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Comparison of the embedding and Dyson-equation methods in the Green’s-function calculation
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We discuss the relationship between the Dyson-equation method of WadktugtalJ. Phys. Condens.
Matter 4, 2831(1992] and the embedding method of Inglesfigld Phys. C14, 3795(1981)] in the Green’s-
function calculation of a defect in solids. We will show that if the Green'’s function is expanded using the same
basis set, the Green’s-function matrix of the embedding metB6djs related to that of the Dyson-equation
method,GP, by a simple Dyson-type equaticBf=GP+ GPshGF, where the matrixsh is related to the
incompleteness of the basis set. With the increasing number of basis functions, the Green’s functions calculated
with the two methods converge to each other rapidly in the interior of the perturbed volume, while they differ
persistently on the boundary surface because the Dyson-equation method fails to incorporate the boundary
condition of the Green’s function. Reflecting this behaviéh, tends to vanish rather slowly with increasing
number of basis functions. To demonstrate this, we perform a numerical calculation using a simplified one-
dimensional model.
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[. INTRODUCTION tion is cast in matrix form using a nonorthogonal basis set
defined in a finite volume with potential perturbation. Also,
Calculating the properties of localized defects in a solid isthe embedding equation of Inglesfiflds cast in matrix
one of the fundamental subjects in solid-state theory. By virform in actual numerical calculations. Thus, it is very in-
tue of the rapid development of Car-Parrinello-like triguing to explore how the Green’s-function matrices of
methods' it is now possible to study the structural propertiesboth methods are related to each other when the same basis
of single-impurity atoms and crystal surfaces using a hugeet is adopted in both calculations. To our knowledge, the
supercell. However, the supercell technique is not applicablevork by Baraff and Schiier'® is the only one related to this
to a number of problems. Among them are the transportuestion: They derived a matrix equation, which is equiva-
properties of defects such as impurity resistivity, for which alent to the Dyson equation but looks more similar to the
precise description of the Fermi surface of a host crystal imbedding equation of Inglesfield. The “embedding” opera-
prerequisité:> The Green’s-function method is quite suitable tor introduced by them plays a role analogous to the true
for treating those problems, since it can describe a truly isoembedding potential. However, as will be shown later, they
lated defect in an otherwise perfect crystal. Most of theare not identical. It may be thus desirable if one could com-
Green’s-function methods developed so far are based on tigare the two approaches more directly, not only with regard
Dyson equation, where the Green'’s function of a defect-free¢o theoretical formulation, but also from the view point of
crystal is computed in the first step to represent the unpemumerical accuracy.
turbed system. In the second step the Dyson equation is We will show that the Green’s-function matrix of the em-
solved in a localized defect volume either by employing thebedding methodGE, is related to that of the Dyson-equation
Korringa-Kohn-RostokefKKR) formalisnf-® or by expand- method, GP, by a simple Dyson-type equatioGt=GP
ing the Green’s function using energy-independent basis- GP shGE, where the matrixsh is a property of the basis
functions®=° On the other hand, the embedding approach oket and has nothing to do with the perturbation potential. In
Inglesfield® is quite unique in its formulation. In his method real space, the Green’s functions calculated with the two
one concentrates on a defect volume and the effects of theethods become nearly identical in the interior of the per-
crystal that surrounds it are taken into consideration via théurbed volume even with a relatively small number of basis
complex potential energy acting on the boundary surface bgunctions. However, on the boundary surface, they remain
tween the defect volume and the rest of the system. Thdifferent even with a large number of basis functions, since
embedding method has been successfully applied to the elettte Dyson-equation method fails to take into account the
tronic structure calculation of isolated adsorbdfes, boundary condition of the Green’s function. As a conse-
interfacest? and semi-infinite crystal surfacé¥:'® quence, the matri¥h converges to zero rather slowly with
The purpose of the present paper is to discuss the relatiomcreasing number of basis functions. To demonstrate this,
ship between the Dyson-equation approach and the embeudre perform a numerical calculation using a simplified one-
ding method of Inglesfield® In particular, we will compare dimensional model for which the exact Green’s function can
the Green’s function constructed using the embeddindpe calculated analytically.
method and that obtained with the Dyson-equation approach The present paper is organized as follows. In Sec. Il we
of Wachutkaet al® In the latter approach, the Dyson equa- present the theoretical background necessary for discussing
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this potential. The latter is extended in the whole space and
I g(r,r') is everywhere different frorgy(r,r’) due to the sec-

S : ond term on the right-hand side of E@). In this spirit, it
should be remarked that most of the standard impurity cal-
culations employing the Green’s function method concen-
trate on solving Eq(3) in the finite region I. But, essentially,
one can build its solution in the whole space by, for example,
the Green’s function matching technid@i®r analytic pro-

a) longation.
Assuming that the exadly(r,r’) is known, we would like
to calculateg(r,r’) by solving Eq.(3). For this purpose, we
| ¢ ¢ I introduce a basis sdip,} defined in volume | and expand

the Green function in this volume as
0 b, bL

AV

b 9(r.r)= 2 (G®)ny bnlr) by (). @

FIG. 1. (a) Schematic picture of a localized defect in a sofd. It is to be noted that the expansio#) is only approximate,
is the boundary surface between the defect volume | and the rest ¢fs far as we use a finite number of basis functions. For ex-
the system, 1I(b) Box-type defect potential in the one-dimensional ample, in this case, it is impossible to express the cusp in the
free-electron system. real part of the Green’s function. In order to be able to rep-

resentg(r,r') whose boundary condition 08 varies with

the relationship between the embedding method of Inglesanergyz {¢,} should be flexible enough on the boundary
field and the Dyson-equation approach of Wachuwkal. In g\ ;rfaceS between | and II.

Sec. lll we investigate the convergence of the numerical Now we follow the formulation of Wachutkat al® to
Green's function to the exact one by performing a numericatast £q(3) in a matrix form. First we try to expang(r,r’)
calculation. Finally, a summary is given in Sec. IV. Unlessj, the same form as Ed4),
stated otherwise, we use Hartree atomic units vethm
=#=1 throughout this paper.
Go(11')= 2 (Go)n da(1) by (1), ®)
Il. THEORY nn’

A. Dyson-equation approach Again, the expansiofb) is only approximate. One possible

) . , _choice is to obtain Gg),,,» by minimizing
Let us consider a solid described by a one-electron Hamil-
DP ! fd dr’
== rdr
v

tonian
go(r,r’)

1
a E 2\ 1/2
We introduce a defect expressed by a perturbation potential B 2, (GO)”“’¢“(r)¢:’(r,) ] ' ©®)
AV(r), which is spatially localized in a finite volume{$ee e
Fig. 1(@]. The electronic structure of the system can be calywhich is a “distance” for the pointwise convergence of the

Ho=— = A+Vq(r). (1)

culated from the Green’s function, Green’s-function expansion to the exact oig ¢enotes the
- , , volume of region ). From the conditiondDPo/d(Gp)* ,
[A-z]g(zr,r)==a8r-r"), @ Z0 one has o
where H=H,+AV(r) and z denotes the one-electron en- o .
ergy. In the following we omit the energy suffixin the (Go)nn=Siml mm Sy s )

Green'’s function for simplicity. We also consider a Green'’s

function of the unperturbed Hamiltoniaﬁio, go(r,r’),

which is defined in the entire volumerll and satisfies the

outgoing boundary condition &t| =+ (decaying or propa-

gating toward the infinity As is well known,g(r,r’) satis-

fies the Dyson equation Ty = Jdrdr’dﬁ(r)go(r,r’)q’>mr(r’). ®)
|

where S™! denotes the inverse of the overlap mat8y,
= [1dr ¢y (r) ¢n(r), summation is implied over the repeated
indices, and’,,y is defined by

g(r,r’):go(r,r’)+fldr”go(r,r”)AV(r”)g(r”,r’). (3 By substituting Egs(4) and (5) into Eq. (3), it is easy to
obtain the Dyson equation in a matrix form
It is important to stress that the perturbation potenkis((r)
is localized in region |, but not the perturbation caused by (GP) i =(Go)nn' +(Go)nmAVimm (G mrny » 9
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AVnn,=Jldrgbﬁ(r)AV(r)d)n,(r). (10

B. Embedding approach

Next, we calculate the Green’s functid®) in volume |
using the embedding method. According to Inglesfiéithe
Green'’s function in volume | satisfies

[AE—2Z]g(r,r’)=—8(r—r"), (11)

whereHE=H,+AV(r)+VE. The last termVE, which acts
only whenr is located on the boundary surfaBeis defined

by
. 1
VEg(r,r’)=§5(n—ns)

a !
« g(x,r’)
an

_ 2] dX"aal(X,X")g(X",r') ,
S

(12

wherex is on the boundary surfac® and ng specifies the
position of S along the normal coordinate. In Eq. (12),

0o 1(x,x') is the surface inverse @f,(r,r’) overS Hereg,
is a particular Green'’s function of the unperturbed sysjfem
at energyz, which is defined in volume I(notin I), has a
vanishing normal derivative o8, and fulfills the outgoing
boundary condition afr|=+o. The construction o, is
more difficult than that ofj, appearing in Eq(3) because of

the additional boundary condition imposed ﬁnHereagl,
which is calledembedding potentialgives a generalized
logarithmic derivative ors of an electron wave function with
energyz satisfying the outgoing boundary condition |at

=+, andVE in HE ensures that the Green’s function in |

satisfies the correct boundary condition &n
In volume | we expand the Green'’s function as

g(r,r) =2 (GE)pnn(r) ™ (r"),

n,n’

(13

where{¢,} is the same basis set as in Hd). Again we
notice that the right-hand side of E(L3) is only approxi-

mate as far as we use a finite number of basis function

Substituting Eq(13) into Eq. (11) yields

[ZSm_<¢I|ﬂE|¢m>](GE)mn: Oin» (14
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[2Sm—{ S| A5| dm) 1(GE) mn= bin

whereH§=HE—AV. From Eqgs(14) and(16), it is obvious
that the matrice&g and G‘é are related by

(16)

(G8)mn—(GH)mn=AVmy (17
or, equivalently, by the Dyson-type equation
(GE)nn’:(Gg)nn’+(G(§)nmAme’(GE)m’n’ . (18

C. Relationship betweenGP and GE
In order to discuss the relationship betwegh and GP
more clearly, we introduce a matrix

Ninn=(Go) = (G) mn- (19)

The matrix sh is related to the incompleteness of the basis
set{¢,} and has nothing to do with the perturbation potential
AV. If the two expansiong5) and (15) were exactG, and
G(E) must coincide with each other, leading to vanishiig
In numerical calculations with a small number of basis func-
tions, these expansions are only approximate. Thasjoes
not vanish. However, it may be expected thatapproaches
zero gradually as the right-hand side of Ef) and that of
Eq. (15 converge to the exact Green's functigg(r,r’)
with increasing number of basis functions.

From Egs.(17) and(19), we obtain

(GE)nn’:(Go)nn’+(GO)nm[éhmm’+Avmm’](GE)m’n’ )

(20

which coincides with the Dyson equati@®) of Wachutkaet
al.® except for the additional term containingh. Further-
more, from Eqgs(9) and (20), one obtains the equation that
directly relatesG® and GF,

(GE)nn’ = (GD)nn’ + (GD)nméhmm’(GE)m’n’ )

and hence

(21)

(GD);%_(GE);%: 5hmn-

Remarkably, Eq(22) signifies that the difference between
the inverse ofGP and that ofGE is independent of the per-
%urbation potential V(r). Equation(19) may be regarded as
a special case of Eq22) whereAV(r)=0. As stated above,
in actual numerical calculations with a limited number of
basis functionsGP and GE are not the same because of the
nonvanishing tern#h in Eq. (21). Hence, an important ques-

(22

which is the original matrix equation derived in the paper oftion that arises is which of the two equatio® and (13)

Inglesfield'® Given the embedding potential & one can Provides a more accurate description of the Green’s function
calculate also the Green's function of the unperturbed sysand other related quantities. In the next section, we address
tem, go(r,r’), by the embedding technique itself. In volume this question by performing a numerical calculation using a

| we expandg,(r,r') using the same basis sgp,,} as simplified model system. _
Before closing this section, we like to comment on the
work of Baraff and Schiter'® Following them, we define an

(15  “embedding” matrix operator bif

9o(rr)= 2 (GG bn(r) by (1)

Then,G§ satisfies S mn=2ZSnn— (Sl Hol n) — (Go)mn - (23)
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Using Eq.(23), the Dyson equatio®) can be written as method, we can directly solve E(L.4) in order to obtairGE.
A The Green’s function on the right-hand side of ELR) will
[2Sm—(1[H] ém) = Zim](G®) mn= 8in - (24)  be denoted ag&(x,x").

Hereafter we consider energy values slightly above the
real energy axis, i.ez=e+in, wherey is an infinitesimal

- E 1oy 16 ) _ _
3 is replaced byV®. Moreover, Baraff and Schier' ositive number. As a typical example, we will present nu-
showed that if one adopts a localized linear combination Of,erical results for the parameter set;=1 a.u., C;

atomic orbitals(LCAO) basis setX , is nonvanishing only _3 a.u., c,=7 au., b,=9 au., L=10 a.u., andv,
when bothé, and ¢, are located near the boundary surface_q g 4 u. For these parameters, the numerical calculation is
S In thls sensey. is similar to the embedding potential of {5und to be stable up tdl~50. The basis expansions for
Inglesfield. However, as seen from E@9) and(23), 2 and g°(x,x’) andgE(x,x’) are meaningful only in the interval

Equation(24) coincides with the embedding equati@i®) if

VE are related by [by,b,]. Outside this interval, we will plot the analytical
. extension of each Green'’s functibhFor example,
(VE)ngEmn"' oNmn, (25 ) )
g'(x,x")=exfd —ik(x—b1)]g'(by,x"), (28

indicating that they become identical only whéim vanishes.
for x<b,; andx’>b, and
IIl. NUMERICAL EXAMPLE

. 1 . 1
To compare the efficiency of the two approaches dis- g'(x,x’)=mexp(ik|x—x’|)+ g'(bl,bl)—m}
cussed in the preceding section, we perform an extensive
numerical calculation with the use of a simplified one- xXexd —ik(x—bq)—ik(x"—bq)], (29
dimensional model. We consider a one-dimensional free-
electron model as the unperturbed system, Mg(x)=0.  for x<b; andx’<b;,. _
Thus, the unperturbed Green’s function is given simply by a N Fig. 2@ we plot the real part of the Green’s function,
free-electron formgo(x,x’)=exp(k|x—x')/(ik), where k = Reg(x,x"=5) ate=0.2 a.u. as a function of, where the
= \/2z. As shown in Fig. 1b), the defect is expressed by a number of basis functiongy, is only 10, which corresponds
box potential to the plane-wave cutoff energy of 9.9 Ry. The ex@oia-

lytic) Green’s function exhibits a cusp @t x’, whereas the
0 (X<cCqy,X=¢Cy), numerical Green’s functiong®(x,x’) andg®(x,x’), are not
AV(x)=§ e (26)  able to describe such a singular behavior. Nevertheless, it is

Vo (C1=X=Cp). seen thatg®(x,x’) and gf(x,x’) reproduce the exact
We choose a intervéb, ,b,], which containgc, ,c,], asthe Green’s function remarkably well whenis distant fromx’
perturbed volume I. In the terminology of embedding theory,even for such a smal. Figure 2b) shows the local density
[b;,b,] is the embedded region, and the embedding surfacef states defined by
corresponds ta=Db,; andx=Db,. Needless to say, the advan-

tage of employing such a simplified model is that thect _ -1 :
Green’s functiong(x,x’) can be analytically calculated, p(X,e)—?Img(e-Hn,X,X), (30
which enables us to evaluate easily the accuracy of the i )
Green’s function computed by a numerical method. where e=0.2 a.u. andN=10. Sincep(x,e) is a smooth
As basis function we adopt function of x, the agreement between the exak,e) and
the corresponding ones computed with the two numerical
2 methods is better than that for the real part of the Green’s
dn(X)= \/Esin(pnx), (27)  function in the whold b, ,b,] interval. Looking more care-

fully, one notices that the Green’s function—and hence the
wherep,=7n/L (n=1) andb,<x<b,. In order to be able local density of states—computed with the embedding
to represent the Green’s function whose boundary conditiomethod mimics the exact values very well also on the bound-
varies with energy, the perturbed volumgb,,b,] should ~ aries,x=b; and x=b,, whereasg®(x,x') and the related
be taken slightly smaller thaf0,L] [see Fig. 1b)]. As an  p(X,€) deviate from the analytic one to a much larger extent
advantage of the basis s@7), one can systematically im- on these boundaries. This behavior is expected, Sifcin
prove the accuracy of the basis set by increasing the numbetie embedding Hamiltoniafi1) works such that the Green’s
of basis functionsN (by increasing the cutoff energy for the function may satisfy the correct boundary conditionxat
plane wavesk,=p3/2). Yet, in contrast to a standard plane- =b, andx=b,. On the other hand, in the Dyson-equation
wave band-structure calculation, the maximdhis limited  approach, Gg) m, is determined simply to minimizB Py in
because the basis set is nonorthogonal and becomes ovég. (6). Thus, the boundary conditions of the Green’s func-
complete wherN is too large. For the Dyson-equation ap- tion are not taken into consideration. This different behavior
proach, we first evaluate the matrix elemef@),, in Eq.  on the boundaries causes a very large deviation of the ana-
(7) using the exaagy(x,Xx"), and then, solve Eq9) to obtain  Iytic extension toward region Il of the Dyson-equation solu-
GP. The right-hand side of Eq4) will be denoted in the tion[see Eq(29)] from the exact one, especially for the local
following as g°(x,x’). Differently, for the embedding density of states.
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1.0 0.10 T T T
e=02au. ——
e=-0.1au ——

0s | 0.08 b e=-0.4au. —— |

0.06
0.04 }
002 |
Re g(e=0.2,x,x’=5) E N
xact
Embedding ——---- '\
0.00 S . *

0 5 10 15 20 25 30 35 40
Number of basis functions

~
s

P(x,e=0.2)
‘ FIG. 3. AH as a function olN, the number of basis functions.

with the perturbation potential. Here we examine the behav-
ior of sh as a function of the number of basis functions.
Since the absolute value éh,,, has little meaning, we de-
fine instead the ratio

M M M M
7 =3 S jonnd | 3, 3 G0l 3
00 : Dysogl m=1n=1 m=1n=1
c) Re g(e=02,5x°=1) g whereM |s a small integgr. In Fig.'3 we pldtH (M =3) for
ok =D both positive and negative energies as a function of the num-
Tl ber of basis functionsN. As expectedAH decreases mo-
notonously with increasingN. However,AH converges to

US zero quite slowly especially for=0.2 a.u., wheréH is still
~0.8% atN=40.

0.0 F Now, we discuss how the Green’s function calculated us-
ing a finite number of basis functions converges to the ana-
lytic one with increasingN. For this purpose, we must define

0.5 s o ) :

Exact a “distance” between the exact and numerical Green'’s func-
b e tions. Here we consider two different distances: the root
-1.0 0 2 4'; P 2‘3 o mean square distance, which is related to the pointwise con-
N vergence, is defined by
) 1 b, ) 12
FIG. 2. (a) Reg(x,x'=5). (b) Local density of statep(x,¢€). DP'= [f dxd>(|g(x,x’)—g'(x,x’)|2 ,
(c) Reg(x,x'=1). The solid, dashed, and dotted lines correspond by—by by
to the analytic Green’s function, that computed with the embedding (32

method, and that with the Dyson-equation approach, respectivel)énd the “
c;=3 au., c,=7 a.u.,vy=0.8 a.u.,, ande=0.2 a.u., and the
number of basis functionsy, is 10.

maximum’ distance, related to the uniform con-
vergence, is defined by

. . DUI:SUQ( er||g(X,X/)_gl(X,XI)|, (33)

To examine the behavior of the calculated Green'’s func- ’
tion near the boundary more clearly, we plot the real part ofvhere index indicates eitheD (Dyson or E (embedding
the Green’s function withx’=b; in Fig. 2(c). Here the Figure 4a) shows the calculated distanc&sP' at e
boundary conditions in the embedding approach play an es=0.2 a.u. on logarithmic scale as a function of the number
sential role to give an extremely better solution with respecpf basis functionsN. First, we consider the case@f=0. In
to the Dyson-equation approach, also in the interior of thehis limiting case G equalsGg, andGP equalsG, in Eq.
region |. (7). SinceGy is chosen such thd P, in Eq. (6) is mini-

As seen from Fig. 2, the agreement between the embednized, the calculate®P°(=DPy) is always smaller than
ding method and the Dyson-equation method is rather goo® PE. With increasing\, g&(x,x’) approacheg®(x,x’) rap-
even for a small number of basis functions. As discussed imdly in the interior of the square-shaped integral region in Eq.
the preceding section, the two matrig8§ and GP are re-  (32), and as a resul) PE becomes almost indistinguishable
lated by Eq.(21), indicating that they become identicaldh ~ from DPP on the scale of Fig. @) at aroundN~ 20 (cutoff
vanishes. We emphasize again that the mafitixin this  energy 39.5 Ry Next, we consider the case for a finite po-
equation is a property of the basis set and has nothing to d@ntial depthv,. Since the two matrice&® and GE satisfy
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In summarygE(x,x’) andg®(x,x’) become nearly iden-
tical in the interior of the square regiob;<x,x'<b,, at
around N~20. However, on the boundary surface,
g%(x,x")—g°(x,x’) exhibits narrow maxima around
(bq,b;) and (,,b,): Their height decreases with increasing
N, but their width also decreases. The coefficients of the
Green'’s functions expansion take into account the global be-
haviors of such functions. When one expangfs(x,x’)
—gP(x,x") by Fourier series, its high-frequency Fourier
components do not vanish. This implies that the two matrices
GE and GP may approach each other rather slowly with
T T Dyson ez increasingN. In fact, we have observed thah=(GP) !

\ Dylj;‘;b&d“}i%% e —(GF) 1 converges to zero slowly in Fig. 3.

00 b \\ Embedding (AV=0) --+-- | Finally, we would like to comment on the accuracy of the

’ Green'’s function in numerical calculations for more realistic

systems. In the present paper, we have used the exact

Jo(X,x") in evaluating the matrixz, in Eq. (7). Also, Gg in

Eqg. (16) was calculated using the analytic expression for the

embedding potential of the free-electron system. Thus, as

stated before, the matrigh defined by Eq(19) was related

| only to the quality of the basis set. For real crystals, one can

. . . . . . ) generally compute neither the exact Green's function

0 5 10 15 20 25 30 35 40 go(r,r') nor the exact embedding potent@gj *. Then, the
Number of basis functions numerical errors ingo(r,r’) andg, * affect the matrice,

FIG. 4. (@) Root mean square and) maximum distance be- anng! rgspectively,. and bepome an adtljit.ional sourcg for
tween the analytic and numerical Green'’s functions as a function 0?onvanlsh|ngﬁh. In this ca;e, it would be difficult to predICt.

N, the number of basis functions. Energy 0.2 a.u. which of the_Dyson-equatlon approach and the e_mbed(_jlng
method provides a more accurate Green’s function, since

their accuracy depends not only on the basis{ggf but

Egs.(9) and (18), they become the same @, andG§ are  also on the accuracy of the unperturbed Green’s function and

identical. Hence, anN~20 whereGE andG, become point- the embedding potential.

wise very close to each other in real spab®F becomes

almost the same aBPP for v,=0.8 a.u. For smalleN, IV. CONCLUSIONS

gE(x,x") is slightly less accurate thag®(x,x’) as in the

case ofvy=0. It is interesting that the four curves in Fig.  The embedding formalism of Inglesfiled is unique in the

4(a) become almost degenerate beydNe-20. In thisN  electronic-structure calculation of a defect in solids. So far,

range, the deviation of the numerical Green'’s functions fronits relationship to more popular Green’s-function methods

the exact ones becomes independent of the strength of thgsed on the Dyson equation was not clarified. In the first

perturbation potentiab, and different numerical methods, half of the present paper, we have discussed the relationship

and is solely governed by the quality of the basis set. between the two approaches theoretically. Especially, we

In Fig. 4(b) we show the calculated distancBd)' as a  have shown that if the Green’s function is expanded in the
function of the number of basis functioik Differently from localized defect volume using the same basis set, the
panel (a), the convergence ofy(x,x’) is better than Green’s-function matrix of the embedding meth@&F, and
gP(x,x") over N~12, indicating that the former uniformly that of the Dyson-equation approadh®, satisfy a simple
converges to the exact Green'’s function faster than the lattepyson-type equatio®®=GP+ GPshGE. The matrixsh in
This statement holds true for both cases with and without thehis equation is a property of the basis set and has nothing to
perturbation potentiaby. Up to N~ 15, the main contribu- do with the perturbation potential. In the second half of the
tion toDU' is due to the cusp of the real part of the Green’spresent paper, we conducted an extensive numerical calcula-
function along the linex=x’, which cannot be reproduced tion for a simplified one-dimensional model system. We cal-
by numerical calculations with a small number of basis func-culated the Green’s function of the system using both the
tions. Especially, the convergencegi(x,x’) with increas-  embedding method and the Dyson-equation method, and
ing N is terribly slow at the two edge points of this line. compared them with the exact Green’s function.
Consequently, the main error gP(x,x") for largerN arises The main results are the following: We have shown that
from the cusps at the two boundary points; (b;) and inside the volume I the Green’s functions calculated with the
(by,by). As seen from Fig. @), the embedding method can two methods become almost identical with each other at a
describe the Green’s function much better tigfx,x’) on  relatively small number of basis functions. Also, we have
these boundary points. This explains why the uniform confound that the embedding method can describe the Green's
vergence ofg5(x,x’) is better than that o§®(x,x"). function more accurately than the Dyson-equation method in
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the boundary region of the defect volume. This better deing the size of the calculation. On the other hand, as already
scription on the boundaries in the embedding approach aktated, in the embedding approach the construction of an
lows one to find the Green’s function in the whole space viaaccurate embedding potential could be a very difficult task.
e.g., Green’s functions matching, and hence to evaluate

many important physical quantities like total energy or di-
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