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The first penetration fielt o(T) of Josephson vortices is measured through the onset of microwave absorp-
tion in the locked state in slightly overdoped,Bi,CaCyOg. s single crystals T,~84 K). The magnitude of
H(T) is too large to be accounted for by the first thermodynamic critical fi¢lg(T). We discuss the
possibility of a Bean-Livingston barrier, also supported by irreversible behavior upon flux exit, and the role of
defects, which relateld o(T) to thec-axis penetration depth.(T). The temperature dependence of the latter,
determined by a cavity perturbation technique, and a theoretical estimate of the defect-limited penetration field
are used to deduce froi,(T) the absolute value of.(0)~35 um.
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. INTRODUCTION ity measurements in ba,Sr,CuQ,,?° YBa,CuyOg., 5,2 TI-
2212, or TI-2201(Ref. 22 and from microwave absorption

The phenomenological Lawrence-Doniach model is genmeasurements in underdoped Bi-2212 and Bi-2Z0A
erally used to describe a stack of Josephson-coupled sup&&rge body of literature reported a sharp microwave absorp-
conducting layers:* This interlayer Josephson tunneling hastion line in presence of a static field applied parallel to the
been established experimentally by dc or ac Josephson effegkis?4?> This absorption line was assigned to Josephson
experiments in numerous high- superconductorsand is  plasma resonance, whose frequency is modified by the field-
proposed as a candidate mechanism for supercondudtivitydependent interlayer phase coheref8.Although the ge-
Such discrete layered structures have some striking incidenggnmetry of the experiments reported here is differghe ex-
on many properties. ternal field is parallel to theb planes, the specific field

(i) Josephson vortices appear for field parallel to the laydependence ok, or w,s may be involved, as discussed
ers, and in case their penetration in this quasi-twoe|sewherd® 1’
dimensional (quasi-2D system is impeded by a surface  Therefore, an independent measurement of the absolute
barrier/ the penetration field, henceforward noted®(T),  value of\, (in zero applied fielilis of interest. To date, all
is simply inversely proportional to the-axis penetration of the above-mentioned properties have been studied sepa-
depth\(T),2 unlike isotropic superconductofsrhere it is rately. It is the aim of this paper to bring together two dif-
of the order of the thermodynamic critical fi¢ldrhe occur-  ferent microwave measurements in order to obtain the abso-
rence of such a barrier was discussed mostly in the framdute value of A\o(T): (i) the first penetration field of
work of low-field magnetization measurements performed inJosephson vortices is meastffeand shown to be related to
fields parallel to the layers in NdCeCuOTI-2201° and N (T), and (i) a cavity perturbation technigtfeis used to
Bi-2212M The quantitative estimates bf(T) deduced from determine the temperature variation @f\,,(T) and
these data were however disputéd. AN(T).2®

(i) Nc(T) is directly related to the critical current density  In the present paper, we focus mainly on the investigation
between the layers]y(T), and is inversely proportional to of the penetration of Josephson vortices through surface re-
the Josephson plasma frequeneys.'>* Both quantities —sistance measurements at high frequeri¢® GH2 in
ought to be discussed within the same theoreticaBi-22123° The onset of microwave absorption allows us to
background>~1" Early measurements of.(T) by an ac determine the penetration fiells(T) of Josephson vortices
techniqué®!® could not make this connection. Nor did they at different temperatures. The magnitudeHhf(T) and the
provide consistent values in a sample with a well-knownirreversible behavior of the dissipation with respect to flux
doping level. The issue of underdoping or overdoping haentry and flux exit point at first sight toward a Bean-
become clear over the late years. Direct determination of theivingston surface barrier impeding the penetration of Jo-
plasma frequency was performed through infrared reflectivsephson vortices. However, a closer quantitative investiga-
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mentioned parameters of the sample suggest that the quality
of the cuprate planes is fairly high. We note that the slope of
ANgp(T) in the inset of Fig. 1 is fairly large
(=25 A/K). It could be a consequence of dopiidf with
respect to optimally doped crystafs?

All samples from different batches exhibit very similar
properties as far as the magnitude and temperature depen-
dence of the field penetration is concerned, so that experi-
mental results are only displayed for sample A. H&he,(T)
differs among samples with differert,. We shall only
make use of the data on the samples with the sdme
(=1 K).

The experimental setup is described elsewfRerk. is
used to measure the microwave losses as a function of the
120 applied magnetic field0—100 O¢ and temperatur€50—90
K; measurements at temperatures lower than 45 K are hin-

FIG. 1. Surface resistandgy(T) in the ab plane of slightly dered by the increasing noise of the s¢tup
overdoped BSCCO single crystal. The inset shows the low- The microwave fielch, lies within theab plane, so that

temperature behavior oRg(T) and of the penetration depth the induced microwave currents f_IOW_ both Wlthl.n thé
AN oy(T) plane and along the crystallograpti@xis. The static mag-
bt netic fieldH is applied in theab plane perpendicular to the

. _ . o microwave field. A computer-controlled goniometer allows
tion, which includes the experimental determination of the

- : ) one to select its orientatiodl with respect to theb plane.
variation AN (T) of the c-axis penetration depth, and the

: . e To locate thed=0 position, we take advantage of the lock-in
theoretical calculation of the penetration field in the presence . sition evidenced earlié?. The setup measures the varia-
of edge or surface defects, leads us to the conclusion th '

#bn of the power dissipated in the cavity as the magnetic

He(T) is eventually controlled by such surface irregularities.fie|4 js swept at fixed temperature, and hence yields the field-
Relying on these theoretical estimates, we deduce frorfhduced imaginary part y"(H) of the macroscopic

He(T) the absolute value of theaxis penetration depth. g scentibility® (as long as the dissipation is Ohmic, the so-

called linear regime This latter point has been checked for
Il. EXPERIMENT all the data shown henceforward.

Microwave dissipation measurements were performed in
various (generally slightly over-dopedBi,Sr,CaCyOg;, s
(BSCCO single crystals shaped into rectangular platelets of Figure 2 displays the change of dissipatiogp)(H)-
approximate sizeaxXbxc=2x1x0.03 mni: sample A, x”(0), starting from zero fieldwithin +0.10e), measured
T.=86 K, has a transition width T,~3 K (as determined in sample A for various orientations of the applied field close
from the range over which the microwave absorption dropso the ab plane, 0%<6<3° (only the 0° and 2° are dis-
from normal to superconducting state valyessmple B with  played in Fig. 2, and in a low-field range € H<250e, at
T.=84 K, AT,~3 K, and sample C,T.=89 K, AT, three typical temperature§ €78 K, 60 K, 50 K).
~3 K. Two other similar sample® and B were used for After each field sweep, the sample was warmed through
checking the onset of microwave dissipation with respect tor, and then cooled again in zero field, in order to avoid any
the surface quality as discussed below. Finally, the tempergeossible vortex pinning when studying the penetration start-
ture dependence of the penetration depth was measured inry from zero field. The dissipation of Josephson vortices is
set of similar samples by a cavity perturbation technique atharacterized by the fact that it does not depend on the angle
10 GHz and ac susceptibility at 100 kHz. The details of theséFig. 2), as long as these vortices remain locked. According
measurements have been discussed elsetvhetdle here  to our previous study, the dissipation regime displayed in
we shall only make use of the temperature variations ofig. 2 comes only from locked Josephson vortidesnd
ANap(T) and AN (T). An example of the temperature de- holds up to~30 Oe.
pendence of the surface resistaf€T) in theab plane of As the field increases, an onset in the dissipation occurs at
slightly overdoped T,=84 K) BSCCO single crystal is a temperature-dependent figt,(T) (Fig. 2), which we as-
shown in Fig. 1. The extrapolation of this curve Te=0  sociate with Josephson vortices entering the sample. Interest-
(inset of Fig. 1 yields the estimat®, .~ 120 u), which is,  ingly, aboveH(T), the microwave absorption behaves lin-
to the best of our knowledge, the lowest value ever obtaineéarly with field, with a very good accuracy, from typically 10
in BSCCO single crystals at 10 GHz. The inset of Fig. 10e up to 25 Oe. This appears consistent with a flux-flow
displays also the linear change with temperature: 60 K) mechanism driven by-axis currents, where the flux-flow
of ANgp(T)=Nap(T)—Aap(5 K). This linear variation at resistivity is linear with applied field. We therefore identify
low T was previously observed in optimally dop&cf3and  H(T) to the first penetration field of Josephson vortices. In
slightly overdopetf BSCCO single crystals. Both the above- this work, unlike in Ref. 30, we have averaged the data over

IIl. RESULTS
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9x10° [ T=50 K ' ' & IV. DISCUSSION

Whether Ho(T) may be identified with the thermody-
namic lower critical fieldH.; was previously discuss€d>°
3x10° ] For Josephson vorticé$,; is written, according to the latest
I 1 calculation®* as

6X10-3 - o° '-

$o [ Nap(T)
477)\ab(T))\c(T)[ln d +1.55]. (1)

Hea(T)=

In our early work® we had not yet studied the tempera-
ture dependence ¢1,(T) and we had not observed the irre-
versible behavior of the dissipation upon flux entry and flux
exit. We had therefore not considered the possibility of a
surface barrier. However, in order to reconcile the magnitude
of Ho(T<T,) with the thermodynamic lower critical field,
we were compelled to take the lowest possible values for
Nap(0) andi.(0).

We proposed next in Ref. 30 to take more acceptable
lower bounds for\ 5,(0) and\.(0), together with the ex-

: ! ! ! ! perimentally determined temperature variations in order to
0 5 10 15 20 025 obtain an upper bound fot.;(T). Here, we take 2100 A as

H (Oe) a lower bound fom ,,(0) (Refs. 32 and 3Band 10um for

Ae(0).2539-%6 We use the temperature dependence for

Nan(T) (partly shown in the inset of Fig.)land A\ (T)
measured in our previous wdrk(see Fig. 5 beloy The
correspondingH,(T) is plotted in Fig. 3 using the above-
mentioned values. We have also displayed, in Figd 3(T)
if taking Ao(0)=40 um.?*3! It is clearly seen that neither
the field orientations from 0° to 3°, in an attempt to improvethe absolute valué¢oo small compared to the experimental
the accuracy of the determination. As in Ref. 30, we ChOOS@ata nor the temperature dependen(wasi”nea}' agrees
to defineH(T) as the field value where the microwave ab-with the H4(T) data. Since the actual penetration field is
sorption exceeds the experimental accuracx {® %). The  larger than the thermodynamid,,(T), it is therefore quite
field thus determined is plotted in Fig. 3. The error bars takenatural to assume that a Bean-Livingston surface barrier im-
into account both the noise and the estimated drift of thepedes field penetration and yields a larger entry field
signal with time®’ H2P(T).

In anisotropic superconductors, in the quasi-2D regime,
i.e., when the transverse coherence length becomes

FIG. 2. Dissipation as a function of the applied field at three
temperatures, for two orientations (0° and 2°) of the applied fiel
with respect to theb plane. The onset of dissipation, indicated by
the arrow, occurs at the penetration field(T).

; ' smaller than the interlayer distandeH?2"(T) was shown to
S5t . be related only to the-axis penetration length througjh
$o
4+ . 2D Ty —
+ } He (D= I @
~~
8 3r } } i In Bi-2212, the quasi-2D regime holds up to temperatures
~ + very close toT,, so that this last expression fet2°(T) is
T 2 -AAAAA - valid in our measuring temperature range. A surface barrier
A A might thus account for the observed value of the penetration
L AAAAAA | field. Also, sinceH2°(T) grows as W (T) [instead of
vvvvvaVvva Sap A I e(T)], it is expected that the temperature dependence
VVVVVVV%Q & could show a better agreement. The existence of a surface
0 : ! barrier is further suggested by the hysteretic behavior of dis-

sipation, shown in Fig. 4, at= 65 K (the behavior is similar
T/T at other temperaturgswWhen the field is swept down, vorti-
¢ ces do not exit in a reversible way. However, all vortices
FIG. 3. Plot ofH(T) (solid circles. Up (down) triangles dis- have left the sample as can be inferred from the recovery of
play estimates off;,(T) using\.(0)=10 um (40 um). The tem-  the same dissipation as in zero initial field, when the field is
perature variationd \ ,,(T) andAX(T) are taken from our present back to zero value. When the field is swept up again, the
work (Figs. 1 and & absorption displays precisely the same behavior as after the
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FIG. 4. Plot ofy”"(H) as a function of the direction of the field ¢

sweep. Solid circles, solid squares, and open squares refer to Sweep-py g piot of the temperature variatidm(T) (solid circles,
ing up the field starting from a zero-field-cooled state, sweepingign scalg and of the effective lengtho(T) which is associated to
down the field to zero, and sweeping up the field again, respecs grface barrier for the penetration of Josephson vortisetid
tively. squares, left scaleusing Eq.(19) or (21). Open circles display the
best fit using\;(0)=35 um and a scaling factgg=6. Open sym-
zero-field-cooled procedure. Bulk pinning would induce flux bols show the best fits using,(0)=20 xm (down triangles and
trapping at zero field, hence some residual dissipation. Oux.(0)=100 um (up triangles.
observations are similar to magnetization measurements

Whherre tthrtiaz |rOIrel\)/erjll:)rlI|t3r/r,1 aSnSI?i;eS :10 a s;]ur(;ac? bairnrlerf,i IIS epth. In our field geometry, defects located either on the top
characterized by zero magnetization Upon decreasing Nelgy, 4 bottom, e.g.ab planes, or the edges may destroy the

SU.CE7a behavior, first observed in a field parallel to the surface barrier. In the former case, the relevant length scale
axis, ' was also reported for Josephson vortices in Bi-2212 in

: . 2 IS Nap(T), in the latter case\(T).
a field oriented nearly parallel to theb plane. Surface In order to distinguish between these two possibilities, we

ratesi! Our sweeping rate is of the order of 0.1 Oe/s COm_surfaces. We noticed that cleaved surfaces often exhibit a
: pIng N few visible steps and sparse voids. After the first measure-
parable to the range where the largest penetration fields we

1 X . ent, sample D was placed on the stage of a scanning tunnel
observed:" We q'd not_ change the sweeping rate, and her]C(Ia*nicroscope(STM) and the tip was used in order to cut four
we cannot confirm this claim. We point out, however, that

: . . Dl rooves parallel to the small side of the crystal, 4000 A deep
the penetration fields observed in Ref. 11 are sugmﬂcantl;}J X
smaller (roughly a factor of 3 than ours. Compared to the and 100um apart. Then the sample was measured agdin (

fastest rate, the decrease of the penetration field associatﬁglrc?lgeflt;% tr:iecrg(])rv(\)/g\\izsa’\lb(s) osr;?t?olgc\il/gg %hbasr;%s eIcT meaosrii[ nd
wilh ihe Slowest rate is only 1 Oe. Such small values Calr]step, we took another sample, yielding a similar penetration

Ob\llt'?:i\ll)ér?ﬁ r:T(])?iLe ?ﬁ;{léuretﬁggglIree?nglrﬂlélég)ngﬁamno%?fr; 'thefield, and cleaved it. We obtained fresh surfaces with one or
9 two isolated steps which could be seen under a binocular.

_surface baff'ef interpretation: they only put a time scale for'I'his sample was measured immediately after cleaving, and
its observation.

Relying on the results described above, we derive fron}again, no significant change was observed. It seems therefore
the H.(T) data an effective penetration depth(T) using hat either defects within thab planes do not play any role

= in order to reduce a surface barrier or even a single step is
Eq. (2). The data are shown in Fig. 5. We then try to deter-, : . :
mine A4(0) S0 as to fith(T) using the measuredi (T). immediately effective to destroy the surface barrier.

. One should also consider penetration through the edges.
We find that both sets of data, namely(T) and Ar¢(T), Indeed, the edges are fairly difficult to control. We did check
cannot be reconciled for any value we may assume fo

: . . rndirectly, in the surface impedance and ac-susceptibility ex-
\¢(0). Therefore, the interpretation cannot be so simple. periments, whether they play any role. In order to measure
AN (T), the rf magnetic field applied parallel to the plane is
V. ROLE OF SURFACE IRREGULARITIES also parallel to one edge of the crystal. If the sample is ro-
tated by 90° along its axis, the edges whereaxis currents
flow are interchanged. It is then clear that if there exists a
Actually, a surface barrier is only effective if the surface large defect, e.g., a slit or groove deep in one edge and not in
is smooth on a typical length scale which is the penetratiorthe other, this defect changes significantly thaxis micro-

A. Experimental checks
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wave current pattern in one position and much less in the z
other. Therefore, the two configurations should yield a dif-
ferentAN.(T) result. In one particular sample out of three,
this was indeed the case, suggesting the presence of a defect
lying in one edge and showing that the measufed.(T)
cannot be intrinsic for this particular sample. The data used P
in this paper and shown in Fig. 5 are not biased by such large B 0 C 6
edge defects; e.g., thex(T) data displayed in Fig. 5 are -a +a X
unchanged within the accuracy of the measurement upon this
rotaton. Tt i

We have now to examine quantitatively to which extent
defects located on the top or bottom surfaces, or in the edges
alter the penetration field.

a) C-plane

B. Theoretical calculations: Formalism v

As usual the entrance field is deduced from the balance I
between the vortex attraction to the surface and the pushing M A’ B' ¢ D N'
force exerted by the screening current at the minimum dis- Uk 3 ! Uk u
tanceé (the vortex core si2€’*° The presence of the surface ‘
irregularities can strongly influence the screening current dis-
tribution. In particular, near a scratch the current density can FIG. 6. (@) The defect MABCDN in the form of the groove at
be many times larger than near the flat surface. This may"le bottom surface of superconductor. The plane of the figure cor-
substantially increase the force pushing vortices inside théesponds to the plang=x+iz. (b) The planew=u-+iv where the
superconductor and then decrease the surface barrier and $Eight line MA'B’C'D'N’ is mapped onto the surface line
entrance field. The vortex attraction to the surface does ndf!ABCDN.
change essentially near a scratch, as has been demonstrated
in Ref. 50. The force of attraction can decrease by at most a Besides, a uniform current densiffw)=j, in the w
factor of 2 near the defect. Then, the main change of th@lane can be deduced from the simple complex potential
entrance field is essentially related to the increase of th&(W)=jow. Then in the{ plane, the complex current den-
screening current density. sity j({) can be obtained from the complex potent/#|()

We consider the case where the scratch is in the form of & joW(¢) by
groove on the superconductor surface, and the magnetic field
is parallel to it. Let thez axis be perpendicular to the super- ) d¢y . dw(Q)
conductor surface. The magnetic field is parallel to this sur- (9= d_gzjod—g’ (4)
face along they axis, and we choose the axis of the groove
on the same direction. The depth of the scratch is denoted agherej, is the current density far away from the defect, i.e.,
b and its width 2 (see Fig. 6. For convenience, the semi- the screening current near the surfage:cH/4m\. To cal-
axis z>0 is chosen inside the superconducting material, sgulate both the attraction energy and the current density in
in Fig. 6 the scratch is presented on the bottom surface of thihe ¢ plane, we need to inverse the conformal transformation.
superconductor. Botla and b are supposed to be much In general, this cannot be done analytically. However, for
smaller than\, the London penetration depth, so screeningsituations of practical interest, we may use approximations
can be ignored and the two-dimensional London equatiothat allow us to obtain an analytic solution.
reduces to Poisson’s equation. Then the lines of current cor-
respond to the equipotentials, and a dielectric defect in a
superconductor corresponds to a metallic embedding in
electrostatics? This analogy reduces our problem to the cal- In the Appendix, we have demonstrated that according to
culation of the electric field distribution near a metallic elec-the values ofa,b,{, there are three different regimes:
trode having the special forrtFig. 6) while the field be- (i) a<b~[{] slitlike defect,
comes uniform forz—. As is known from electrostatics (i) [{|<a<b groovelike defect,
(see, e.g., Ref. 52the solution is provided by a conformal (i) |{|<b<a steplike defect.
transformation of thew plane, corresponding to a flat sur- Let us begin with the slitlike defect. In this case, we use
face, to the plane, the plane of an orthogonal cut of the Egs.(A9) and(A12) to derive the vortex attraction energy at
scratch. In thav plane the attraction energy of the plane on athe distance from the slit,
vortex located at the pointv can be easily computed, for

C. Isotropic case

example, by the image meth6u: . o >2| N .
attlZ)=—| 7| In )
47\
) ( bo )2l A “ T 2\2bz
a 4N wW—w and the strength of the attraction force is

144525-5
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21

z

bo

am| 7' ©

1
fa(2)= E(

which is half of the force for a plane surface. Similarly the

current density is

(2= =i \f )
Z)=— -

] \/EJO z

These two results were obtained earfidor the field and

current distribution near the angler2(the cut at the super-
conductor surfage

The balance between the vortex attraction to the surface
and the pushing force exerted by the screening current at the

minimum distancet (the vortex core size(Refs. 7 and 49
gives the entrance field near the defect,
g) 1/2

8

Hed:Hef< b

where Hg; is the entrance field for the flat surfadé,;
= ¢oldm\é=H_ (thermodynamic critical field The current

PHYSICAL REVIEW B 63 144525

As usual by setting a vortex at a distant@ear the de-
fect, we obtain for the entrance field

2 1/3
Heg=2| —=| H
ed <9\/;) ef

where[ 16/(9/)]Y3=1.

Finally, for a stepa>b, by using Eqs(A14) and (A17)
we can derive the vortex attraction energy and the current
density at the poin® in the vicinity of the pointC. The
vortex attraction force is still given by Eq12) while the
current distribution near the corner becomes

a 1/6

51/3
SEH

b

(14)

4 1/3 b 1/3 _

1(979)2<§) io(;) e 'R (15
The corresponding entrance field is
20 1/3 é‘: 1/3

Hedz<? Hef(B) ) (16)

where (27/9)Y3=0.89.

concentration effect near the slit essentially reduces the en-

trance field. In fact this situation wheee- £>a is not real-
istic for isotropic superconductors, but it will be useful for
the description of the anisotropic ones.
For the groovelike defect, Eq6A14) and(A16) allow us
to derive the physical quantities in the vicinity of the pdit
Let P be a point such that
{p=a+pe’, p<a. 9)
The values off are limited by the groove and the core of
the vortex:

an
— E+arcsir(§/p)< O<m—arcsinélp). (10
The attraction energy on a vortex at the pdmis
c . ¢)0 2| 2 1/3 A
att(p, 0)= a-n " 9bp? 26+ |
sinl ——
3
11
and the strength of the attraction force reads
2( ¢p \2 1
fan(p’a)_§(477)\) 260+’ (12
psin —

Its maximum is obtained fo#=0 or 7/2; this strength is

reduced by a factor 4/()=0.77 by comparing to a flat
surface. The calculation of the current density at the pBint
gives

1/3 1/6

b
a

3 (13

Jo

<)

1/3
E) e i03
p

i(2)=(

D. Anisotropic case

Now we consider the case of anisotropic superconductors,
keeping in mind layered higii; materials. As usual, let the
z axis (or ¢ axis) be perpendicular to the superconducting
layers. We shall consider two cases: either the groove is on
the bottom surface of the crystal or it is on the side surface
(edge of the layered material. In both cases we choose the
axis of the groove parallel to the layers along yhaxis, and
the magnetic field in the same directidm=h(x,z),e,. For
such a geometry we may write the London free energy of the
anisotropic superconductor as

1
8’7TJ
where\ . is the London penetration depth when the screen-
ing current is flowing along the axis (c axis) and\ 5, when
the current is in X,y) plane. For a highF, superconductor,
we haven >\, .

For a very anisotropic superconductor, in the quasi-2D
regime we have&.<d, whered is the interlayer distance. In
such a case, we need to us@s the size, in the direction,
of the vortex corin calculating the entrance field. For the
flat surface the entrance field beconhb?z dol[4mdN,].

By making a scaling transformation, we introduce a new
coordinate:X= (A ,5/\o)x<x.>® Then the London free en-
ergy (17) takes the same form as for the isotropic supercon-
ductor with the London penetration depxh, and we can
use the results of the previous section.

Let us consider the case when the groove is on the bottom
surface of the crystal. Under the scaling transformation, the
width of the groove changes:

oh\2

X

F h2+\2, dv, (17

oh\2
9z

+>\§(

A
a—a'= )\—aba<a. (18

c
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Then, the entrance field will be given by the correspondfor one data point This fit yields a temperature dependence
ing formulas for the isotropic case with the replacemerd of for A ¢(T) which is still very similar to the experimental one,
by a’ and¢ by &, the correlation length along tieaxis(or ~ however with one point slightly outside the error bars. A

by d when ¢.<d). calculation using\.(0)=100 um is also displayed, but ex-
Ford~b>a’, the groove may be considered simply as ahibits a very different temperature behavior, which leads us
thin cut at the surface and by using E§) we derive to conclude that this value is out of our experimental error
" bars. Based.on s_uch considerati(_)ns,_ we eventually estimate
HZD:HzD(9> (19 the uncertainty in our determination ok.(0) to be
ed"eflp) - (+15) um.

Note that due to the large anisotropy of some highmate-  _ zﬁésoc;‘o'g. E/(\q/.e(ig)n (:ggeaggi?]tt \fl(\;? tEiVSa:gkng i)brglc;/) in a
rials, this situation could be realized in practice despite thgqy restricted, nevertheless acceptable, range of parameters.
fact thatd is of the order of 9nly 10A. . The depth of the edge slit should be of the order ofudf,

In the opposite casd<a’<b, Eq. (14) gives the en- nich js still small with respect ta(0). The keyresult in
trance field near the groove: this latter case is that it yields the same absolute value for

d\ 3/ an.. | 16 Nc(0).
HngzHg?(— “hab (20) In conclusion, the set of experiments that we have per-
b bAc formed suggests very strongly a surface barrier which im-
Near the ste@’>b>d, the entrance field becomes pedes field penetration, nevertheless partially destroyed ac-

cording to the calculations developed in the framework of
13 this work. Although we cannot ascertain which specific de-
(21)  fects reduce the efficiency of the surface barrier, we obtain a
fairly good estimate of the-axis penetration depth.

d
HEg=HER[ 5

Finally, if the groovelike scratch is on the side surface of
the layered material, its effective deptt after the scaling ACKNOWLEDGMENTS
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Then forb’ <a such a scratch has practically no effect on
the vortex entrance. In the opposite case-a>d, by using
Eq. (14), we obtain for the entrance field

)\C ) 1/2
)\ab .

1/3 1/6

d
b

a

b (23 APPENDIX: CONFORMAL TRANSFORMATION

HEg=He?|

The Schwarz-Christoffel conformal transformation of the
>akc/\ap=d\:/\yp, to strongly reduce the entrance field mpla:e_ @;'];Iy &U,)At,ossrg,%?ﬁpe[’[:.@_Xz']zi V\;E'Ch m]:aps
value. We may deduce that the parallel entrance field de:'c >Ta/9nt INEV . 52 ig. 8b)] to the surface
pends strongly on the surface defects in layered supercoeﬂl'-ne MABCDN{Fig. 6a] is
ductors. The current concentration near the defect edges may 5
greatly reduce the entrance field in comparison to its theoret- _AJW" 1-t dt
ical valueH2P = ¢/4md\. (wWy=A] "\ 1 k22

In fact the lateral defect must be rather dedp,

(A1)

where the two parameteksand| are related to the dimen-

E. Comparison with experimental data ! i
sionsa andb of the groove, and the constaftis simply

We have therefore attempted to fit ow(T) data derived
from H(T) with Eq.(19), (21), or (23), using two adjustable 1 112
parameters: a scaling fact@rassociated with the defect ge- A l= a—lf \/ dt. (A2)
ometry which equalsk/d)¥? in Eq. (19), (b/d)*? in Eq. o V1-Kk3?
(21), and @d?a/b%)Y® in Eq. (23), and the absolute value of
A¢(0). We show the results in Fig. 5, only for the case de- The integrals of the two previous equations can be ex-
scribed by Eqs(19) and (21) (defect in theab plang. We  pressed in terms of incomplete and complete elliptic inte-
find a best fit forA(0)=35 um and a scaling factog ~ grals E(zk), F(zk), E(k)=E(1k), K(k)=F(1k).*®
=6. Assuming a thin groove, this yieltls-500 A, whichis  For this we define twds functions, one incomplete and one
reasonable. complete, as

We also show in Fig. 5 the smallest value fog(0) /
=20 um which could be compatible with our datexcept G(z,k)=E(z,k)—k ?F(z,k),

144525-7
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G(K)=G(1Kk) =E(k)—k 2K(k), (A3)

i
k—0, 1<|z|<1k=G(zk)= E|<2z2. (A11)
wherek’ = \/1—kZ. Then the conformal transformation reads

G(w/l,k) The conformal transformation becomes simpler and it can
Z(W)=aTk; (A4)  be inverted:
H 2
The dimensionless parametere [0,1] is determined by Z(w)= I_W_@W(g):ei 4, [2pwl2. (A12)
the following equation: 2 b
a G(K) Second, we consider the vicinity of the poi@tin the ¢
b cen (A5)  plane ({—a|<a) and ofC’ in thew plane (w—I|<l). In
G(k") this case we havpv/| —1|<1 and the behavior of the ellip-

The limits k—0 andk—1 correspond tea/b—0 and tic integrals is

a/b—x respectively. The last parameletthe dimension of 22K2
which is a length, is determined by requiring that at a large | 7] <1=G(1+ 7,k)=G(k) —i 72 (A13)
distance from the defect, the two variablesndw become 3k’

equal. Using the asymptotic form &(z,k) for largez,
As previously the conformal transformation can be easily

|z|> 1k=G(z,k)=kz, (AB)  inverted:
we get i —1\32
W)—az—(— <w(d)—|
I=a%. (A7) ! Valek) ‘
— ei 7r/3(P(k)al/3(§_ a) 2/3, (A14)

Whenk—0, i.e.,k’—1, the following asymptotic forms

of the elliptic integrals where the functionp(k) is defined as

113
T '2
k—0, G(k)=—k2, G(k')=1, (A8) _ 1 Sk
may be used to determine the paramekesad| in the limits ) ) )
a/b—0 ora/b—oe; The asymptotic forms of this function read
2 fa 2 1/9Vm\*® b
a/b—0, k:—\/:, |=——/ab, A9 a/b—0, so(k):—(—) = (A16)
J Jr (A9) 20 2 a
2 b 9 1/3
alb—w, k=1-——, I=a (A10) alb—ee, <p(k)=(§ "k (A17)
First, we suppose that the groove is very narrawb, Note that in this last limia>b, we retrieve the case of a

and we consider the region whefe-w~b. Then we have single step defect. The second step at the p@ins not
|w|>1 and the elliptic integrals can be approximated as  involved.
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