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Monte Carlo study of the superfluid weight in doped antiferromagnets
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The phase fluctuations of the condensate in doped antiferromagnets, describeet’by model and a
suitable 1IN expansion, provide a mechanism for a Kosterlitz-Thou(&39 type of transition to a supercon-
ducting state below .. In this paper, we present a Monte Carlo study of the corresponding superfluid weight
D(T) in the classical(largeN) limit, as a function of temperature and doping. Consistent with generic
experimental trend€)4(T) exhibits aT-linear decrease at low temperatures, with the magnitude of the slope
D{(0) increasing upon doping. Finite-size scaling in the underdoped regime predicts values for the dimen-
sionless ratilA=kgT./D¢(0) of order unity, withA=0.4435(5) in the half filled band limit, thus confirming
D4(0) as the fundamental energy scale determining Our Monte Carlo results foDg(T)/Dg(0) vs
kgT/D4(0), at 10%hole doping, are found to be in reasonable agreement with recent measurements on
La,_,Sr,CuQ,, with x=0.10, throughout the temperature range below the theoretical KT transition tempera-
ture .
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[. INTRODUCTION tion, is the prediction of ar-linear decrease iD¢(T) at
temperatures well beloW,, in accordance with the experi-
The quest on the nature of the superconducting transitiomental observations:'> However, all the aforementioned
observed in doped antiferromagnets, such as the lamellanodels do not incorporate explicitly the doping dependence
high-T. copper-oxides, has entered a new era. Indeed, a cof D¢(T) and therefore provide no framework for a proper
sensus is emergingon the importance of the zero- treatment of the high-, cuprate superconductors as doped
temperature superfluid weights(0) as the fundamental en- antiferromagnets. This is a major drawback since the prox-
ergy scale determining the corresponding transitionimity of the doped materials to the Mott insulating antiferro-
temperaturel .. An early clue for this result came from the magnetic state at half fillingn,=1) lead$ to a vanishing
empirical Uemura relatiof,valid for underdoped cuprates, D¢(0) andT,, as the hole concentration {In.) tends to
which shows roughly a proportionality between the indepenzero. The importance of the antiferromagnetic fluctuations,

dently measurable quantitids andD(0), even well within the underdoped regime, has been recently
confirmed in a dramatic way. Specifically, the elastic
kgT.=AD40), (1) neutron-scattering measureméfits  in pristine

La,_,Sr,CuQ,, with x=0.10,0.12, have established the pres-
whereA is a dimensionless parameter of order unity. Givenence ofstatic long-range antiferromagnetic order in the su-
that the superfluid weighd(T), at a general temperatufe  perconducting ground state, suggested by earlier Work.
measures the “phase stiffness” of the condensate, i.e., th€his conclusion is supported also by the subsequent obser-
energy cost to produce spatial variations of its phase, Emeryation of conventional two-magnon Raman scattefirig
and Kivelsor argued that Eq(1) provides strong evidence the same material.
for a phase-fluctuation driven superconducting transition. Of The above discussion underlines the need for models of
course, in strictly two-dimensional systems with continuousthe highT . cuprate superconductors that can account, on the
U(1) gauge(phase symmetry, melting of long-range phase same footing, for the intimately coupled phase and spin fluc-
coherence with increasing temperature, and hence loss tifiations of the condensate. Such a model has been suggested
superfluidity of the charge carriers, proceeds by thermal gersome time agt§ and shown, by one of the authors, to display
eration and subsequent unbinding of vortex-antivortex pairslux quantization and a finite superfluid weight, i.e., super-
The detailed description of this transition is given by theconductivity, in its ground state.Our model consists of &
Kosterlitz-Thoules$KT) theory*® in the context of the clas- t’-J Hamiltonian and a suitable N/expansion that provide a
sical XY model. A characteristic feature of the KT transition framework for the study of(i) the ground-state properties,
is the discontinuous drop @(T) to zero afT=T., asT.is  using standard “spin-wave” techniques which allow the in-
approached from belofvDespite the inevitable rounding of corporation of leading quantum-fluctuation effects, ding
this discontinuity by the weak coupling between the copperthe finite-temperature properties, using an associated classi-
oxide layers, Corsoret al,” in a remarkable experiment, cal (largeN limit) energy functional and corresponding par-
have provided direct evidence of the KT nature of the supertition function in terms of which important physical quanti-
conducting transition by observing dynamic effects of ther-ties can be readily expressed and calculated by Monte Carlo
mally generated vortices in the frequency-dependent condusimulation. Pointi) was the subject of earlier works'’ and
tivity of underdoped cuprate thin films. the results, especially for the optical properties, were found

A common feature of theoretical mod&I&° assuming a to provide support for our effective model when compared
phase-fluctuation mechanism for the superconducting transwith experiment. In the present paper we consider p@ijt

0163-1829/2001/634)/1445298)/$20.00 63 144529-1 ©2001 The American Physical Society



GREGORY C. PSALTAKIS PHYSICAL REVIEW B63 144529

focusing on the study of the superfluid weight as a functioncan be used to develop a perturbation theory based on the
of temperature and doping, a subject of current experimentdl/N expansion, restoring the physical valNe=1 at the end
and theoretical interest. of the calculation.

In Sec. Il we give a brief description of our effectit’ - In the presence of an external magnetic fibxthreading
J Hamiltonian and the associated classical energy functionaghe two-dimensional lattice in an Aharonov-Bohm torus ge-
and partition function emerging in the largelimit. In Sec.  ometry, the hopping matrix elemertis are modified by the
Il we derive an explicit expression for the superfluid weight well known Peierls phase factor and should be substituted in
D4(T) which we study by Monte Carlo simulation using the Eg. (2) according to
standard Metropolis algorithdf. We present results for the
shape of the scaled curvB¢(T)/D4(0) vskgT/D¢(0), the ~ . 27d
value of the dimensionless ratiokgT./Dy(0) and tij~tjei, - with A =m(Ri_Ri)'ex- (4)
D«(T.)/kgT,., as well as the value of the zero-temperature
slope D{(0), clarifying their doping dependence in the re- HereR; is the position vector for lattice site e, is the unit
gime of interest, i.e., close to half filling. The KT nature of vector along thex axis encircling the flux lines and,
the transition to the superconducting state is supported by 27fic/q is the so-called flux quantum. As argued in Ref.
finite-size scaling analysis using the relevant Weber-17, in the context of the preseeffectivemodel, whereby
Minnhagen scaling formul& In particular, our numerical carriers are treated as hard-core bosons, the clgegeering
results for the temperature dependenceDQ{T), at 10%  ®, should be set equal tg=2e, wheree is the electronic
hole doping, compare reasonably well with recentcharge.
measurement$in underdoped La ,Sr,CuQ,, for the corre- In the largeN limit “condensation” occurs, i.e., the Bose
sponding concentration valug=0.10. Furthermore, the operators become classical commuting fields. Considering
zero-temperature slope of the superfluid weight is predictednly uniform density configurations, the corresponding clas-
to approach, close to half filingng—1), the universal sical energy functional resulting from Eq®)—(4) takes the
value: D/(0)= —kg/2, consistent with the available experi- form*’
mental datd?!? The latter limiting value is shown to be a

hallmark of the strong antiferromagnetic correlations, present _ 0; b
in this temperature and doping regime. Our concluding re- H(®)= _”e(l_ne)izj: tij| cos5cos>
marks are summarized in Sec. IV. '
i— ;= i+ P O 0
Il. EFFECTIVE MODEL 8 COS( Ayt 2 Teingsing
The effective model under consideration is described by a i~ i+ di— ¢
t-t'-J Hamiltonian expressed in terms of Hubbard operators xcog Ajj + - 3
x**=[a)(b| as i
1 +—"J> [cos#; cosd;+sin 6,
H=- Z, XX+ 5 J«Ew XX =xt"xi", @ 476 Y '
Xsin ) cod ¢~ ;) — 1], ®)

where the index 0 corresponds to a hole, the Greek indices

M, v, ... assume two distinct values, for a spin-up and ayhere n, is the average electronic density, the angles
spin-down electron, and the summation convention is in{g, ;) determine the local spin direction, and the remaining
voked. HereJ is the antiferromagnetic spin-exchange inter-parameteny; determines the local phase of the condensate.
action between nearest-neighbor sifeg) on a square lat- The above functional form makes apparent the coupling be-
tice endorsed with periodic boundary conditions and a totajween the phase and spin variables of the condensate through
number of sites\ =A, XA, whereA,=A,. For the hop-  the kinetic energy term, proportional tg .

ping matrix elements;; we assume The description of the finite-temperature classical theory
is now completed using the energy functiofilto construct

the corresponding partition functioa(®) and free energy

t= —t' if i,j are next-nearest neighbors (3) per lattice siteF(P),

t if i,j are nearest neighbors

0 otherwise.

The conventions in Eq(3) incorporate opposite signs for ~ Z2(®)=¢€ BAF((P)ZJ (H sing; d6; de; dy; | e (),

andt’ as it is appropriate for the hole-doped cupratet (6)

Ref. 16 we generalized the local constraint associated with

Eq. (2) to x°+ x/“=N, whereN is an arbitrary integer, and where 8=1/(kzT) and the integrations at each lattice site
considered the commutation properties of #® operators extend over the intervals: 94,<w, 0<¢;<2m, and 0

to be those of the generators of thé3lalgebra. A Holstein- =< ¢;<4. Invoking standard thermodynamic identities, im-
Primakoff realization for the latter algebra in terms of hard-portant physical quantities can be readily expressed in terms
core bosons resolves then explicitly the local constraint andf the partition function(6) and studied by Monte Carlo
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simulation. In the following we focus our discussion on the ' ' ' : :

study of the superfluid weighd(T). 1.0 (@ a—a 88 (1-ng=0.01)
. v 16x16 (1-nz=0.01)

a—o 32x32 (1-ng=0.01) | |
o—o 64x64 (1-ng=0.01)

IIl. SUPERFLUID WEIGHT 08 r

At a finite temperaturd, the superfluid weightor helic- S - @mT/DL0)
ity modulug D4(T) is given by the curvature of the infinite o 08 By | 1k, T/[2D,0)]
lattice limit of the free energ\F(®) at ®=021"2 e Yy o s
S 04| , 1
Dy(T) A(q)o)z D) (7)
s\)=A 5 . -
2w 902 d=0 02| - b

Physically,D4(T) determines the ratio of the density of the -
superfluid charge carriers to their mass a_md hence can t_)e 0'00.0 02 Y Y 08 o A
related to the experimentally measurable in-plane magnetic k. T/D4(0)

B s

(London penetration depth, as noted later on in this section.

Carrying out the second derivative with respectdtdan Eq. . . ' w w
(7) we have more explicitly that 1.0 b, ® o2 8x8 (1-ng=0.10) |
N = 16x16 (1-ng=0.10)
De(T)=ng(1—n )i > il Ri—R[? coss cost) 0.8 | oe 3282 (1-ng=0.10) |
S € FzZA\N U 2 2 ) o—o 64x64 {1-nz=0.10)
) J -~ (4/m)k,T/Dg(0)
— i — b+ b 6 0 » 06 4
X CO M +S|n_| S|n_J e """ 1—kBT/[ZDs(O)]
2 2 2 =
o 04| 1
02| .
B /
X— Z tij[(Ri—Rj)- &l . \ % .
A [ 0.0 L <
0.0 0.2 0.4 0.6 0.8 1.0 1.2
6 6 ('/fi_l//j_sf’i+¢j ksT/Ds(0)
X|€cos% cossin| ——————
2 2 2 FIG. 1. Superfluid weighD4(T) vs temperature, for various

o 6 di— i+ di— b\ ) 2 lattice sizes,e=0.45, t/J=1.0, and(a) 1—n,=0.01 [estimated

2 2 2 kgT./Dg(0)=0.35028)]. Monte Carlo points above the corre-
sponding estimated KT transition temperatliggare nonzero due to
Sfinite-size effects. Error bars are included but in most cases are
smaller than symbol size.

z=4 being the coordination number of the square lattice. A
shown in Ref. 16, close to half fillingng=<1) and for a
sufficiently larget’, the ground state of Ed5), in the ab-
sence of magnetic fluxd=0), is described by a planar spin
configuration @;= 7/2) in which the local twist angles and
phases exhibit long-range order according #§=Q-R;,
$i=Q'-R;, whereQ=(,7) is the usual spin-modulating
antiferromagnetic wave vector a@l = (7, — ) is a phase-
modulating wave vector. The zero-temperature value of th
superfluid weight follows then easily from E(B) as

physical picture, we performed a Monte Carlo simulation
using the standard Metropolis algorithfhOur calculations
were carried out on small lattices, with typical sizAg
=8,16,32,64. For a given temperature we performed of the
order of 1¢ thermalization steps and of the order of®10
easurements. We considered values for the dimensionless
ratios e=t'/t=0.45 andt/J=1.0, which are thought to be
— Ay _ relevant for the copper-oxide layers, and restricted our study
Ds(0)=4t"ne(1-ne). © to the underdoped regime, i.e., to smalH{f,) values up to
For the typical two-dimensional model with continuous sym-10% hole doping. The latter restriction is dictated by the fact
metry under consideration, we expect that at low but finitethat models of thé-t’-J kind, being rather simple extensions
temperatures, the long-range order will be destroyed by thef the Mott-Heisenberg antiferromagnetic insulator, cannot
proliferation of excited Goldstone modes, leading to aproperly account for the nontrivial evolution of the electronic
T-linear decrease dD¢(T). At higher temperatures we ex- structure of the cuprates that occurs at higher doping values,
pect that the thermal generation and subsequent unbinding amely, the closing of the pseudodpn the optimally
vortex-antivortex pairs will lead eventually to a discontinu- doped and overdopedrermi-liquid) regime.
ous drop ofD4(T) to zero, at a critical poinT=T,, in a KT Typical Monte Carlo results for the superfluid weight vs
type of transition. In order to study numericalD,(T) inthe  temperature are shown in Fig(al, for (1—n.)=0.01, and
whole temperature range and affirm the aforementionedrig. 1(b), for (1—n.)=0.10. At low temperatures the super-
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fluid weight has a weak finite-size dependence and displays : ‘
the expected-linear decrease. In particular, far—0 and 1.0 e VL35, S1Cu04 (x=010) |
ne— 1, we have established the asymptotic form = 64x64 (1-1e=0.10)
08 - +— 64x64 (1-ng=0.01)
Dy(T) kgT o—o 64x64 (NNNXY)
D.(0) =1- 2D.0) for T-0 andn.—1. (10 s e | - @mTIDLO)
U I - 1-k;T/[2D4(0)]
The analytic expressiofl0) is shown in Fig. 1 by a dotted E
line. Evidently, this asymptotic line is approached very o g4l i
closely from below by the low-temperature numerical data
already in the case of the 1% hole doping; see Fi@.1
From Eq.(10) follows that the zero-temperature slope of the 021 ’
superfluid weight approaches, close to half filling, the -
parameter-free universal value 0.00.0 02 o2 vos 0B 3 T

D.(0)=—kg/2=—0.043meVK?! for n.—1. (11) keT/D(0)

L . . L FIG. 2. Superfluid weighD4(T) vs temperature. Experimental

The upper limiting valug1l) is a rather stringent prediction data(triangles on La, ,Sr,CuQ;,, with x=0.10, are extracted from
of our theory qnd seems, inQeed, tq be consistent with thg o measurements of Panagopoubl. (Ref. 12 using Eq.(15).
available experimental dafe’”in the highT. cuprate super- Corresponding Monte Carlo resulisircles are calculated for lat-
conductors. A comparison of Fig(d with Fig. 1(b) reveals tice size 6464 ands =0.45,t/J=1.0, 1-n,=0.10. Also included
an increase in the magnitude of the sldpg0) upon dop-  are results for the same lattice size and0.45, t/J=1.0, 1-n,
ing, a trend also consistent with experiméht? =0.01 (filled diamonds, which should be compared with the re-

We emphasize that the asymptotic fofi®) is a physical sults for the NNNXY model (opaque diamondsThe latter model
consequence of the fact that close to half filling the antifer-corresponds to the limiting form of the presesit-J model, when
romagnetic exchange energy? overwhelms the hole ki- ne—1, as discussed in the text.
netic energytjjng(1—ng), and in particular the terrd(0) )
given by Eq.(9). Hence, in the limitn,—1 and in the rel- Whenne—1, and allow us to transcribe relevant results for
evant temperature randgT<D4(0)<Jn? (so thatT—0), the former model, established in the Appendix, to the latter,

the thermal averagé8) may be simplified by freezing the ©-9-

spin variables ¢;,¢;) to their zero-temperature antiferro- D(T,) 4
magnetic configuration and allowing fluctuations only in the =~ for Ne—1, (12
phase variableg; . In this case, the vanishing overlap be- KeTe 7
tween the opposite sublattice spin states leaves the direct ksT,/D(0)=0.44355) for n.—1. (13)

hoppingt’ between next-nearest-neighlfdiNN) sites as the
only relevant process of charge transport. One can then eagr Figs. 1 and 2 we present @#kgT/D(0) by a short

ily show that the expressions for the energy functiofial  dashed line. According to Eq12), in the limit n.—1 the

and superfluid weigh¢8) reduce to those of a classicdlY Ilatter line should intersect the corresponding Monte Carlo
model for they; variables, but with only a NNN interaction data curve ofD(T)/D4(0) vs kgT/D4(0) precisely at the

I, wherel =D4(0)/2. The reduction of the structure of the kgT./D4(0) value given by Eq(13); see opaqudfilled)
phase fluctuations, close to half filling, to that of the NNN diamonds in Fig. 2.

XY model andnot to the commonly assumé&d’ > structure It should be noted that in the actual simulations of the

of the nearest-neighb@NN) XY model, is an important pre- t’-J model we can only use finite, though possibly small,
diction and a direct consequence, in the context of ouhole concentrations which inevitably lead to deviations from
theory, of the presence of strong antiferromagnetic correlathe limiting values(12) and (13). In order to obtain rather
tions in this regime. Numerically, the validity of our argu- accurately the corresponding transition temperafliyeve
ment becomes apparent in Fig. 2 displaying almost coincidhave used the finite-size scaling analysis of Weber and
ing Dg(T) Monte Carlo data for the NNXY model(opaque  Minnhagen'® which is appropriate for KT type of transi-
diamond$ and thet-t’-J model with a very small hole con- tions. In this analysis one measures the chi-square values
centration (1-n.)=0.01 (filled diamond$. Therefore we y?(T) of the fitting of the Monte Carlo data for the super-
may exploit the detailed results of the Appendix for the NNNfluid weight, at each given temperature and for a sequence of
XY model, see Eq(A5), to conclude the asymptotic form small lattice sizes, to a certain scaling formula, derived by
(100 and hence the limiting valuéll). The latter value, the latter authors from the Kosterlitz renormalization-group
D¢(0)=—kg/2, being twice that of the NNXY model (see equations® Specifically, one assumes at each temperafure
the Appendiy, serves as a distinct hallmark of the sublatticethe following A, dependence of the superfluid weight
structure of the strong antiferromagnetic correlations in théd(T,A,):

limit n.— 1. Our observations here affirm also, by analogy to

the well-known physics of th&Y model, the presence of a DT, A R 1+ 1 (14
KT transition for the superfluid weight of thiet’-J model, 2kgT 2IN[A/Ao(T)])’
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whereA o(T) is some characteristic length of the order of the Having discussed the generic trends of the superfluid
lattice constant and has no singularityTat T.. The loga- weight as a function of temperature and doping, in the un-
rithmic lattice size dependence involved in E#4) is char-  derdoped regime, it is instructive to provide a more direct
acteristic of the presence of vortices in the KT transition.comparison of our theory with experiment. To this end we
Strictly speaking, Eq(14) is correct only at the critical point note that in the lamellar highiz superconductors, the experi-
T=T.. Given now a value foR(T,), the critical tempera- mental value for the superfluid weight per copper-oxide
ture can be determined by two alternative procedu@sve ~ Plane, DP(T), can be extracted from the directly
fix R(T) to beR(T,) and useAo(T) as the only adjustable Measurablé:'* in-plane magnetic(London ~penetration
parameter in Eq(14) to measure the chi-square values 9€PthAap(T) using the relation'®

x2(T) of the fitting, in which caseT, corresponds to the )

minimum of they?(T) curve, or(b) we use bottR(T) and D& T) = (hc)"d ,
Ao(T) as adjustable parameters in Et¢) and determind s 477q2)\§b(T)
from the point where th&(T) curve crosses the linB(T)
=R(T.). The correct value foR(T.) should lead uniquely
to thesamevalue forT, in both procedures. The application

of this finite-size scaling to the NNIXY model is summa- with x=0.10, and the structural paraméted= 6.64 A , we
rized p|ctor|aI,Iy in Fig. 4(see the Appendixand justifies, as  janict in Fig. 2 by triangles the corresponding experimental
far as thet-t’-J model is concerned, the limiting values 5jyes(15) for the superfluid weight vs temperature. As a
(12—(13) with R(T¢) -2, for ne—1. result of the weak coupling between the copper-oxide layers,
For the finite doping value (1n)=0.01 or (1-ne¢)  the experimental data display no KT discontinuity but rather
=0.10 (and fixede =t'/t=0.45,1/J=1.0), the application g continuous drop of the superfluid weight to zero, at a spe-
of the aforementioned finite-size scaling analysis, using theific temperature value, that is not simply related to the ideal
lattice size sequenc&,=4,6,8,10,12, leads tkgT./Ds(0) KT transition temperature of a copper-oxide monolayer. Cor-
=0.4346(9) withR(T¢) =2.04, orkgT./Ds(0)=0.3502(8)  responding Monte Carlo results for 10% hole doping are
with R(T.) =2.51, respectively. To be sure, the presence irjepicted in Fig. 2 by circles and calculated for ax@y
Fig. 1 of nonzerd(T) values above the correspondifig,  |attice, with 6=0.45 andt/J=1.0. As noted earlier in this
instead of a discontinuous drop to zero, is due to finite-sizgection, the theoretical KT transition temperature for the lat-
effects which grow rapidly above the estimated critical tem—er set of parameters IgT./D(0)=0.3508), while non-
perature; a typical behavior for a KT transition. Indeed, fol-zero Monte Carlo points above this value are due to finite-
lowing an original argument by Weber and Minnhad&me  sjze effects. Evidently, our theoretical resuticles in Fig.
note that the success of the scaling form(la) in the 2 compare reasonably well with the experimental déta
present model providegpso factg strong evidence that the angles throughout their common relevant temperature range,
relevant phase transition is of the KT type. Our results showe. up toT..
a modest increase of the jump ratiDg(T¢)/(kgTc) In Fig. 2 we also depict Monte Carlo results for 1% hole
=2R(T¢)/ 7 upon doping. The latter behavior seems physi-doping (filled diamonds, as well as results for the NNXY
cally similar to that known in the literature of the frustrated model(opaque diamondsthus providing the theoretical line
XY modef’**given that, in the context of thiet’-J model,  shape of the superfluid weight vs temperature, in the limit
doping induces a form of dynamic frustration for the phasen 1. Clearly, it will be very interesting to have measure-
variables, via their inevitable Coupling to the fluctuating Spinments of the in-p]ane magnetic penetration depth on
variables. La,_,Sr,CuQ,, with hole concentratiorx as small as it is

Furthermore, our results show that the dimensionless pasxperimentally possible, to compare with the present definite
rameterA=kgT./D¢(0), introduced in context of the em- theoretical prediction.

pirical Uemura relation(1), is not doping independent but
decreases modestly upon doping, while away from half fill-
ing it also depends on the couplingsandt/J. Nevertheless,
for rough theoretical estimates of the KT transition tempera- In this paper we have presented a study of the temperature
ture T, in terms of Dg(0), in the underdoped regime, one and doping dependence of the superfluid weiDR{T) in

may always use the universal limiting valde=0.443%5), doped antiferromagnets described by the-J model (2)

for ng—1, quoted in Eq(13). We remind that that the latter and(3). Using Monte Carlo simulations and finite-size scal-
value is characteristic of the NNXY model and equals to ing analysis we have demonstrated that the phase fluctua-
half the corresponding value of the NXKIY model (see the tions of the condensate, emerging in an appropriate classical
Appendi¥ commonly employed to this eridt’?®Note that  (largeN) limit, drive superconductivity via a Kosterlitz-
the use ofA=0.4435(5) in conjunction with Eq1) brings  Thouless type of transition. Our theoretical results reproduce
earlier theoretical overestimations of the KT transition tem-important generic experimental trends®§(T), observed in
perature for the copper-oxides layéf$® derived with A the underdoped higi; cuprate superconductors. This in-
~0.9, down to more reasonable values. In all cases, theludes theT-linear decrease oD4(T) at low temperatures
present analysis confirm34(0) as the fundamental energy and the increase of the magnitude of the sl@3€0) upon
scale determinind; in the underdoped regime. doping.

(15

whered is the average distance between planes and we re-
mind thatq=2e. Using the experimental data of Panagopo-
ulos et al*? for A ,,(T) on the underdoped La,Sr,CuQ,,

IV. CONCLUDING REMARKS

144529-5



GREGORY C. PSALTAKIS PHYSICAL REVIEW B63 144529

In particular, the sublattice structure of the strong antifer-<27. Evidently, =0 corresponds to the NIXY model,
romagnetic correlations in the half filled band limit was while =1 corresponds to the NNXY model.
shown to dictate the lineshape oD¢(T)/D¢(0) vs The superfluid weightor helicity modulu$ for the gen-
kgT/D4(0), forn.— 1, to be identical to that of the NNXY  eralizedXY model(Al) reads
model. In order to check this definite theoretical prediction
we have suggested measurements of the in-plane magnetic 2 /1 )
penetration depth in very lightly doped cuprates. Here we Ps(T) =+ {5 .EJ i |Ri— Ry|“ cod i — )
should add that higher-orderNL./corrections are expected to '

renormalize downward$ the fundamental energy scale B/(1 _ 2
D4(0) but, nevertheless, leave the line shape of gbaled “A\12 IE] LiL(Ri=Ry)-&dsin(yi—4p) 1),
curve D¢(T)/D4(0) vskgT/D4(0) essentially intact. '

The present study shares some common features with ear- (A3)

- “10 - - :
“r?r \r/]\{orr]kss '”VOk'”g a .phase-flu%tuatlﬁn mhecZanlﬁmh for in agreement with corresponding early reséftn view of
the highT; superconductivity. On the other hand, all theseg, (a2)  the ground-state configuration of E@1) is sim-

works including ours are radically different from phenom- ply given by ;=0, while the zero-temperature value of the

enological approach&s®! that implicate the thermally ex- superfluid weight follows immediately from EGA3) as
cited nodal quasiparticles ingawave BCS superconducting

state for the reduction dd4(T) with increasing temperature. D(0)=(1+a)l. (A4)

The weak-coupling BCS type of approaches, however, are

undermined by the absence of normal state quasiparticlmtegrating the quadrati@Gaussiap fluctuations around the

peaks? near the Brillouin zone points (8,7) and (+ ,0) ground-state configuration we obtain, after some lengthy al-

where superconductivity is supposed to originate. At presergebra, the following low-temperature asymptotic expansion

it is still difficult to discern experimentally whether the tem- for the superfluid weight:

perature and doping dependenceDn{T) is dominated by

phase fluctuations or by nodal BCS-like quasiparticle excita- Dy(T) kgT

tions. However, recent experiments in cuprate thin films D.(0) =1-[1+G(a) -5 (0)
S S

have provided strong evidence for the inherent two-

dimensional character of superconductivitand for the KT =~ HereG(«) is a dimensionless geometric factor given by

nature of the superconducting transition.

for T—0. (A5)

a(1-3y)
G(“):XE T—a)(1—yg)+a(l-dy’
ACKNOWLEDGMENTS 7 (1=a)(1—yg+a( )

(A6)

| would like to thank C. Panagopoulos for providing the with
penetration depth data and X. Zotos and G. Varelogiannis for

stimulating discussions. 1
Imuiating discussi yqzi(cosqurcosqy), dq=C0sq,cosqy . (A7)

APPENDIX: GENERALIZED XY MODEL We emphasize th&@b(«) is an increasing function af with

In the main body of the paper we noted that the structur@nd-point valuesG(0)=0 andG(1)=1. Hence, from Eq.
of the phase fluctuations of thiet’-J model under study (A5) follows that the zero-temperature slopg(0) evolves
reduces, in the half filled band limit, to that of a classik3 monotonically from—kg/4 to —kg/2, as the parametes
model with only next-nearest-neighb@INN) interactions. varies from O(NN XY mode) to 1 (NNN XY mode); see
In order to clarify the properties of the latter model, in jux- dash-dotted and dotted lines in Fig. 3.
taposition to those of the more conventional nearest-neighbor Noting now that |Ri—Rj|2=2, for NNN sites i,j,
(NN) XY model, we consider briefly in this appendix the whereaé,Ri—Rj|2=1, for NN sitesi,j, a cautious inspection
following Hamiltonian: of Eqg. (A3) reveals that, in the thermodynamic limit and at
each given temperatufg the superfluid weight of the NNN
1 XY model should be twice as large the superfluid weight of
Hx==5 2y cos i — i), (A1) the NN XY model: D{*=Y(T)=2D{=%(T). The latter
' property is explicit in the low-temperature analytic results
assuming (A4) and (A5) and we have confirmed its validity in the
whole temperature range by Monte Carlo simulation using

(1—a)l ifi,j are nearest neighbors the standard Metropolis algorithm with the parameters

o . guoted in Sec. lll. Indeed, as shown in Fig. 3, the Monte
lij=1 «l ifi,j are next-nearest neighbors (A2)  Carlo data curves oD¢(T)/Ds(0) Vs kgT/D4(0) for the
0 otherwise, NNN XY model coincide, within numerical error, with those

for the NN XY model, when thé&gT/D¢(0) axis is scaled by
where « is a free parameter, with<9a<1, andl>0. At  a factor of 2. This agreement becomes better with increasing
each lattice sité the angley; varies in the interval: & y; lattice size.

144529-6
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FIG. 3. Superfluid weighD4(T) vs temperature for thXY
model with various lattice sizes and NNN or NN interaction only.
The crossings of the shofiong) dashed line with the Monte Carlo
data curves for the NNNNN) XY model provide estimates for the
KT transition temperatur@ . of increasing accuracy, as the lattice

size increases. Monte Carlo points above the corresponding esti-

mated T, are nonzero due to finite-size effects. The doftaash-
dotted line depicts the low-temperature asymptote for the NNN
(NN) XY model, according to EqA5).

For the conventional NNXY model it is well knowf that
in the thermodynamic limit we have the jump ratio:
Dy(T.)/(kgT.) =2/, or equivalently in the notation of Eq.
(14), the valueR(T.)=1. Hence, in view of the simple re-
lation D{*=Y(T)=2D{*=%(T), we anticipate for the NNN
XY model the jump ratioDg(T.)/(kgT.) =4/, or equiva-
lently, R(T.)=2. In order to demonstrate numerically the

latter property we have carried out a finite-size scaling analy¢circles. The estimated critical

sis for the NNN XY model based on the scaling formula
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FIG. 4. Finite-size scaling arounf; for the NNN XY model,
according to Eq.(14) and for the lattice size sequenck,
=4,6,8,10,12(a) Chi-square valuegcircles of the fitting vs tem-
perature withR(T) fixed to 2. The inset is an enlarged view of the
curve around its minimum(b) CoefficientR(T) vs temperature.
The dotted vertical line indicates the critical temperature at which
the solid line crosses the dotted horizontal life(T)=2]. The
solid line is determined by a linear fitting to the original data
temperature is given by
kgT./D¢(0)=0.443%5).

(14), as described in detail in Sec. lll. The results are sum-

marized in Fig. 4. We note that the minimum of tié&(T)
curve in Fig. 4a) occurs, within numerical error, at tlsame
point were theR(T) curve in Fig. 4b) crosses the line
R(T)=2. Hence the assignmeR{(T.)=2 leads, indeed, to
a uniguely determined value fdr, which from the crossing
point in Fig. 4b) is estimated to bekgT./D4(0)
=0.443%5). Thesuccess of the finite-size scaling analysis
validates then the assignmeR(T.)=2 for the NNN XY
model.

present appendix imply the val#é*=1)=0.4435(5) for the
NNN XY model and, of course, twice as large corresponding
value for the NNXY model, i.e.,A(“=9=0.8871). Note
that the latter value for the NIXY model agrees with the
original estimate of Weber and Minnhad@merived with

the same finite-size scaling procedure. Pictorially, our results
are manifest in Fig. 3 were the crossings of the sklorig)
dashed line with the Monte Carlo data curves for the NNN

It is worth emphasizing that in terms of the dimensionlessNN) XY model provide estimates for the value Afof in-

parameterA=kgT./D¢(0), the Monte Carlo results of the

creasing accuracy, as the lattice size increases.
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