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Monte Carlo study of the superfluid weight in doped antiferromagnets
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The phase fluctuations of the condensate in doped antiferromagnets, described by at-t8-J model and a
suitable 1/N expansion, provide a mechanism for a Kosterlitz-Thouless~KT! type of transition to a supercon-
ducting state belowTc . In this paper, we present a Monte Carlo study of the corresponding superfluid weight
Ds(T) in the classical~large-N) limit, as a function of temperature and doping. Consistent with generic
experimental trends,Ds(T) exhibits aT-linear decrease at low temperatures, with the magnitude of the slope
Ds8(0) increasing upon doping. Finite-size scaling in the underdoped regime predicts values for the dimen-
sionless ratioA5kBTc /Ds(0) of order unity, withA50.4435(5) in the half filled band limit, thus confirming
Ds(0) as the fundamental energy scale determiningTc . Our Monte Carlo results forDs(T)/Ds(0) vs
kBT/Ds(0), at 10%hole doping, are found to be in reasonable agreement with recent measurements on
La22xSrxCuO4, with x50.10, throughout the temperature range below the theoretical KT transition tempera-
ture Tc .

DOI: 10.1103/PhysRevB.63.144529 PACS number~s!: 74.40.1k, 74.20.Mn, 74.25.Bt
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I. INTRODUCTION

The quest on the nature of the superconducting transi
observed in doped antiferromagnets, such as the lam
high-Tc copper-oxides, has entered a new era. Indeed, a
sensus is emerging1 on the importance of the zero
temperature superfluid weightDs(0) as the fundamental en
ergy scale determining the corresponding transit
temperatureTc . An early clue for this result came from th
empirical Uemura relation,2 valid for underdoped cuprates
which shows roughly a proportionality between the indep
dently measurable quantitiesTc andDs(0),

kBTc5ADs~0!, ~1!

whereA is a dimensionless parameter of order unity. Giv
that the superfluid weightDs(T), at a general temperatureT,
measures the ‘‘phase stiffness’’ of the condensate, i.e.,
energy cost to produce spatial variations of its phase, Em
and Kivelson3 argued that Eq.~1! provides strong evidenc
for a phase-fluctuation driven superconducting transition.
course, in strictly two-dimensional systems with continuo
U~1! gauge~phase! symmetry, melting of long-range phas
coherence with increasing temperature, and hence los
superfluidity of the charge carriers, proceeds by thermal g
eration and subsequent unbinding of vortex-antivortex pa
The detailed description of this transition is given by t
Kosterlitz-Thouless~KT! theory4,5 in the context of the clas
sicalXY model. A characteristic feature of the KT transitio
is the discontinuous drop ofDs(T) to zero atT5Tc , asTc is
approached from below.6 Despite the inevitable rounding o
this discontinuity by the weak coupling between the copp
oxide layers, Corsonet al.,7 in a remarkable experimen
have provided direct evidence of the KT nature of the sup
conducting transition by observing dynamic effects of th
mally generated vortices in the frequency-dependent con
tivity of underdoped cuprate thin films.

A common feature of theoretical models8–10 assuming a
phase-fluctuation mechanism for the superconducting tra
0163-1829/2001/63~14!/144529~8!/$20.00 63 1445
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tion, is the prediction of aT-linear decrease inDs(T) at
temperatures well belowTc , in accordance with the experi
mental observations.11,12 However, all the aforementione
models do not incorporate explicitly the doping depende
of Ds(T) and therefore provide no framework for a prop
treatment of the high-Tc cuprate superconductors as dop
antiferromagnets. This is a major drawback since the pr
imity of the doped materials to the Mott insulating antiferr
magnetic state at half filling (ne51) leads2 to a vanishing
Ds(0) andTc , as the hole concentration (12ne) tends to
zero. The importance of the antiferromagnetic fluctuatio
even well within the underdoped regime, has been rece
confirmed in a dramatic way. Specifically, the elas
neutron-scattering measurements13 in pristine
La22xSrxCuO4, with x50.10,0.12, have established the pre
ence ofstatic long-range antiferromagnetic order in the s
perconducting ground state, suggested by earlier wor14

This conclusion is supported also by the subsequent ob
vation of conventional two-magnon Raman scattering15 in
the same material.

The above discussion underlines the need for model
the high-Tc cuprate superconductors that can account, on
same footing, for the intimately coupled phase and spin fl
tuations of the condensate. Such a model has been sugg
some time ago16 and shown, by one of the authors, to displ
flux quantization and a finite superfluid weight, i.e., sup
conductivity, in its ground state.17 Our model consists of at-
t8-J Hamiltonian and a suitable 1/N expansion that provide a
framework for the study of:~i! the ground-state properties
using standard ‘‘spin-wave’’ techniques which allow the i
corporation of leading quantum-fluctuation effects, and~ii !
the finite-temperature properties, using an associated cla
cal ~large-N limit ! energy functional and corresponding pa
tition function in terms of which important physical quant
ties can be readily expressed and calculated by Monte C
simulation. Point~i! was the subject of earlier works16,17and
the results, especially for the optical properties, were fou
to provide support for our effective model when compar
with experiment. In the present paper we consider point~ii !,
©2001 The American Physical Society29-1
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GREGORY C. PSALTAKIS PHYSICAL REVIEW B63 144529
focusing on the study of the superfluid weight as a funct
of temperature and doping, a subject of current experime
and theoretical interest.

In Sec. II we give a brief description of our effectivet-t8-
J Hamiltonian and the associated classical energy functio
and partition function emerging in the large-N limit. In Sec.
III we derive an explicit expression for the superfluid weig
Ds(T) which we study by Monte Carlo simulation using th
standard Metropolis algorithm.18 We present results for th
shape of the scaled curve,Ds(T)/Ds(0) vs kBT/Ds(0), the
value of the dimensionless ratioskBTc /Ds(0) and
Ds(Tc)/kBTc , as well as the value of the zero-temperatu
slopeDs8(0), clarifying their doping dependence in the r
gime of interest, i.e., close to half filling. The KT nature
the transition to the superconducting state is supported
finite-size scaling analysis using the relevant Web
Minnhagen scaling formula.19 In particular, our numerica
results for the temperature dependence ofDs(T), at 10%
hole doping, compare reasonably well with rece
measurements12 in underdoped La22xSrxCuO4, for the corre-
sponding concentration valuex50.10. Furthermore, the
zero-temperature slope of the superfluid weight is predic
to approach, close to half filling (ne→1), the universal
value: Ds8(0)52kB/2, consistent with the available exper
mental data.11,12 The latter limiting value is shown to be
hallmark of the strong antiferromagnetic correlations, pres
in this temperature and doping regime. Our concluding
marks are summarized in Sec. IV.

II. EFFECTIVE MODEL

The effective model under consideration is described b
t-t8-J Hamiltonian expressed in terms of Hubbard operat
xab5ua&^bu as

H52(
i , j

t i j x i
0mx j

m01
1

2
J(

^ i , j &
~x i

mnx j
nm2x i

mmx j
nn!, ~2!

where the index 0 corresponds to a hole, the Greek ind
m,n, . . . assume two distinct values, for a spin-up and
spin-down electron, and the summation convention is
voked. HereJ is the antiferromagnetic spin-exchange inte
action between nearest-neighbor sites^ i , j & on a square lat-
tice endorsed with periodic boundary conditions and a to
number of sitesL5Lx3Ly , whereLx5Ly . For the hop-
ping matrix elementst i j we assume

t i j 5H t if i , j are nearest neighbors

2t8 if i , j are next-nearest neighbors

0 otherwise.

~3!

The conventions in Eq.~3! incorporate opposite signs fort
and t8 as it is appropriate for the hole-doped cuprates.20 In
Ref. 16 we generalized the local constraint associated w
Eq. ~2! to x i

001x i
mm5N, whereN is an arbitrary integer, and

considered the commutation properties of thexab operators
to be those of the generators of the U~3! algebra. A Holstein-
Primakoff realization for the latter algebra in terms of ha
core bosons resolves then explicitly the local constraint
14452
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can be used to develop a perturbation theory based on
1/N expansion, restoring the physical valueN51 at the end
of the calculation.

In the presence of an external magnetic fluxF, threading
the two-dimensional lattice in an Aharonov-Bohm torus g
ometry, the hopping matrix elementst i j are modified by the
well known Peierls phase factor and should be substitute
Eq. ~2! according to

t i j t i j e
iAi j , with Ai j 5

2pF

LxF0
~Ri2Rj !•ex . ~4!

HereRi is the position vector for lattice sitei, ex is the unit
vector along thex axis encircling the flux lines andF0
52p\c/q is the so-called flux quantum. As argued in Re
17, in the context of the presenteffectivemodel, whereby
carriers are treated as hard-core bosons, the chargeq entering
F0 should be set equal toq52e, wheree is the electronic
charge.

In the large-N limit ‘‘condensation’’ occurs, i.e., the Bose
operators become classical commuting fields. Conside
only uniform density configurations, the corresponding cl
sical energy functional resulting from Eqs.~2!–~4! takes the
form17

H~F!52ne~12ne!(
i , j

t i j Fcos
u i

2
cos

u j

2

3cosS Ai j 1
c i2c j2f i1f j

2 D1sin
u i

2
sin

u j

2

3cosS Ai j 1
c i2c j1f i2f j

2 D G
1

ne
2

4
J(

^ i , j &
@cosu i cosu j1sinu i

3sinu j cos~f i2f j !21#, ~5!

where ne is the average electronic density, the ang
(u i ,f i) determine the local spin direction, and the remaini
parameterc i determines the local phase of the condensa
The above functional form makes apparent the coupling
tween the phase and spin variables of the condensate thr
the kinetic energy term, proportional tot i j .

The description of the finite-temperature classical the
is now completed using the energy functional~5! to construct
the corresponding partition functionZ(F) and free energy
per lattice siteF(F),

Z~F!5e2bLF(F)5E S)
i

sinu i du i df i dc i De2bH(F),

~6!

whereb51/(kBT) and the integrations at each lattice sitei
extend over the intervals: 0<u i<p, 0<f i<2p, and 0
<c i<4p. Invoking standard thermodynamic identities, im
portant physical quantities can be readily expressed in te
of the partition function~6! and studied by Monte Carlo
9-2
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MONTE CARLO STUDY OF THE SUPERFLUID WEIGHT . . . PHYSICAL REVIEW B 63 144529
simulation. In the following we focus our discussion on t
study of the superfluid weightDs(T).

III. SUPERFLUID WEIGHT

At a finite temperatureT, the superfluid weight~or helic-
ity modulus! Ds(T) is given by the curvature of the infinit
lattice limit of the free energyLF(F) at F50,21–23

Ds~T!5LS F0

2p D 2F ]2F~F!

]F2 G
F50

. ~7!

Physically,Ds(T) determines the ratio of the density of th
superfluid charge carriers to their mass and hence can
related to the experimentally measurable in-plane magn
~London! penetration depth, as noted later on in this secti
Carrying out the second derivative with respect toF in Eq.
~7! we have more explicitly that

Ds~T!5ne~12ne!
2

zL K (
i , j

t i j uRi2Rj u2Fcos
u i

2
cos

u j

2

3cosS c i2c j2f i1f j

2 D1sin
u i

2
sin

u j

2

3cosS c i2c j1f i2f j

2 D G L 2@ne~12ne!#
2

3
b

L K H(
i , j

t i j @~Ri2Rj !•ex#

3Fcos
u i

2
cos

u j

2
sinS c i2c j2f i1f j

2 D
1sin

u i

2
sin

u j

2
sinS c i2c j1f i2f j

2 D G J 2L , ~8!

z54 being the coordination number of the square lattice.
shown in Ref. 16, close to half filling (ne&1) and for a
sufficiently larget8, the ground state of Eq.~5!, in the ab-
sence of magnetic flux (F50), is described by a planar spi
configuration (u i5p/2) in which the local twist angles an
phases exhibit long-range order according to:f i5Q•Ri ,
c i5Q8•Ri , whereQ5(p,p) is the usual spin-modulating
antiferromagnetic wave vector andQ85(p,2p) is a phase-
modulating wave vector. The zero-temperature value of
superfluid weight follows then easily from Eq.~8! as

Ds~0!54t8ne~12ne!. ~9!

For the typical two-dimensional model with continuous sy
metry under consideration, we expect that at low but fin
temperatures, the long-range order will be destroyed by
proliferation of excited Goldstone modes, leading to
T-linear decrease ofDs(T). At higher temperatures we ex
pect that the thermal generation and subsequent unbindin
vortex-antivortex pairs will lead eventually to a discontin
ous drop ofDs(T) to zero, at a critical pointT5Tc , in a KT
type of transition. In order to study numericallyDs(T) in the
whole temperature range and affirm the aforementio
14452
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physical picture, we performed a Monte Carlo simulati
using the standard Metropolis algorithm.18 Our calculations
were carried out on small lattices, with typical sizesLx
58,16,32,64. For a given temperature we performed of
order of 104 thermalization steps and of the order of 16

measurements. We considered values for the dimension
ratios «5t8/t50.45 andt/J51.0, which are thought to be
relevant for the copper-oxide layers, and restricted our st
to the underdoped regime, i.e., to small (12ne) values up to
10% hole doping. The latter restriction is dictated by the f
that models of thet-t8-J kind, being rather simple extension
of the Mott-Heisenberg antiferromagnetic insulator, can
properly account for the nontrivial evolution of the electron
structure of the cuprates that occurs at higher doping val
namely, the closing of the pseudogap24 in the optimally
doped and overdoped~Fermi-liquid! regime.

Typical Monte Carlo results for the superfluid weight
temperature are shown in Fig. 1~a!, for (12ne)50.01, and
Fig. 1~b!, for (12ne)50.10. At low temperatures the supe

FIG. 1. Superfluid weightDs(T) vs temperature, for various
lattice sizes,«50.45, t/J51.0, and ~a! 12ne50.01 @estimated
kBTc /Ds(0)50.4346(9)], ~b! 12ne50.10 @estimated
kBTc /Ds(0)50.3502(8)]. Monte Carlo points above the corre
sponding estimated KT transition temperatureTc are nonzero due to
finite-size effects. Error bars are included but in most cases
smaller than symbol size.
9-3
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GREGORY C. PSALTAKIS PHYSICAL REVIEW B63 144529
fluid weight has a weak finite-size dependence and disp
the expectedT-linear decrease. In particular, forT→0 and
ne→1, we have established the asymptotic form

Ds~T!

Ds~0!
512

kBT

2Ds~0!
for T→0 and ne→1. ~10!

The analytic expression~10! is shown in Fig. 1 by a dotted
line. Evidently, this asymptotic line is approached ve
closely from below by the low-temperature numerical d
already in the case of the 1% hole doping; see Fig. 1~a!.
From Eq.~10! follows that the zero-temperature slope of t
superfluid weight approaches, close to half filling, t
parameter-free universal value

Ds8~0!52kB/2520.043 meV K21 for ne→1. ~11!

The upper limiting value~11! is a rather stringent predictio
of our theory and seems, indeed, to be consistent with
available experimental data11,12 in the high-Tc cuprate super-
conductors. A comparison of Fig. 1~a! with Fig. 1~b! reveals
an increase in the magnitude of the slopeDs8(0) upon dop-
ing, a trend also consistent with experiment.11,12

We emphasize that the asymptotic form~10! is a physical
consequence of the fact that close to half filling the antif
romagnetic exchange energyJne

2 overwhelms the hole ki-
netic energyt i j ne(12ne), and in particular the termDs(0)
given by Eq.~9!. Hence, in the limitne→1 and in the rel-
evant temperature rangekBT<Ds(0)!Jne

2 ~so thatT→0),
the thermal average~8! may be simplified by freezing the
spin variables (u i ,f i) to their zero-temperature antiferro
magnetic configuration and allowing fluctuations only in t
phase variablesc i . In this case, the vanishing overlap b
tween the opposite sublattice spin states leaves the d
hoppingt8 between next-nearest-neighbor~NNN! sites as the
only relevant process of charge transport. One can then
ily show that the expressions for the energy functional~5!
and superfluid weight~8! reduce to those of a classicalXY
model for thec i variables, but with only a NNN interaction
I, where I 5Ds(0)/2. The reduction of the structure of th
phase fluctuations, close to half filling, to that of the NN
XY model andnot to the commonly assumed3,17,25structure
of the nearest-neighbor~NN! XY model, is an important pre
diction and a direct consequence, in the context of
theory, of the presence of strong antiferromagnetic corr
tions in this regime. Numerically, the validity of our argu
ment becomes apparent in Fig. 2 displaying almost coin
ing Ds(T) Monte Carlo data for the NNNXY model~opaque
diamonds! and thet-t8-J model with a very small hole con
centration (12ne)50.01 ~filled diamonds!. Therefore we
may exploit the detailed results of the Appendix for the NN
XY model, see Eq.~A5!, to conclude the asymptotic form
~10! and hence the limiting value~11!. The latter value,
Ds8(0)52kB/2, being twice that of the NNXY model ~see
the Appendix!, serves as a distinct hallmark of the sublatti
structure of the strong antiferromagnetic correlations in
limit ne→1. Our observations here affirm also, by analogy
the well-known physics of theXY model, the presence of
KT transition for the superfluid weight of thet-t8-J model,
14452
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when ne→1, and allow us to transcribe relevant results f
the former model, established in the Appendix, to the lat
e.g.,

Ds~Tc!

kBTc
5

4

p
for ne→1, ~12!

kBTc /Ds~0!50.4435~5! for ne→1. ~13!

In Figs. 1 and 2 we present (4/p)kBT/Ds(0) by a short
dashed line. According to Eq.~12!, in the limit ne→1 the
latter line should intersect the corresponding Monte Ca
data curve ofDs(T)/Ds(0) vs kBT/Ds(0) precisely at the
kBTc /Ds(0) value given by Eq.~13!; see opaque~filled!
diamonds in Fig. 2.

It should be noted that in the actual simulations of thet-
t8-J model we can only use finite, though possibly sma
hole concentrations which inevitably lead to deviations fro
the limiting values~12! and ~13!. In order to obtain rather
accurately the corresponding transition temperatureTc we
have used the finite-size scaling analysis of Weber
Minnhagen,19 which is appropriate for KT type of transi
tions. In this analysis one measures the chi-square va
x2(T) of the fitting of the Monte Carlo data for the supe
fluid weight, at each given temperature and for a sequenc
small lattice sizes, to a certain scaling formula, derived
the latter authors from the Kosterlitz renormalization-gro
equations.26 Specifically, one assumes at each temperaturT
the following Lx dependence of the superfluid weig
Ds(T,Lx):

pDs~T,Lx!

2kBT
5R~T!S 11

1

2ln@Lx /L0~T!# D , ~14!

FIG. 2. Superfluid weightDs(T) vs temperature. Experimenta
data~triangles! on La22xSrxCuO4, with x50.10, are extracted from
the measurements of Panagopouloset al. ~Ref. 12! using Eq.~15!.
Corresponding Monte Carlo results~circles! are calculated for lat-
tice size 64364 and«50.45, t/J51.0, 12ne50.10. Also included
are results for the same lattice size and«50.45, t/J51.0, 12ne

50.01 ~filled diamonds!, which should be compared with the re
sults for the NNNXY model ~opaque diamonds!. The latter model
corresponds to the limiting form of the presentt-t8-J model, when
ne→1, as discussed in the text.
9-4
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MONTE CARLO STUDY OF THE SUPERFLUID WEIGHT . . . PHYSICAL REVIEW B 63 144529
whereL0(T) is some characteristic length of the order of t
lattice constant and has no singularity atT5Tc . The loga-
rithmic lattice size dependence involved in Eq.~14! is char-
acteristic of the presence of vortices in the KT transitio
Strictly speaking, Eq.~14! is correct only at the critical poin
T5Tc . Given now a value forR(Tc), the critical tempera-
ture can be determined by two alternative procedures:~a! we
fix R(T) to beR(Tc) and useL0(T) as the only adjustable
parameter in Eq.~14! to measure the chi-square valu
x2(T) of the fitting, in which caseTc corresponds to the
minimum of thex2(T) curve, or~b! we use bothR(T) and
L0(T) as adjustable parameters in Eq.~14! and determineTc

from the point where theR(T) curve crosses the lineR(T)
5R(Tc). The correct value forR(Tc) should lead uniquely
to thesamevalue forTc in both procedures. The applicatio
of this finite-size scaling to the NNNXY model is summa-
rized pictorially in Fig. 4~see the Appendix! and justifies, as
far as thet-t8-J model is concerned, the limiting value
~12!–~13! with R(Tc)→2, for ne→1.

For the finite doping value (12ne)50.01 or (12ne)
50.10 ~and fixed«5t8/t50.45, t/J51.0), the application
of the aforementioned finite-size scaling analysis, using
lattice size sequenceLx54,6,8,10,12, leads tokBTc /Ds(0)
50.4346(9) withR(Tc)52.04, orkBTc /Ds(0)50.3502(8)
with R(Tc)52.51, respectively. To be sure, the presence
Fig. 1 of nonzeroDs(T) values above the correspondingTc ,
instead of a discontinuous drop to zero, is due to finite-s
effects which grow rapidly above the estimated critical te
perature; a typical behavior for a KT transition. Indeed, f
lowing an original argument by Weber and Minnhagen,19 we
note that the success of the scaling formula~14! in the
present model provides,ipso facto, strong evidence that th
relevant phase transition is of the KT type. Our results sh
a modest increase of the jump ratioDs(Tc)/(kBTc)
52R(Tc)/p upon doping. The latter behavior seems phy
cally similar to that known in the literature of the frustrate
XY model27,28 given that, in the context of thet-t8-J model,
doping induces a form of dynamic frustration for the pha
variables, via their inevitable coupling to the fluctuating sp
variables.

Furthermore, our results show that the dimensionless
rameterA5kBTc /Ds(0), introduced in context of the em
pirical Uemura relation~1!, is not doping independent bu
decreases modestly upon doping, while away from half
ing it also depends on the couplings« andt/J. Nevertheless,
for rough theoretical estimates of the KT transition tempe
ture Tc in terms of Ds(0), in the underdoped regime, on
may always use the universal limiting valueA50.4435(5),
for ne→1, quoted in Eq.~13!. We remind that that the latte
value is characteristic of the NNNXY model and equals to
half the corresponding value of the NNXY model ~see the
Appendix! commonly employed to this end.3,17,25 Note that
the use ofA50.4435(5) in conjunction with Eq.~1! brings
earlier theoretical overestimations of the KT transition te
perature for the copper-oxides layers,17,25 derived with A
'0.9, down to more reasonable values. In all cases,
present analysis confirmsDs(0) as the fundamental energ
scale determiningTc in the underdoped regime.
14452
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Having discussed the generic trends of the superfl
weight as a function of temperature and doping, in the
derdoped regime, it is instructive to provide a more dire
comparison of our theory with experiment. To this end w
note that in the lamellar high-Tc superconductors, the exper
mental value for the superfluid weight per copper-oxi
plane, Ds

(exp)(T), can be extracted from the directl
measurable11,12 in-plane magnetic ~London! penetration
depthlab(T) using the relation3,10,25

Ds
(exp)~T!5

~\c!2d

4pq2lab
2 ~T!

, ~15!

whered is the average distance between planes and we
mind thatq52e. Using the experimental data of Panagop
ulos et al.12 for lab(T) on the underdoped La22xSrxCuO4,
with x50.10, and the structural parameter29 d56.64 Å , we
depict in Fig. 2 by triangles the corresponding experimen
values~15! for the superfluid weight vs temperature. As
result of the weak coupling between the copper-oxide lay
the experimental data display no KT discontinuity but rath
a continuous drop of the superfluid weight to zero, at a s
cific temperature value, that is not simply related to the id
KT transition temperature of a copper-oxide monolayer. C
responding Monte Carlo results for 10% hole doping a
depicted in Fig. 2 by circles and calculated for a 64364
lattice, with «50.45 andt/J51.0. As noted earlier in this
section, the theoretical KT transition temperature for the
ter set of parameters iskBTc /Ds(0)50.3502(8), while non-
zero Monte Carlo points above this value are due to fin
size effects. Evidently, our theoretical results~circles! in Fig.
2 compare reasonably well with the experimental data~tri-
angles! throughout their common relevant temperature ran
i.e., up toTc .

In Fig. 2 we also depict Monte Carlo results for 1% ho
doping~filled diamonds!, as well as results for the NNNXY
model~opaque diamonds!, thus providing the theoretical line
shape of the superfluid weight vs temperature, in the li
ne→1. Clearly, it will be very interesting to have measur
ments of the in-plane magnetic penetration depth
La22xSrxCuO4, with hole concentrationx as small as it is
experimentally possible, to compare with the present defi
theoretical prediction.

IV. CONCLUDING REMARKS

In this paper we have presented a study of the tempera
and doping dependence of the superfluid weightDs(T) in
doped antiferromagnets described by thet-t8-J model ~2!
and ~3!. Using Monte Carlo simulations and finite-size sca
ing analysis we have demonstrated that the phase fluc
tions of the condensate, emerging in an appropriate class
~large-N) limit, drive superconductivity via a Kosterlitz
Thouless type of transition. Our theoretical results reprod
important generic experimental trends ofDs(T), observed in
the underdoped high-Tc cuprate superconductors. This in
cludes theT-linear decrease ofDs(T) at low temperatures
and the increase of the magnitude of the slopeDs8(0) upon
doping.
9-5
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In particular, the sublattice structure of the strong antif
romagnetic correlations in the half filled band limit wa
shown to dictate the lineshape ofDs(T)/Ds(0) vs
kBT/Ds(0), for ne→1, to be identical to that of the NNNXY
model. In order to check this definite theoretical predicti
we have suggested measurements of the in-plane mag
penetration depth in very lightly doped cuprates. Here
should add that higher-order 1/N corrections are expected t
renormalize downwards17 the fundamental energy sca
Ds(0) but, nevertheless, leave the line shape of thescaled
curveDs(T)/Ds(0) vs kBT/Ds(0) essentially intact.

The present study shares some common features with
lier works8–10 invoking a phase-fluctuation mechanism f
the high-Tc superconductivity. On the other hand, all the
works including ours are radically different from phenom
enological approaches30,31 that implicate the thermally ex
cited nodal quasiparticles in ad-wave BCS superconductin
state for the reduction ofDs(T) with increasing temperature
The weak-coupling BCS type of approaches, however,
undermined by the absence of normal state quasipar
peaks32 near the Brillouin zone points (0,6p) and (6p,0)
where superconductivity is supposed to originate. At pres
it is still difficult to discern experimentally whether the tem
perature and doping dependence ofDs(T) is dominated by
phase fluctuations or by nodal BCS-like quasiparticle exc
tions. However, recent experiments in cuprate thin fil
have provided strong evidence for the inherent tw
dimensional character of superconductivity33 and for the KT
nature of the superconducting transition.7
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APPENDIX: GENERALIZED XY MODEL

In the main body of the paper we noted that the struct
of the phase fluctuations of thet-t8-J model under study
reduces, in the half filled band limit, to that of a classicalXY
model with only next-nearest-neighbor~NNN! interactions.
In order to clarify the properties of the latter model, in ju
taposition to those of the more conventional nearest-neigh
~NN! XY model, we consider briefly in this appendix th
following Hamiltonian:

HXY52
1

2 (
i , j

I i j cos~c i2c j !, ~A1!

assuming

I i j 5H ~12a!I if i , j are nearest neighbors

aI if i , j are next-nearest neighbors

0 otherwise,

~A2!

where a is a free parameter, with 0<a<1, and I .0. At
each lattice sitei the anglec i varies in the interval: 0<c i
14452
-

tic
e

ar-

re
le

nt

-
s
-

or

e

or

<2p. Evidently, a50 corresponds to the NNXY model,
while a51 corresponds to the NNNXY model.

The superfluid weight~or helicity modulus! for the gen-
eralizedXY model ~A1! reads

Ds~T!5
2

zL K 1

2 (
i , j

I i j uRi2Rj u2 cos~c i2c j !L
2

b

L K H 1

2 (
i , j

I i j @~Ri2Rj !•ex#sin~c i2c j !J 2L ,

~A3!

in agreement with corresponding early results.27 In view of
Eq. ~A2!, the ground-state configuration of Eq.~A1! is sim-
ply given byc i50, while the zero-temperature value of th
superfluid weight follows immediately from Eq.~A3! as

Ds~0!5~11a!I . ~A4!

Integrating the quadratic~Gaussian! fluctuations around the
ground-state configuration we obtain, after some lengthy
gebra, the following low-temperature asymptotic expans
for the superfluid weight:

Ds~T!

Ds~0!
512@11G~a!#

kBT

zDs~0!
for T→0. ~A5!

HereG(a) is a dimensionless geometric factor given by

G~a!5
1

L (
q

a~12dq!

~12a!~12gq!1a~12dq!
, ~A6!

with

gq5
1

2
~cosqx1cosqy!, dq5cosqxcosqy . ~A7!

We emphasize thatG(a) is an increasing function ofa with
end-point values:G(0)50 andG(1)51. Hence, from Eq.
~A5! follows that the zero-temperature slopeDs8(0) evolves
monotonically from2kB/4 to 2kB/2, as the parametera
varies from 0~NN XY model! to 1 ~NNN XY model!; see
dash-dotted and dotted lines in Fig. 3.

Noting now that uRi2Rj u252, for NNN sites i , j ,
whereasuRi2Rj u251, for NN sitesi , j , a cautious inspection
of Eq. ~A3! reveals that, in the thermodynamic limit and
each given temperatureT, the superfluid weight of the NNN
XY model should be twice as large the superfluid weight
the NN XY model: Ds

(a51)(T)52Ds
(a50)(T). The latter

property is explicit in the low-temperature analytic resu
~A4! and ~A5! and we have confirmed its validity in th
whole temperature range by Monte Carlo simulation us
the standard Metropolis algorithm with the paramet
quoted in Sec. III. Indeed, as shown in Fig. 3, the Mon
Carlo data curves ofDs(T)/Ds(0) vs kBT/Ds(0) for the
NNN XY model coincide, within numerical error, with thos
for the NNXY model, when thekBT/Ds(0) axis is scaled by
a factor of 2. This agreement becomes better with increas
lattice size.
9-6
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For the conventional NNXY model it is well known6 that
in the thermodynamic limit we have the jump rati
Ds(Tc)/(kBTc)52/p, or equivalently in the notation of Eq
~14!, the valueR(Tc)51. Hence, in view of the simple re
lation Ds

(a51)(T)52Ds
(a50)(T), we anticipate for the NNN

XY model the jump ratio:Ds(Tc)/(kBTc)54/p, or equiva-
lently, R(Tc)52. In order to demonstrate numerically th
latter property we have carried out a finite-size scaling an
sis for the NNNXY model based on the scaling formu
~14!, as described in detail in Sec. III. The results are su
marized in Fig. 4. We note that the minimum of thex2(T)
curve in Fig. 4~a! occurs, within numerical error, at thesame
point were theR(T) curve in Fig. 4~b! crosses the line
R(T)52. Hence the assignmentR(Tc)52 leads, indeed, to
a uniquely determined value forTc which from the crossing
point in Fig. 4~b! is estimated to bekBTc /Ds(0)
50.4435(5). Thesuccess of the finite-size scaling analy
validates then the assignmentR(Tc)52 for the NNN XY
model.

It is worth emphasizing that in terms of the dimensionle
parameterA5kBTc /Ds(0), the Monte Carlo results of the

FIG. 3. Superfluid weightDs(T) vs temperature for theXY
model with various lattice sizes and NNN or NN interaction on
The crossings of the short~long! dashed line with the Monte Carlo
data curves for the NNN~NN! XY model provide estimates for th
KT transition temperatureTc of increasing accuracy, as the lattic
size increases. Monte Carlo points above the corresponding
matedTc are nonzero due to finite-size effects. The dotted~dash-
dotted! line depicts the low-temperature asymptote for the NN
~NN! XY model, according to Eq.~A5!.
14452
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present appendix imply the valueA(a51)50.4435(5) for the
NNN XY model and, of course, twice as large correspond
value for the NNXY model, i.e.,A(a50)50.887(1). Note
that the latter value for the NNXY model agrees with the
original estimate of Weber and Minnhagen19 derived with
the same finite-size scaling procedure. Pictorially, our res
are manifest in Fig. 3 were the crossings of the short~long!
dashed line with the Monte Carlo data curves for the NN
~NN! XY model provide estimates for the value ofA of in-
creasing accuracy, as the lattice size increases.

ti-

FIG. 4. Finite-size scaling aroundTc for the NNN XY model,
according to Eq. ~14! and for the lattice size sequenceLx

54,6,8,10,12.~a! Chi-square values~circles! of the fitting vs tem-
perature withR(T) fixed to 2. The inset is an enlarged view of th
curve around its minimum.~b! Coefficient R(T) vs temperature.
The dotted vertical line indicates the critical temperature at wh
the solid line crosses the dotted horizontal line@R(T)52#. The
solid line is determined by a linear fitting to the original da
~circles!. The estimated critical temperature is given b
kBTc /Ds(0)50.4435(5).
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