form a two-peak structure. The broad peak
high-temperatureT;t is almost independent of the couplin
J and is rather similar to the free-electron gas. The sh
peak at lower temperatures strongly depends on the
change constant. It shifts toward higher temperatures
becomes broader with increasingJ/t. The location of this
peak tracks the magnetic scaleTS indicating that its origin
comes from the spin excitations. In the spin gapped ph
we note that the overall features ofCv agree with the 1D
case.41

V. SUMMARY AND CONCLUSION

We have presented a detailed numerical study of grou
state and thermodynamic properties of the ferromagnetic
antiferromagnetic half filled KLM model on a square lattic
From the technical point of view, we have described a
used an efficient~i.e., free of the minus-sign problem! aux-
iliary field QMC method to investigate the model. Both fini
and ground-state algorithms were discussed. The approa
by no means restricted to the KLM and may be applied
investigate models such as the half filled two channel Kon
lattice or various forms of depleted Kondo lattices in whi
the impurity spins are removed in a regular or random w
However, we are tied to particle-hole symmetry, since o
in this case can we avoid the minus-sign problem.

In two dimensions, the KLM shows a quantum pha
transition between antiferromagnetically ordered and dis
dered states. This transition occurs atJ/t51.4560.05. The
magnon dispersion evolves smoothly from its strong c

FIG. 23. xc /b at J/t50.8. The solid line corresponds t
exp(2Dqpb) where quasiparticle corresponds to the value obtai
with T50 simulations~See Fig. 4!. Only below the spin scale,TS ,
do the data follow the above exponential form.
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pling form with spin gap atQW 5(p,p) to a spin-wave form
in the ordered phase. The transition may be well underst
in the framework of a bond-operator mean-field approxim
tion of the Kondo necklace model.33 Here, the disordered
phase is represented by a condensation of singlets with
energy gap atQW 5(p,p) for magnon excitations. At and
below the critical point, the spin gap closes, leading to
condensation of both singlets and triplets at the antifer
magnetic wave vector. The system remains insulating. T
first approximation and as in the one-dimensional case,
quasiparticle gap scales auJu irrespective of the sign ofJ. In

d

FIG. 24. Spinxs and chargexc susceptibilities as well as spe
cific heatCv as a function of temperature for various values ofJ/t.
The dot-dashed line represents the specific heat of free electron
L58.
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contrast, the quasiparticle dispersion relation shows mar
differences between ferromagnetic and antiferromagn
couplings. For antiferromagnetic couplings the quasipart
dispersion always has a structure that follows the functio

form obtained in the noninteracting PAM:E6(kW )5 1
2 „«(kW )

6A«(kW )21D2
…. This functional form is obtained in variou

approximations34,42 that take into account Kondo screenin
but neglect magnetic ordering. In the antiferromagne
phase, the above dispersion relation is merely suppleme
by shadow features. One obtains a four-band structure th
well reproduced by mean-field theories that produce pha
with coexistence of magnetic ordering and Kon
screening.34 Thus, in the ordered phase, screening of the
purities is not complete. The remnant magnetic moments
der due to the RKKY interaction. Although we cannot do
the system—due to severe minus-sign problems—it is tem
ing to assume a rigid band picture and to describe the do
phase by shifting the chemical potential into the conduct

band. Since the quasiparticle gap is determined by thkW

5(6p,6p) points, the Fermi line will consist of hole
pockets around those points and one expects the Lutti
volume to account both for localized and conduction el
trons. Furthermore, since the band is very flat around th
points, a larger effective mass is anticipated. Ferromagn
couplings show a different behavior. In this case, Kon
screening is absent but the RKKY interaction present. T
quasiparticle dispersion is well fitted by the formE6(kW )

56A«(kW )21D2 corresponding to free electrons subject
an external staggered magnetic field. In this case, again
suming a rigid band picture, doping produces a Lutting
volume containing only the conduction electrons. This co
trasting behavior of the Luttinger volume for the ferroma
netic and antiferromagnetic KLM is reproduced in the lim
of large dimensions.11

From the finite-temperature simulations, we can defi
spin TS and chargeTC energy scales by locating the max
mum in the charge and spin susceptibilities. From weak
intermediate couplings, the spin scale follows aJ2 law, in
agreement with the energy scale associated with the RK
interaction. At strong couplings,TS}J,. In contrast, both in
the weak- and strong-coupling limit,TC;J. In the range
whereTS}J2, the staggered susceptibility shows a mark
increase atT;TS . Hence, in this rangeTS corresponds to
the onset of antiferromagnetic fluctuations. On the ot
hand, the charge scale determines to a first approximation
minimum in the resistivity. Furthermore, atTC antiferromag-
netic intracell correlations between thef andc electrons are
formed and a dip in the integrated density of statesN(v) at
the Fermi level is observed. Thus, this scale marks the o
of enhanced scattering originating from the screening of
magnetic impurities. In the limit of infinite dimensions,
similar behavior in the charge degrees of freedom is se
but at a much smaller energy scale,T0;e21/2JN(« f ).10 Apart
from a factor 1/2 in the exponent,T0 corresponds to Kondo
temperature of the single impurity problem. In one dime
sion, a dip inN(v) is observed at an energy scale larger th
the spin gap that scales ase21/aJN(« f ) in the weak-coupling
15511
ed
ic
le
al

c
ed
is

es

-
r-

t-
ed
n

er
-

se
tic
o
e

s-
r
-
-

e

o

Y

d

r
he

et
e

n,

-
n

limit @with a numerical estimation of 1<a<5/4 ~Ref. 15! or
a51.4 ~Ref. 16!#.

In the weak-coupling limit, one can analyze the sing
particle spectral function at various temperatures. Our res
show that the quasiparticle gap of orderJ is formed only at
the magnetic energy scale. Thus, one can only conclude
the quasiparticle gap at weak couplings is of magnetic orig
In contrast, at strong coupling, the quasiparticle gap or
nates from Kondo screening. The above stands in agreem
with arguments and numerical results presented for the o
dimensional~1D! case.15,16At weak couplings in one dimen
sion the spin gap becomes exponentially small. Hence,
time scale associated with magnetic fluctuations is expon
tially larger than the time scale relevant for charge fluctu
tions that is set byt. The conduction electrons thus effe
tively feel a static magnetic ordering. In one dimension a
in 2D, in the presence of particle-hole symmetry, nesting
the noninteracting Fermi surface is present. At a mean-fi
level and in the presence of magnetic ordering, this lead
a quasiparticle gapDqp5J/4. In 2D, one may alter the shap
of the noninteracting Fermi surface so as to avoid nesting
introducing a small nearest-neighbor hopping matrix e
ment. In this case, the mean-field approximation does
produce an insulating state in the presence of antiferrom
netic ordering. Since nesting is related to particle-hole sy
metry, we cannot address this question in the QMC appro
due to severe sign problems. Hence, it is worth paying p
ticular attention to our results at weak couplings andTC
.T.TS , before antiferromagnetic correlations set in. He
Kondo screening is present but antiferromagnetic corre
tions absent. In this temperature range,A(kW ,v) shows a dis-
persion relation following that of hybridized bands with th
quasiparticle gap lying beyond our resolution.

We have equally computed the specific heat,Cv . This
quantity shows a two-peakstructure. The broad high-energ
(T;t) feature stems from the conduction electrons. T
low-energy peak is very sharp in the ordered phase
tracksTS . It is hence of magnetic origin.

Finally, we discuss the relationship of our results to e
periments. Let us first concentrate on Ce3Bi4Pt3. At T
5100 K the effective magnetic moment of Ce ions sta
decreasing.43 At higher temperatures, the Ce ion has a nex
fully developed moment~i.e., J55/2 as appropriate for
Ce31). At the same temperature scale, the real part of
optical conductivity shows a reduction of spectral weight in
frequency range of 39 meV or 450 K.43,44 Those results im-
ply that the opening of a gap is related to the screening
magnetic impurities and hence, the KLM seems to be
adequate prototype model for the description of this class
materials. The above-described temperature evolution is
cisely seen in our numerical simulations. AtT.TC and at
weakcouplings, the optical conductivity shows a transfer
spectral weight from low frequencies to frequencies w
aboveTC ~Fig. 11!. Screening of the magnetic moments st
equally atT.TC ~Fig. 13!. For the above material, the opt
cal gap is estimated byDs539 meV ~Ref. 45! and photo-
emission experiments suggest a quasiparticle gapDqp520
meV.46 At a temperature scaleT.25 K, a gap in the mag-
4-19
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netic excitation ofDsp512 meV is observed. Those sma
energy scales imply that small values ofJ/t should be con-
sidered. The gaps equally satisfy the relationDc.2Dqp
.Dsp as obtained in the KLM. Hence, one should place t
material in the parameter rangeJ.Jc , which in our calcu-
lations seem rather large in comparison to the small cha
gap observed in experiments. However, one should kee
mind thatJc may be sensitive to the properties of the non
teracting Fermi surface. In particular nesting—which
present in our calculation—will certainly enhance the va
of Jc . We now turn our attention to CeNiSn. CeNiSn has
transport gap roughly an order of magnitude smaller th
Ce3Bi4Pt3, and hence—assuming a KLM description of t
material—should correspond to smaller values ofJ/t in com-
parison to Ce3Bi4Pt3. ~Note that recent measurements dow
to ;0.1 K have found an electronic contribution to the sp
W

,

R

v.

d

15511
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cific heat.47 This is interpreted in terms of a finite density o
states within the gap.! This smaller value ofJ/t leads to
signs of magnetism. Indeed, along thea axis of the ortho-
rhombic structure, CeNiSn shows a peak in the magn
susceptibility at 12 K. At the same energy scale, an anom
is seen in the specific heat.48 This seems consistent with ou
results.
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