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Energy bands of the Bethe lattice
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Energy bands are derived for the tight-binding model of particle motion on the Bethe lattice. The energy
bands are used to calculate the density of states, which gives the standard answer. The bands are also used to
calculate the ground state energy as a function of band filling.
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I. INTRODUCTION

The Bethe lattice is a special form of noncrystal. Each s
hasz neighbors, but there is only one way to get from o
site to another. The standard model of particle motion
hopping between nearest neighbor sites using a tight-bin
model. Brinkman and Rice1 derived the density of states b
examining the self-energy from hopping. Later Chenet al.1,2

derived the same result using a transfer matrix. Here
introduce the idea of energy bands for the Bethe lattice,
use them to derive the same result for the density of sta
Energy bands are also used to calculate other quantities
as the ground state energy as a function of filling.

The Bethe lattice continues to be a popular model. T
earlier applications included localization,3,4 alloys,5 spin
waves,6,7 and spin glasses.8 Recently it has been used t
investigate properties of the Potts model,9 the Blume-Capel
model,10 and the Hubbard model.11

For crystalline solids the particle motions are Bloch sta
that depend upon a wave vectork. The energy states ar
derived from the tight-binding Hamiltonian. Neglecting sp
it is12

H5t(
j d

Cj 1d
† Cj , ~1!

which shows that all sitesj can hop to all of thez neighbor-
ing sitesj 1d. For crystalline solids the energy bands are12

«~k!5t(
d

exp~ ik•d !. ~2!

The Bethe lattice does not have the same type of energy b
because it is not crystalline. However, we show that it ha
band energy depending upon an angleu,

«~u!5A cos~u!, A[2tAz21. ~3!

The wave vectork for crystalline solids becomes a scal
which can be represented by an angle. The energy dispe
in Eq. ~3! is precisely correct for a one-dimensional solid.
a chainz52 and the energy dispersion is«(u)52t cos(u).
However, we show that Eq.~3! is the correct dispersion re
lation for the Bethe lattice for any value ofz. From now on
we normalize all energies to the hopping parametert which
setst51.
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In crystalline solids the ratio of surface to volume d
creases rapidly as the number of sitesN increases. That is no
true of the Bethe lattice.13–15 In the limit of large N the
fraction of surface atoms approachesf 5(z22)/(z21),
which is larger than one-half in most cases. The density
states for a finite value ofN is dominated by surface effects
which does not change asN is increased. Instead, we follow
Brinkman and Rice and consider the lattice withN5`. This
density of states is a bulk value, which is different from th
obtained in the limit ofN→`. The latter is dominated by
surface effects.

II. MATRIX SOLUTION

The hopping is symmetric, in that it has the same ph
for hopping to all of the neighbors. Consider a particle on
site which we callj 50. It is written asu0&, which distin-
guishes it from the vacuum stateu0). The hopping to thez
neighbors creates a symmetric state we callu1&. A double
hop to the second neighbors createsu2&,

u0&5C0
†u0), ~4!

u1&5
1

Az
(

d
Cd

†u0), ~5!

u2&5
1

Az~z21!
(

d
(

d8Þ2d
Cd1d8

† u0). ~6!

This process can be extended to further neighbors. The
neighbor hasz choices, but subsequent hops have onlyz
21 choices. A hop backward is not allowed since that go
to another state. In terms of these states, the Hamilton
matrix becomes

Hu0&5Azu1&, ~7!

Hu1&5Azu0&1Az21u2&, ~8!

Hu2&5Az21@ u1&1u3&], ~9!

Hu l &5Az21@ u l 21&1u l 11&], ~10!
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H5S 0 Az 0 0 •••

Az 0 Az21 0 •••

0 Az21 0 Az21 0

0 0 Az21 0 Az21

A A A A �

D . ~11!

The Hamiltonian matrix has tridiagonal form, with all diag
onal elements zero, and the off-diagonal elements are id
tical except those connecting the first state. Since the ma
has infinite dimension, its eigenvalue and eigenfunctions

Hc5Ec, ~12!

E5A cos~u!, A52Az21, ~13!

c~u!5A2

p3
sin~b!

sin~u1g!

sin~2u1g!

A

sin~ lu1g!

A

4 . ~14!

This ansatz eigenstate is inserted into the matrix equat
Note thatbÞg to account for the different matrix element
the first state. The eigenfunction satisfies all of the equati
except those for the first two rows. These take more wo
and determineb(u) andg(u):

Az sin~u1g!52Az21 cos~u!sin~b!, ~15!

Az sin~b!1Az21 sin~2u1g!

52Az21 cos~u!sin~u1g! ~16!

5Az21@sin~2u1g!1sin~g!#. ~17!

Canceling the same factor from both sides of the last eq
tion gives

Az sin~b!5Az21 sin~g!. ~18!

We multiply Eq. ~15! by Az and use Eq.~18! to eliminate
Az sin(b), which gives an equation whose only unknown
g(u):

z sin~u1g!52Az21 cos~u!@Az sin~b!#

52~z21!cos~u!sin~g! ~19!

5~z21!@sin~u1g!1sin~g2u!#, ~20!

sin~u1g!5~z21!sin~g2u!. ~21!

This can be solved assuming thatz.2,

tan~g!5
z

z22
tan~u!, ~22!
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n-
ix
re

n.

s
,

a-

sin~g!5
z sin~u!

A~z22!2cos2~u!1z2 sin2~u!
~23!

5
z sin~u!

Az224~z21!cos2~u!

5
z sin~u!

Az22A2 cos2~u!
, ~24!

sin~b!5Az21

z
sin~g!5

Az~z21!sin~u!

Az22A2 cos2~u!
. ~25!

Note thatz22A25(z22)2.0 for values ofz.2. The case
z52 is just a one-dimensional chain, which has a we
known trivial solution. The present theory is forz.2. These
results complete the description of the eigenfunction.

III. DENSITY OF STATES

The Green’s function in the Matsubara formalism, at no
zero temperature, in theu representation is

G~u,ipn!5
1

ipn2«~u!
. ~26!

Transforming to the spatial representation, we defineG0l as
the probability of starting at site 0 and propagating to a sil
away,

G0l~ ipn!5E
0

p

dug0l~u!G~u,ipn!, ~27!

g00~u!5
2

p
sin2@b~u!#, ~28!

g0l~u!5
2

p
sin@b~u!#sin@ lu1g~u!#. ~29!

The factors on the right come from the appropriate elem
of the eigenfunctionc(u). The last formula applies forl
.0. The retarded function is obtained by the analytical co
tinuation ipn→E1 ih whereh is infinitesimal. The density
of states is proportional to the imaginary part of the retard
Green’s functionG00(E),

r~E!52
1

p
Im$G00~E!% ~30!

5E
0

p

dug00~u!d@E2A cos~u!# ~31!

5
g00

Ausin~u!u
5g00~u!

du

dE
, ~32!

r~E!5
z

2p

AA22E2

z22E2
. ~33!
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The last expression is the density of energy states of
Bethe lattice, in agreement with Brinkman and Rice.1 Note
thatg00(u) is the density of states inu space. This concept i
used below to calculate the ground state energy.

The density of states is normalized to one electron,

E dEr~E!5
z

2pE2A

A

dE
AA22E2

z22E2
51. ~34!

A similar expression can be derived for the probability th
an electron starts on site 0 and ends onl,

r0l~E!5
2

pE0

p

du sin@b~u!#sin~ lu1g!d@E2A cos~u!#

~35!

5
Az

p

sin~ lu1g!

Az22E2
, ~36!

where the angleu andg(u) are evaluated using Eq.~24! and
u5cos21(E/A). Figure 1 shows curves forr0l(V), l
50,1,2,3, for the case thatz54. HereV5E/z and spans the
range of2A/z<V<A/Z. For z54 then A/z5A3/2. The
value of l in the figure is simply the number of nodes.

Ground state energy

Two different methods are presented for the calculation
the ground state energy at zero temperature. The first
the energy band picture derived in the previous section.
partition function for fermions is (b51/kBT)

FIG. 1. Curves ofr0l(V) for 2A/z<V5E/z<A/Z for the
case ofz54 andl 50,1,2,3. The lines for a value ofl hasl nodes.
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Z5e2bV5Pu@11e2b[«(u)2m] #2, ~37!

V522kBT(
u

ln@11e2b[«(u)2m] #, ~38!

522NkBTE
0

p

dug00~u!ln@11e2b[«(u)2m] # ~39!

522NkBTE
2A

A

dEr~E!ln@11e2b[E2m] #. ~40!

The factor of 2 is for spin degeneracy. The summation o
u has been converted to an integral by usingg00(u) as the
density ofu states. In the last equation the integral has be
converted to energy space using Eq.~32!. At zero tempera-
ture,

lim
T→0

V522NE
2A

m

dEr~E!@m2E#5NEG2mNe , ~41!

FIG. 2. ~a! n(m), EG(m)/(A), andV(m)/(NA) as functions of
x5m/A. ~b! EG(n)/(A) andV(n)/(NA).
0-3
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Ne52NE
2A

m

dEr~E!

5
N

p Fzum2~z22!tan21S z

z22
tan~um! D G , ~42!

m52A cos~um!. ~43!

The fractional concentration isn5Ne /N. The chemical po-
tential spans the range2A<m<A as the band goes from
empty to full. At n50, m52A, um50. At half filling, m
50, um5p/2, and n51. As the band fills up,m→A,um
→p, andn→2. The ground state energy per site is

EG522E
2A

m

EdEr~E!

52
z

p FAA22m22~z22!tan21SAA22m2

z22 D G . ~44!

These formulas are plotted in Fig. 2 for the case thatz54. In
Fig. 2~a!, the graph givesn(m), V/(AN), and EG /A as
functions of21<x5m/A<1. The figure shows thatn(m)
is quite linear except near the end points. In Fig. 2~b! are
shownV/AN andEG /A as functions ofn.
m

th
l
th
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In order to check this result, we provide another meth
of finding the ground state energy of the Bethe lattice. It u
the results of Brinkman and Rice that the hopping term gi
rise to the self-energy of the electron. The contribution of
self-energy to the ground state energy is determined b
coupling-constant integraldh. The grand canonical potentia
V is given by12

bV5bV01(
j sn

E
0

t dh

h
Gh~ ipn!Sh~ ipn!, ~45!

bV052N ln~11ebm!, ~46!

Gh5
1

ip1m2Sh
, ~47!

Sh5
2zh2

ip1m1A~ ip1m!224~z21!h2
. ~48!

The summation over (j s) equals 2N.

bdV52N(
n
E

0

t dh

h
Gh~ ipn!Sh~ ipn!, ~49!
Gh~ ipn!Sh~ ipn!5
2zh2

~ ip1m!@~ ip1m!1A~ ip1m!224~z21!h2#22zh2
. ~50!
The summation overipn is done first. It is converted into a
contour integralipn→z8. If A254(z21) then there is a
branch cut along the real axis in the range2Ah<z81m
<Ah. Integrating around the branch cut gives, after so
algebra,

dV5
zN

p E
0

tdh

h E
2Ah

Ah
d««nF~«2m!gh~«!, ~51!

gh~«!5
AA2h22«2

z2h22«2
. ~52!

The factorgh(«) is the density of states for a system wi
bandwidth Ah,«,Ah. Note that the chemical potentia
does not scale with the coupling constant. The order of
two integrals can be interchanged, which gives

dV5
zN

p E
2At

At

d«nF~«2m!H~«!, ~53!
e

e

H~«!5«E
u«u/A

t dh

h
gh~«! ~54!

5sgn~«!F tan21SA~At!22«2

u«u D
2b tan21SA~At!22«2

bu«u D G , ~55!

whereb5(z22)/z. The functionH(«) has a discontinuity
at «50, where the term in square brackets isp(12b)/2
5p/z. At zero temperature the occupation factornF(«
2m) is replaced by a step functionQ(m2«) and the inte-
gral can be evaluated. Its derivative with respect tom gives
the occupation number:

n5
2

11e2bm
2

z

p
H~m!, ~56!
0-4
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dV52
z

p
NFA~At!22m22umutan21SA~At!22m2

umu D
1bumutan21SA~At!22m2

bumu D
2t~z22!tan21SA~At!22m2

t~z22!
D G . ~57!

The expression for the particle densityn(m) is identical to
that found in the band model, although it appears sligh
different. The first term inn is from V0, which gives

1

N

]~bV0!

]~bm!
5

2

11e2bm
→2Q~m!. ~58!

At zero temperature this term becomes a step function th
zero form,0 and 2 form.0. H(m) is also a step function
and the two steps cancel. The combined contribution ton(m)
from V0 and dV yields a smooth curve when plotted as
function ofm. The final curve is identical to that found from
the band model.

The change in the ground state energydV has a cusp a
half filling, which is caused by the discontinuity ofH(«)
52H(2«) at «50. In calculating the ground state energ
the functionV0 is included. It has the form

V0

N
522kBT ln~11ebm!→22mQ~m!. ~59!
.

ov

r.

15511
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At zero temperature it becomes proportional to the chem
potential whenm is positive. This term eliminates the cusp
dV and the final curve becomes identical toV found from
the band model. The coupling-constant integral, using
Brinkman-Rice self-energy, gives the same ground state
ergy and particle density, as a function of the chemical
tential, as found earlier using the band model.

The ground state energy per particleEG /n can be evalu-
ated. In the limit ofn→0 it goes to2A. Of course, this
result is expected from the band model. In a system of f
particles they occupy the lowest energy state, which is
bottom of the band.

A similar result can be found for the ferromagnetic sta
in which all electrons have the same spin. In that case o
one particle is on a site, and the factor of 2 is removed fr
Ne(m) andEG(m). In this case 0<n<1 as2A<m<A.

IV. DISCUSSION

The concept of energy bands is introduced into the h
ping energy of the Bethe lattice. The energy bands are u
to calculate the density of states and ground state ene
The former result agrees with Refs. 1 and 2.
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