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Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors
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The singletss- andd-, and tripletp-wave pairing symmetries in quasi-one-dimensional organic supercon-
ductors can be experimentally discriminated by probing the Andreev bound states at the sample edges. These
states have the energy in the middle of the superconducting gap and manifest themselves as a zero-bias peak
in tunneling conductance into the corresponding edge. Their existence is related to the sign change of the
pairing potential around the Fermi surface. We present an exact self-consistent solution of the edge problem
showing the presence of the midgap stategfewave superconductivity. The spins of the edge state respond
paramagnetically to a magnetic field parallel to the vedttinat characterizes triplet pairing.
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. INTRODUCTION tor d of the triplet pairing and propose the corresponding
experiment. All calculations are performed at zero tempera-
Quasi-one-dimensionalQ1D) conductors of the tetra- ture.
methyltetraselenafulvalene (TMTSH) family! (the Bech-

gaard saltsare the first organic materials where supercon- IIl. Q1D SUPERCONDUCTIVITY
ductivity was discovered twenty years ago with~1 K.
Abrikosov proposed that the superconductivity psvave Classification of superconducting pairing symmetry is

triplet,® because it is suppressed by nonmagnetic impufities particularly simple for a 1D electron gas. Its Fermi surface
Gor’kov and Jeome observed that the upper critical mag- consists of two pointstkg. Let us introduce the operators
netic fieldH¢, exceeds the Pauli paramagnetic limit, which % of the right (x=R) and left (@=L) moving electrons

is also a signature of triplet superconductivitRecent data with the momenta close ta ke and the spinc=1,|. The
show thatH ., exceeds the Pauli limit by a factor greater thanCooper paifing can be either singlét}ﬁf//i,)ocser“

4 Another signature of triplet pairing is that the Knight shift () _ o . _
does not change between the normal and superconductirgios.,A® or triplet (g2ys)xioc®(d-a)A*. Here «
states. However, the temperature dependence of the NMR=L,R for a=R,L; €, is the antisymmetric metric ten-
relaxation ratéand analogy with the high-temperature super-sor, ande are the Pauli matrices acting in the spin spate;
conductors led to an alternative proposal of tevave s a unit vector of polarization of the triplet state. Since the
symmet_ryf? It was also proposed that a singlet Q1D super-fermion operators anticommute, the superconducting pair po-
conductivity can overcome the Pauli paramagnetic limit bytential has either the samaR=A"%) or the opposite 4R=
forming the spatially nonuniform Larkin-Ovchinnikov- — ALy signs at the two Fermi points for the singlet or triplet
Fulde-Ferrell staté’ However, the quantitative analysis of pairing.

the experimental dafeby Lebedet al:*2 did not support The real (TMTSF)X materials are three-dimensional
this proposal and favored triplet pairing. Thevave’® was  (3p) crystals consisting of parallel chains. In the tight-
also proposed recently. So the pairing symmetry in the Bechyinging approximation, the electron energy disperdioea-

gaard salts remains hotly debated. N sured from the Fermi eneryjgan be written &$
In this paper, we propose a phase-sensitive method to
distinguish experimentally between tise p-, and d-wave e(K)=vr(|ky —ke) — 2t cogkyb) —2t. cogk,c). (1)

symmetries. We employ a relation between sign change of

the superconducting pair potential around the Fermi surfack the right-hand side of Ed1), the first term represents the
and existence of the surface Andreev bound states, discogispersion along the chains, linearized near the Fermi energy
ered forp wave by Buchholtz and Zwicknadland ford  with a Fermi velocityv . The two other terms describe elec-
wave by Hu'® For different superconducting symmetries, we tron tunneling between the chains in theand z directions
determine which edges of (TMTSEX must have the An- with the amplitudes;, andt.. k= (k,,ky,k,) is the 3D elec-
dreev bound states. The energy of these states is in tieon momentumb andc are the lattice spacings in tlyeand
middle of the superconducting gap, thus they can be obz directions, andi=1.

served in tunneling experiments as zero-bias conductance The Fermi surface corresponding to E@) consists of
peaks‘*117"We also obtain an exact self-consistent solutiontwo disconnected sheets, sketched in Fig. 1 with a greatly
of the edge problem for p,-wave Q1D superconductor by exaggerated warping in thg direction. In the simplest case,
mapping it onto the kink soliton solution for a one- the superconducting pair potentialk) is equal to a con-
dimensional(1D) charge-density wav¥ We show that the stantA® on a given sheetr of the Fermi surface, andR
spins of the edge states should exhibit a strong paramagnetie = A" for the singlet or triplet pairing, respectively. In both
response to a magnetic field parallel to the polarization veceases, the superconducting gap has no nodes on the Fermi
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b b we omit the spin index in Secs. Il and IV and restore it in
Sec. V. Notice that Eqg2) and(3) depend only on the 1D

a % a coordinatex, because the 3D dispersiéb) in k, andk, has
DE been absorbed into the definition of the 3D Fermi momenta
Ke.

L 4----%R L R Ill. EDGE STATES

I Let us consider a system occupying the semi-infinite
- spacex=0 with an impenetrable edge at=0. When the

! kx electron reflects from the edge specularly,kfsmomentum

. changes sign, whereas the other components remain the
r R’ same. The electron scatters from the paipat the left sheet
/b of the Fermi surface to the poirklﬁ at the right sheet, as
shown in the left panel of Fig. 1. Thus, its BdG wave func-

—kg +kg kx

-n/b

: (4)

FIG. 1. Top: (TMTSF}X samples with the lines indicating 1D tion ¥ is a superposition of th andL terms
chains. The left and right panels sketch tunneling alongataedb
axes. Bottom: The Fermi surface of (TMTSK) sketched with a 1] . UE(X) , u,';(x)
. . . . . L1/ F— ell’-kF —e”'kF
greatly exaggerated warping in tke direction. Reflection from the \/— R(X) L(X)
edge perpendiculafparalle) to the chains changes electron mo- 2 Un Un
m_entum fromL to R (R" to RandL’ to L), as shown in the left \y/a have selected the minus sign in Ed) so that the im-
(right) panel. penetrable boundary conditiofi(x=0)=0 gives

surface. These two symmetries can be caladdp, waves. uR(0)=u"(0), vR(0)=0%(0). (5)
Other symmetries will be discussed at the end of the paper ’
(see Fig. 3 First let us use a step-function approximation for the pair-

Electron eigenstates of the energigsare described in a ing potential [A*(x)|=Ao6(x). Then, the plane waves
superconductor by the Bogolyubov-de GengBdG) wave [u®(x),v*(x)]J=e'** are the eigenfunctions of E¢) with
functionsW,=e'" F[u, ,(X),e, 507 (X)], whereu,, , and  the energiesE =+ \/(vek,) 2+ A2. However, the energy is
v? are the electronlike and holelike components with thereal also wherk, is imaginary(but not a combination of real
spinso and o', ando’ = |, is the spin index opposite to and imaginary parisk,=ix and E= = JAg—(vg«)®. For
o'=1,|. The 3D Fermi moment&s belong to the warped >0, this solution describes an electron eigenfunction local-
Fermi surface shown in Fig. 1. Near the Fermi surfacéhe  ized near the edge at=0 [u®(x),v“(x)]=e” . Because

wave functions satisfy the linearized BdG equatfott u®/v“=A%(aivek+E), the boundary conditiob) can be
satisfied only fop, wave withAR=— Al but not forswave

—iavedy, (o d)A%(X) (uﬁ) (u“) with AR=AL. Thus, in thep, case, there is an edge electron
= n il (2)

- , " state with the energy in the middle of the superconducting
(o-d)A™*(x)  Tavgdy

gapE=0, and the localization length is equal to the coher-

where ave=*uve for a=R.L. The term -d) is present en(':l'ehtlaer;?;h—?lj:cléizlr?;‘ roximation does not take into ac-
for triplet superconductivity and absent for the singlet one. ltcount thg BdG sgrl)f—consistenc conditionA “(x)
operates on the spin indices of the componenésdv. y

— a akx H - .
In general, the vectat is a function of the position on the _ginungx)”n (), whgre g is the effectlvg coupllng.
Fermi surface, e.g., ifHe-A and 3He-B.22 The quantitative constant® and the sum is taken over all occupied states with

analysié? of the experimental datagives the following in- En<0 (at zero temperatujeTo solve the problem, let us
formation about the components of the vectbrin the €Xtend the wave functiof¥) from the positive semispace
(TMTSF),X crystal:d,#0, d,=0, andd, is unknown. In >0 10 the full space —e<x<e. Let us define
this paper, we make the simplest assumption thist a real [u(x),v(x)]=[u™(x) v (9] ?nd A(x)=2%(x) foer>0,
vector pointing along the axis parallel to the chainghe ~2nd [U(),v(X)]1=[u"(=x),v™(=x)] and A(x)=A"(—x)
so-called polar statd. If we select the spin-quantization oF X<0. Because of the boundary conditic®), the wave
axis alongd, then the 4< 4 matrix Eq.(2) decouples into two function [u(x),v(x)] is continuous ak=0 and satisfies a

. . . ingle B tion for—oo<x<o with the B If-
2X2 matrix equations for the wave functions(, e, ;v ) zogsiester?g/ fg#;tign ° e BdG se

—ic:zpax gA%x))( uﬁ‘;;):En( uﬁ:;)_ . (—ivpﬂx A(x) )(unm):E(un(x)) ©
oA (X)  iavedy )\ ov® v A*(x)  +ivgdy) \va(x)]  Moa(x))’

a
n

Un

Here the indexo=1,]| takes the values when used as a
coefficient. It is present in the off-diagonal tersm\“ only A(x)=gz U ()v* (X). @
for triplet, but not for singlet pairing. To simplify equations, T "
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Equations(6) and (7) coincide with the exactly solvable and momentunk; parallel to the interface. They determine
equations  describing 1D charge-density wave inthe dimensionless conductanGe=1+A—B in the formula
polyacetylené® The p,-wave problem, wherd (x) changes for the electric current through the contict
sign, A(+x)=—A(—=), maps onto the kink soliton

solution'® 2eS( d?kdE
:Tf S LH(E-eV)—f(E)]G(E k). (12
A(X)=iAqtank kX); (8) (27)
HereSis the contact ared/ the bias voltagef(E) the Fermi
_ Uo(X) _ Vi 1) function, e the electron charge, aridthe Planck constant. It
Eo=0, vo(X) 2 coshikx) | =1/’ ©) follows from Eq.(12) that the differential conductance of the

contact at zero temperature,

Ev== VuZk?+AZ, (10)

5(V) dl ZEZSJ dzkH GleVik) 13
= 7" e il il
(uk(x)> ek< B +vek+ A(X)) dv h (27)2 I
=— , 11 . . . .
vi(X) 2E, WL, \ Ex—vek—A(X) (D is proportional to the average ovky of the dimensionless

) ] conductances.®® The latter is determined by the transmis-
whereL, is the length of the sample along the chains. Onegjgn coefficientT at a givenk; (Refs. 16 and 3P
can check explicitly that solution@)—(11) satisfy Eqs.(6)

and (7).2* They also have the property of supersymmétry. 14 T|T)2+ (T—1)|T)*
The localized electron stat®) with Eq=0 corresponds to G.=T 55 (14
the Andreev edge state in tipe-wave superconductor. In the |1=(T—-1)I"|

swave case, wheré(x) does not change sigm (+«) where
=A(—x), the solution of Eqs(6) and (7) gives a uniform

A(X), which does not have bound states. The existence of the [E—sgrE)VE?—AZS]/Ay, |E[=Ay,
midgap state in the case whekgx) changes sign is guaran- I'(E)= ) (15
teed by the index theorem and does not depend on the de- (E—iVAG—E?)/Ay, [E[<Ao,

tailed functional form of the pair potentiéf. ) )

BdG states are described by the operatdrs=ug T=4vnos/[(vntos)™+4H"]. (16
+v*¢'. The expectation value of electric chargein the ~ The = sign in Eq.(14) is the relative sign of the pair poten-
edge states is zerp=|ug|?>—|vo|?=0. For a 1Dp,-wave tials for the two branches of BAG quasiparticles involved in
Superconductor with On|y one Species of Spin, Hq_$and tunneling. For tunneling along the chains, the two branches
(9) imply that the two edge states at the opposite ends argorrespond to the points andR in the left panel of Fig. 1,

described by the Majorana operators of the opposite paritgnd the sign in Eq(14) is sgn@"A"), + for s wave and

W=+ 2" There was a proposal to use such edge Majo-_ for p, wave. Averaging in Eq(13) is performed taking

rana fermions for quantum computiAjHowever, in a Q1D Into a(\jccouné th;t"\‘ andvs in Eq. (16) and4, in Eq. (19)
py-wave superconductor, the midgap states with differenf'®y G€penc oK.

. ) As follows from Eq.(14), G, andG_ coincide for a fully
momentak parallel tg the edge and spimsform a degen transparent interface TE1) G, =G _=1+|T|22° How-

i shrt = 4] — 28 ; .
erate continuum with?y ,==W_y . ever, typicallyT< 1, both because of the barrier potenttal
and the mismatch of the normal Fermi velocitigg# v in
V. TUNNELING metal and superconductor in E(L6).3? At low interface

transparency <1, G_, andG, behave as shown in the left
Let us consider electron tunneling between the supercorgnd right panels of Fig. 2 fof = 0.5 andT =0.25. Inside the
dUCting (TMTSFEX and a normal metallic tlp The tunnel- energy gap, WherH‘| =1, G,(E) has a Lorentzian Shape
ing junction can be modeled as two semi-infinite regions,yith the maximum of 2 aE=0, the width proportional td,
normal (N) and superconducting§], with a flat interface  and the minimum proportional t62 at |E|= A,
between them. Following Refs. 16, 29, and 30, we solve the

BdG equations in the ballistic regime assuming specular re- T2/2(1—-T)
flection and the translational invariance parallel to the G_(E)= P . |El=saq,. (A7)
interface®! To make the problem analytically tractable, we (E/Ao)"+T74(1-T)

use the step-function approximation for the pair potential. AtG+(E) shows the opposite behavior: a minimum propor-
the interface, we impose the boundary conditihg=¥s  tional to T2 at E=0 and the maxima of 2 4E|=A,

and v\ Vy=vsV s+ 2iHV % wherevy s are the compo-

nents of the velocity operators perpendicular to the interface T2/2(1-T)

in metal and superconductor, artd is the strength of the G (E)= 2,2 '
; . o : 1-(E/Ag)*+T41-T)
interface barrier. From the solution of the BdG equations, we
find the probabilities8(E, k) andA(E, k) of the normaland Both G, andG_ approach the normal-state conductaiice
Andreev! reflections as functions of the electron enefgy at|E|>A,.
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E/A, E/a, FIG. 3. Different symmetries of the pairing potenti{k) in a
Q1D superconductor. The solid and dotted lines represent the por-
FIG. 2. Dimensionless conductancés. (left pane) and G, tions of the Fermi surface with the opposite signs of the pairing
(right pane) given by Eq.(14) are plotted versus enerdyfor the  potential.
transmission coefficient§=0.5 and 0.25G, andG_ correspond
to the cases where the superconducting pairing potential has the
same or the opposite signs for the two branches of BdG quasipawhereug is the Bohr magneton, and the electipfactor is
ticles involved in tunnelindthe pointsL andR, R’, andR, L’ and 2.
L in Fig. 1). If H||d, then, by selecting the spin-quantization axis along
d, the 4x4 matrix Eq.(18) is decoupled into two X2
The zero-bias conductance pe@BCP), shown in the matrix equations similar to Eq3) for the wave functions
left panel of Fig. 2, is a manifestation of the midgap Andreev(u,,e,,v?) with the matrix
bound states. They exist at those edges where momentum
reflection from the edge connects the points on the Fermi —iavpdy—ougH oA“(X)
surface with opposite signs of the superconducting pair po- oA ()
tential. As shown in the left and right panels of Fig. 1, re-
flection from the edge perpendicular to the chains conriects For a given Spin projection-, the magnetic fieltH enters Eq.
to R, and reflection from the edge parallel to the chains Con'(lg) as a unity matrix and S|mp|y shifts the Spectr(@m and
nectsR’ to RandL’ to L. By comparing the signs of the pair (10) by — ougH. Thus, the energies of the up and down spin
potential at these points for the superconductingstates become split b¥ ugH, including the midgap state
symmetrie$” listed in Table | and sketched in Fig. 3, we £ =3 . H. Because this state is half filled, the edge states
determine whether ZBCP must be present in tunneling intQuith the spin parallelantiparalle] to the magnetic field be-
those edges. Comparison of Table | with the experimenggme completely occupie@mpty). This generates spif/2
should uncover the superconducting symmetry ofand magnetic momenig at the end of each chain. Such a
(TMTSF),X. giant magnetic moment was predicted by Hu and *dffor
the edge states in a singl@twvave superconductor. In a trip-
let superconductor, the effect is similar, but anisotropic.
Indeed, suppose now thetl d. In this case, it is conve-

. _ nient to select the spin-quantization axialongH and thex
Now let us discuss the spin response of the edge states jxis alongd. Then Eq.(18) separates into two 22 matrix

a triplet superconductor subject to an external magnetic fieldquations similar to Eq.(3) for the wave functions
H. (Here we do not consider orbital effects of the magnetic(u_, e, v?) with the matrix

field, such as the Meissner effedn this case, the matrix in
Eq. (2) should be replaced by the following matrix: —lavgdy—ougH A%(X)

. . 19
lavpdy—ougH (19

V. SPIN RESPONSE

. . 20
AY*(X) iavgdy+ougH 20

—lavgdy— up(H- 0) (o-d)A“(X)

A ' (18  The magnetic fieldH can be eliminated from Eq20) by
(o-d)A** (x) lavpdy— pug(H- o)

adjusting the Fermi momenta for the up and down spin states

ke o=Keg+ougH/ve. Thus, the energy spectrum of the sys-
TABLE I. Presencdyes or absencéno) of a zero-bias conduc- tem remains the same as in E¢8) and (10). Particularly,

tance peak in electron tunneling along thandb axes(see the top  the energy of the midgap state does not sfli=0, thus no

left and right panels in Fig.)lfor different symmetries of the su- unbalanced spin and magnetic moment are generated on the

perconducting pairing potentidl(k) (Refs. 34 and 3b edge.
Symmetry A(k) a-axis ZBCP  b-axis ZBCP £ £
- d
s const no no —_—
Py sin(k, a) yes no H
Py sin(, b) no yes
dya_y2 cosk, b) no no
dyy sin(k a)sin(k, b) yes yes FIG. 4. Schematic experimental setup to measure magnetic sus-

ceptibility of the edge states localized at the ends of the chains.
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We see that the edge spin response of a triplet supercocharge-density wave. The edge electron midgap states exist
ductor is opposite to its bulk spin response. It is wellwhen the pairing potential has opposite signs at the different
knowrf? that the bulk spin susceptibility foH 1 d is the parts of the Fermi surface connected by momentum reflec-
same as in the normal state, whereasHdd it vanishes at tion from the edge. These states manifest themselves as zero-
zero temperature. For the edge states, the spin response vajlas peaks in tunneling conductance. Thus, the pairing sym-
ishes forH L d and is paramagnetic fdd|d. Nominally, the  metry of the Q1D superconductors can be determined by
edge spin susceptibility is infinite, because, formally, an intynneling into the edges perpendicular and parallel to the
finitesimal magnetic field can completely polarize the edg&hains. The spins of the edge state respond paramagnetically
jmsh \ilge can 902I>></ f;jlzrya;t\e nt]geprgraxclrﬁglnmggne}gcm%me% a magnetic field parallel to the vectdrthat characterizes

M= . MB = i iri i i
X10°% wA per unit area of the edge, wheke=0.77 and gﬁﬂﬁ: pairing, generating the magnetic momemp per
c=1.35 nm’ The (TMTSF)X materials are expected to have electron
i Edge states also in the magnetic-field-induced spin-density-
states forH||d could be observed experimentally by measur-y5ye phase, which exhibits the quantum Hall effécthose
ing magnetic susceptibility with a coil as shown in Fig. 4, g¢ates are chiral and have dispersion inside the energy gap.
where we assume thaltis directed along the chains. In the The miggap states discussed in the present paper also acquire
bulk, far from the edges, the susceptibility should be diamaggpra| dispersion due to the orbital effect of a magnetic field,
netic, because of the orbital Meissner efféend vanishing  gimilar to cuprate€® Another interesting example of the
spin bulk susceptibility foH||d. However, when the coil is edge states in a 1D electron gas was studied theoretically in
moved toward the sample end, the susceptibility shoultket. 40 for the Luther-Emery fermions in the bosonized rep-
change sign and become paramagnetic because of the edggeantation.
states. They are localized within the coherence len§th Note added in proofA more subtle consideration of the
=hvplAg=0.6 um, where we used\o=0.22 meV,ve  regylts of Sec. V shows that the spin of an edge state is
=t,a/\2h=190 km/s, t,=0.25 eV, anda=0.73 nm'®  actyally fractional and is equal 4 (per each end of each
The effect should depend on the coil orientation relative tachain, not #/2. Correspondingly, the magnetic moment is
the vectord. Therefore, this experiment could confirm the us/2, and the numerical estimates given in Sec. V should be
existence of the edge states and the pairing symmetry in th@yitiplied by an additional factor 1/2. Derivation of these

(TMTSF),X superconductors. results will be given in a separate paper. The authors are
grateful to A. Yu. Kitaev and D. A. Ivanov for very illumi-
VI. CONCLUSIONS nating discussions of this subjett.
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