
PHYSICAL REVIEW B, VOLUME 63, 144531
Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors
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The singletss- andd-, and tripletp-wave pairing symmetries in quasi-one-dimensional organic supercon-
ductors can be experimentally discriminated by probing the Andreev bound states at the sample edges. These
states have the energy in the middle of the superconducting gap and manifest themselves as a zero-bias peak
in tunneling conductance into the corresponding edge. Their existence is related to the sign change of the
pairing potential around the Fermi surface. We present an exact self-consistent solution of the edge problem
showing the presence of the midgap states forpx-wave superconductivity. The spins of the edge state respond
paramagnetically to a magnetic field parallel to the vectord that characterizes triplet pairing.
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I. INTRODUCTION

Quasi-one-dimensional~Q1D! conductors of the tetra
methyltetraselenafulvalene (TMTSF)2X family1 ~the Bech-
gaard salts! are the first organic materials where superco
ductivity was discovered twenty years ago withTc'1 K.2

Abrikosov proposed that the superconductivity isp-wave
triplet,3 because it is suppressed by nonmagnetic impuriti4

Gor’kov and Je´rome observed that the upper critical ma
netic fieldHc2 exceeds the Pauli paramagnetic limit, whi
is also a signature of triplet superconductivity.5 Recent data
show thatHc2 exceeds the Pauli limit by a factor greater th
4.6 Another signature of triplet pairing is that the Knight sh
does not change between the normal and supercondu
states.7 However, the temperature dependence of the NM
relaxation rate8 and analogy with the high-temperature sup
conductors led to an alternative proposal of thed-wave
symmetry.9 It was also proposed that a singlet Q1D sup
conductivity can overcome the Pauli paramagnetic limit
forming the spatially nonuniform Larkin-Ovchinnikov
Fulde-Ferrell state.10 However, the quantitative analysis o
the experimental data6 by Lebedet al.11,12 did not support
this proposal and favored triplet pairing. Thef wave13 was
also proposed recently. So the pairing symmetry in the Be
gaard salts remains hotly debated.

In this paper, we propose a phase-sensitive method
distinguish experimentally between thes-, p-, and d-wave
symmetries. We employ a relation between sign change
the superconducting pair potential around the Fermi surf
and existence of the surface Andreev bound states, dis
ered for p wave by Buchholtz and Zwicknagl14 and for d
wave by Hu.15 For different superconducting symmetries, w
determine which edges of (TMTSF)2X must have the An-
dreev bound states. The energy of these states is in
middle of the superconducting gap, thus they can be
served in tunneling experiments as zero-bias conducta
peaks.14,16,17We also obtain an exact self-consistent solut
of the edge problem for apx-wave Q1D superconductor b
mapping it onto the kink soliton solution for a one
dimensional~1D! charge-density wave.18 We show that the
spins of the edge states should exhibit a strong paramag
response to a magnetic field parallel to the polarization v
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tor d of the triplet pairing and propose the correspondi
experiment. All calculations are performed at zero tempe
ture.

II. Q1D SUPERCONDUCTIVITY

Classification of superconducting pairing symmetry
particularly simple for a 1D electron gas. Its Fermi surfa
consists of two points6kF . Let us introduce the operator
ĉs

a of the right (a5R) and left (a5L) moving electrons
with the momenta close to6kF and the spins5↑,↓. The

Cooper pairing can be either singlet^ĉs
aĉs8

ā &}ess8D
a

5 i ŝss8
(y) Da or triplet ^ĉs

aĉs8
ā &} i ŝ (y)(d•ŝ)Da. Here ā

5L,R for a5R,L; ess8 is the antisymmetric metric ten
sor, andŝ are the Pauli matrices acting in the spin spaced
is a unit vector of polarization of the triplet state. Since t
fermion operators anticommute, the superconducting pair
tential has either the same (DR5DL) or the opposite (DR5
2DL) signs at the two Fermi points for the singlet or tripl
pairing.

The real (TMTSF)2X materials are three-dimension
~3D! crystals consisting of parallel chains. In the tigh
binding approximation, the electron energy dispersion~mea-
sured from the Fermi energy! can be written as19

e~k!5vF~ ukxu2kF!22tb cos~kyb!22tc cos~kzc!. ~1!

In the right-hand side of Eq.~1!, the first term represents th
dispersion along the chains, linearized near the Fermi ene
with a Fermi velocityvF . The two other terms describe ele
tron tunneling between the chains in they and z directions
with the amplitudestb andtc . k5(kx ,ky ,kz) is the 3D elec-
tron momentum,b andc are the lattice spacings in they and
z directions, and\51.

The Fermi surface corresponding to Eq.~1! consists of
two disconnected sheets, sketched in Fig. 1 with a gre
exaggerated warping in theky direction. In the simplest case
the superconducting pair potentialD(k) is equal to a con-
stantDa on a given sheeta of the Fermi surface, andDR

56DL for the singlet or triplet pairing, respectively. In bot
cases, the superconducting gap has no nodes on the F
©2001 The American Physical Society31-1
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surface. These two symmetries can be calleds andpx waves.
Other symmetries will be discussed at the end of the pa
~see Fig. 3!.

Electron eigenstates of the energiesEn are described in a
superconductor by the Bogolyubov-de Gennes~BdG! wave

functionsCn5ei r•kF@un,s(x),es8s̄8vn
s̄8(x)#, whereun,s and

vn
s̄8 are the electronlike and holelike components with

spinss and s̄8, and s̄85↓,↑ is the spin index opposite to
s85↑,↓. The 3D Fermi momentakF belong to the warped
Fermi surface shown in Fig. 1. Near the Fermi surfacea, the
wave functions satisfy the linearized BdG equation20,21

S 2 iavF]x ~ŝ•d!Da~x!

~ŝ•d!Da* ~x! iavF]x
D S un

a

vn
aD 5EnS un

a

vn
aD , ~2!

whereavF56vF for a5R,L. The term (ŝ•d) is present
for triplet superconductivity and absent for the singlet one
operates on the spin indices of the componentsu andv.

In general, the vectord is a function of the position on the
Fermi surface, e.g., in3He-A and 3He-B.22 The quantitative
analysis12 of the experimental data6 gives the following in-
formation about the components of the vectord in the
(TMTSF)2X crystal: da5” 0, db50, anddc is unknown. In
this paper, we make the simplest assumption thatd is a real
vector pointing along thea axis parallel to the chains~the
so-called polar state22!. If we select the spin-quantizatio
axis alongd, then the 434 matrix Eq.~2! decouples into two
232 matrix equations for the wave functions (us ,ess̄v s̄)

S 2 iavF]x sDa~x!

sDa* ~x! iavF]x
D S un,s

a

svn
a,s̄D 5EnS un,s

a

svn
a,s̄D . ~3!

Here the indexs5↑,↓ takes the values6 when used as a
coefficient. It is present in the off-diagonal termsDa only
for triplet, but not for singlet pairing. To simplify equation

FIG. 1. Top: (TMTSF)2X samples with the lines indicating 1D
chains. The left and right panels sketch tunneling along thea andb
axes. Bottom: The Fermi surface of (TMTSF)2X, sketched with a
greatly exaggerated warping in theky direction. Reflection from the
edge perpendicular~parallel! to the chains changes electron m
mentum fromL to R (R8 to R andL8 to L), as shown in the left
~right! panel.
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we omit the spin indexs in Secs. III and IV and restore it in
Sec. V. Notice that Eqs.~2! and ~3! depend only on the 1D
coordinatex, because the 3D dispersion~1! in ky andkz has
been absorbed into the definition of the 3D Fermi mome
kF .

III. EDGE STATES

Let us consider a system occupying the semi-infin
spacex>0 with an impenetrable edge atx50. When the
electron reflects from the edge specularly, itskx momentum
changes sign, whereas the other components remain
same. The electron scatters from the pointkF

L at the left sheet
of the Fermi surface to the pointkF

R at the right sheet, as
shown in the left panel of Fig. 1. Thus, its BdG wave fun
tion C is a superposition of theR andL terms

C5
1

A2
Fei r•kF

RS un
R~x!

vn
R~x!

D 2ei r•kF
LS un

L~x!

vn
L~x!

D G . ~4!

We have selected the minus sign in Eq.~4! so that the im-
penetrable boundary conditionC(x50)50 gives

uR~0!5uL~0!, vR~0!5vL~0!. ~5!

First let us use a step-function approximation for the pa
ing potential uDa(x)u5D0u(x). Then, the plane wave
@ua(x),va(x)#}eikxx are the eigenfunctions of Eq.~3! with
the energiesE56A(vFkx)

21D0
2. However, the energy is

real also whenkx is imaginary~but not a combination of rea
and imaginary parts! kx5 ik and E56AD0

22(vFk)2. For
k.0, this solution describes an electron eigenfunction loc
ized near the edge atx50 @ua(x),va(x)#}e2kx. Because
ua/va5Da/(a ivFk1E), the boundary condition~5! can be
satisfied only forpx wave withDR52DL, but not fors wave
with DR5DL. Thus, in thepx case, there is an edge electro
state with the energy in the middle of the superconduct
gapE50, and the localization length is equal to the coh
ence length 1/k5vF /D0.

The step-function approximation does not take into
count the BdG self-consistency conditionDa(x)
5g(nun

a(x)vn
a* (x), where g is the effective coupling

constant,23 and the sum is taken over all occupied states w
En,0 ~at zero temperature!. To solve the problem, let us
extend the wave function~4! from the positive semispacex
.0 to the full space 2`,x,`. Let us define
@u(x),v(x)#5@uR(x),vR(x)# and D(x)5DR(x) for x.0,
and @u(x),v(x)#5@uL(2x),vL(2x)# and D(x)5DL(2x)
for x,0. Because of the boundary condition~5!, the wave
function @u(x),v(x)# is continuous atx50 and satisfies a
single BdG equation for2`,x,` with the BdG self-
consistency condition

S 2 ivF]x D~x!

D* ~x! 1 ivF]x
D S un~x!

vn~x!
D 5EnS un~x!

vn~x!
D , ~6!

D~x!5g(
n

un~x!vn* ~x!. ~7!
1-2
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MIDGAP EDGE STATES AND PAIRING SYMMETRY OF . . . PHYSICAL REVIEW B 63 144531
Equations~6! and ~7! coincide with the exactly solvable
equations describing 1D charge-density wave
polyacetylene.18 The px-wave problem, whereD(x) changes
sign, D(1`)52D(2`), maps onto the kink soliton
solution18

D~x!5 iD0 tanh~kx!; ~8!

E050, S u0~x!

v0~x!
D 5

Ak

2 cosh~kx! S 1

21D ; ~9!

Ek56AvF
2k21D0

2, ~10!

S uk~x!

vk~x!
D 5

eikx

2EkALx
S Ek1vFk1D~x!

Ek2vFk2D~x!
D , ~11!

whereLx is the length of the sample along the chains. O
can check explicitly that solutions~8!–~11! satisfy Eqs.~6!
and ~7!.24 They also have the property of supersymmetry25

The localized electron state~9! with E050 corresponds to
the Andreev edge state in thepx-wave superconductor. In th
s-wave case, whereD(x) does not change sign:D(1`)
5D(2`), the solution of Eqs.~6! and ~7! gives a uniform
D(x), which does not have bound states. The existence o
midgap state in the case whereD(x) changes sign is guaran
teed by the index theorem and does not depend on the
tailed functional form of the pair potential.26

BdG states are described by the operatorsĈ5uĉ

1v* ĉ†. The expectation value of electric charger in the
edge states is zeror}uu0u22uv0u250. For a 1Dpx-wave
superconductor with only one species of spin, Eqs.~4! and
~9! imply that the two edge states at the opposite ends
described by the Majorana operators of the opposite pa

Ĉ†56Ĉ.27 There was a proposal to use such edge Ma
rana fermions for quantum computing.27 However, in a Q1D
px-wave superconductor, the midgap states with differ
momentaki parallel to the edge and spinss form a degen-

erate continuum withĈki ,s
† 56Ĉ2ki ,s̄ .28

IV. TUNNELING

Let us consider electron tunneling between the superc
ducting (TMTSF)2X and a normal metallic tip. The tunne
ing junction can be modeled as two semi-infinite regio
normal ~N! and superconducting (S), with a flat interface
between them. Following Refs. 16, 29, and 30, we solve
BdG equations in the ballistic regime assuming specular
flection and the translational invariance parallel to t
interface.31 To make the problem analytically tractable, w
use the step-function approximation for the pair potential.
the interface, we impose the boundary conditionsCN5CS

and v̂NCN5 v̂SCS12iHCN ,32 where v̂N,S are the compo-
nents of the velocity operators perpendicular to the interf
in metal and superconductor, andH is the strength of the
interface barrier. From the solution of the BdG equations,
find the probabilitiesB(E,ki) andA(E,ki) of the normal and
Andreev21 reflections as functions of the electron energyE
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and momentumki parallel to the interface. They determin
the dimensionless conductanceG511A2B in the formula
for the electric current through the contact29

I 5
2eS

h E d2kidE

~2p!2
@ f ~E2eV!2 f ~E!#G~E,ki!. ~12!

HereS is the contact area,V the bias voltage,f (E) the Fermi
function,e the electron charge, andh the Planck constant. I
follows from Eq.~12! that the differential conductance of th
contact at zero temperature,

Ḡ~V!5
dI

dV
5

2e2S

h E d2ki

~2p!2
G~eV,ki!, ~13!

is proportional to the average overki of the dimensionless
conductanceG.33 The latter is determined by the transmi
sion coefficientT at a givenki ~Refs. 16 and 32!

G65T
11TuGu21~T21!uGu4

u16~T21!G2u2
, ~14!

where

G~E!5H @E2sgn~E!AE22D0
2#/D0 , uEu>D0 ,

~E2 iAD0
22E2!/D0 , uEu<D0 ,

~15!

T54vNvS /@~vN1vS!214H 2#. ~16!

The 6 sign in Eq.~14! is the relative sign of the pair poten
tials for the two branches of BdG quasiparticles involved
tunneling. For tunneling along the chains, the two branc
correspond to the pointsL andR in the left panel of Fig. 1,
and the sign in Eq.~14! is sgn(DRDL), 1 for s wave and
2 for px wave. Averaging in Eq.~13! is performed taking
into account thatvN andvS in Eq. ~16! andD0 in Eq. ~15!
may depend onki .

As follows from Eq.~14!, G1 andG2 coincide for a fully
transparent interface (T51) G15G2511uGu2.29 How-
ever, typicallyT,1, both because of the barrier potentialH
and the mismatch of the normal Fermi velocitiesvN5” vS in
metal and superconductor in Eq.~16!.32 At low interface
transparencyT!1, G2 , andG1 behave as shown in the le
and right panels of Fig. 2 forT50.5 andT50.25. Inside the
energy gap, whereuGu51, G2(E) has a Lorentzian shap
with the maximum of 2 atE50, the width proportional toT,
and the minimum proportional toT2 at uEu5D0

G2~E!5
T2/2~12T!

~E/D0!21T2/4~12T!
, uEu<D0 . ~17!

G1(E) shows the opposite behavior: a minimum propo
tional to T2 at E50 and the maxima of 2 atuEu5D0

G1~E!5
T2/2~12T!

12~E/D0!21T2/4~12T!
, uEu<D0 .

Both G1 andG2 approach the normal-state conductanceT
at uEu@D0.
1-3
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The zero-bias conductance peak~ZBCP!, shown in the
left panel of Fig. 2, is a manifestation of the midgap Andre
bound states. They exist at those edges where momen
reflection from the edge connects the points on the Fe
surface with opposite signs of the superconducting pair
tential. As shown in the left and right panels of Fig. 1, r
flection from the edge perpendicular to the chains connecL
to R, and reflection from the edge parallel to the chains c
nectsR8 to R andL8 to L. By comparing the signs of the pa
potential at these points for the superconduct
symmetries12 listed in Table I and sketched in Fig. 3, w
determine whether ZBCP must be present in tunneling
those edges. Comparison of Table I with the experim
should uncover the superconducting symmetry
(TMTSF)2X.

V. SPIN RESPONSE

Now let us discuss the spin response of the edge state
a triplet superconductor subject to an external magnetic fi
H. ~Here we do not consider orbital effects of the magne
field, such as the Meissner effect.! In this case, the matrix in
Eq. ~2! should be replaced by the following matrix:

S 2 iavF]x2mB~H•s! ~ŝ•d!Da~x!

~ŝ•d!Da* ~x! iavF]x2mB~H•s!
D , ~18!

FIG. 2. Dimensionless conductancesG2 ~left panel! and G1

~right panel! given by Eq.~14! are plotted versus energyE for the
transmission coefficientsT50.5 and 0.25.G1 andG2 correspond
to the cases where the superconducting pairing potential has
same or the opposite signs for the two branches of BdG quas
ticles involved in tunneling~the pointsL andR, R8, andR, L8 and
L in Fig. 1!.

TABLE I. Presence~yes! or absence~no! of a zero-bias conduc
tance peak in electron tunneling along thea andb axes~see the top
left and right panels in Fig. 1! for different symmetries of the su
perconducting pairing potentialD(k) ~Refs. 34 and 35!.

Symmetry D(k) a-axis ZBCP b-axis ZBCP

s const no no

px sin(kx a) yes no

py sin(ky b) no yes

dx22y2 cos(ky b) no no

dxy sin(kx a)sin(ky b) yes yes
14453
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wheremB is the Bohr magneton, and the electrong factor is
2.

If Hid, then, by selecting the spin-quantization axis alo
d, the 434 matrix Eq. ~18! is decoupled into two 232
matrix equations similar to Eq.~3! for the wave functions
(us ,ess̄v s̄) with the matrix

S 2 iavF]x2smBH sDa~x!

sDa* ~x! iavF]x2smBH D . ~19!

For a given spin projections, the magnetic fieldH enters Eq.
~19! as a unity matrix and simply shifts the spectrum~9! and
~10! by 2smBH. Thus, the energies of the up and down sp
states become split by7mBH, including the midgap state
E057mBH. Because this state is half filled, the edge sta
with the spin parallel~antiparallel! to the magnetic field be-
come completely occupied~empty!. This generates spin\/2
and magnetic momentmB at the end of each chain. Such
giant magnetic moment was predicted by Hu and Yan15,36for
the edge states in a singletd-wave superconductor. In a trip
let superconductor, the effect is similar, but anisotropic.

Indeed, suppose now thatH'd. In this case, it is conve-
nient to select the spin-quantization axisẑ alongH and thex̂
axis alongd. Then Eq.~18! separates into two 232 matrix
equations similar to Eq.~3! for the wave functions
(us ,es̄svs) with the matrix

S 2 iavF]x2smBH Da~x!

Da* ~x! iavF]x1smBH D . ~20!

The magnetic fieldH can be eliminated from Eq.~20! by
adjusting the Fermi momenta for the up and down spin sta
kF,s5kF1smBH/vF . Thus, the energy spectrum of the sy
tem remains the same as in Eqs.~9! and ~10!. Particularly,
the energy of the midgap state does not split,E050, thus no
unbalanced spin and magnetic moment are generated o
edge.

FIG. 3. Different symmetries of the pairing potentialD(k) in a
Q1D superconductor. The solid and dotted lines represent the
tions of the Fermi surface with the opposite signs of the pair
potential.

FIG. 4. Schematic experimental setup to measure magnetic
ceptibility of the edge states localized at the ends of the chains
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We see that the edge spin response of a triplet super
ductor is opposite to its bulk spin response. It is w
known22 that the bulk spin susceptibility forH'd is the
same as in the normal state, whereas forHid it vanishes at
zero temperature. For the edge states, the spin response
ishes forH'd and is paramagnetic forHid. Nominally, the
edge spin susceptibility is infinite, because, formally, an
finitesimal magnetic field can completely polarize the ed
spins. We can only estimate the maximal magnetic mom
which is mB59.3310224 A m2 per chain ormB /bc59
31026 mA per unit area of the edge, whereb50.77 and
c51.35 nm.19

The generation of paramagnetic moments by the e
states forHid could be observed experimentally by meas
ing magnetic susceptibility with a coil as shown in Fig.
where we assume thatd is directed along the chains. In th
bulk, far from the edges, the susceptibility should be diam
netic, because of the orbital Meissner effect37 and vanishing
spin bulk susceptibility forHid. However, when the coil is
moved toward the sample end, the susceptibility sho
change sign and become paramagnetic because of the
states. They are localized within the coherence lengtj
5\vF /D050.6 mm, where we usedD050.22 meV, vF

5taa/A2\5190 km/s, ta50.25 eV, anda50.73 nm.19

The effect should depend on the coil orientation relative
the vectord. Therefore, this experiment could confirm th
existence of the edge states and the pairing symmetry in
(TMTSF)2X superconductors.

VI. CONCLUSIONS

We have constructed an exact analytical self-consis
solution of the edge problem for apx-wave Q1D supercon
ductor by mapping it onto the kink soliton solution for a 1
ys

,

ys
.

ev
s
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charge-density wave. The edge electron midgap states
when the pairing potential has opposite signs at the differ
parts of the Fermi surface connected by momentum refl
tion from the edge. These states manifest themselves as
bias peaks in tunneling conductance. Thus, the pairing s
metry of the Q1D superconductors can be determined
tunneling into the edges perpendicular and parallel to
chains. The spins of the edge state respond paramagneti
to a magnetic field parallel to the vectord that characterizes
triplet pairing, generating the magnetic momentmB per
chain.

The (TMTSF)2X materials are expected to have electr
edge states also in the magnetic-field-induced spin-den
wave phase, which exhibits the quantum Hall effect.38 Those
states are chiral and have dispersion inside the energy
The midgap states discussed in the present paper also ac
chiral dispersion due to the orbital effect of a magnetic fie
similar to cuprates.39 Another interesting example of th
edge states in a 1D electron gas was studied theoretical
Ref. 40 for the Luther-Emery fermions in the bosonized re
resentation.

Note added in proof.A more subtle consideration of th
results of Sec. V shows that the spin of an edge stat
actually fractional and is equal to\/4 ~per each end of each
chain!, not \/2. Correspondingly, the magnetic moment
mB/2, and the numerical estimates given in Sec. V should
multiplied by an additional factor 1/2. Derivation of thes
results will be given in a separate paper. The authors
grateful to A. Yu. Kitaev and D. A. Ivanov for very illumi-
nating discussions of this subject.41

K.S., H.J.K., and V.M.Y. were supported by the Packa
Foundation and NSF Grant No. DMR-9815094; I.Zˇ . and
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