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Perturbation theory for the one-dimensional optical polaron
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The one-dimensional optical polaron is treated on the basis of perturbation theory in the weak-coupling
limit. A special matrix diagrammatic technique is developed. It is shown how to evaluate all terms of the
perturbation theory for the ground-state energy of a polaron to any order by means of this technique. The
ground-state energy is calculated up to eighth order of perturbation theory. The effective mass of an electron
is obtained up to sixth order of perturbation theory. The radius of convergence of the series obtained is
estimated.
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I. INTRODUCTION p2 : .
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Nowadays there is continuing interest in low-dimensional

- : . . D

structures~® The one-dimensional polaron problem is rel-

evant in semiconductor physics, where with state-of-the-artvherew, is the frequency of the phonon with momentkm

nanolithography it has become possible to confine electrorigote that for the optical polaroa,=w does not depend on

in one directiod (quantum wires and in linear conjugated k and Vy=2Y4(a/L)"?]; p and x are the momentum and

organic polymer conductofsA treatment of the polaron Space operators of the electraay; and a, are the creation

problem in quantum dots can be found in Refs. 4 and 5. and annihilation operators of the phonon with momentgm
There is much theoretical work where the polaron prob-L is the normalized length; and acts as a coupling constant

lem is investigated by means of perturbation the@y).®~° of the electron-phonon interaction. Our units are such that

The series of perturbation theory is useful for verifying ap-7. ®. and the electron mass are unity. Below we shall make

proximate nonperturbative methods in the weak-couplin .he usu'al sim'plifying assumption that the crystal lattice acts
limit. 26-2°PT for theN-dimensional polaron was developed ike a dielectric medium. This means that we can replace the

sumz, by an integralL fdk/27r.

in Ref. 9, where the perspective ofNLlexpansions is dis- : o
Let us consider the weak-coupling limit<1 for the po-

cussed. The technique ofNLexpansion was developed later ; L .

for the optical polaron in Ref. 21. Up to now the first three laron with the Hamiltoniar(1). After doing the Lee-Low-
. . Pines transformation

terms of the weak-coupling expansion for the ground-state

energy of the bulk polaron have been calculdiddee also H =U"'HU )
Refs. 11-13 as well as two terms of the surface polaron '
energy and three terms of the wire polaron enefdy.An |w)=U|w") &)

investigation of the convergence of the PT series for the bulk
polaron can be found in Ref. 22.

In this paper the matrix diagrammatic technique is devel- Uzex;{i(P—E kajay
oped for an optical large polaron. This technique permits one K

to evaluate any term of the PT, in principle. The ground-statgynerep is ac number representing the total system momen-

energy of the one-dimensional polaron is calculated up tQum, we obtain the Schdinger equation(SE) for Eq. (1) in
eighth order of PT by using this technique. The radius ofihe form

convergence of the PT series is estimated by means of the
Cauchy-Hadamard criterion with respect to the calculated (Ho+Hy)[P")=E[V"),
terms of the series.

In Sec. Il the matrix diagrammatic technique is devel- 1
oped. In Sec. lll the results obtained for the ground-state Ho=§<P_; kalak
energy and the effective mass of an electron are given. The
radius of convergence of the PT series is also estimated.

X[, (4)

2
+ Ek ajay, (5)

H]_:; Vk(al+ak).

II. THE MATRIX DIAGRAMMATIC TECHNIQUE
FOR THE POLARON PROBLEM
IN THE WEAK-COUPLING LIMIT

Let us use the conventional perturbation thédfgr the SE
Eq. (5) in the Fock basis, wherél, is the unperturbed
Hamiltonian. Thus, if the zero approximation of the vector
The Hamiltonian of the one-dimensional optical large po-state|¥') is the vacuum state of the phonon fi¢@) then
laron is given by*!® the ground-state energy ¢f, is given by E{”)=(0|H|0)
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=P?2. It is easy to verify that all the odd terms of PT are pution of phonons after passing thith vertex, where one

equal to zeroE{V=E{)=-..=0. The second order of the phonon is either created or annihilateid=(1,2, . . . ,n—1).
PT i The value ofN;;=1 or O corresponds to the existence or
absence of theth phonon between thigh and ( +1)th ver-
E@_(H 1 H. )= 22 = dky tices. The generation of all connected diagrams forritre
o = 1h70 V™ om ) _. © 1 ) ' order is realized by selecting/2Xn—1 matrices with re-
Eo'—5(P—k)"~1 spect to the rules
(6)
where hy=E{"—H, and (0|- - -|0)—(---). This term is 2 nt
defined by one connected diagram Njj=0 or 1, ;1 Nj; #0, 121 N;j #0,
ky

: > Nip=1, > Nip =1, (9)
i=1 i=1

The thick line corresponds to electron propagation with mo-
mentumP —k; . The thin line corresponds to propagation of

a virtual phonon with momentur, . The bold points on the n-1
thick electron line correspond to vertices, where a phonon is >IN =Ny =1.
either created or annihilated. Below we shall give the Feyn- = .

man rules for the connected diagrams represented in the ma-

trix form. The number of diagrams increases in the next or-

ders of PT: two connected diagrams in the fourth order, telyve have to keep only one arbitrary matrix among the.matri-
connected diagrams in the sixth order, 74 connected di ces that are transformed into each other by permutating ma-

grams in the eighth order, and so on. There are also unco rix rows. Thus, the whole set of connected diagrams can be

: : < Obtained in matrix form by means of any SCA. Using the
nected diagrams. These diagrams can be evaluated by diffe? hical diagrammatic techniqli is easy to find the next

entiating the energy terms, which are the sums of thegrflpf i di ! hnigue:
corresponding connected diagrams, with respeﬁg?é (see fule for our matrix diagrammatic technique:
below). Note that all multidimensional integrals correspond-
ing to the diagrams are evaluated by residue theory. This can 12,\ M2 ¢ 4o o
be seen from Eq10) below. Thus, there is a technical prob- ||N||<—>( 5 ) f dkl"'f dkpo
lem in generating and evaluating all diagrams in the higher 7’ - o
orders. n—1 ni2 2 ni2 -1

Now we shall show how to build the matrix diagrammatic x [T [EQ- _< P-> N k-) DN | .
technique that permits us to generate all connected diagrams =i 02 =3 T B = T
by means of any modern system of computer algéB24). (10)
Any connected diagram can be represented inntieorder
of PT by using am/2Xx (n—1) matrix||N||, wheren is an
even number. For example, let us consider the energy teriAny diagram represented in the matrix form corresponds to
of fourth order a=4). It has the forrf? an analytical expression. So that in accordance with the rule

This term is defined by the sum of two connected and one
unconnected graphical diagrarhs,

O e N B Sy

2

@)

l/2a, . 1 -1
(1) - f, dkl[Ego)—z(P—kl)z—l} :

0 1 0 (2m)%) -
These diagrams can be written in the following matrix form: [ o 1 ) -1
X| Ey —E(P—kl) -1
1 11 1 10 (1) )
SRR I N, :
o 1 0o/"lo 1 /T © X EBO)_%(P—kl—kz)z—Z}
where theith row of ||N|| describes the history of propaga- ) .
tion of the ith phonon with momentum k; (i « E(O)_E(P_k )2—1
=1,2,...n/2), and thejth matrix column shows the distri- I 0 ! '
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ES - E(P—kl)z—l}
o i
Eg)_E(P_kl_kz)z_z}

o1 24|
EQP -5 (P—k)*-1| .

PHYSICAL REVIEW B 63 153405

IIl. RESULTS

Let us carry out an asymptotic expansion of the ground-
state energy up to eighth order of PT. First it is necessary to
generate and evaluate all connected diagrams for the corre-
sponding orders with respect to the conditid@g and rule
(10). Second, we have to summarize the diagrammatic terms
obtained and unconnected diagrammatic terms defined by
Eqgs.(12—(14). Thus, the polaron ground-state energy up to
eighth order is EO(P)=E§:0EE)”)(P), where the energy
terms are defined by

2

In order to summarize all unconnected diagrams inritte
order we can use the general structure of the conventional
perturbation theory serié$.Note that the term of PT

n—-1
> 11

contains all connected diagrams. This term does not contain
unconnected diagrams at all. The other termsf order

E{V" contain unconnected diagrams modifying the powers of EG(P)=—
the corresponding electron propagators in the previous or-

ders. If the dependence & (s<n) on E{) is explicitly

conserved theE{"" can be represented as a functioreg?® =
and its derivatives. For exampl&{"" is written for some

particular cases as follows:

1
Eén)cz < Hl(h_Hl
0

ES(P)=—

5

P
EQ(P)=5,

21/2

P2(P?-4)+6

- a=-
(2_ P2)1/2

P2(P2-3)+4

a+O(P4),

(2—P?)32(4— P2)1/2_

3V2

—~-1

(2-P?)?

a? +P— 8—5y2)a?+0(P%),

EI"=E,E}, (12 63
(6) _
EQ(P)= (5 8[ I 1102[)
1
EQ =57 (Eo) B3+ Ex(E5)+(EE)', (13 P2( 15,
2\ a4
1 1

EO"=E,(E) %+ 35+ (E) 2E4E)+ =7 (E2) °EY +E4(E))? L1 /2859 23+ 0P

1

N %(Ez)ZEZ. (14) TABLE I. The ground-state enerdyy(P).

' Y —E} —Ey(0) from Eq.(21)
whereE,=E{"® and a prime denotes a derivative with re- g1 0.100376 0.100615
spect toE(”) . All the integrals(10) are evaluated analytically 0.5 0.510063 0.516315
by means of the residue theSfywithout expanding them in 1.0 1.044445 1.070619
powers ofP. Then the effective mass of an electron is de- 15 1.613146 1.672654
fined by 2.0 2.236957 2.334434

2.5 2.959682 3.070245

1 32E0 3.0 3.828595 3.896646

o P2 (15 33 4.426768 4.443709

P=0 3.4 4.639049 4.635570

35 4.857770 4.832468

We note that the suggested matrix diagrammatic tech- 4.0 6.047798 5.898815
nigue is acceptable for any-dimensional optical large po- 45 7.398112 7.119062
laron, but the rulg10) has to be generalized with respectto 50 8.908301 8.518858

the Feynman rules faX-dimensional polaron$.
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EOP) 442369 218 861+ 151925 261 33§) , TABLE II. First four terms of the sequend®,}.
= - - o
0 15456 77282 2208/3 2208/6 n 2 4 6 8 %
+0(P?). (20 R, 1 4.060207 4.910708 5.068795 R
Since the term&(®)(P) andE)(P) are too bulky, we have
only written out their expansion in powers of momentém Let us estimate the radius of convergence of the PT series
Using Egs.(16)-(20) the ground-state energy of a slow- for Ey(0). Theradius of convergencR can be evaluated by
moving polaron is written as the Cauchy-Hadamard criterioh
p2 ) . R= lim Ry= lim (|E{V|/a™?) =2 (23
Eo(P)= 2—*—a—0.060 660 1%“—0.008 444 3% nsos n—oo
m
. 5 Itis clear from Table Il that there is quite fast convergence of
—0.0015148&"+0(a”). 2D the sequencéR,} near the poine~5. So if the unevaluated
The effective mass of the electron is defined by Ed): higher-order energy terms conserve the existi_ng tendency to
convergence of the sequenfi®,}, then the series Eq21)
a 5-22 33 183 has a finite radius of convergenBe-5.
m*:1+5+ a’+ g w5
812 32/2 IV. CONCLUSION
1 /98593 239 . 4 The main purpose of this paper is to develop the matrix
*5V 13824 m a’+o(a’) diagrammatic technique for the optical large polaron prob-

lem in the weak-coupling limit. The first four terms of the

~1+0.5a+0.191 941 &2 ground-state energy and the first three terms of the effective
mass of the one-dimensional polaron are evaluated by means
of this technique. The suggested technique is acceptable for

. . any N-dimensional optical large polaron. The results ob-
Now let us compare the asymptotic formula obtained for. y P ge p

) ) .tained are compared with the results from Feynman polaron
the polaron ground-state energy with th? energy obtained 'ﬂweory. The radius of convergence of the PT series for the
the framework of Feynman polaron thebfy" (see Table ). one-dimensional polaron is estimated by the Cauchy-
For «<3.4 the asymptotic energy E1) lies lower than Hadamard criterion
the Feynman variational resul; with maximum deviation '
about 4%. Fore=5 Eg.(21) is not correct because the ra-

+0.069 109 6>+ 0(a?). (22

dius of convergence of the seriesRs-5 (see beloyw. Note ACKNOWLEDGMENTS
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