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Energy bands of the Bethe lattice
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Energy bands are derived for the tight-binding model of particle motion on the Bethe lattice. The energy
bands are used to calculate the density of states, which gives the standard answer. The bands are also used to
calculate the ground state energy as a function of band filling.
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[. INTRODUCTION In crystalline solids the ratio of surface to volume de-
creases rapidly as the number of sitemcreases. That is not

The Bethe lattice is a special form of noncrystal. Each sitdrue of the Bethe latticE~*° In the limit of large N the
hasz neighbors, but there is only one way to get from onefraction of surface atoms approachés-(z—2)/(z—1),
site to another. The standard model of particle motion hasvhich is larger than one-half in most cases. The density of
hopping between nearest neighbor sites using a tight-bindingtates for a finite value dfl is dominated by surface effects,
model. Brinkman and Ricederived the density of states by which does not change asis increased. Instead, we follow
examining the self-energy from hopping. Later Cle¢ral?> ~ Brinkman and Rice and consider the lattice whith-oc. This
derived the same result using a transfer matrix. Here welensity of states is a bulk value, which is different from that
introduce the idea of energy bands for the Bethe lattice, andbtained in the limit ofN—o. The latter is dominated by
use them to derive the same result for the density of statesurface effects.
Energy bands are also used to calculate other quantities such
as the ground state energy as a function of filling.

The Bethe lattice continues to be a popular model. The
earlier applications included localizatid#, alloys® spin The hopping is symmetric, in that it has the same phase
waves?’ and spin glass€sRecently it has been used to for hopping to all of the neighbors. Consider a particle on a
investigate properties of the Potts motiehe Blume-Capel site which we callj=0. It is written as|0), which distin-
modell® and the Hubbard modét. guishes it from the vacuum stal@). The hopping to the

For crystalline solids the particle motions are Bloch statesieighbors creates a symmetric state we thjl A double
that depend upon a wave vectkr The energy states are hop to the second neighbors creaf2s
derived from the tight-binding Hamiltonian. Neglecting spin

II. MATRIX SOLUTION

it is2 |0y=C{|0), (4)
H=t>, Cl, Ci, 1
% o=l @ |1>:i2 clo), (5)
z5

which shows that all sitescan hop to all of the neighbor-

ing sitesj + 8. For crystalline solids the energy bandsare 1

2)=—=2 X Cj.,l0). ®)
a(k)=t26 exp(ik- &). @) V2(z—1) F 555 °°

_ This process can be extended to further neighbors. The first
The Bethe lattice does not have the same type of energy bamgighbor hasz choices, but subsequent hops have only
because it is not crystalline. However, we show that it has a1 choices. A hop backward is not allowed since that goes

band energy depending upon an angle to another state. In terms of these states, the Hamiltonian
matrix becomes

e(f)=Acog0), A=2tyz—1. 3
The wave vectoik for crystalline solids becomes a scalar H|0)= \/E| 1), @)
which can be represented by an angle. The energy dispersion
in Eq. (3) is precisely correct for a one-dimensional solid. In H|1)=z|0)+ \z—1|2), (8)
a chainz=2 and the energy dispersion ég 6) =2t cos().
However, we show that Ed3) is the correct dispersion re- —
lation for the Bethe Iatticecf‘or any value af Frona now on HI2)=Vz=1[[1)+[3)], ©)
we normalize all energies to the hopping paramétehich
setst=1. H|1)=Vz—1[[I - 1)+l +1)], (10
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0 z 0 0 . , zsin(6)
sin(y)= > = (23
Vz 0 Jz-1 o V(z—2)?%co( ) + 22 sirf( 6)
H=| O z—-1 0 z—1 0 . (1)
zsin( 6)
0 0 z—-1 0 z—1 =
VZ2—4(z—1)co<( )
The Hamiltonian matrix has tridiagonal form, with all diag- — zsin(6) (24)
onal elements zero, and the off-diagonal elements are iden- JVZ2—AZcod(6)
tical except those connecting the first state. Since the matrix
has infinite dimension, its eigenvalue and eigenfunctions are _ z—1 [2(z—1)sin(6)
sin(B) = Sin(y) = —=— . (29
Hy=Ey, (12) z \Z?— A% cog( )
— Note thatz?— A?=(z—2)?>0 for values ofz>2. The case
E=Acog6), A=2vz—1, (13 z=2 is just a one-dimensional chain, which has a well-
. - known trivial solution. The present theory is for-2. These
sin(B) results complete the description of the eigenfunction.
sin( 6+ vy)
\/5 sin(26+ ) lIl. DENSITY OF STATES
0)=\/— . 14
w(o) T : 14 The Green’s function in the Matsubara formalism, at non-
sin(l 6+ y) zero temperature, in the representation is
- G(6.ipn)= = (26)
JApn) = .
This ansatz eigenstate is inserted into the matrix equation. " ipa—e(6)

Note thatB+ y to account for the different matrix element to Transforming to the spatial representation, we defigeas

the first state. The eiggnfunction satisfies all of the equationg, probability of starting at site 0 and propagating to alsite
except those for the first two rows. These take more Workaway

and determing3(6) and y(6):

Vzsin(0+y)=2z—1 cog O)sin(B), (15 Qm(ipn):fo dogo(0)G(0,ipy), (27)
JVzsin(B)+\z—1sin26+y) )
Gool 0) = —sir’[ B(6)], (28)
—2z—1 cog 6)sin( 6+ y) (16) IR
— J7— e ; 2 _
= Vz-lsinzé+y)tsiny]. (@D 0o(0)= "SI A(O)IsiNI 0+ 7(0)].  (29)
Canceling the same factor from both sides of the last equa-
tion gives The factors on the right come from the appropriate element
of the eigenfunction/(6). The last formula applies for
Vzsin(B)=z—1siny). (189  >0. The retarded function is obtained by the analytical con-

) o tinuationip,— E+i7 where 5 is infinitesimal. The density
We multiply Eq.(15) by \z and use Eq(18) to eliminate  of states is proportional to the imaginary part of the retarded
\Jzsin(B), which gives an equation whose only unknown IS Green’s functionGyyE),

¥(0):
1
zsin(6+y)=2z—1 cos 6)[ Vzsin(B)] p(E)=— —Im{GodE)} (30)
=2(z—1)cog 6)sin(y) (19 _
= (z— 1)[sin( 6+ y) + sin(y— 0)], (20) :jo d69od ) AL E—Acos0)] 3D
sSin(6+ y)=(z—1)sin(y— 6). (21) Joo de
=xtar a7 =900l 0) =, (32
This can be solved assuming tt&at 2, Alsin(6)] ° dE
z JAZ-EZ
tan(y) = étar‘( 0), (22) p(B)=5— g (33
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FIG. 1. Curves ofpg(Q) for —A/z=Q=E/z<A/Z for the 0.5 -

case ofz=4 andl=0,1,2,3. The lines for a value dfhasl nodes.
0.0

EG
The last expression is the density of energy states of theos |
Bethe lattice, in agreement with Brinkman and Riddote
thatggg( ) is the density of states i space. This concept is 0 o
used below to calculate the ground state energy. 15 |
The density of states is normalized to one electron, )
-2.0
-2.5 4
z (A _JA*-FE°
J dEp(E)=—J dE———F=1. (39 )
27) _a 2_E2 3.0 . T .
0.0 0.5 1.0 15 2.0

n

A similar expression can be derived for the probablllty that FIG. 2. (@) n(u), Eg(r)/(A), andQ(x)/(NA) as functions of

an electron starts on site 0 and endslon x=pulA. (b) Eg(n)/(A) andQ(n)/(NA).
2 [ z:e—ﬁﬂ:H0[1+e—/3[8(0)—/t]]2, (37)
po(E)= = | "0 i () Isin1 0+ 7) S~ A cos 0]
0
(35 O =—2kgTY, In[1+e Ale(d—rl] (38
[

zsin(lg+y) .

BN :—2NkBTf dOgog( 0)In[1+ e Ale(O)—~] (39
0

where the angl® and y(6) are evaluated using E(R4) and A

6=cos {E/A). Figure 1 shows curves fompg (Q), | =—2N kBTf dEp(E)In[1+e AlE-#I], (40)

=0,1,2,3, for the case that=4. HereQ) =E/z and spans the —A

range of —A/z<sQ<A/Z. For z=4 thenAlz= J3/2. The

value ofl in the figure is simply the number of nodes. The factor of 2 is for spin degeneracy. The summation over
0 has been converted to an integral by usgyg(6) as the
density of# states. In the last equation the integral has been

Ground state energy converted to energy space using E8Q). At zero tempera-
ture,
Two different methods are presented for the calculation of
the ground state energy at zero temperature. The first uses

the energy band picture derived in the previous section. The  |imQ= _2Nf dEp(E)[u—E]=NEg— uNg, (41)
partition function for fermions is 8= 1/kgT) T-0 —-A
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In order to check this result, we provide another method

I
Ne= ZNJ_Ad Ep(E) of finding the ground state energy of the Bethe lattice. It uses

the results of Brinkman and Rice that the hopping term gives

z rise to the self-energy of the electron. The contribution of the
= 260, —(z—2)tan * St GM)) , (42 self-energy to the ground state energy is determined by a
coupling-constant integral». The grand canonical potential
‘e i 2
j=—Acog0,). 43  Qisgiven by
The fractional concentration i3=N./N. The chemical po- td
tential spans the range A<u<A as the band goes from BQ:BQO+2 _”gn(ipn)gn(ipn), (45)
empty to full. Atn=0, u=—-A, 6,=0. At half filling, u jon Jo 77
=0, 6,=w/2, andn=1. As the band fills upu—A,0,
—ar, andn—2. The ground state energy per site is BOo=2N In(1+eP#), (46)
Eg= ZJ'#EdE(E) _
G— _A P gn:|p+ﬂ_2n’ (47)
z NI
=—= VAZ— 42— (z—2)tan ! —2—2,“ ” (44) 27772
= . 48)
Tiptutiptu)?-4z-1)7 (
These formulas are plotted in Fig. 2 for the case #a#. In ] .
Fig. 2@), the graph givem(u), Q/(AN), and Eg/A as  The summation overjg) equals N.
functions of —1<x=u/A<1. The figure shows that(u) tdy
is quite linear except near the end points. In Fi¢o)2are 5Q0=2N f G (ip)S (i 49
shownQ/AN andEg/A as functions of. A En: o A1Pn) (1P, “9
G(iP)S. (iP) 227 (50)
Ip 1Pn) =~ - . .
T (p+ wl(ip+p)+(ip+ p)?=4(z-1) 7]~ 227
|
The summation oveip,, is done first. It is converted into a t dy
contour integralip,—z'. If A>=4(z—1) then there is a H(S):SJ 797,(8) (54
branch cut along the real axis in the rangA7n<z'+u lel/A
<Apn. Integrating around the branch cut gives, after some
algebra, P
L [(VAYZ—¢
=sgne)|tan ! T
029 g st :
= o )y deene(emmgy(e), (B L [NADZ=22
—btan | ————| |, (55
ble|
A27]2— 82
g,(8)= m (52 whereb=(z—2)/z. The functionH(e) has a discontinuity

at e=0, where the term in square brackets7$l—b)/2

] ) . =mlz. At zero temperature the occupation factog(e
The factorg, () is the density of states for a system with _ )y s replaced by a step functid®(x—¢) and the inte-

bandwidth Ap<e<A7. Note that the chemical potential g5 can be evaluated. Its derivative with respecitgives

does not scale with the coupling constant. The order of thene occupation number:
two integrals can be interchanged, which gives

ZN (At _ 2 zH
80=— Atdsnp(s—,u)H(s), (53 n—m—; (w),
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(At)Z—p2 At zero temperature it becomes proportional to the chemical
T potential whernu is positive. This term eliminates the cusp in
» 6Q and the final curve becomes identical@found from

o0 == ;N{ VADZ = u?— |M|tan1(

i [(At)Z—pu2 thg band mlodel. The couplir_lg—constant integral, using the
+b|ultan T Brinkman-Rice self-energy, gives the same ground state en-
- ergy and particle density, as a function of the chemical po-
[(At)Z— 2 tential, as found earlier using the band model.
—t(z—2)tan1(w (57 The ground state energy per partiélg /n can be evalu-

ated. In the limit ofn—0 it goes to—A. Of course, this
The expression for the particle densityu) is identical to  result is expected from the band model. In a system of few
that found in the band model, although it appears slightlyparticles they occupy the lowest energy state, which is the

different. The first term im is from 4, which gives bottom of the band.
A similar result can be found for the ferromagnetic state
19(BQy) 2 in which all electrons have the same spin. In that case only

20 (). (58) one particle is on a site, and the factor of 2 is removed from

— = —
N o ~Bu
(Be)  1+e Ne(u) andEg(w). In this case &en<1 as—Asu<A.
At zero temperature this term becomes a step function that is
zero foru<0 and 2 foru>0. H(u) is also a step function, IV. DISCUSSION
and the two steps cancel. The combined contributiam(j0)

from Qo and 5Q yields a smooth curve when plotted as a . The concept of energy ba_nds is introduced into the hop-
function of «. The final curve is identical to that found from ping energy of the Belthe lattice. The energy bands are used
the band model. to calculate the density of states and ground state energy.

The change in the ground state ene#y has a cusp at The former result agrees with Refs. 1 and 2.

half filling, which is caused by the discontinuity &f(e)
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