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Comparison of the embedding and Dyson-equation methods in the Green’s-function calculation
of a defect in solids
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We discuss the relationship between the Dyson-equation method of Wachutkaet al. @J. Phys. Condens.
Matter4, 2831~1992!# and the embedding method of Inglesfield@J. Phys. C14, 3795~1981!# in the Green’s-
function calculation of a defect in solids. We will show that if the Green’s function is expanded using the same
basis set, the Green’s-function matrix of the embedding method,GE, is related to that of the Dyson-equation
method,GD, by a simple Dyson-type equationGE5GD1GDdhGE, where the matrixdh is related to the
incompleteness of the basis set. With the increasing number of basis functions, the Green’s functions calculated
with the two methods converge to each other rapidly in the interior of the perturbed volume, while they differ
persistently on the boundary surface because the Dyson-equation method fails to incorporate the boundary
condition of the Green’s function. Reflecting this behavior,dh tends to vanish rather slowly with increasing
number of basis functions. To demonstrate this, we perform a numerical calculation using a simplified one-
dimensional model.

DOI: 10.1103/PhysRevB.63.155108 PACS number~s!: 71.15.2m, 71.55.2i, 73.20.Hb
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I. INTRODUCTION

Calculating the properties of localized defects in a solid
one of the fundamental subjects in solid-state theory. By
tue of the rapid development of Car-Parrinello-lik
methods,1 it is now possible to study the structural properti
of single-impurity atoms and crystal surfaces using a h
supercell. However, the supercell technique is not applica
to a number of problems. Among them are the transp
properties of defects such as impurity resistivity, for which
precise description of the Fermi surface of a host crysta
prerequisite.2,3 The Green’s-function method is quite suitab
for treating those problems, since it can describe a truly
lated defect in an otherwise perfect crystal. Most of t
Green’s-function methods developed so far are based on
Dyson equation, where the Green’s function of a defect-f
crystal is computed in the first step to represent the un
turbed system. In the second step the Dyson equatio
solved in a localized defect volume either by employing
Korringa-Kohn-Rostoker~KKR! formalism4,5 or by expand-
ing the Green’s function using energy-independent ba
functions.6–9 On the other hand, the embedding approach
Inglesfield10 is quite unique in its formulation. In his metho
one concentrates on a defect volume and the effects of
crystal that surrounds it are taken into consideration via
complex potential energy acting on the boundary surface
tween the defect volume and the rest of the system.
embedding method has been successfully applied to the
tronic structure calculation of isolated adsorbates11

interfaces,12 and semi-infinite crystal surfaces.13–15

The purpose of the present paper is to discuss the rela
ship between the Dyson-equation approach and the em
ding method of Inglesfield.10 In particular, we will compare
the Green’s function constructed using the embedd
method and that obtained with the Dyson-equation appro
of Wachutkaet al.6 In the latter approach, the Dyson equ
0163-1829/2001/63~15!/155108~7!/$20.00 63 1551
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tion is cast in matrix form using a nonorthogonal basis
defined in a finite volume with potential perturbation. Als
the embedding equation of Inglesfield10 is cast in matrix
form in actual numerical calculations. Thus, it is very i
triguing to explore how the Green’s-function matrices
both methods are related to each other when the same
set is adopted in both calculations. To our knowledge,
work by Baraff and Schlu¨ter16 is the only one related to this
question: They derived a matrix equation, which is equiv
lent to the Dyson equation but looks more similar to t
embedding equation of Inglesfield. The ‘‘embedding’’ oper
tor introduced by them plays a role analogous to the t
embedding potential. However, as will be shown later, th
are not identical. It may be thus desirable if one could co
pare the two approaches more directly, not only with reg
to theoretical formulation, but also from the view point
numerical accuracy.

We will show that the Green’s-function matrix of the em
bedding method,GE, is related to that of the Dyson-equatio
method, GD, by a simple Dyson-type equationGE5GD

1GDdhGE, where the matrixdh is a property of the basis
set and has nothing to do with the perturbation potential
real space, the Green’s functions calculated with the t
methods become nearly identical in the interior of the p
turbed volume even with a relatively small number of ba
functions. However, on the boundary surface, they rem
different even with a large number of basis functions, sin
the Dyson-equation method fails to take into account
boundary condition of the Green’s function. As a cons
quence, the matrixdh converges to zero rather slowly wit
increasing number of basis functions. To demonstrate t
we perform a numerical calculation using a simplified on
dimensional model for which the exact Green’s function c
be calculated analytically.

The present paper is organized as follows. In Sec. II
present the theoretical background necessary for discus
©2001 The American Physical Society08-1
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the relationship between the embedding method of Ing
field and the Dyson-equation approach of Wachutkaet al. In
Sec. III we investigate the convergence of the numer
Green’s function to the exact one by performing a numer
calculation. Finally, a summary is given in Sec. IV. Unle
stated otherwise, we use Hartree atomic units withe5m
5\51 throughout this paper.

II. THEORY

A. Dyson-equation approach

Let us consider a solid described by a one-electron Ha
tonian

Ĥ052
1

2
D1V0~r !. ~1!

We introduce a defect expressed by a perturbation pote
DV(r ), which is spatially localized in a finite volume I@see
Fig. 1~a!#. The electronic structure of the system can be c
culated from the Green’s function,

@Ĥ2z#g~z,r ,r 8!52d~r2r 8!, ~2!

where Ĥ5Ĥ01DV(r ) and z denotes the one-electron e
ergy. In the following we omit the energy suffixz in the
Green’s function for simplicity. We also consider a Green
function of the unperturbed HamiltonianĤ0 , g0(r ,r 8),
which is defined in the entire volume I1II and satisfies the
outgoing boundary condition atur u51` ~decaying or propa-
gating toward the infinity!. As is well known,g(r ,r 8) satis-
fies the Dyson equation

g~r ,r 8!5g0~r ,r 8!1E
I
dr 9g0~r ,r 9!DV~r 9!g~r 9,r 8!. ~3!

It is important to stress that the perturbation potentialDV(r )
is localized in region I, but not the perturbation caused

FIG. 1. ~a! Schematic picture of a localized defect in a solid.S
is the boundary surface between the defect volume I and the re
the system, II.~b! Box-type defect potential in the one-dimension
free-electron system.
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this potential. The latter is extended in the whole space
g(r ,r 8) is everywhere different fromg0(r ,r 8) due to the sec-
ond term on the right-hand side of Eq.~3!. In this spirit, it
should be remarked that most of the standard impurity c
culations employing the Green’s function method conc
trate on solving Eq.~3! in the finite region I. But, essentially
one can build its solution in the whole space by, for examp
the Green’s function matching technique17 or analytic pro-
longation.

Assuming that the exactg0(r ,r 8) is known, we would like
to calculateg(r ,r 8) by solving Eq.~3!. For this purpose, we
introduce a basis set$fn% defined in volume I and expan
the Green function in this volume as

g~r ,r 8!5 (
n,n8

~GD!nn8fn~r !fn8
* ~r 8!. ~4!

It is to be noted that the expansion~4! is only approximate,
as far as we use a finite number of basis functions. For
ample, in this case, it is impossible to express the cusp in
real part of the Green’s function. In order to be able to re
resentg(r ,r 8) whose boundary condition onS varies with
energyz, $fn% should be flexible enough on the bounda
surfaceS between I and II.

Now we follow the formulation of Wachutkaet al.6 to
cast Eq.~3! in a matrix form. First we try to expandg0(r ,r 8)
in the same form as Eq.~4!,

g0~r ,r 8!5 (
n,n8

~G0!nn8fn~r !fn8
* ~r 8!. ~5!

Again, the expansion~5! is only approximate. One possibl
choice is to obtain (G0)nn8 by minimizing

DP05
1

VI
H EI

drdr 8Ug0~r ,r 8!

2 (
n,n8

~G0!nn8fn~r !fn8
* ~r 8!U2J 1/2

, ~6!

which is a ‘‘distance’’ for the pointwise convergence of th
Green’s-function expansion to the exact one (VI denotes the
volume of region I!. From the condition]DP0 /](G0)nn8

*
50, one has

~G0!nn85Snm
21Gmm8Sm8n8

21 , ~7!

where S21 denotes the inverse of the overlap matrixSmn

5* Idrfm* (r )fn(r ), summation is implied over the repeate
indices, andGmm8 is defined by

Gmm85E
I
drdr 8fm* ~r !g0~r ,r 8!fm8~r 8!. ~8!

By substituting Eqs.~4! and ~5! into Eq. ~3!, it is easy to
obtain the Dyson equation in a matrix form

~GD!nn85~G0!nn81~G0!nmDVmm8~GD!m8n8 , ~9!

of
8-2
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DVnn85E
I
drfn* ~r !DV~r !fn8~r !. ~10!

B. Embedding approach

Next, we calculate the Green’s function~2! in volume I
using the embedding method. According to Inglesfield,10 the
Green’s function in volume I satisfies

@ĤE2z#g~r ,r 8!52d~r2r 8!, ~11!

whereĤE5Ĥ01DV(r )1V̂E. The last termV̂E, which acts
only whenr is located on the boundary surfaceS, is defined
by

V̂Eg~r ,r 8!5
1

2
d~n2ns!

3F ]g~x,r 8!

]n
22E

S
dx9g̃0

21~x,x9!g~x9,r 8!G ,
~12!

wherex is on the boundary surfaceS and ns specifies the
position of S along the normal coordinaten. In Eq. ~12!,
g̃0

21(x,x8) is the surface inverse ofg̃0(r ,r 8) over S. Hereg̃0

is a particular Green’s function of the unperturbed systemĤ0
at energyz, which is defined in volume II~not in I!, has a
vanishing normal derivative onS, and fulfills the outgoing
boundary condition atur u51`. The construction ofg̃0 is
more difficult than that ofg0 appearing in Eq.~3! because of
the additional boundary condition imposed onS. Here g̃0

21,
which is called embedding potential, gives a generalized
logarithmic derivative onSof an electron wave function with
energyz satisfying the outgoing boundary condition atur u
51`, andV̂E in ĤE ensures that the Green’s function in
satisfies the correct boundary condition onS.

In volume I we expand the Green’s function as

g~r ,r 8!5 (
n,n8

~GE!nn8fn~r !fn8
* ~r 8!, ~13!

where $fn% is the same basis set as in Eq.~4!. Again we
notice that the right-hand side of Eq.~13! is only approxi-
mate as far as we use a finite number of basis functio
Substituting Eq.~13! into Eq. ~11! yields

@zSlm2^f l uĤEufm&#~GE!mn5d ln , ~14!

which is the original matrix equation derived in the paper
Inglesfield.10 Given the embedding potential onS, one can
calculate also the Green’s function of the unperturbed s
tem,g0(r ,r 8), by the embedding technique itself. In volum
I we expandg0(r ,r 8) using the same basis set$fn% as

g0~r ,r 8!5 (
n,n8

~G0
E!nn8fn~r !fn8

* ~r 8!. ~15!

Then,G0
E satisfies
15510
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@zSlm2^f l uĤ0
Eufm&#~G0

E!mn5d ln , ~16!

whereĤ0
E5ĤE2DV. From Eqs.~14! and~16!, it is obvious

that the matricesGE andGE
0 are related by

~G0
E!mn

212~GE!mn
215DVmn ~17!

or, equivalently, by the Dyson-type equation

~GE!nn85~G0
E!nn81~G0

E!nmDVmm8~GE!m8n8 . ~18!

C. Relationship betweenGD and GE

In order to discuss the relationship betweenGE and GD

more clearly, we introduce a matrix

dhmn[~G0!mn
212~G0

E!mn
21 . ~19!

The matrixdh is related to the incompleteness of the ba
set$fn% and has nothing to do with the perturbation potent
DV. If the two expansions~5! and ~15! were exact,G0 and
G0

E must coincide with each other, leading to vanishingdh.
In numerical calculations with a small number of basis fun
tions, these expansions are only approximate. Thus,dh does
not vanish. However, it may be expected thatdh approaches
zero gradually as the right-hand side of Eq.~5! and that of
Eq. ~15! converge to the exact Green’s functiong0(r ,r 8)
with increasing number of basis functions.

From Eqs.~17! and ~19!, we obtain

~GE!nn85~G0!nn81~G0!nm@dhmm81DVmm8#~GE!m8n8 ,

~20!

which coincides with the Dyson equation~9! of Wachutkaet
al.6 except for the additional term containingdh. Further-
more, from Eqs.~9! and ~20!, one obtains the equation tha
directly relatesGD andGE,

~GE!nn85~GD!nn81~GD!nmdhmm8~GE!m8n8 , ~21!

and hence

~GD!mn
212~GE!mn

215dhmn . ~22!

Remarkably, Eq.~22! signifies that the difference betwee
the inverse ofGD and that ofGE is independent of the per
turbation potentialDV(r ). Equation~19! may be regarded a
a special case of Eq.~22! whereDV(r )50. As stated above
in actual numerical calculations with a limited number
basis functions,GD andGE are not the same because of t
nonvanishing termdh in Eq. ~21!. Hence, an important ques
tion that arises is which of the two equations~4! and ~13!
provides a more accurate description of the Green’s func
and other related quantities. In the next section, we add
this question by performing a numerical calculation using
simplified model system.

Before closing this section, we like to comment on t
work of Baraff and Schlu¨ter.16 Following them, we define an
‘‘embedding’’ matrix operator by18

Smn5zSmn2^fmuĤ0ufn&2~G0!mn
21 . ~23!
8-3
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Using Eq.~23!, the Dyson equation~9! can be written as

@zSlm2^f l uĤufm&2S lm#~GD!mn5d ln . ~24!

Equation~24! coincides with the embedding equation~14! if
S is replaced byV̂E. Moreover, Baraff and Schlu¨ter16

showed that if one adopts a localized linear combination
atomic orbitals~LCAO! basis set,Smn is nonvanishing only
when bothfm andfn are located near the boundary surfa
S. In this sense,S is similar to the embedding potential o
Inglesfield. However, as seen from Eqs.~19! and~23!, S and
V̂E are related by

~V̂E!mn5Smn1dhmn , ~25!

indicating that they become identical only whendh vanishes.

III. NUMERICAL EXAMPLE

To compare the efficiency of the two approaches d
cussed in the preceding section, we perform an exten
numerical calculation with the use of a simplified on
dimensional model. We consider a one-dimensional fr
electron model as the unperturbed system, i.e.,V0(x)50.
Thus, the unperturbed Green’s function is given simply b
free-electron formg0(x,x8)5exp(ikux2x8u)/(ik), where k
5A2z. As shown in Fig. 1~b!, the defect is expressed by
box potential

DV~x!5H 0 ~x<c1 ,x>c2!,

2v0 ~c1<x<c2!.
~26!

We choose a interval@b1 ,b2#, which contains@c1 ,c2#, as the
perturbed volume I. In the terminology of embedding theo
@b1 ,b2# is the embedded region, and the embedding surf
corresponds tox5b1 andx5b2. Needless to say, the adva
tage of employing such a simplified model is that theexact
Green’s functiong(x,x8) can be analytically calculated
which enables us to evaluate easily the accuracy of
Green’s function computed by a numerical method.

As basis function we adopt

fn~x!5A2

L
sin~pnx!, ~27!

wherepn5pn/L (n>1) andb1<x<b2. In order to be able
to represent the Green’s function whose boundary condi
varies with energyz, the perturbed volume@b1 ,b2# should
be taken slightly smaller than@0,L# @see Fig. 1~b!#. As an
advantage of the basis set~27!, one can systematically im
prove the accuracy of the basis set by increasing the num
of basis functions,N ~by increasing the cutoff energy for th
plane waves,Ec5pN

2 /2). Yet, in contrast to a standard plan
wave band-structure calculation, the maximumN is limited
because the basis set is nonorthogonal and becomes
complete whenN is too large. For the Dyson-equation a
proach, we first evaluate the matrix element (G0)mn in Eq.
~7! using the exactg0(x,x8), and then, solve Eq.~9! to obtain
GD. The right-hand side of Eq.~4! will be denoted in the
following as gD(x,x8). Differently, for the embedding
15510
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method, we can directly solve Eq.~14! in order to obtainGE.
The Green’s function on the right-hand side of Eq.~13! will
be denoted asgE(x,x8).

Hereafter we consider energy values slightly above
real energy axis, i.e.,z5e1 ih, whereh is an infinitesimal
positive number. As a typical example, we will present n
merical results for the parameter set:b151 a.u., c1
53 a.u., c257 a.u., b259 a.u., L510 a.u., and v0
50.8 a.u. For these parameters, the numerical calculatio
found to be stable up toN;50. The basis expansions fo
gD(x,x8) and gE(x,x8) are meaningful only in the interva
@b1 ,b2#. Outside this interval, we will plot the analytica
extension of each Green’s function.17 For example,

gi~x,x8!5exp@2 ik~x2b1!#gi~b1 ,x8!, ~28!

for x,b1 andx8.b1, and

gi~x,x8!5
1

ik
exp~ ikux2x8u!1Fgi~b1 ,b1!2

1

ikG
3exp@2 ik~x2b1!2 ik~x82b1!#, ~29!

for x,b1 andx8,b1.
In Fig. 2~a! we plot the real part of the Green’s function

Reg(x,x855) at e50.2 a.u. as a function ofx, where the
number of basis functions,N, is only 10, which correspond
to the plane-wave cutoff energy of 9.9 Ry. The exact~ana-
lytic! Green’s function exhibits a cusp atx5x8, whereas the
numerical Green’s functionsgD(x,x8) andgE(x,x8), are not
able to describe such a singular behavior. Nevertheless,
seen that gD(x,x8) and gE(x,x8) reproduce the exac
Green’s function remarkably well whenx is distant fromx8
even for such a smallN. Figure 2~b! shows the local density
of states defined by

r~x,e!5
21

p
Im g~e1 ih,x,x!, ~30!

where e50.2 a.u. andN510. Sincer(x,e) is a smooth
function of x, the agreement between the exactr(x,e) and
the corresponding ones computed with the two numer
methods is better than that for the real part of the Gree
function in the whole@b1 ,b2# interval. Looking more care-
fully, one notices that the Green’s function—and hence
local density of states—computed with the embedd
method mimics the exact values very well also on the bou
aries,x5b1 and x5b2, whereasgD(x,x8) and the related
r(x,e) deviate from the analytic one to a much larger exte
on these boundaries. This behavior is expected, sinceV̂E in
the embedding Hamiltonian~11! works such that the Green’
function may satisfy the correct boundary condition atx
5b1 and x5b2. On the other hand, in the Dyson-equatio
approach, (G0)mn is determined simply to minimizeDP0 in
Eq. ~6!. Thus, the boundary conditions of the Green’s fun
tion are not taken into consideration. This different behav
on the boundaries causes a very large deviation of the
lytic extension toward region II of the Dyson-equation so
tion @see Eq.~29!# from the exact one, especially for the loc
density of states.
8-4
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To examine the behavior of the calculated Green’s fu
tion near the boundary more clearly, we plot the real par
the Green’s function withx85b1 in Fig. 2~c!. Here the
boundary conditions in the embedding approach play an
sential role to give an extremely better solution with resp
to the Dyson-equation approach, also in the interior of
region I.

As seen from Fig. 2, the agreement between the emb
ding method and the Dyson-equation method is rather g
even for a small number of basis functions. As discusse
the preceding section, the two matricesGE and GD are re-
lated by Eq.~21!, indicating that they become identical ifdh
vanishes. We emphasize again that the matrixdh in this
equation is a property of the basis set and has nothing to

FIG. 2. ~a! Reg(x,x855). ~b! Local density of statesr(x,e).
~c! Reg(x,x851). The solid, dashed, and dotted lines correspo
to the analytic Green’s function, that computed with the embedd
method, and that with the Dyson-equation approach, respectiv
c153 a.u., c257 a.u., v050.8 a.u., ande50.2 a.u., and the
number of basis functions,N, is 10.
15510
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with the perturbation potential. Here we examine the beh
ior of dh as a function of the number of basis function
Since the absolute value ofdhmn has little meaning, we de
fine instead the ratio

DH5 (
m51

M

(
n51

M

udhmnuY (
m51

M

(
n51

M

u~G0!mn
21u, ~31!

whereM is a small integer. In Fig. 3 we plotDH (M53) for
both positive and negative energies as a function of the n
ber of basis functions,N. As expected,DH decreases mo
notonously with increasingN. However,DH converges to
zero quite slowly especially fore50.2 a.u., whereDH is still
;0.8% atN540.

Now, we discuss how the Green’s function calculated
ing a finite number of basis functions converges to the a
lytic one with increasingN. For this purpose, we must defin
a ‘‘distance’’ between the exact and numerical Green’s fu
tions. Here we consider two different distances: the r
mean square distance, which is related to the pointwise c
vergence, is defined by

DPi5
1

b22b1
H E

b1

b2
dxdx8ug~x,x8!2gi~x,x8!u2J 1/2

,

~32!

and the ‘‘maximum’’ distance, related to the uniform co
vergence, is defined by

DUi5supx,x8PIug~x,x8!2gi~x,x8!u, ~33!

where indexi indicates eitherD ~Dyson! or E ~embedding!.
Figure 4~a! shows the calculated distancesDPi at e

50.2 a.u. on logarithmic scale as a function of the num
of basis functions,N. First, we consider the case ofv050. In
this limiting case,GE equalsG0

E , andGD equalsG0 in Eq.
~7!. SinceG0 is chosen such thatDP0 in Eq. ~6! is mini-
mized, the calculatedDPD(5DP0) is always smaller than
DPE. With increasingN, gE(x,x8) approachesgD(x,x8) rap-
idly in the interior of the square-shaped integral region in E
~32!, and as a result,DPE becomes almost indistinguishab
from DPD on the scale of Fig. 4~a! at aroundN;20 ~cutoff
energy 39.5 Ry!. Next, we consider the case for a finite p
tential depthv0. Since the two matricesGD andGE satisfy

d
g
ly.

FIG. 3. DH as a function ofN, the number of basis functions.
8-5
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Eqs. ~9! and ~18!, they become the same ifG0 and G0
E are

identical. Hence, atN;20 whereG0
E andG0 become point-

wise very close to each other in real space,DPE becomes
almost the same asDPD for v050.8 a.u. For smallerN,
gE(x,x8) is slightly less accurate thangD(x,x8) as in the
case ofv050. It is interesting that the four curves in Fig
4~a! become almost degenerate beyondN;20. In this N
range, the deviation of the numerical Green’s functions fr
the exact ones becomes independent of the strength o
perturbation potentialv0 and different numerical methods
and is solely governed by the quality of the basis set.

In Fig. 4~b! we show the calculated distancesDUi as a
function of the number of basis functionsN. Differently from
panel ~a!, the convergence ofgE(x,x8) is better than
gD(x,x8) over N;12, indicating that the former uniformly
converges to the exact Green’s function faster than the la
This statement holds true for both cases with and without
perturbation potentialv0. Up to N;15, the main contribu-
tion to DUi is due to the cusp of the real part of the Gree
function along the linex5x8, which cannot be reproduce
by numerical calculations with a small number of basis fu
tions. Especially, the convergence ofgD(x,x8) with increas-
ing N is terribly slow at the two edge points of this line
Consequently, the main error ingD(x,x8) for largerN arises
from the cusps at the two boundary points (b1 ,b1) and
(b2 ,b2). As seen from Fig. 2~c!, the embedding method ca
describe the Green’s function much better thangD(x,x8) on
these boundary points. This explains why the uniform c
vergence ofgE(x,x8) is better than that ofgD(x,x8).

FIG. 4. ~a! Root mean square and~b! maximum distance be
tween the analytic and numerical Green’s functions as a functio
N, the number of basis functions. Energye50.2 a.u.
15510
he
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In summarygE(x,x8) andgD(x,x8) become nearly iden-
tical in the interior of the square region,b1<x,x8<b2, at
around N;20. However, on the boundary surfac
gE(x,x8)2gD(x,x8) exhibits narrow maxima around
(b1 ,b1) and (b2 ,b2): Their height decreases with increasin
N, but their width also decreases. The coefficients of
Green’s functions expansion take into account the global
haviors of such functions. When one expandsgE(x,x8)
2gD(x,x8) by Fourier series, its high-frequency Fouri
components do not vanish. This implies that the two matri
GE and GD may approach each other rather slowly wi
increasingN. In fact, we have observed thatdh5(GD)21

2(GE)21 converges to zero slowly in Fig. 3.
Finally, we would like to comment on the accuracy of th

Green’s function in numerical calculations for more realis
systems. In the present paper, we have used the e
g0(x,x8) in evaluating the matrixG0 in Eq. ~7!. Also, G0

E in
Eq. ~16! was calculated using the analytic expression for
embedding potential of the free-electron system. Thus,
stated before, the matrixdh defined by Eq.~19! was related
only to the quality of the basis set. For real crystals, one
generally compute neither the exact Green’s funct
g0(r ,r 8) nor the exact embedding potentialg̃0

21. Then, the

numerical errors ing0(r ,r 8) and g̃0
21 affect the matricesG0

and G0
E , respectively, and become an additional source

nonvanishingdh. In this case, it would be difficult to predic
which of the Dyson-equation approach and the embedd
method provides a more accurate Green’s function, si
their accuracy depends not only on the basis set$fn% but
also on the accuracy of the unperturbed Green’s function
the embedding potential.

IV. CONCLUSIONS

The embedding formalism of Inglesfiled is unique in t
electronic-structure calculation of a defect in solids. So f
its relationship to more popular Green’s-function metho
based on the Dyson equation was not clarified. In the fi
half of the present paper, we have discussed the relation
between the two approaches theoretically. Especially,
have shown that if the Green’s function is expanded in
localized defect volume using the same basis set,
Green’s-function matrix of the embedding method,GE, and
that of the Dyson-equation approach,GD, satisfy a simple
Dyson-type equationGE5GD1GDdhGE. The matrixdh in
this equation is a property of the basis set and has nothin
do with the perturbation potential. In the second half of t
present paper, we conducted an extensive numerical calc
tion for a simplified one-dimensional model system. We c
culated the Green’s function of the system using both
embedding method and the Dyson-equation method,
compared them with the exact Green’s function.

The main results are the following: We have shown th
inside the volume I the Green’s functions calculated with
two methods become almost identical with each other a
relatively small number of basis functions. Also, we ha
found that the embedding method can describe the Gre
function more accurately than the Dyson-equation metho

of
8-6
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the boundary region of the defect volume. This better
scription on the boundaries in the embedding approach
lows one to find the Green’s function in the whole space v
e.g., Green’s functions matching, and hence to evalu
many important physical quantities like total energy or
pole moments which require the solution beyond the volu
I. To obtain the same accuracy using Dyson-equation
proach one must consider a larger volume I in order to ma
the solutions on a somewhat inner boundary surface, incr
y

H

.:

. B

15510
-
l-
,
te
-
e
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h
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ing the size of the calculation. On the other hand, as alre
stated, in the embedding approach the construction of
accurate embedding potential could be a very difficult tas
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8P. Krüger and J. Pollmann, Phys. Rev. B38, 10 578~1988!.
9H. L. Skriver and N. M. Rosengaard, Phys. Rev. B43, 9538

~1991!.
10J. E. Inglesfield, J. Phys. C14, 3795~1981!.
s.

.

11M. I. Trioni, S. Marcotulio, G. Santoro, V. Bortolani, G
Palumbo, and G. P. Brivio, Phys. Rev. B58, 11 043~1998!.

12C. P. Farquhart and J. E. Inglesfield, J. Phys.: Condens. Matt1,
599 ~1989!.

13J. E. Inglesfield and G. A. Benesh, Phys. Rev. B37, 6682~1988!.
14S. Clarke, M. Nekovee, P. K. de Boer, and J. E. Inglesfield

Phys.: Condens. Matter10, 7777~1998!.
15H. Ishida, Surf. Sci.388, 71 ~1997!.
16G. A. Baraff and M. Schlu¨ter, J. Phys. C19, 4383~1986!.
17J. E. Inglesfield, Surf. Sci.76, 355 ~1978!.
18To be accurate,Smn in ~23! is slightly different from the original

definition in Ref. 16. In the present work, (G0)mn is defined by
~7!. On the other hand, (G0)mn in Ref. 16 is a subblock of the

inverse of a larger matrix,@zS2Ĥ0# i j , where the indicesi andj
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