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Perturbation theory for the one-dimensional optical polaron
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The one-dimensional optical polaron is treated on the basis of perturbation theory in the weak-coupling
limit. A special matrix diagrammatic technique is developed. It is shown how to evaluate all terms of the
perturbation theory for the ground-state energy of a polaron to any order by means of this technique. The
ground-state energy is calculated up to eighth order of perturbation theory. The effective mass of an electron
is obtained up to sixth order of perturbation theory. The radius of convergence of the series obtained is
estimated.
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I. INTRODUCTION

Nowadays there is continuing interest in low-dimensio
structures.1–6 The one-dimensional polaron problem is re
evant in semiconductor physics, where with state-of-the
nanolithography it has become possible to confine electr
in one direction7 ~quantum wires! and in linear conjugated
organic polymer conductors.8 A treatment of the polaron
problem in quantum dots can be found in Refs. 4 and 5.

There is much theoretical work where the polaron pro
lem is investigated by means of perturbation theory~PT!.9–15

The series of perturbation theory is useful for verifying a
proximate nonperturbative methods in the weak-coupl
limit.16–20 PT for theN-dimensional polaron was develope
in Ref. 9, where the perspective of 1/N expansions is dis-
cussed. The technique of 1/N expansion was developed lat
for the optical polaron in Ref. 21. Up to now the first thr
terms of the weak-coupling expansion for the ground-s
energy of the bulk polaron have been calculated10 ~see also
Refs. 11–13!, as well as two terms of the surface polar
energy9 and three terms of the wire polaron energy.6,15 An
investigation of the convergence of the PT series for the b
polaron can be found in Ref. 22.

In this paper the matrix diagrammatic technique is dev
oped for an optical large polaron. This technique permits
to evaluate any term of the PT, in principle. The ground-st
energy of the one-dimensional polaron is calculated up
eighth order of PT by using this technique. The radius
convergence of the PT series is estimated by means o
Cauchy-Hadamard criterion with respect to the calcula
terms of the series.

In Sec. II the matrix diagrammatic technique is dev
oped. In Sec. III the results obtained for the ground-st
energy and the effective mass of an electron are given.
radius of convergence of the PT series is also estimated

II. THE MATRIX DIAGRAMMATIC TECHNIQUE
FOR THE POLARON PROBLEM

IN THE WEAK-COUPLING LIMIT

The Hamiltonian of the one-dimensional optical large p
laron is given by14,19
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k
vkak

†ak1(
k

~Vk* ak
†e2 ik x1Vkake

ik x!,

~1!

wherevk is the frequency of the phonon with momentumk
@note that for the optical polaronvk5v does not depend on
k and Vk521/4(a/L)1/2#; p and x are the momentum and
space operators of the electron;ak

† and ak are the creation
and annihilation operators of the phonon with momentumk;
L is the normalized length; anda acts as a coupling constan
of the electron-phonon interaction. Our units are such t
\, v, and the electron mass are unity. Below we shall ma
the usual simplifying assumption that the crystal lattice a
like a dielectric medium. This means that we can replace
sum(k by an integralL*dk/2p.

Let us consider the weak-coupling limita!1 for the po-
laron with the Hamiltonian~1!. After doing the Lee-Low-
Pines transformation

H85U21HU, ~2!

uC&5UuC8&, ~3!

U5expF i S P2(
k

kak
†akD xG , ~4!

whereP is ac number representing the total system mome
tum, we obtain the Schro¨dinger equation~SE! for Eq. ~1! in
the form

~H01H1!uC8&5EuC8&,

H05
1

2 S P2(
k

kak
†akD 2

1(
k

ak
†ak , ~5!

H15(
k

Vk~ak
†1ak!.

Let us use the conventional perturbation theory23 for the SE
Eq. ~5! in the Fock basis, whereH0 is the unperturbed
Hamiltonian. Thus, if the zero approximation of the vect
stateuC8& is the vacuum state of the phonon fieldu0& then
the ground-state energy ofH0 is given byE0

(0)5^0uH0u0&
©2001 The American Physical Society05-1
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5P2/2. It is easy to verify that all the odd terms of PT a
equal to zero,E0

(1)5E0
(3)5•••50. The second order of th

PT is9

E0
(2)5 K H1

1

h0
H1L 5

21/2a

2p E
2`

` dk1

E0
(0)2

1

2
~P2k1!221

,

~6!

where h05E0
(0)2H0 and ^0u•••u0&→^•••&. This term is

defined by one connected diagram

The thick line corresponds to electron propagation with m
mentumP2k1 . The thin line corresponds to propagation
a virtual phonon with momentumk1 . The bold points on the
thick electron line correspond to vertices, where a phono
either created or annihilated. Below we shall give the Fe
man rules for the connected diagrams represented in the
trix form. The number of diagrams increases in the next
ders of PT: two connected diagrams in the fourth order,
connected diagrams in the sixth order, 74 connected
grams in the eighth order, and so on. There are also un
nected diagrams. These diagrams can be evaluated by d
entiating the energy terms, which are the sums of
corresponding connected diagrams, with respect toE0

(0) ~see
below!. Note that all multidimensional integrals correspon
ing to the diagrams are evaluated by residue theory. This
be seen from Eq.~10! below. Thus, there is a technical pro
lem in generating and evaluating all diagrams in the hig
orders.

Now we shall show how to build the matrix diagramma
technique that permits us to generate all connected diagr
by means of any modern system of computer algebra~SCA!.
Any connected diagram can be represented in thenth order
of PT by using ann/23(n21) matrix uuNuu, wheren is an
even number. For example, let us consider the energy t
of fourth order (n54). It has the form23

E0
(4)5 K H1S 1

h0
H1D 3L 1

1

2

]

]E0
(0) F K H1

1

h0
H1L G2

. ~7!

This term is defined by the sum of two connected and
unconnected graphical diagrams,9

These diagrams can be written in the following matrix for

E0
(4)5S 1 1 1

0 1 0D 1S 1 1 0

0 1 1D 1~1!
]~1!

]E0
(0)

, ~8!

where thei th row of uuNuu describes the history of propaga
tion of the i th phonon with momentum ki ( i
51,2, . . . ,n/2), and thej th matrix column shows the distri
15340
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bution of phonons after passing thej th vertex, where one
phonon is either created or annihilated (j 51,2, . . . ,n21).
The value ofNi j 51 or 0 corresponds to the existence
absence of thei th phonon between thej th and (j 11)th ver-
tices. The generation of all connected diagrams for thenth
order is realized by selectingn/23n21 matrices with re-
spect to the rules

Ni j 50 or 1, (
i 51

n/2

Ni j Þ0, (
j 51

n21

Ni j Þ0,

(
i 51

n/2

Ni 151, (
i 51

n/2

Ni n2151, ~9!

(
j 51

n21

uNi j 112Ni j u51.

We have to keep only one arbitrary matrix among the ma
ces that are transformed into each other by permutating
trix rows. Thus, the whole set of connected diagrams can
obtained in matrix form by means of any SCA. Using t
graphical diagrammatic technique9 it is easy to find the next
rule for our matrix diagrammatic technique:

uuNuu↔S 21/2a

2p D n/2E
2`

1`

dk1•••E
2`

1`

dkn/2

3 )
j 51

n21 FE0
(0)2

1

2 S P2(
i 51

n/2

Ni j ki D 2

2(
i 51

n/2

Ni j G21

.

~10!

Any diagram represented in the matrix form corresponds
an analytical expression. So that in accordance with the
~10! we have for~8!

~1!↔ 21/2a

2p E
2`

`

dk1FE0
(0)2

1

2
~P2k1!221G21

,

S 1 1 1

0 1 0D↔ 2a2

~2p!2E2`

`

dk1E
2`

`

dk2

3FE0
(0)2

1

2
~P2k1!221G21

3FE0
(0)2

1

2
~P2k12k2!222G21

3FE0
(0)2

1

2
~P2k1!221G21

,
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S 1 1 0

0 1 1D↔ 2a2

~2p!2E2`

`

dk1E
2`

`

dk2

3FE0
(0)2

1

2
~P2k1!221G21

3FE0
(0)2

1

2
~P2k12k2!222G21

3FE0
(0)2

1

2
~P2k2!221G21

.

In order to summarize all unconnected diagrams in thenth
order we can use the general structure of the conventi
perturbation theory series.23 Note that the term of PT

E0
(n)c5 K H1S 1

h0
H1D n21L ~11!

contains all connected diagrams. This term does not con
unconnected diagrams at all. The other terms ofnth order
E0

(n)n contain unconnected diagrams modifying the powers
the corresponding electron propagators in the previous
ders. If the dependence ofE0

(s)c(s,n) on E0
(0) is explicitly

conserved thenE0
(n)n can be represented as a function ofE0

(s)c

and its derivatives. For example,E0
(n)n is written for some

particular cases as follows:

E0
(4)n5E2E28 , ~12!

E0
(6)n5

1

2!
~E2!2E291E2~E28!21~E2E4!8, ~13!

E0
(8)n5E2~E28!313

1

2!
~E2!2E28E291

1

3!
~E2!3E2-1E4~E28!2

12
1

2!
E2E29E41~E2E6!81E4E4812E2E28E48

1
1

2!
~E2!2E49 , ~14!

whereEn5E0
(n)c and a prime denotes a derivative with r

spect toE0
(0) . All the integrals~10! are evaluated analytically

by means of the residue theory23 without expanding them in
powers ofP. Then the effective mass of an electron is d
fined by

1

2m*
5

]2E0

]P2 U
P50

. ~15!

We note that the suggested matrix diagrammatic te
nique is acceptable for anyN-dimensional optical large po
laron, but the rule~10! has to be generalized with respect
the Feynman rules forN-dimensional polarons.9
15340
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III. RESULTS

Let us carry out an asymptotic expansion of the grou
state energy up to eighth order of PT. First it is necessar
generate and evaluate all connected diagrams for the co
sponding orders with respect to the conditions~9! and rule
~10!. Second, we have to summarize the diagrammatic te
obtained and unconnected diagrammatic terms defined
Eqs.~12!–~14!. Thus, the polaron ground-state energy up
eighth order isE0(P)5(n50

8 E0
(n)(P), where the energy

terms are defined by

E0
(0)~P!5

P2

2
, ~16!

E0
(2)~P!52

21/2

~22P2!1/2
a52a2

P2

4
a1o~P4!, ~17!

E0
(4)~P!52F P2~P224!16

~22P2!3/2~42P2!1/2
2

P2~P223!14

~22P2!2 Ga2

52S 3A2

4
21Da21

P2

32
~825A2!a21o~P4!,

~18!

E0
(6)~P!52S 52

63

8A2
1

1

16
A4931

3
21102A2D a3

2
P2

2 S 2
15

4
1

163

32A2

1
1

96
A98 593

6
211 472A2D a31o~P4!,

~19!

TABLE I. The ground-state energyE0(P).

a 2E0
F 2E0(0) from Eq.~21!

0.1 0.100376 0.100615
0.5 0.510063 0.516315
1.0 1.044445 1.070619
1.5 1.613146 1.672654
2.0 2.236957 2.334434
2.5 2.959682 3.070245
3.0 3.828595 3.896646
3.3 4.426768 4.443709
3.4 4.639049 4.635570
3.5 4.857770 4.832468
4.0 6.047798 5.898815
4.5 7.398112 7.119062
5.0 8.908301 8.518858
5-3
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E0
(8)~P!52S 442 369

15 456
2

218 861

7728A2
1

151 925

2208A3
2

261 335

2208A6
D a4

1o~P2!. ~20!

Since the termsE0
(6)(P) andE0

(8)(P) are too bulky, we have
only written out their expansion in powers of momentumP.
Using Eqs.~16!–~20! the ground-state energy of a slow
moving polaron is written as

E0~P!5
P2

2m*
2a20.060 660 17a220.008 444 37a3

20.001 514 88a41o~a5!. ~21!

The effective mass of the electron is defined by Eq.~15!:

m* 511
a

2
1

522A2

8A2
a21S 2

33

8
1

183

32A2

1
1

2
A98 593

13 824
2

239

24A2
D a31o~a4!

.110.5a10.191 941 7a2

10.069 109 6a31o~a4!. ~22!

Now let us compare the asymptotic formula obtained
the polaron ground-state energy with the energy obtaine
the framework of Feynman polaron theory17,24 ~see Table I!.
For a,3.4 the asymptotic energy Eq.~21! lies lower than
the Feynman variational resultE0

F with maximum deviation
about 4%. Fora*5 Eq. ~21! is not correct because the ra
dius of convergence of the series isR;5 ~see below!. Note
that the first three terms of the energy Eq.~21! coincide with
the same terms from Refs. 6 and 14.
15340
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Let us estimate the radius of convergence of the PT se
for E0(0). Theradius of convergenceR can be evaluated by
the Cauchy-Hadamard criterion23

R5 lim
n→`

Rn5 lim
n→`

~ uE0
(n)u/an/2!22/n. ~23!

It is clear from Table II that there is quite fast convergence
the sequence$Rn% near the pointa;5. So if the unevaluated
higher-order energy terms conserve the existing tendenc
convergence of the sequence$Rn%, then the series Eq.~21!
has a finite radius of convergenceR;5.

IV. CONCLUSION

The main purpose of this paper is to develop the ma
diagrammatic technique for the optical large polaron pro
lem in the weak-coupling limit. The first four terms of th
ground-state energy and the first three terms of the effec
mass of the one-dimensional polaron are evaluated by m
of this technique. The suggested technique is acceptable
any N-dimensional optical large polaron. The results o
tained are compared with the results from Feynman pola
theory. The radius of convergence of the PT series for
one-dimensional polaron is estimated by the Cauc
Hadamard criterion.
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TABLE II. First four terms of the sequence$Rn%.

n 2 4 6 8 `

Rn 1 4.060207 4.910708 5.068795 R
.
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