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Spin and charge dynamics of the ferromagnetic and antiferromagnetic
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We present a detailed numerical study of ground state and finite temperature spin and charge dynamics of
the two-dimensional Kondo lattice model with hoppinhgnd exchangd. Our numerical results stem from
auxiliary field quantum Monte Carlo simulations formulated in such a way that the sign problem is absent at
half-band filling thus allowing us to reach lattice sizes up t&X12. At T=0 and antiferromagnetic couplings
J>0 the competition between the Ruderman-Kittel-Kasuya-Yosida interaction and the Kondo effect triggers a
guantum phase transition between antiferromagnetically ordered and magnetically disordered indplators:
=1.45+0.05. AtJ<O0 the system remains an antiferromagnetically ordered insulator and irrespective of the
sign of J, the quasiparticle gap scales |[d$. The dynamical spin structure factS(d,w) evolves smoothly
from its strong-coupling form with spin gap eit=(qmr) to a spin-wave form. Fod>0, the single-particle
spectral functiorA(IZ,w) shows a dispersion relation following that of hybridized bands as obtained in the
noninteracting periodic Anderson model. In the ordered phase this feature is supplemented by shadows, thus
allowing an interpretation in terms of the coexistence of Kondo screening and magnetic ordering. In contrast,
at J<O0 the single-particle dispersion relation follows that of noninteracting electrons in a staggered external
magnetic field. At finite temperatures spig and chargd  scales are defined by locating the maximum in the
charge and spin uniform susceptibilities. For weak to intermediate coupligaarks the onset of antiferro-
magnetic fluctuations—as observed by a growth of the staggered spin susceptibility—and falfolasvaAt
strong couplingd s scales ag. On the other handl scales ag both in the weak- and strong-coupling regime.

At and slightly belowT: we observei) the onset of screening of the magnetic impuritigi, a rise in the
resistivity as a function of decreasing temperatuiie) a dip in the integrated density of states at the Fermi
energy, and finallyiv) the occurrence of hybridized bandsAk, ). It is shown that in the weak-coupling
limit, the charge gap of ordetis formed only aflT s and is hence of magnetic origin. The specific heat shows
a two-peak structure. The low-temperature peak folldwsand is hence of magnetic origin. Our results are
compared to various mean-field theories.

DOI: 10.1103/PhysRevB.63.155114 PACS nuniger71.27+a, 71.10.Fd

[. INTRODUCTION localized orbitals. In the limit of larg&J;, charge fluctua-
tions on the localized orbitals are suppressed and the PAM
The Kondo lattice modelKLM) as well as the periodic maps onto the KLM
Anderson modelPAM) are the prototype Hamiltonians to
describe heavy fermion materialand Kondo insulators.
The physics under investigation is that of a lattice of mag-
netic impurities embedded in a metallic host. The symmetric _ R _
PAM reads Here, S?=%ES,S,CF’SUS'S,C;,S,, where o are the Paulis

=1/2 matrices. A similar definition holds fcﬁ{ A magnetic

- N . energy scald=8V?/U emerges and there is a constraint of

Hpam= 2 8(k)CQ,UCE,a—VZ (c; fiotfi cio) one electron per localized orbital. Although this constraint
k.o o forbids charge fluctuations on the localized orbitals, those

; ; fluctuations are implicitly taken into account leading to the

+U (ny . =12 (n; —1/2). (1)  above form and sign of the exchange interaction. On the
i other hand, when charge fluctuations on the localized orbitals

are absent, the exchange interaction follows from Hund’'s

The unit cell, denoted by, contains an extended and a lo- 'ulé and is ferromagnetic. The ferromagnetic KLM has at-
calized orbital. The fermionic operator%( (fE() create trgcted mich attention In conjunction with m.anganftéa..

o ko _ this paper we will consider both ferromagnetic and antifer-
electrons on extendetbcalized orbitals with wave-vectok  romagnetic exchange interactions with emphasis on the anti-
andz component of spinr. The overlap between extended ferromagnetic case.
orbitals generates a conduction band with diSperSion relation The physics of the Sing|e |mpur|ty Anderson and Kondo
e(k). There is a hybridization matrix elemeht between models atJ/t>0 is well understood.In the temperature
both orbitals in the unit cell and the Coulomb repulsion—rangeJ<T<U, charge is localized on thieorbital, but the
modeled by a Hubbardl (—is taken into account on the spin degrees of freedom are essentially free, thus leading to a

Hin= 2 8(E)CE,UC§,U+JZ §|§§|E 2
i

k,o
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Curie-Weiss law for the impurity spin susceptibility. Below section. We use a path integral auxiliary field quantum
the Kondo temperaturé,ee *Ne) the impurity spinis  Monte Carlo(QMC) method!’ Our approach is based on a
screened by the conduction electrons. Hereis the Fermi  simple technical innovation that allows us to avoid the sign
energy andN(e¢) the density of states taken at the Fermiproblem at least at half band filling where the model is
energy. The transition from high to low temperatures is nonJarticle-hole symmetric. Both finite- and zero-temperature
perturbative and corresponds to the Kondo problem with th&ersions of the algorithm are presented. In both cases imagi-
known resistivity minimurf and orthogonality catastropfe. nary time displaced correlations functions can be computed.
At low temperaturesT is the only energy scale in the prob- The continuation to real time is then carried out via the use
lem. of the maximum entropyME) method*® We note that the

A lattice of magnetic impurities introduces new energy&/90rithms may be applied irrespective of the sigrlof

scales. In the spin sector, the Ruderman-Kittel-Kasuya- N Sec. lll, ground-state equal time and dynamical prop-
Yosida (RKKY) interactioff couples impurity spins via po- erties of the ferromagnetic and antiferromagnetic KLM are

larization of the conduction electrons. This interaction takesort_asented. Our main results include t.h.e followifig.In the
spin sector, a quantum phase transition between antiferro-

the form of a Heisenberg model with exchangg(d)=  magnetically ordered and disordered ground states occurs at
—J?Rex(g,0=0) where x(q,w) corresponds to the spin J/t=1.45+0.05. The dynamical spin structure factor is ana-
susceptibility of the conduction electrons. Since this interactyzed across the transition. As a function of decreasing val-
tion favors magnetic ordering, it freezes the impurity spinsues ofJ/t, the spin gap at the antiferromagnetic wave vector
and, hence, competes with the Kondo effect. By comparingloses and the magnon spectrum evolves towards a spin-
energy scales, one expects the RKKY interactigiondo  wave form. This spin-wave form persists for ferromagnetic
effect to dominate at weakstrong couplings. As suggested couplings since in the limid/t— o, the model maps onto the
by Doniach® this leads to a quantum phase transition be-s=1 antiferromagnetic Heisenberg model. Our results at
tween ordered and disordered magnetic phases. J/t>0 are compared to a bond-operator mean-field theory of
As a function of dimension, contrasting results are ob-the Kondo necklace modsdii) In the charge sector, the sys-
tained for the PAM and KLM. We first consider the limit of tem remains an insulator. To a first approximation, the qua-
large dimensiond'** and the Gutzwiller approximatiotf.  siparticle gap trackd both in the antiferromagnetic and fer-
The Gutzwiller approximation leads to an noninteractingromagnetic KLM. For all values af/t>0 the single-particle
PAM with renormalized hybridizatiotv. At half filling an  spectral function shows a feature whose dispersion relation
insulating state is obtained, with quasiparticle gapfollows the one obtained in the noninteracting PAM. In a
~e V2N in the largeUs limit. Both the Gutzwiller and ~mean-field approach, this feature results solely from Kondo
dynamical mean-field approaches yield charge and spin gagsreening of the magnetic impurities. In the magnetically or-
equal to each other. As a function of temperature, optical andered phase, this feature is supplemented by shadow bands.
quasiparticle gaps start appearing at an energy scalthus, and as confirmed by a mean-field approach, the spec-
~e V2N 1013 the doped phase, the Luttinger volume in- tral function in the ordered phase may only be understood in
cludes thef electrons, and due to the renormalization of theterms of the coexistence of Kondo screening and the RKKY
hybridization, the effective mass of charge carriers is eninteraction. On the other hand, d{t<0, where Kondo
hanced. The above quoted results stem from calculations facreening is absent, the single-particle dispersion relation
the PAM. However, similar results are obtained in the framefollows that of free electrons in a external staggered mag-
work of the KLM at J/t<1l in the limit of large netic field.
dimensions! The above approximations predict an instabil-  Section 1V is devoted to finite temperature properties of
ity to magnetic ordering in the larde; or smallJ limit. The  the KLM. We define chargd ., as well as spirlg scales
occurrence of this instability has been observed in the framefrom the location of the maximum in the charge and spin
work of quantum Monte CarldQMC) simulations of the susceptibilities. In the weak- and strong-coupling limit, the
PAM in two dimensiong®*In the one-dimensional case, a charge scale trackd On the other hand the spin scale—as
good understanding of the phase diagram of the KLM as &xpected form the energy scale associated to the RKKY
function of electronic density and coupling has beeninteraction—follows aJ? law up to intermediate couplings.
achieved:>®n particular, at half filling, a spin liquid phase At strong couplingsTs>=J. SinceT¢ corresponds to the en-
is obtained irrespective of the value dft. In the weak- ergy scale at which a minimum in the resistivity is observed,
coupling limit the spin gap follows a Kondo form, whereas we conclude that it describes the energy scale at which scat-
the charge gap tracks tering is enhanced due to the screening of the impurity spins.
In this paper, we present a detailed numerical study ofurthermore a reduction of the integrated density of states at
ground-state and finite-temperature properties of the halthe Fermi level is observed &ic. The spin scale up to
filed KLM in intermediate dimensionsg=2. Our T=0 intermediate coupling6.e., J/t<W whereW corresponds to
simulations are aimed at understanding the competition anthe bandwidth marks the onset of short-range antiferromag-
interplay of the Kondo effect and RKKY interaction. Our netic correlations. This is confirmed by the calculation of the
finite temperature simulations provide insight into the tem-staggered spin susceptibility that shows a strong increase at
perature evolution of spin and charge degrees of freedom. Ts. In the weak-coupling limit, it is shown that the quasi-
Our main results and structure of the article is as follows particle gap of magnitudeJ is formed only at the magnetic
Details of the numerical technique are presented in the nexdnergy scalf s and, is thus, of magnetic origin. In the tem-
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perature rangd < T<T. hybridized band are seen in the

single-particle spectral function with quasiparticle gap lying HQo=Hkim+ (7)
beyond our resolution. Finally, the specific heat is computed

and shows a two-peak structure. The low-energy peak trackgince in theQ, subspace thésites are singly occupied and,
the spin scale and, is hence, of magnetic origin. In the lashence, the pair-hopping term vanishes. H&esorresponds
section, we discuss our results, as well as links with experito the number of unit cells. Thus, it suffices to choose

ments.
Qol V1) =|¥1), (8)

II. AUXILIARY FIELD QUANTUM MONTE CARLO to ensure that

ALGORITHM FOR THE KONDO LATTICE MODEL
(Vrle ®"0e M| ¥y) (Pqle ®fkmOe OHkim|wy)

(Ple 2" wy) (W|e™2OHkim|wr)

Auxiliary field QMC simulations of the KLM, as well as
the two-impurity Kondo model have already been carried out
by Fye and Scalapint:?° However, their formulation leads

to a sign problem even in the half-filled case where the s interesting to note that there is an alternative route to
model is invariant under a particle-hole transformation. Ingpiain the KLM. Instead of projecting onto @, Hilbert

this section we present an alternative formulation of thespace we can project onto kg, Hilbert space by suitably
problem that is free of the sign problem in the particle-holechoosi’ng the trial wave function

symmetric case. In order to achieve our goal, we take a de-

tour and consider the Hamiltonian: J
>\ 1 Tt
HQu=2 e(K)cy Cio— 7 2 (ci e fiofi,tHe)
2 k,o i,o

9

R J
H:Z a(k)CE’O-ClZ,(r_ Z E E Cityo-fia,rr_kf;o-cia,(r
k,o 4

] 3 + ;]—1 2 (n?nit— ni— nif~). (10)

As we will see below, at vanishing chemical potential, thisSince in theQy subspace thésites are doubly occupied or

Hamifltonian hlas afll |tge propelrties r:equired to formulate gmpty, the exchange ter§$'§if- vanishes. To see the relation
sign-free auxiliary field QMC algorithm. Here, we are inter- ith the KLM. we define the spin-1/2 operators:
ested in the ground-state propertiestbthat we obtain by w W n spin perators:

filtering out the ground stat¢¥,) by propagating a trial

I __qyixtiyel #
wave function|¥ 1) along the imaginary time axis: S (Z LT

N P

_@ 6 - o ~ 1
(WolO[Wo) _ . (¥rle Moe OHWT). (4) S == (-1 Si%'fzi(nF_l)’ 11
(VolWo) g (Wil 20H| W)

. bt
which operate on the stateh{t)ijf=—(—1)'x+'yfmfiﬂyl|0>

The above equation is valid, provided that|W)#0 and 4. |1)7 (=|0) as well as the fermion operators:
O denotes an arbitrary observable. '

To see howH relates toH g, v, we compute the square in Tt o=t ! =(—1)xtiver . (12)
Eq. (3) to obtain S Y ] i1

With those definitions,
H=2 s(k)cf ci,+I> S5-8
k,o ' i

3 I 1
k,o

oy~ J e
HOv=2 &(KIE; ot 5 2 (375 +55 )
I

J Tt
—=> (¢l fi_,fi,+Hc) . IN
475 ot +JS§'°§F’f+T, (13)
J
+t7 > (n?nif‘— nig—nif-). (5)  which is nothing but the KLM.
i
As apparent, there are only pair-hopping processes between A. Basic formalism
thef andc sites. Thus, the total number of doubly occupied Having shown the relationship betweehandH,, ,, we
and emptyf sites is a conserved quantity: now discuss some technical aspects of the QMC evaluation

of (¥|le"®Hoe OH| W) /(W|e 29| W ;). With the use of
the Trotter formula we obtain

0. (6)

f f fof
H7Z (1_nf,T)(l_nf,l)+nf,Inf,L =
i

M
H eATHtefATHJ

—20H _ 2
If we denote byQ,, the projection onto the Hilbert space with (Wrle W)= < Y = \PT> +O(AT).
Ef(l—nifa’T)(l—nEl)Jrnit‘Tnifw:n then (14
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Here, H,=—t3,,Cl Cj,+H.c, Hy=—J43;§-§, [—ta+e) if i=2n+1
andMAr=20. Strictly speaking, the systematic error pro- hita, —t(1—-6) if iy=2n "

duced by the above Trotter decomposition should be of order

A 7. However, if the trial wave function, as well & and Pia=—t(1+9), (18
H; are simultaneously real representable, it can be shown S

that the prefactor of the lineaxr error vanished>%? with 6<t.

Since we will ultimately want to integrate out the fermi- ~ We are now in a position to integrate out the fermionic
onic degrees of freedom, we carry out a Hubbard-degrees of freedom to obtain:
Stratonovitch (HS) decomposition of the perfect square

term?® <\IfT|e’2®H|\IfT>=% (H Y('i‘,f))

N
e—ATHJ:H eATJ/4{(LUci~YUfi’0+H.c.)2},

M
i % H de< PUTH e—AT:i-ej(T)P(T) ,
o =1

‘ -
:1;[ (|_§,tz y(|)e\emna)zgcivaf,ﬂm.c. 19
where the matrice$ andJ(7) are defined via:
+ O(AT4)), (15)
Hi=2 et cio= > al,Txyayq.
where the fieldsy and y take the values: Ko ’ Xy,0
Y(£1)=1+6/3, y(+£2)=1—6/3, > al d(n,yay.. = VARIAY, 5(l; (el fi,+H.c).
Xy, i,o '

’ 20
n(x1)==V2(3-6), 7(x2)==\2(3+6). 20

The HS fieldl has acquired a spa(feand timer index.

As indicated, this transformation is approximate and pro- The hasic ingredients to compute observables are equal-
duces on each time slice a systematic error proportional tgme Green functions. They are given by

A7* This amounts to a net systematic error of order

MA74~2@A 73, which for constant values of the projection (Vle ®Ha, ,al e ®H|W)
parameter, is an order smaller that the error produced by the “oon
Trotter decomposition. (Wrle 2" wy)
The trial wave function is required to be a Slater determi-
nant factorizable in the spin indices: => PKI)((aX’”a;,U))(I), with
{

V=T,  with
o =lmelrs (ax,a) N(=[1-U7 (U, U7 ) U5 Ty

N
T M/2
o\ _ T o ~ A
|\PT>_J;[1 ; aX,U'PX,y> |0> (16) ;,l — Hl e—ATTeJ(T)P(r
=
Here, we have introduced the notatio® (i,n) wherei de- Mi2+1
. . . T T A A
n?tes theTunlt cell ana the orbital(i.e., ai1y,=C and U:,|= pot HM e A7) and
i ,=fi,). It is convenient to generatply) from a T’

single particle HamiltoniaanzExvya:{(hg)x,yay, which
has the trial wave function as non-degenerate ground state.
To obtain a trial wave function that satisfies the requirements

II y(lm}ﬂ de(U; U,

Qo|¥+)=|W¥+), we are forced to choodé, of the form: Pr(l)= o (21)
2} I1 y(lm}ﬂ de(U;,U7))
i, 7 o
Ho= >, (ti‘,j'cit CiotH.C) _ _ _ _
e : Since, for a given set of HS fields, we are solving a free-
electron problem interacting with an external field, a Wick
+hzz eiQ.i(fi‘[]Tfh_fiIdfm), (17) theorem applies. Hence, from the knowledge of the the
I

single-particle Green function at fixed HS configuration, we
N may evaluate all observables. Imgaginary time displaced cor-
which generates a ¢ state[ Q= (,7)] on the localized relation functions may equally be calculaféd®
orbitals. To obtain a non-degenerate ground state, we impose We are left with the summation over the HS fields, which
the dimerization we will carry out with Monte Carlo methods. In order to do
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so without further complication, we have to be able to inter-velocity andL the linear size of the system. In this case,

pret Pr{) as a probability distribution. This is possible only starting with a spin-singlet trial wave function is important to

provided that Pl)=0 for all HS configurations. In the obtain reliable convergenég.

particle-hole symmetric case, the above statement is valid. In order to circumvent the above problem, we relax the

Starting from the identity: constraintQ,| V) =|¥) and add a Hubbard term for ttie
sites to the Hamiltonian.

M
1 Tyl 2
Trl e BHo —A7H{ qH (1) o t
. e el e e M= alel, o0, g 3 |3 ol fio e
def{U: U = lim , i o
( Tl ) s Tr(e_BHg)

(22 +U; 2 (nf,—12)(n —1/2). (24)
: : ,
we can carry out a particle-hole transformation This Hamiltonian is again block diagonal in thg, sub-
T o T o spaces. During the imaginary time propagation, the compo-
¢ = (=1)>hep and i ——(=1)x"if . nentsQ,| W) of the trial wave function will be suppressed

(239 by a factor e ®Y"2 in comparison to the component
. R He Qol V7).
Here, H{ =2y yax o Txyy,o and H3(7) The usual procedure to incorporate the Hubbard term in

=3 yax APy yay.o - Since Eq.(23) corresponds to a ca- the QMC simulation relies on Hirsch’s HS transformatfdn:
nonical transformation, the trace remains invariant bigd 1
H{ , as well aH }(7), map ontaH}, H{ , andH}(7), respec- exp{ —A7UY, (ni - —)(ni - —)
tively. Thus, we have shown that: det{,U;)) P b2
=det(U},U])), which leads to Pt)=0 for all values of the
HS fields. Away from half filling(which would correspond =c > ex;{a}‘, Ny, —n; i)}'
to adding a chemical potential term ), particle hole- SR sN=*1 '
symmetry is broken and Hi)( may become negative. This (25)
leads to the well-known sign problem. It is clear that by
choosingH,=H}, thus leading toP'=P'! would produce where coshf)=exp(A7U/2). As apparent from the above
positive values of PI) for all HS configurations and irre- equation, for a fixed set of HS fields; . ..sy, SU(2) spin
spective of particle-hole symmetry. This stands in analogy teymmetry is broken. Clearly SB) spin symmetry is re-
the absence of the sign problem in the attractive Hubbardtored after summation over the HS fields.
model. However, this choice of the trial wave function is  Alternatively, one may consid&t
incompatible with the requireme@,|¥1)=|V+).

For the Monte Carlo sampling of the probability distribu- ex —ATUE (nf _ E) ( ne o — E)
tion Pr(l), we adopt a sequential single spin-flip algorithm. B2\ R 2
The details of the upgrading procedure, as well as of the
numerical stabilization of the code, are similar to those used
for auxiliary field QMC simulations of the Hubbard modél. 2 . exp{

iaz si(ni i, — 1)},

(26)

where cosf)=exp(—A7U/2) andC=expA7UN/4)/2V. With

this choice of the HS transformation, &) spin invariance

is retained for any given HS configuration. Even taking into
account the overhead of working with complex numbers, one
of the authors has argu&dhat this choice of HS transfor-

B. Optimizing the algorithm

The above straightforward approach for the QMC simu-
lation of H turns out to be numerically inefficient. The major .
reason for this stems from the choice of the trial wave func-
tion. The coupled constraintd) Qo|¥+)=|¥;) and (ii)
| W) is a Slater determinant factorizable in the spin indices Smation produces a more efficient code.
make it impossible to choose a spin-singlet trial wave func-

Having relaxed the conditioQ,|¥'1)=|¥1), we are now
tion (the trial wave function generated by the single particle L ; .
Lo ; ¢ free to choose a spin singlet trial wave function that we gen-
HamiltonianH, of Eq. (17) orders thef electrons in a Nel :
. S . erate from:
state that is not a spin singletSince we know that the
ground state of the KLM on a finite-size system is a spin

singlet?’28 we have to filter out all the spin excited states H0=Z S(E)CE,(,CRU E (C~ fi o ! P oCio)
from the trial wave function to obtain the ground state. This k.o 5
is certainly not a problem when we are investigating the (27)

physics of a problem with a large spin gap, as is the case iwhich is nothing but the noninteracting PAM with hybridiza-
the limit J/t>1. However, in the limit of smallJ/t, the tion V=J/4. The ground state at half filling is clearly a spin
long-range magnetic order is present, and hence, one expedisiglet. With this choice of the trial wave function, and the
finite-size spin-gap to scale ag/L wherevg is the spin  Hubbard-Stratonovitch transformation of Ed26), the
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L:4’ J/t: 1.6 Sff(QE (ﬂ-vﬂ-))/L2> (Tl) = 27 L=6
0.5
© - J/t=02
A: Soy(@), S2U7) #£0 Ot =0
04 (- o 5(@), Svr)=0 A Jft=04
O Sz(g)a §2|\IIT> #0 v: J/t=08
03|
X: J/t =1.2
0.2 — > . J/t=14
014 | | | 1 | | | | |
0.1 A 70.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0 5 10 15 20 25 30
oot 1/(26t)

FIG. 1. Spin-spin correlations as a function of the projection ~FIG. 2. Spin structure factor &= (w,m) for the f electrons
parameter ©. Here, S(Q)=%(5(Q)-S(-Q)), Si(Q) [S"(Q)] at various values al/t and as a function of the projection
=4(S(Q)-S(-Q)), and  S/(Q)=2((S{Q)-S(-Q)) paramete®t. Here we consider a spin singlet trial wave function.
+(S)(Q)-S|(—Q))). The trial wave function withS?W+)+0
(§2|\IfT)=0) corresponds to the ground state of the Hamiltonian in
Eq.(27) [Eqg.(17)]. In thelarge © limit, the results are independent
on the choice of the trial wave function. In particular, starting from
a broken-symmetry state the symmetry is restorddrge values of T ANiy iy 1 anigtige-

Ot. For this system, the spin gap is given hy,=0.169+0.004 Ci'T_>( 1)x7her, and fi’T_>+( DR 28
(Ref. 3. Starting with a trial wave function wit§2|\IfT>¢0, con- (28
vergence to the ground state follows approximatively the faam: Note that in comparison to E¢23), there is an overall sign
+be 229, The solid lines correspond to a least-square fit to thisdifference in the particle-hole transformation of thepera-
form. tors. With this conditon one has: detf; U7, )

_ _ =det(U], U7 ¢ so that no sign problem occurs. The trial
particle-hole  transformation of Eq. (23) maps  wave function is thus generated from the noninteracting
det(UT, U7 s ondetUT, U ). Hence, no sign prob- Hamiltonian:
lem occurs at half filling.

Figure 1 demonstrates the importance of using a spin

avoid the sign problem. In this case, the noninteracting
Hamiltonian that generates the trial wave function has to be
invariant under the particle-hole transformation:

oyt T
singlet trial wave function. Starting from a Mleorder for the Ho=2 e(K)ey ,Ceo™ 7 E (Cflrffo‘ij‘,aCf,o)-

f- electrons, convergence to the ground state follows approxi- ko <' o (29)
matively e *s?®, where A, corresponds to the spin gap.

When the spin gap is small, convergence is poor and the (ny=2,L=4,J/t=16,6t=11

remedy is to consider a spin singlet trial wave function.
Having optimized the trial wave function we now con- %%
sider convergence as a functiondsf. As apparent from Fig.  ¢20 |- a

2, for small values ofl/t, increasingly large projection pa- B v ~ @\@\

rameters are required to obtain convergence. The origin 0®

this behavior may be traced back to the energy scale of the.s - o S7H(G)/ 12
RKKY interaction that follows aJ? law. At J/t=0.4, 20t Wl ~
~40 is enough to obtain convergence wherea&et0.2, a @=(mm)
value of 20t~170 is required. 012 - A: S(Q)/12

The systematic error produced by the Trotter decomposi-,,

tion scales as/X 7). This behavior is shown in Fig. 3. All .
our calculations were carried out at values &f small 0.08 =
enough so as to neglect this systematic error. | | | | |

0.06
0.0 0.1 0.2 0.3 0.4 0.5 0.6

C. Ferromagnetic exchange Art

Until now, we have implicitly considered an antiferro- FIG. 3. Systematic error produce by the Trotter decomposition.
magnetic exchanged>0. It is straightforward to generalize In our simulations, we have useir=0.1 andA7=0.2. Here,
the above case to a ferromagnetic one. The only point to také(Q) corresponds to the spin structure factor of the total spin at
care of is the choice of the trial wave function in order to Q= (,).

155114-6



SPIN AND CHARGE DYNAMICS OF THE . .. PHYSICAL REVIEW B 63 155114

D. Finite-temperature algorithm (n)y=2,T=0
The QMC method presented above may be generalized ta.o - .
finite temperatures to compute expectation values of observ £=1 Helsenberg i
ables in the grand-canonical ensemble: |
08 A ____ i N O: Ay :
o Tr(e”#HO) 20 A A :
— ~ 1
< > Tr(e_’BH) . ( ) 0.6 :
I
Since the step from th&=0 approach to the finit&- algo- oa i
rithm is similar to the one for the standard Hubbard model, ™ :
we refer the reader to the Ref. 26. We note however, that a !
finite temperatures, the projection onto Qg subspace may o2 (a) !
only be achieved via the inclusion of the Hubbard term !
UsSi(nf,—1/2)(nf ~1/2) in the Hamiltonian. At this !
point, it is very convenient to choose the @Vinvariant HS b A :ml E v mg\j
decomposition of Eq(26) since one can take the limit; 0.6 — (b) A een A-A AN
—o by settinga= 7/2. Hence, irrespective of the consid- A---mmmmes ! A
ered temperature, we are guaranteed to be in the correct Hif4 | ! A\
bert space. 02 _V\-\\\\? ! ;%
_— ! ~
- \@ ?’ W— %
[ E SN TR N NN A0 N S/ !
. SP(leFAI\:'\IIIQEI)EECI;_'(/)A\SC,;AE [?I_EG:EES 0.0 -4.0 =35 -3.0 =25 =20 -15 -1.0 =05 00 05 10 1.5 20
J/t

The different phases occurring at half filling are summa-
rized in Fig. 4. All quantities have been extrapolated to the FIG. 4. (a) Staggered momemn,, spin gapAs,, and quasipar-
thermodynamic limif* We have considered sizes ranging ticle gap for the ferromagnetic and antiferromagnetic KLM. All
from 4X 4 to 12< 12 with periodic boundary conditions. The quantities have been extrapolated to the thermodynamic limit based
staggered moment on results on lattice sizes up to 422. The data fod>0 stems
from Ref. 31. The staggered moment corresponds to that of the total
) 4 . . . . spin[see Eq.(31)]. The solid line corresponds to the value of the
ms= lim \/§<S(Q) -S(—Q)), (31) staggered moment for tree= 1 antiferromagnetic model as obtained
Lo in a spin-wave approximatiofiRef. 8. (b) Staggered moment of the

indicates the presence of long-range magnetic order. Heré andc electrons after extrapolation to the thermodynamic limit.
§(Q)=(11) e 1S(j) where §(j)=5(]) +S(j) is the

total spin,Q= (1, ) the antiferromagnetic wave vector, and S(q,w)=m>, |n|S(q)|0)Polw—(E,—Eg)], (34)

L corresponds to the linear size of the system. This quantity n

is maximal atJ/t=—o and vanishes af;/t~1.45, thus \yhere the sum runs over a complete set of eigenstates and

signaling a phase transition. The onset of a spin gap, |0) corresponds to the ground state. This quantity is related
. L L to the imaginary time spin-spin correlations that we compute
Agp=lim Eg(S=1, Np=2N)—Eq(S=0, N;=2N), with the QMC method”
L—co
(32

is observed when magnetic order disappears. Here,
E'5(S,Np) is the ground-state energy on a square lattice with .. H&r o _
N=L2 unit cells,N,, electrons, and spi§. Finally, the sys- Here,S(q,7)=e™S(q)e” ™. We use the maximum entropy
tem remains an insulator for all considered coupling con{ME) method to accomplish the above numerically ill-

stants. This is supported by a nonvanishing quasiparticle gagléfined inverse Laplace trgn;fo%.
In the strong coupling limitJ—«, the model becomes

Agp=lim EE(SZ 1/2, Np=2N+1)—Eg(S= 0, N,=2N). trivial, since eachf spin captures a conduction electron to
L—oo form a singlet. In this limit, the ground state corresponds to a
(33  direct product of singlets on thec bonds of a unit cell.

We will first discuss the spin degrees of freedom and thenStartIng from this state, one may create a magnon excitation

. by breaking a singlet to form a triplet. In second-order per-
turn our attention to charge degrees of freedom. o : . . ! .
turbation int/J, this magnon acquires a dispersion relation

oo S 1 -
<0|S(q,7)~5(—Q)|0>=;fdwe”‘”s(q,w)- (35

) given by
A. Spin degrees of freedom
. . . . 16t2 4t2 R
To mvegugate_the spin d.e_g.rees of freedom, we compute Eoy(4)=d— + (), (36)
the dynamical spin susceptibility, 3J J
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FIG. 5. Dynamical spin structure factort 0 for the ferromagnetic and antiferromagnetic KLM. We have normalized the peak heights
to unity. The numbers on the left-hand side of the figures correspond to the normalization factor. The vertical bars are fits to the data, see

text. Due to finite-size effects, the peak@ft: (7r,7) in the antiferromagnetic phasé/= 1.2 andJ/t= —4) is shifted to finite frequencies.

where y(d):COSQX)JrCOqu)_ﬁ At Q= (=, ), Esp(a) is  the antiferromagnetic phagseee Fig. &)] the data follow
minimal and is nothing but the spin gap. In Figap we plot ~ Well the above spin-wave form.

the dynamical spin structure factor fdft=2.0. The solid In the limit of large ferromagnetic couplings, the model
bars in the plot correspond to a fit to the above strong/Maps onto th&=1 antiferromagnetic Heisenberg model. At

coupling functional forma+ by((i). As apparent, this func- ‘],/t: —, the ground state i_s macroscopically degenerate
tional form reproduces well the QMC data. We note that this>"ce thef-c bonds are effectively decoupled and occupied

magnon mode lies below the particle-hole continuum located @ triplet with arbitraryz component of spin. This degen-
at 2A, (see Fig. 4 eracy is lifted in second-order perturbation theory, yielding a
ap -k

As we approach the antiferromagnetically ordered phase>— 1 antiferromagnetic Heisenberg model:

one expects that the above magnon mode evolves towards a

in- : 2t2 -
spin-wave form: Heff:T 2 5.5 39
(i.J)
- J =
Esu(@)= 5 V1= ¥(a)%/4, (37) , R .
Here, S(:vam,timam,m,t;m,, ti‘,FCr,Tfr , tio

As apparent from Fig. ), as one approachek, Eheaspin =1/J§(c%f;l+c;lf%), and t;,,lzc;lf;l. o) corre-
gap vanishes and the magnon mode softens arqan@. In  spond to thes=1 Pauli spin matrices. The magnetic excita-
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2.0 densation of singletss(-0) and of triplets at the antiferro-
ATyt S magnetic wave vectort& N(tg’x>>0). The energy scale
16 — below which the triplet excitations condense is denoted by
in Fig. 6. In terms of the KLM, the condensation of triplets
L2 v: T/t (singlets follows from the RKKY interaction(Kondo ef-

fect). Thus, the fact that at the mean-field level, bstndt

do not vanish may be interpreted as the coexistence of
Kondo screening and antiferromagnetism in the ordered
phase. We will confirm this point of view in the study of the
charge degrees of freedom.

O: Ayt

0.8 —

B. Charge degrees of freedom: the single-particle
%o 0.5 1.0 15 2.0 2.5 spectral function

J/t To study the charge degrees of freedom, we compute the
spectral functionA(k,) which is related to the imaginary
FIG. 6. Mean field of the two-dimensional Kondo necklace time Green function via:
model. T4 (T,) corresponds to the energy scale below that the bond
singlets(triplets) condenseA s, denotes the spin gap. + 1 (= _ _
(ce(n)cp) = pg dwe  "™A(k, — ). (40

tions are clearly spin waves as confirmed by the QMC data _ i

of Fig. 5d). In the limit of large negativel, the staggered | N€ Maximum Entropy(ME) method is used to extract
moment should scale to the value obtained for Swel A(k,w). Starting from the bond-singlet ground state valid in
Heisenberg model. Within a spin-density wave the strong coupling limit, one can create a quasiparticle ex-
approximatior? this quantity takes the value 0.93. As appar- citation, which to first order in/J has the dispersion relation

ent from Fig. 4, the QMC data approaches smoothly this - _
value asl/t decreases. Eqp(k) =33/4+ty(Kk). (41)

The quantum phase transition in the spin degrees of freeEqp(E) is a minimal atk=(#,) so that the quasiparticle
dom atJ./t~1.45 may be described in the framework of the gap takes the valua,= Eqp[IZZ (#,7)]. Comparison with

Kondo necklace model given by Eq. (36) leads toA =2Ay,>Ag, in the strong-coupling
limit. This marks the difference to a standard band insulator
Hen=t> (ST +58YseY)+3> &¢.81 (39  that satisfiesAc=Ag,. In accordance with the strong-
T b cor ! coupling limit, the numerical data of Figs(&f—(c) show that

. _ . __irrespective of)/t, the quasiparticle gap is defined by tke
This model neglects charge fluctuations, and the spln-fllp:(mw) wave vector. Furthermore, comparison with Fig. 5

processes between conduction electrons mimic the kinetlgh - . . . .
ows that the inequalit.> A, is valid for all considered
energy. Although the Kondo necklace model has a lower qualitie=>Asp

symmetry[U(1)] than the KLM[SU(2)] one may expect this coupling constants.

) e A For antiferromagnetic couplingsJ¥0), the spectral
model to give a reasonable description of the spin degrees ?f nction shows similar features in the orderel<(J.) and
freedom at energy scales smaller than the charge gap. iy ¢

mean-field solution is obtained in terms of bond singlet an Isordered §>Jc) magnetic phases, thus lending support

trinlet operatord? Both the conduction and imourity Spins hat Kondo screening, which is responsible for the functional
P P ' purty sp form of the dispersion relation at strong couplings, is equally

. t . hal

are represented by singlets{, and tripletsty on thef-c  present in the ordered phase. However, upon closer analysis,
bonds of the unit cell. The bond operators obey bosonic comshadow features are seen in the antiferromagnetically or-
mutation rules and are subject to the constr&iﬁmnL t;t;  dered phase. Shadows are most easily understood by consid-
=1. At thesgnean-field level and generalizing the work of ering the seIf—energ;E(IZ,wm)ocgleﬂEVm,ax(q,vm)Go(IZ
Zhanget al>° to finite temperatures, one obtains the phase = d . :

) L ’ . . —q,0m— escribin electrons  with ropagator
diagram shown in Fig. 6. The condensation of singkets A, @m~ V) g propag

=<Ait>>0 occurs at a temperature scalg, which, to a first Go(k,w,,) scattering off spin flyctuations with coupling Son-
approximation, tracks. At J>J., the triplet excitations re- s_tant g. Long-range magnetic order_ at_ wave vectQr

i i i . ) - =(,7) and staggered momentg justify the Ansatz
main gapped zind haye a dispersion relation givendiys) X(a.vm)“miNB& 256 for the spin susceptibility. The
=a\1+s’ty(q)/a with a=s%t(1+ \/1+Aszplt252). Here, T PR R .
A, corresponds to the spin gap plotted in Fig. 6. The gap irfreen function is th?” given bﬁ(k""rﬁ)zll[Go (k,om)
the magnon spectrum aj=(m,m)=0 vanishes atl;/t ~ — @CGo(KTQ,wm)] with a>(gmy)*. It is then easy to see
~1.4 in remarkable agreement with the QMC results. Wethat if G(k,w) has a pole at, thenG(k+Q,w) also has a
note that this mean-field approach shows no phase transitigpple atwo, i.e., the shadow. Numerically, it is convenient to
in the one-dimensional case consistently with numericaestablish the existence of shadows by considering the imagi-
calculationst>3® For J<J,, the ground state has both con- nary time Green function. Figure 8 pIo(sE(r)cg} for k
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FIG. 7. Single-particle spectral function®t 0 for the ferromagnetic and antiferromagnetic KLM. We have normalized the peak heights
to unity. The numbers on the left-hand side of the figures correspond to the normalization factor. The vertical bars are fits to the data, see
text.

=(m,m). At large values ofrt this quantity follows an expo- cently introduced by Zhang and Y This mean-field theory
nential law e~ ™ap. This exponential decay generates theis appealing since(i) it takes into account both Kondo
pole in A(K,) at w=—Aq, [See Eq.(40)]. As argued screening and magnetic ordering of thendc electrons and

above, due to the long-range antiferromagnetic order one exil) @ phase where both Kondo screening and magnetic or-
e = . dering emerges in a narrow region around the phase transi-
pects a pole iMA(k+Q,w) at w=—A4,, i.e., the shadow.

tion.
As demonstrated in Fig. §cy. 5(7)ck+g) shows the same  Following Zhang and Y(d! we write the KLM as

asymptotic behavior a(s:E(r)cg). Thus, the low-energy fea-

ture arounck=(0,0) in Fig. 7c) corresponds to the shadow Him= > S(k)CE,UCk,U
of the band in the vicinity ofk= (7). We note that ko
shadow features at high energies are hard to resolve within
the ME. Close to the phase transition in the disordered phase
precursors features of the shadow bands are gssm Fig.
7(b)]. As is apparent, they are shifted by an energy scale that
corresponds approximately to the spin gap.

To obtain further insight into the charge degrees of free-
dom we will consider a mean-field theory of the KLM re-

J t t t t
+7 2 (f7 fra—fr fi)(er cip—cp cip)
I

J
-2 E [(f;f'lc;vﬁc;fﬁfm)z
I

+(fl

beigtel fi)2, (42)
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(solid lineg, thus confirming the existence of shadows.
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0.5

J/t

FIG. 9. Solution of the mean-field equations in E46). The

PHYSICAL REVIEW B 63 155114
with the constraint]‘;E firt fiJE \fi,1=1. The second term of
Eq. (42) describes the polarization of the conduction elec-
trons by the impurity spins and leads to a magnetic instabil-
ity. The third term term is nothing but a rewriting of the
spin-flip processes:

J T T T T
> > (fF freq cig+ 1 fricr e, (43
1

which are at the origin of the screening of the impurity spins
by the conduction electrons. The mean-field approximation
proposed by Zhang and Ytis based on the order param-
eters:
i i
(fmfm—f;’lff,l>=mfe'Q "

(c}’TCf,T—c}ch;,Q:—mce‘Q“ and
RPN P AP P
(frcigrer fip=(f; ci+c fip=—V. (44

Here,Q is the antiferromagnetic wave vecton; andm, are,
respectively, the staggered moments of the impurity spins
and conduction electrons, andis the hybridization order
parameter that leads to the screening of the impurity spins.
With the above Ansatz, one obtains the mean field Hamil-
tonian:

Ck.o
- Ck+ 3,0
A= .
K,o k,o
f|2+(j,a'
R, Jme' JV 0
et 2
Jmo ‘ JVv
2 —e(k) >
“| av J
SR o 1
2 4
JV J
0 Vo T,
2 4
Ck o
Ck+ 0,0 )
X| e | NI(mm/A+VE2), (45)
k,o
f|2+(j,(r

where thek sum runs over the magnetic Brillouin zone. We
note that due to particle-hole symmetry present in the half

solid line in (a) corresponds to the quasiparticle gap as obtainedilled case, the constraint of no double occupancy of fthe
with the mean-field order parameters plottedn The dashed line  gjtes is satisfied on averagéf.t fi+ il fi )=1. The
corresponds to the quasiparticle gap obtained in the absence gf’;\ddle point equations LTeh LLh

magnetic orderindi.e., we consider the solution of the mean-field ’
equations withm,,m¢=0 but V#0. In the weak-coupling limit, ~ ~ ~

those solutions produce higher energy values than when magnetic ﬁ _ JH _ JH =0
ordering is allowed. '

(46)

amy oms/  \ oV
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may then be solvedf QMC data shown in Fig.(@). As is apparent, the functional
Solutions to the saddle-point equationsTat0 and as a form of the dispersion relation is well reproduced.

function of J/t are plotted in Fig. 9. As is apparent, solutions  We now consided<J.. Here, antiferromagnetic order is

with mg,m;#0, V=0, as well as withm;,m;=0, V#0 and  present both in the conduction electrons and localized spins

most interestingly witm.,m;,V#0 are obtained. Each so- so that:m.#0 as well aam;+0. Following the idea that the

Iutio_n pre.dicts yery diffgrent functional foirms for the quasi— spin degrees of freedom are frozen due to the magnetic or-
particle dispersion relation of the conduction electrons. Thusgering, we set/=0 to obtain

by comparing with the numerical data, we can deduce which
values of the mean-field order parameters are appropriate to

best describe each phase. > . ) , \/ﬁ

We start by considering the spin-gap phase withJ. . Ex(k)==E(k), with  E(k)=Ve(k)™+(Im/4)".
Here, magnetic order is absent and the impurity spins are (48)
completely screened by the conduction electrons. It is thus

appropriate to seh.=m;=0 butV+0. This yields two qua-

A c 1 : , The residues of the poles of the Green function follow:
siparticle bands with dispersion relation:

ui(IZ)2= 1+ s(IZ)/E(IZ)]. This clearly does not reproduce
.1 . . . _ the QMC results since the very flat quasiparticle band ob-
E.(k)=5(e(k)=E(k), with E(k)= Ve(K)* (V)% gerved numerically arountt=(m,) is absent[see Fig.
(47) 7(c)]. Assuming, on the other hand, that magnetic ordering
The quasiparticle weights are given by the coherence factor?‘.nd !(onqlo screening coexist, we 3£¢-0 to obtain four
u. (K)2=21[1+¢e(K)/E(K)]. We can use this form to fit the quasiparticle bands:

R 1 R R J4 R R 1/2 .
Ei’i(k):iﬁ E(k)=* E(k)z—Z(mcmf/4+V2)2—szcl4a(k)2 ,  with

E(K)=&(K)2+ JA(mZ/4+méla+2V2) /4., (49)

An acceptable account of the numerical data is obtained by A. Spin and charge energy scales

using the QMC values of the staggered moments\and a To define the charge scale, we consider the charge sus-
fit parametefsee Fig. 7c)]. We are thus led to the interpre- ceptibility x.= B/L2((N?)—(N)2), whereN corresponds to
tation that the localized spins play a dual role. On one handne particle number operator. It suffices to consider only the
they are partially screened by the conduction electrons. OBonduction electrons since ttieelectrons are localized and
the other hand, the remnant magnetic moment orders due tgave no charge fluctuations. Since we are discussing the tem-

the RKKY interaction. perature dependence pf, let us recall the high-temperature
It is now interesting to consider the ferromagnetic KLM. result:

WhenJ<0, Kondo screening is not present. Thus, we expect

the appropriate mean-field solution to hawig# 0, as well as 1 1 /332
m;# 0 butV=0. This choice of mean-field parameters leads Xe=5T 1-— 5 +8t2 (50)
to the dispersion relation given in E@L8). As apparent, and 8T

using m; as a fit parameter, we can reproduce the QMC o ) o
results[see Fig. d)]. From that behavior, it appears thag. will exhibit some

approximative scaling form as a function @7J only for
large J/t>>8/\/3~4.62. In Fig. 10, we find consistent results
at high temperature with E(50).
We can define a characteristic charge temperafigra a
precise way by looking at the maximum gf . In the weak-
The aim of this section is to define relevant energy scalesoupling limit, our numerical results are consistent with
for both spin and charge degrees of freedom as a function of J (See Figs. 10 and 19In the largeJ limit (J> band-
J/t. In doing so, we will discuss the behavior of the optical width), the physics becomes local and one can consider de-
conductivity, staggered spin susceptibility, single particlecoupled sites. For each site, there are only eight states to take
spectral functions, as well as the specific heat as a function @fto account for computing the grand-canonical partition
temperature. We will put the emphasis on the behavior ofunction: the singlet state, the threefold degenerate triplet,
those quantities at the spin and charge energy scales. the fourfold degenerat&=1/2 state containing either an

IV. SPIN AND CHARGE DEGREES OF FREEDOM
AT FINITE TEMPERATURE
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FIG. 10. Charge susceptibilityy. vs T/J for various couplings s el M M
on theL=6 lattice. For very largel, we obtain good agreement 0.01 0.1 1 10

ith the larged expression51) plotted with a dashed line. . . _
w 9 xp lor51) p w I FIG. 11. Optical conductivity-(w,T) versusw on a logarithmic

scale forJ/t=0.8 and various temperatured £=0.2, L=8 lat-

?hn;ptt/)\//ocg?f?eug;?ns Silaec(c))gfail g?:t?c%:ﬁ%uﬁ:%dlixz’ Ein\(]j Wlﬂ‘hce). The peak height has been normalized to unity and the normal-
P 9 ’ spT ization factor is listed on the left-hand side of the figure. As the

Aqp/I=3/4, and temperature is decreased below the charge stalé~0.16 spec-
tral weight is transferred from the Drude peak to finite frequencies.

4
XC:’84+36—,BJ/4+ @383/4" (5D observe the opening of an optical gap related to the quasi-
particle gap observed in the single-particle density of states
which exhibits a peak af-=0.386). Hence, and apart from (DOS).
different numerical prefactors at weak and strong couplings, The resistivity is defined ag(T)=1/0(0,T). In Fig. 12,
T scales adl in both limits (see Fig. 19 we plot p(T) for variousJ. We observe a minimum located
To best understand the meaning of the charge scale, wat approximatelylc. Thus, we will conclude thaf ¢ corre-
consider the real part of the optical conductivity as obtainedsponds to an energy scale where scattering of the electrons is
from the Kubo formulag(w,T). This quantity is related to enhanced, while decreasing temperature due to the screening
the imaginary time current-current correlation functions via:of magnetic impurities.

4 T T T
(J(r)J(O))Zj doK(w,7)o(w,T), with 0—0J=0.4
B—8 J=0.8 A1=0.05
1 e g —6J=0.8 At=022
K(w,1)=——0t. (52)
( m1-e P 3t

Here,J is the current operator along tlxeor y lattice direc-

tion and() represents an average over the finite-temperaturep/pmin

ensemble. The above inverse Laplace transform, to obtair

the optical conductivity is carried out with the MRef. 18

method. The default model is chosen as follows. We start at

high temperature with a flat default and then, for lower tem-

peratures, we take as default the result obtained at the tem

perature just abov&. This allows us to obtain smoother re-

sults, but emphasizes the fact that the ME method depend ; i '

on the default that is used. 0.0 0.2 0.4 0.6 0.8
The overall features of the conductivity are shown in Fig.

11 for a givenJ. At high temperatures, there is only a very kg, 12, Normalized dc resistivity as a function off/J for
broad lorentzian Drude peak. By lowering the temperatureyarious couplings. We have checked 8t=0.8 that the results do
we first observe an enhancement of the Drude weight agot depend or 7. To a first approximation, and taking into account
expected for a metal. At temperature scales lower fi@n  the scatter of the data att=1.6, the temperature of the minimum
there is a transfer of spectral weight from the Drude peak ton p tracksT¢: T¢/J~0.2,0.2,0.25 ford/t=0.4, 0.8, and 1.6, re-
finite frequencies and finally, at very low temperatures, wespectively.
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FIG. 13. Normalized local spin-spin correlation functi@h i

=(S;-S)(M)/|(S-S)(T=0)| as a function ofT/J for various

couplings. To a first approximation, the temperature scale of the FIG. 15. Various gaps as a function af We have considered
onset of correlations tracks. low enough temperatures so as to reproduce ground-state results

andL =6. The quasiparticle gap is obtained from the DOS, the gaps
. L. . . at (,7) and (0,0) are seen in the spectral functions at those points,
This scenario is reinforced by ﬂle E)ehaworéof :[he localihe optical gapa, stems from the optical conductivity and finally,

spin-spin correlation functionC=(S;- Se)(T)/|(S¢-Sc)(T  the spin gap, is taken from Ref. 31. As apparent, in the weak-
=0)| plotted in Fig. 13. As the temperature is lowered, thiscoupling limit, where the quasiparticle dispersion is very flat along
quantity decreases indicating the formation of local singletsthek= (1, ) to k= (0,x) direction, the optical and charge gaps are
Since the curves are almost identical as a functiof/dfand  comparablegsee Fig. 7.
for various couplings, we deduce that the typical energy

scale isJ and that the formation of those singlets are responGeneralizing this figure to 2D, we clearly see that the small-

sible for the enhancement of the resistivity which occurs at g, optical gap is ak=(r,0) (or equivalent pointsand is
S|mB|Iafr temperg(tjure_. the ch terisi le f thIarger than the charge gap.=2A,,. We recall that the
elore considering the characterisuc energy scale tor %uasiparticle gap corresponds to a transfer from a particle at

spin degrees_of freedom, we .comment on the relation beR=(7-r ) in the lower band to the chemical potential. We
tween the optical gap—as obtained from the Iow—temperaturvﬁ,]en éxpect from that naive argument,,.>Aq=2A
pt~ 2CT <Bqp:

conductlv_lty data—and q_uaS|part_|cIe g(mee_ _Sec._ll)l. They More precisely, we can relate the optical gap to the gap at
are not directly related since optical transitions involve only -

zero-momentum transfer. Starting from the hybridizationK=(0:7) @s observed in Fig. 15. _
picture, we can represent the band structure as in Fig. 14, 10 define a characteristic energy for the spin degrees of
freedom, we compute the uniform spin susceptibilijy,

= BIL2((m2)—(m,)?). Here,m,=3;(n;;—n;,) with n;,
:C;UCi'YU-i‘fi*’Uff’O.. In order to observe magnetic proper-
ties, it can be necessary to go to very low temperatures when
J is small. With our algorithm, which is free from the sign
problem, we can go down t@=0.01 for L=6 or T

E(k)

=0.02 for L=8.
In a high-temperature expansiog, takes the form:
3 1 ) 53
Xs=gT 5T (53

From this expansion, one expects to observe a scaling prop-
erty Jxys=f(T/J) in this regime. This is indeed what is ob-
served in Fig. 16 foif/J=0.6. We define the magnetic char-
acteristic temperatur&g via the position of the maximum in
Xs- At large coupling, the physic of the Kondo lattice be-

FIG. 14. Schematic 1D band structure showing the hybridizedcomes local. In that limit, the susceptibility is easily com-
bands.k varies fork=0 to k= and as apparent charge gAp ~ puted[see a similar calculation for the charge susceptibility
~2A, is smaller than the optical gafqp; - in Eqg. (51)] and takes the form:
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FIG. 16. Uniform spin susceptibility ys as a function ofT/J

for various couplings and lattice sizes. The high-temperature expan

sion (53) is shown with filled circles and the large-coupling expan-
sion (54) is plotted in dashed line.

1+2e A
:'844_367&/4_,_ g3pI4’

Xs (54

which exhibits a maximum af s=0.453]. In contrast, for
smaller J, the position of the maximum clearly increases
more slowly than] (see Fig. 17. As is apparent from Fig. 17
and for the considered valuesdt, Tg scales approximately
asJ2.

Figure 19 plotsT 5 as a function ofl. In the large coupling

region, we have excellent agreement with the expansion o0 g

Eq. (54); but, for couplings up te-5 (or bandwidth, which
is the physical cageTg is well fitted by ~J2.
The meaning of the energy scalg is elucidated by con-

sidering the spin susceptibility at the antiferromagnetic wave

vectoréz(w,w). This quantity measures the antiferromag-

12

10

FIG. 17. Uniform spin susceptibility?x as a function off/J?
for various couplings antl=8. ForJ<6, the maximuniTg/J? is
roughly constant.
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FIG. 18. Staggered spin susceptibili}ag(@) for various cou-

plings and sizes. Sincgs((ﬁ)fvg?’, we can extract the behavior of
the antiferromagnetic correlation length Tg=0.017,0.05,0.22 for
J/t=0.4,0.8,1.6.

netic correlation length. Indeed, writing the spin-spin corre-
lation functions in space and imaginary time S$F,7')
=Aexp(r-Q)exp(-r/&exp(—1/¢,), we find that the stag-
gered susceptibility x<(Q)=/2dr/dr exp-iQ-NIr,7)
~&P¢_in D dimensions. For the Heisenberg model, the dy-
namical exponerit defined byé ~ £% is equal to 3%’ Since

the charge degrees of freedom are gapped, we expect that our
model is in the same universality class as th@)Gnodel.

We then obtain in our casgy(Q)~ &3.

Xs(é) is plotted in Fig. 18. As apparent and for the con-
sideredJ/t range, the energy scales marks the onset of
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FIG. 19. Characteristic spifig and chargeT. temperatures as %520 pt=1 . ‘ .
defined by the maximum of and y. as a function of) for L=6 0 _4 2 0 P 4
andL =8 when available. At larg8, the asymptotic behavior dfg w/t
is 0.453 [Eq. (54) shown in full ling] with no adjustable parameter; _
at smallJ, Ts is well fitted by the formJ?/11 (dashed ling FIG. 20. Integrated DOS fod/t=0.8 on theL=28 lattice for

various temperatures shown on the plot. The peak height is normal-
ized to unity and normalization factor is listed on the left-hand side

shortrange antiferromagnetic fluctuations. At low tempera- )
of the figure.

tures in the ordered phase, one expécts grow exponen-

tially as a function of decreasing temperature. On the other . . . . . - Iy —
han{j in the spin-gap phasH1>1§.J45 trf)e antiferromagnetic quasiparticle dispersion relatior (s (k) = Ve ?(k) + A%)/2

correlation length saturates to a constnt. and that the quasiparticle gap of ordkis formed only at
The results of this section are summarized in Fig. 19. WeTS' I :
We start by considering the integrated DO¥,w) ob-

have defined both a chargec and a spinTs scales. The tained with the ME method. Results are shown in Fig. 20 at
charge scale corresponds to the onset of enhanced scatter

[ .

as a function of decreasing temperature due to the screenih51 s_e(rJ\}gélg :ggu\ggglr:t{)fog tz’?:tfz?lavrv%? iiﬂftch_eoﬁé?rﬁiogr?er

of the magnetic impurities. Apart from different numerical ..~ . pectral Welg 9y
. . Within the mean-field approximation of the KLM presented

prefactorsT. scales as) in the weak- and strong-coupling

limits. From weak to intermediate couplings, the spin scale" Egs. (42) and(44), this dip in the DOS of the conduction

! ' . electrons follows directly from the occurrence of Kondo
defines the onset of short-range antiferromagnetic fluctua:- : : . :
. 2 . . screening, i.e.V#0. Hence, this feature ilN(w) at T¢
tions and follows aJ- law in agreement with the energy ; . . .

: . : stands in agreement with our interpretation of the charge
scale associated to the RKKY interaction. At strong COU~ - leT . As the temperature is lowered beldw . the den-
plings, T tracks the spin gap. We note that we find good’. c: perat . e

. ; oo . . . sity of states at the Fermi level is further depleted and a gap
agreement with exact diagonalizations studies at finite ) e

S . . o opens in the low temperature limit.
temperature®® This approach is, however, limited to very . S .

. . In order to gain more insight into the distribution of spec-
small cluster sizes and consequently to high temperature[s . e .

S ral weight, it is convenient to compute the momentum-

and/or large values of/t where the local approximation 2 ) .
becomes valid. Thus, those studies cannot extract the behagéPendent DOSA(k,»). The integrated density of states
ior of Tg in the weak coupling limit. merely corresponds to the sum overlalbf A(k,w). There-
fore, we expect the same behavior by decreasing the tem-
perature but we have more information on the dispersion

relations of the excitations for example. Fig. (21 plots
o _ _ _ _ A(IZ,w) again forJ/t=0.8 and at a temperatuie=0.083
~ The origin of the quasiparticle gap in the strong-couplingcorresponding ta's<T<Tc. For comparison, we have in-
limit is the formation of Kondo singlets. In the weak- cluded theT=0 data[see Fig. 2(b)]. As apparent the sub-

coupling limit, the situation is na priori clear. Inthe mean- - giantia| spectral weight of tHe points on the non-interacting
field theory presented in Fig. 9, and retaining only Kondo

screening, we obtain an exponentially small gap correspond-¢"™ line, i.e.k=(0,m), (/2,m/2) has shifted to lower en-
ing to the dashed line in Fig(&. On the other hand, retain- ergies. This is the ongin of th‘? decregse in spectral weight
ing only magnetic ordering, the quasiparticle gap takes thgbserved at the Fermi level in the integrated DOSEat
value J/4t in good agreement with the numerical data. We=Tc- However, the flat dispersion relation arourid
note that an exponentially small gap is equally obtained with= (7, m)—Wwith significantly less spectral weight—remains
(i) Gutzwiller approximatiort? (i) dynamical mean-field Pinned at the Fermi level. The dominant features of the qua-
theory® (iii) 1/N expansio®® since those approximations siparticle dispersion relation are well reproduced by the fit:
neglect magnetic fluctuations. In this section, we argue thate (k) + \/e2(k) + A2)/2 with A=0.5. This value ofA pro-

at or slightly belowT. a small gap emerges leading to the duces a quasiparticle gmp=A2/1&:0.016 that lies be-

B. Temperature dependence of spectral functions
and origin of quasiparticle gap
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6.9 F (0,0) mif (0,0)
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FIG. 21. (a) Spectral functions fod/t=0.8 andBt=12 (A7=0.2, L=28 lattice. Normalization factors are written on the vertical axis.
At this temperatureT << T<T-=0.2, there is a clear formation of hybridized bands with quasiparticle gap lying beyond our resolution. The
vertical bars correspond to a fit of the dasee text For comparison, we have included the-0 results(b).

creasing temperatures below the charge scale. This merely
reflects the temperature dependence of the mean-field order
Since the quasiparticle gap is determined by the ParametetV. Precisely this behavior is seen in Fig. 22 at
= () wave vector we concentrate on tfkigoint to ana- J/t=1.6.
lyze the temperature evolution. As is apparent in Fig. 22 at The evolution of the quasiparticle gap as a function of
J/t=0.8, the quasiparticle gap of ordéis formed approxi- temperature is equally seen in the charge susceptibility. At
mately at the magnetic scales=0.0%. Since the model is 0w temperatures one expecis= B exp(~AqyB). As is ap-
particle-hole symmetrioA(IZ,w):A(EJrQ,— ). Thus, the parent from Fig. 23, it is only beloWs that the data follows

fact that the peak splits symmetrically around the Fermi en:[he above exponential form.
ergy confirms the presence of shadow bands. In the spin-gap
phase, the quasiparticle gap originates solely from Kondo
screening. In the mean-field approximation presented in Eqs. Finally, we consider the specific heat that contains infor-
(42) and (44) and retaining only Kondo screening, the qua-mation on both spin and charge degrees of freedom. In prin-
siparticle gap will grow continuously as a function of de- ciple, one can obtain the specific h&aj(T) by direct cal-

yond our resolution. As seen in Fig. @], A,,=0.28
+0.02 in the zero-temperature limit.

C. Specific heat

Jr=0.8 J=16
Gt =20 Bt = 40
0.12 M /\ .
2.88 !
Bt=15 _
g Bt =12 /\ A o7 :
0.13 Bt=5
Bt =10 /\ i
0.17 /\ 028 ¢
Bt=28

0.078 —— /6\ 1' 013 & ; o : )

w/t ) ) w/t

FIG. 22. Spectral functions ati(,7r) for various couplings ang (increasing from down to y{A7=0.2, L=8 lattice. At J/t=0.8, the
quasiparticle gap of ordel4t opens at a temperature scale comparablBste0.05. In the spin-gap phase,Ht = 1.6 the quasiparticle gap
grows smoothly as a function of decreasing temperature.
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0.0001 |
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Bt
0 t
FIG. 23. x./B at J/t=0.8. The solid line corresponds to
exp(—AquB) where quasiparticle corresponds to the value obtained 10 i
with T=0 simulationgSee Fig. 4 Only below the spin scalds, v ,
do the data follow the above exponential form. 0.5
culation of the fluctuations of the internal ener@(T): 0.0, o8 0

C,(T)=1NdE/dT=1/N((H?)—(H)?)/T?. However, this
method produces very poor results at low temperatures. We g4
have thus used a ME method to comp@tgas proposed in
Ref. 40. In Fig. 24, we show,(T) as well as the uniform
spin an charge susceptibilities for various couplings as ax.
function of temperature.

At J/t=0, the specific heat is given by the sum of a delta
function atT=0 for the localized spins and the specific heat
of free fermions. By switching on the coupling, they are
combined to form a two-peak structure. The broad peak at 15} -
high-temperaturd ~t is almost independent of the coupling Xs
J and is rather similar to the free-electron gas. The sharg 1or —oo L6 [

— L=8

peak at lower temperatures strongly depends on the ex o5 # = | L=10 -
change constant. It shifts toward higher temperatures ant
becomes broader with increasidgt. The location of this 0.0 — ‘ ’ ’
peak tracks the magnetic scalg indicating that its origin 06l 40
comes from the spin excitations. In the spin gapped phase C
we note that the overall features Gf, agree with the 1D v0.4
case’!

: 02 ;

0.0 Lles
V. SUMMARY AND CONCLUSION 0.0 02 04 0.6 08 1.0

We have presented a detailed numerical study of ground- , —_
state and thermodynamic properties of the ferromagnetic and, /G- 24- SPinxs and chargey, susceptibilities as well as spe-
antiferromagnetic half filled KLM model on a square lattice. cific heatC, as a function of temperature for various valuesJit

. . . . The dot-dashed line represents the specific heat of free electrons on

From the technical point of view, we have described and _g
used an efficienti.e., free of the minus-sign problgnaux- '
iliary field QMC method to investigate the model. Both finite R
and ground-state algorithms were discussed. The approachR§ng form with spin gap aQ=(, ) to a spin-wave form
by no means restricted to the KLM and may be applied tdn the ordered phase. The transition may be well understood
investigate models such as the half filled two channel Konddn the framework of a bond-operator mean-field approxima-
lattice or various forms of depleted Kondo lattices in whichtion of the Kondo necklace mod&l.Here, the disordered
the impurity spins are removed in a regular or random waypPhase is represented by a condensation of singlets with an
However, we are tied to particle-hole symmetry, since onlyenergy gap aQ=(m,7) for magnon excitations. At and
in this case can we avoid the minus-sign problem. below the critical point, the spin gap closes, leading to a

In two dimensions, the KLM shows a quantum phasecondensation of both singlets and triplets at the antiferro-
transition between antiferromagnetically ordered and disormagnetic wave vector. The system remains insulating. To a
dered states. This transition occursJat=1.45+0.05. The first approximation and as in the one-dimensional case, the
magnon dispersion evolves smoothly from its strong couquasiparticle gap scalesd irrespective of the sign af. In
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contrast, the quasiparticle dispersion relation shows markelimit [with a numerical estimation of€ a<5/4 (Ref. 15 or
differences between ferromagnetic and antiferromagnetiee=1.4 (Ref. 19].

couplings. For antiferromagnetic couplings the quasiparticle In the weak-coupling limit, one can analyze the single-
dispersion always has a structure that follows the functionaparticle spectral function at various temperatures. Our results
form obtained in the noninteracting PANE. (k)=1(s(k)  show that the quasiparticle gap of ordeis formed only at

* m). This functional form is obtained in various the magr)etic.energy scale. Thus, one can only congludg t.hat
approximation¥ that take into account Kondo screening the quasiparticle gap at weak couplings is of magnetic origin.

but neglect magnetic ordering. In the antiferromagneticIn contrast, at strong coupling, the quasiparticle gap origi-

phase, the above dispersion relation is merely supplementéEltes from Kondo screening. The above stands in agreement

by shadow features. One obtains a four-band structure that %nh arguments and numerical results presented for the one-

: 5,16 ; ; ; ]
well reproduced by mean-field theories that produce phase mensnona_(lD) case.> °At weak Coupllngs in one dimen
with coexistence of magnetic ordering and KondoS'oN the spin gap becomes exponentially small. Hence, the

screening® Thus, in the ordered phase, screening of the imlime scale associated with magnetic fluctuations is exponen-

purities is not complete. The remnant magnetic moments 0|1—?a"y larger than the time scale relevant for charge fluctua-

der due to the RKKY interaction. Although we cannot dopet!onlS tfhatl IS Ste't' by. The:ond;ct_mn (Ialectrondg thus.effec—d
the system—due to severe minus-sign problems—it is templt—'ve y feel a stalic magnetic ordering. In one dimension an

ing to assume a rigid band picture and to describe the dopeI 2D, n the presence O.f part|cle—_hole symmetry, nestmg_ of
e noninteracting Fermi surface is present. At a mean-field

phase by shifting the chemical potential into the conductiorf . X . :
! L ) ) , evel and in the presence of magnetic ordering, this leads to
band. Since the quasiparticle gap is determined bykthe

P i 2 ) X a quasiparticle gap ,,= J/4. In 2D, one may alter the shape
=(*m,xm) points, the _Ferm| line will consist of holle of the noninteracting Fermi surface so as to avoid nesting by
pockets around those points and one expects the LUtt'”g%troducing a small nearest-neighbor hopping matrix ele-
volume to account both for localized and conduction eleCyent. In this case, the mean-field approximation does not
trons. Furthermore, since the band is very flat around thosgroduce an insulating state in the presence of antiferromag-
points, a larger effective mass is anticipated. Ferromagnetigetic ordering. Since nesting is related to particle-hole sym-
couplings show a different behavior. In this case, Kondometry, we cannot address this question in the QMC approach
Screening is absent but the RKKY interaction presel’lt. Th%ue to severe Sign prob|em5. Hence, it is worth pay|ng par-
quasiparticle dispersion is well fitted by the forE. (k) ticular attention to our results at weak couplings ans
=+ ,/8(§)2+ A2 corresponding to free electrons subject to>T>Ts, before antiferromagnetic correlations set in. Here,
an external staggered magnetic field. In this case, again a§ondo screening is present but antiferromagnetic correla-
suming a rigid band picture, doping produces a Luttingertions absent. In this temperature rangék,») shows a dis-
volume containing only the conduction electrons. This con-persion relation following that of hybridized bands with the
trasting behavior of the Luttinger volume for the ferromag-quasiparticle gap lying beyond our resolution.
netic and antiferromagnetic KLM is reproduced in the limit We have equally computed the specific hegg,. This
of large dimension&! quantity shows a tw@eakstructure. The broad high-energy
From the finite-temperature simulations, we can defingT~t) feature stems from the conduction electrons. The
spin Tg and chargeT energy scales by locating the maxi- low-energy peak is very sharp in the ordered phase and
mum in the charge and spin susceptibilities. From weak taracksTs. It is hence of magnetic origin.
intermediate couplings, the spin scale followslalaw, in Finally, we discuss the relationship of our results to ex-
agreement with the energy scale associated with the RKKperiments. Let us first concentrate on ;BgPt. At T
interaction. At strong couplingg,s><J,. In contrast, both in =100 K the effective magnetic moment of Ce ions starts
the weak- and strong-coupling limif,c~J. In the range decreasing® At higher temperatures, the Ce ion has a next to
where TsxJ?, the staggered susceptibility shows a markedfully developed momenti.e., J=5/2 as appropriate for
increase afl ~Tg. Hence, in this rang@g corresponds to  Ce*"). At the same temperature scale, the real part of the
the onset of antiferromagnetic fluctuations. On the otheoptical conductivity shows a reduction of spectral weight in a
hand, the charge scale determines to a first approximation tHeequency range of 39 meV or 450 %4 Those results im-
minimum in the resistivity. Furthermore, &t antiferromag- ply that the opening of a gap is related to the screening of
netic intracell correlations between thandc electrons are magnetic impurities and hence, the KLM seems to be an
formed and a dip in the integrated density of stdtés) at adequate prototype model for the description of this class of
the Fermi level is observed. Thus, this scale marks the onsetaterials. The above-described temperature evolution is pre-
of enhanced scattering originating from the screening of theisely seen in our numerical simulations. A&=T. and at
magnetic impurities. In the limit of infinite dimensions, a weakcouplings, the optical conductivity shows a transfer of
similar behavior in the charge degrees of freedom is seerspectral weight from low frequencies to frequencies well
but at a much smaller energy scalg,~e Y2Nen) 10 Apart  aboveT. (Fig. 11). Screening of the magnetic moments start
from a factor 1/2 in the exponent,, corresponds to Kondo equally atT=T (Fig. 13. For the above material, the opti-
temperature of the single impurity problem. In one dimen-cal gap is estimated by =39 meV (Ref. 45 and photo-
sion, a dip inN(w) is observed at an energy scale larger thanemission experiments suggest a quasiparticle ggp=20
the spin gap that scales asY*N1 in the weak-coupling meV*® At a temperature scal€=25 K, a gap in the mag-
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netic excitation ofA;,=12 meV is observed. Those small cific heat?’ This is interpreted in terms of a finite density of
energy scales imply that small values3t should be con- states within the gap.This smaller value ofl/t leads to
sidered. The gaps equally satisfy the relatidg=2A,,  signs of magnetism. Indeed, along taeaxis of the ortho-
>As, as obtained in the KLM. Hence, one should place thisthombic structure, CeNiSn shows a peak in the magnetic
material in the parameter randge>J., which in our calcu-  susceptibility at 12 K. At the same energy scale, an anomaly

lations seem rather large in comparison to the small chargg seen in the specific he¥tThis seems consistent with our
gap observed in experiments. However, one should keep ifpgylts.

mind thatJ, may be sensitive to the properties of the nonin-
teracting Fermi surface. In particular nesting—which is
present in our calculation—will certainly enhance the value
of J.. We now turn our attention to CeNiSn. CeNiSn has a
transport gap roughly an order of magnitude smaller than We acknowledge useful discussions and communications
Ce;Bi4Pt;, and hence—assuming a KLM description of thewith R. Eder, M. Feldbacher, G. Gmar, O. Gunnarson, C.
material—should correspond to smaller values/tfin com-  Huscroft, Y. Lu, A. Muramatsu, H. Tsunetsugu, and G. M.
parison to CgBi,Pt;. (Note that recent measurements downZhang. We thank HLRS Stuttgart for generous allocation of
to ~0.1 K have found an electronic contribution to the spe-CPU time on the Cray-T3E.
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