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Resonant-cavity-induced phase locking and voltage steps in a Josephson array
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We describe a simple dynamical model for an underdamped Josephson junction array coupled to a resonant
cavity. From numerical solutions of the model in one dimension, we find that~i! current-voltage characteristics
of the array have self-induced resonant steps~SIRS!, ~ii ! at fixed disorder and coupling strength, the array locks
into a coherent, periodic state above a critical number of active Josephson junctions, and~iii ! whenNa active
junctions are synchronized on an SIRS, the energy emitted into the resonant cavity is quadratic withNa . All
three features are in agreement with a recent experiment@P. Barbara, A. B. Cawthorne, S. V. Shitov, and C. J.
Lobb, Phys. Rev. Lett.82, 1963~1999!#.
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I. INTRODUCTION

Arrays of Josephson junctions have long been stud
both experimentally1 and theoretically2 as a potentially con-
trollable source of microwave radiation. Most studies ha
been carried out on overdamped junction arrays with ex
nal loads. Typically, a dc current is injected into the arra
producing ac voltage oscillations in each of the junctions
all the junctions are locked to the same frequency, then
radiated power should vary as the square of the numbe
junctions. Overdamped junctions are usually studied,
cause underdamped junctions can exhibit hysteresis and
otic behavior. However, even overdamped arrays h
proven difficult to synchronize: their largest experimenta
achieved dc to ac conversion efficiency is only about 1%3

Recently, Barbaraet al.4 achieved a 17% degree of pow
conversion in anunderdampedtwo-dimensional array place
within a resonant electromagnetic cavity. In this case,
synchronization was achieved by an indirect coupling
tween each junction and the electromagnetic field of the c
ity mode. The results were characterized by striking thre
old behavior: typically no synchronization was achieved
arrays shorter than a certain threshold number of junctio

In this article, we present and numerically study a sim
model for the dynamics of an underdamped Josephson j
tion array coupled to a resonant cavity. This model gene
izes one used recently to describe the energetics of su
system.5 It bears many resemblances to previous dynam
models, which either connect this array to laser action
excitable two-level atoms6 or introduce various types of im
pedance loads to provide global coupling betwe
junctions.7–10 In our model, however, we infer the equatio
of motion starting from a more conventional Hamiltonia
which describes Josephson junctions coupled to a ve
potential.11 Even though our model is only one-dimension
our results show many of the features seen experimental
two-dimensional arrays,4 including ~i! mode locking into a
coherent state above a critical numberNc of active junctions,
~ii ! a quadratic dependence of the energy on the numbe
active junctions aboveNc , and ~iii ! most strikingly, self-
induced steps at voltages corresponding to multiples of
cavity frequency. Thus, the results suggest that suitably
0163-1829/2001/63~14!/144522~5!/$20.00 63 1445
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signed experiments on one-dimensional arrays might p
duce similar results to those seen in two dimensions.

The remainder of this paper is organized as follows.
Sec. II, we present our model Hamiltonian. Section III giv
our numerical results, and Sec. IV gives some brief concl
ing remarks.

II. MODEL

We begin with the following Hamiltonian model for
one-dimensional array ofN Josephson junctions placed in
resonant cavity, which we assume supports only a sin
photon mode of frequencyV:

H5Hphoton1HC1HJ

5\VS a†a1
1

2D1(
j 51

N

EC jnj
22(

j 51

N

EJ j cos~g j !. ~1!

Here,Hphoton is the energy contained in the photon mode
the cavity,HC is the capacitive energy, andHJ is the Joseph-
son energy of the array.a† and a are photon creation and
annihilation operators,EC j5q2/(2Cj ) is the approximate ca
pacitive energy of a single junction, andEJ j5\I c j /q is the
Josephson coupling energy of a junction~whereCj is a ca-
pacitance,I c j a critical current, andq52ueu is the Cooper
pair charge!. Finally, g j5f j2@(2p)/F0#* jA•ds[f j2Aj
is the gauge-invariant phase difference across a junct
where f j is the phase difference across a junction in t
absence of the vector potentialA, F05hc/q is the flux
quantum, and the line integral is taken across the junctio

We assume thatA arises from the electromagnetic field o
the normal mode of the cavity. In Gaussian units, this vec
potential is given by12,13 A(x,t)5A(hc2)/(2V)„a(t)
1a†(t)…E(x); here E(x) is the electric field of the mode
normalized so that*V d3xuE(x)u251, V being the system
volume. Similarly,13 Aj5Agj (a1a†), where
©2001 The American Physical Society22-1
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gj5
\c2

2V

~2p!3

F0
2 F E

j
E~x!•dsG2

~2!

is an effective coupling constant describing the interact
between the junction and the cavity.

The time-dependence of the operatorsa, a†, ni , andf i
follows from Eq.~1! together with the Heisenberg equatio
of motion i\Ȯ5@O,H#, where@ . . . , . . .# is a commutator
and O an operator. In order to evaluate these equations
motion, we use the relations@a,a†#51, @a,a#5@a†,a†#
50, and @nj ,6fk#57 id jk , with other commutators se
equal to zero; we also make use of the operator rela
@A,F(B)#5@A,B#F8(B) for any functionF(B) of an opera-
tor B.

To simplify the resulting equations, we introduce the n
tation a5aR1 iaI and vp j

2 52vC jvJ j , wherevC j5EC j /\
and vJ j5EJ j /\. We also define a dimensionless natu
time t5v̄pt, wherev̄p is a suitable average value ofvp j .
For numerical convenience, we assume thatgj has the same
value g for each junction~this is plausible in the long-
wavelength limit where the electric field varies on a sc
large compared to the array size!. Then, after some algebra
the equations of motion can be cast into the formḟ j2ñ j

50, ṅ̃ j1(vp j
2 /v̄p

2)sin(fj22ãR)50, ȧ̃R2ṼãI50, and ȧ̃I

1ṼãR2g( j (vJ j /v̄p)sin(fj22ãR)50. Here the dot repre
sents a derivative with respect tot, and we have intro-
duced the new variablesãR5AgaR , ãI5AgaI , ñ j

5(2vC j /v̄p)nj , andṼ5V/v̄p .
As stated above, these equations describe the time ev

tion of various operators, not all of which commute with o
another. Furthermore, they do not include either damping
a driving current. In order to make these equations amen
to numerical computation, we therefore replace the opera
by c-numbers. This procedure should be reasonable when
eigenvalues ofnj@1.6 We can include the important effec
of dissipation within a Hamiltonian formalism by couplin
each phase degree of freedom to a separate collec
of harmonic oscillators with a suitable spectral dens
as has been discussed by Chakravartyet al.14 Specifically,
we may add a term toH of the form ( j 51

N @f j (a f a
( j )xa

( j )

1(a„(1/2ma)(pa
( j ))21(ma/2)va

2xa
( j )2

…#, where thef a
( j ) are

appropriate coupling constants, andxa
( j ) and pa

( j ) are the
canonically conjugate harmonic oscillator variables.
the spectral density of the harmonic oscillatorsJj

[ (p/2)(a@( f a
( j ))2/mava#d (v2va) 5 (\/2p)a j uvuu (vc

2v), wherevc is a cutoff frequency comparable to a typic
phonon frequency,a j5R0 /Rj , and R05h/(2e)2, then it
can be shown that the dissipation is ohmic.14,15 Integrating
out the variablesxa

( j ) and pa
( j ) then leads to the usua

resistively-shunted junction equation16 with ohmic damping
corresponding to a shunt resistanceRj . A driving current
can be included similarly in the Hamiltonian formalis
by adding to H a ‘‘washboard potential’’ of the form
(\I /q)( j 51

N f j .
These modifications lead to the following equations

motion for the 2N12 variablesf i , ni , aR, andaI :
14452
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ḟ j5ñ j ,

ṅ̃ j5
I

I c~11D j !
2

1

QJ
ñj2sin~f j22ãR!,

~3!

ȧ̃R5ṼãI ,

ȧ̃I52ṼãR1g̃(
j

~11D j !sin~f j22ãR!.

Here, we have redefined the effective coupling asg̃

5gvJ /v̄p , and introduced a damping coefficientQJ

5v̄pRjCj , whereRj is the shunt resistance. We also intr
duce a disorder parameterD j5(I c j2I c)/I c , where I c is a
suitable average critical current. In writing these equatio
we have also made the simplifying assumption that b
CjRj and I c j /Cj are independent ofj, so that each junction
has the same damping coefficientQJ . The equations of mo-
tion include no dissipation due to the cavity walls, thou
this effect could readily be included similarly via a cavityQ
factor. Note that the first two equations in Eq.~3! reduce to
the RCSJ model in the limit of no coupling to the cavi
(g̃50), and the last two equations to those of a harmo

oscillator with eigenfrequencyṼ.

III. NUMERICAL RESULTS

We have solved Eqs.~3! for the variablesni , f i , ãR,
and ãI numerically by implementing the adaptive Bulrisc
Stoer method, which is both fast and accurate.17 We choose
I c j , for each junction,j, randomly and independently from
uniform distribution betweenI c(12D) andI c(11D), where
D is a measure of the disorder, but for convenience we
sume thatg̃ is independent ofj. We initialize the simulations
with all the phases randomized between@0,2p#, and aR
5aI5nj50. We then let the system equilibrate for a tim
interval Dt5104, after which we evaluate averages over
time intervalDt523103, using 216 evenly spaced sampling
points.

In Fig. 1, we show the current-voltage characteristics
N540 junctions withD50.05 andg̃50.001, evaluating the
time-averaged voltage from the Josephson relation,^V&
5@1/QJ#^( j 51

N ġ j&. A striking feature of this plot is theself-
induced resonant steps~SIRS!, at which ^V& remains ap-
proximately constant over a range of applied current. T

most prominent step occurs at^V&/(NRIc)5Ṽ/QJ , but

there is another, less obvious, step at 2Ṽ/QJ . We believe

the steps occur at all (m/n)Ṽ/QJ , wherem andn are inte-
gers, as further discussed below. Similar steps were s
experimentally in atwo-dimensionalarray of underdamped
Josephson junctions coupled to a resonant cavity.4 The
present results suggest that similar steps may also be ob
able even in experiments on one-dimensional arrays.

When we solve the system of equations~3! numerically
2-2
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RESONANT-CAVITY-INDUCED PHASE LOCKING AND . . . PHYSICAL REVIEW B63 144522
for a single junction, we find SIRS for fractions (n/m)
51,4/3,3/2,5/3,2,5/2,3,4, . . . . Thestep width in current is
very sensitive tog̃, and, indeed, we have thus far found t
steps only for a limited range ofg̃. For the larger, disordere
arrays, we have not yet seen the fractional SIRS.

Figure 1 also shows the time-averaged total energyẼ

5(ãR
21ãI

2) as a function ofI /I c for the same array. The tota
energy in the cavity increases dramatically when the arra
on a SIRS, and is very small otherwise. This sharp incre
signals the onset of coherence within the array, as fur
discussed below.

Figure 2 shows the calculated voltage power spectr
P(v)5u*2`

` Vtot(t)exp(ivt)dtu2, for two values of the driv-

ing current:I /I c5Ṽ/QJ @Figs. 2~a! and 2~b!# and I /I c50.9
@Figs. 2~c! and 2~d!#; all other parameters are the same as
Fig. 1. In Fig. 2~a!, all the junctions are on the first SIRS an

the power spectrum has peaks at the cavity frequencyṼ and
its harmonics. In Fig. 2~c!, the array is tuned off the step
The power spectrum shows that the array is not synchron
in this case; instead, the individual junctions oscillate a
proximately at their individual resonant frequencies and th
harmonics and subharmonics. In Figs. 2~b! and 2~d!, we
show the same case as in Fig. 2~a! and 2~c!, respectively,
except that the coupling constant,g̃, is artificially and set
equal to zero. In this case, the junctions are, of course, in
pendent of one another, and the result is that of a disord
one-dimensional Josephson array with no coupling betw
the junctions.

Next, we turn to the dependence of these properties on
number of active junctions, Na , in the array. The concept o
active junction number, in the terminology of Ref. 9,
meaningful only for underdamped junctions. As is w
known, an underdamped junction is bistable and hysteret
certain ranges of current, and can have either zero or a fi

FIG. 1. Left scale: Current-voltage~IV ! characteristics for an
underdamped Josephson array ofN540 junctions and system pa

rametersṼ52.2, QJ5A20, D50.05, andg̃50.001, as defined in

the text. Right-hand scale: total photon energy in the cavityẼ

5(ãR
21ãI

2). Predicted voltages for the integer self-induced reson
steps~SIRS! are shown as dotted lines.
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time-averaged voltage across it, depending on the initial c
ditions. In the present case,Na denotes the number of junc
tions ~out of N total! which have a finite time-averaged vol
age drop. We can tuneNa by suitably choosing the initia
conditions,f i and ḟ i , for each junction.9

We have studied the properties of the disordered ar
(D50.10) for N540 junctions, and a driving currentI /I c

5Ṽ/QJ . This current not only lies well within the bistabl
region, but also leads to a voltage on the first integer SI
The total, time-averaged energy of the cavity,Ẽ(Na) @nor-
malized toẼ(6)# for this case is plotted as a function ofNa
in Fig. 3. The active junctions are unsynchronized up to
threshold valueNc515. Above this value,Ẽ increases as a
quadratic function ofNa , i.e., Ẽ5c01c1Na1c2Na

2 , where
c0 , c1, andc2 are constants~full line in Fig. 3!. By contrast,
Ẽ is approximately independent ofNa for Na,Nc . At Na

5Nc , there is a discontinuous jump inẼ by approximately a
factor of 3 ~see inset to figure!. A similar quadratic depen-
dence above a synchronization threshold was also see
Ref. 4, though for a two-dimensional array in an appli
weak magnetic field. By contrast, if the system is in t
bistable region, butnot tuned to a self-induced resonant ste
Ẽ doesnot increase quadratically withNa . Instead, we find
Ẽ(Na) exhibits a series of plateaus separated by discont
ous jumps~not shown in the figure!.

To measure the degree of synchronization among the
sephson junctions, we plot theKuramoto order parameter,19

^r & for the same parameters, as a function of number
active junctions,Na , ~right-hand scale in Fig. 3!. ^r & is de-
fined by ^r &5^u(1/Na)( j 51

Na exp(ifj)u&t , where ^ . . . &t de-
notes a time average. Note that^r &51 represents perfec
synchronization among the active junctions, while^r &50

t

FIG. 2. Power spectrum,P(v), of the ac voltage across th
array, plotted versus frequency,v, at two driving currents:~a! and
~b! I /I c50.492, corresponding to the first integer SIRS, and~c! and
~d! I /I c50.90, slightly off a SIRS. Other parameters are the sam
in Fig. 1. ~b! and ~d! are the same as~a! and ~c! except that the

effective coupling to the resonant cavity isg̃50. The vertical
dashed line shows the resonant frequency of the cavity.
2-3
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E. ALMAAS AND D. STROUD PHYSICAL REVIEW B63 144522
would correspond to no correlations between the differ
phase differences,f i . As is clear from Fig. 3, there is a
abrupt increase in̂r & at Na5Nc , indicative of adynamical
transition from an unsynchronized to a synchronized state
Na is increased past a critical value, while other parame
are kept fixed. As expected from similar transitions in oth
models,20 this transition is not inhibited by the finite disorde
in the I c’s. Note that ^r & approaches unity for largeNa ,
representing perfect synchronization. This transition is
dynamic analog of that analyzed by an equilibrium me
field theory in Ref. 5.

IV. DISCUSSION

We now briefly discuss the physics behind the pres
numerical results. At present, although these results agre
many respects with experiment, we can give only so
rough intuitive arguments why these results emerge from
equations of motion.

First, the existence of a transition from incoherence
coherence, as a function of the number of active juncti
Na , is undoubtedly a consequence of the ‘‘mean-field-lik
nature of the interaction between the junctions and the c
ity. Specifically, because each junction is effectively coup
to every other junction via the cavity, the strength of t
coupling increases withNa . Thus, a transition to coherenc
is to be expected for sufficiently largeNa . A similar argu-
ment was made in the equilibrium case in Ref. 5.

The self-induced resonant steps can also be understoo
the basis of a simple intuitive argument. Basically, as no
in Ref. 4, these steps are the analogs of Shapiro step

FIG. 3. Left-hand scale and asterisks: Photon energyẼ in the
resonant cavity when the array is current driven on a SIRS, plo
versus number of active junctions,Na . The array parameters ar

N540, Ṽ52.2, QJ5A20, D50.10, g̃50.001, andI /I c5Ṽ/QJ

~see text!. Full curve shows the best fit ofẼ to the functionc2Na
2

1c1Na1c0 for Na.15, the threshold for synchronization. Inse

Ẽ(Na) nearNa515, showing jump near synchronization thresho
Right-hand scale and open circles: Kuramoto order parameter^r &
~see text!, for the same array. Dots connecting circles are guide

the eye. The sharp increase in^r & and the quadratic increase inẼ
both start nearNa515.
14452
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conventional Josephson junctions, and occur, we believe
a similar reason. Namely, when a current is applied to
junction, it produces a time-dependent response inãR , set-
ting it into motion at the natural oscillation frequency of th

cavity, Ṽ. This oscillation then acts back on the junction lik
an ac current, so that the junctions experience the comb
effects of a dc and an ac current. This combination produ
constant-voltage steps in the junction, just as in a conv
tional junction.

This argument can be made a little more precise if
consider the time-dependent response ofãR when a voltage
is applied to the junction. We write this response asãR

5ã0 cos(Ṽt1a0)1ã1 sin(QJVt1a1), where ãi and a i are
constants. The Josephson current through the junction is
I c sin(f22ãR). If we substitute the above form forãR into
the expression for the current, and use standard expans
for quantities of the form sin„A1B cos(bt)… in terms of
Bessel functions,18 we find that there is a nonzero dc curre

wheneverQJV5(n/m)Ṽ, wheren andm are integers. This
condition is similar to that for the occurrence of a Shap
step in a conventional Josephson junction driven by a co
bined dc and ac voltage. The results of Fig. 1 show tha
least the integer steps can be seen within the model of E
~3! for a suitable choice of junction and cavity parameter

Finally, we speculate about the reasons for the occurre
of the SIRS even in one-dimensional arrays. The argume
given above suggest that the occurrence of such resona
should not depend on the dimensionality of the array,
only on the existence of a suitable induced ac drive. Inde
an experimental observation of such steps in 1D arrays
recently been reported,21 consistent with the present mode

In summary, we have presented a model for a o
dimensional array of underdamped Josephson junct
coupled to a resonant cavity. We have studied the class
limit of the Heisenberg equations of motion for this mod
valid in the limit of large numbers of photons, and includ
damping by coupling each phase difference to an ohmic h
bath. In the presence of a dc current drive, we find num
cally that ~i! the array exhibits self-induced resonant ste
~SIRS!, similar to Shapiro steps in conventional arrays;~ii !
there is a transition between an unsynchronized and a
chronized state as the number of active junctions is increa
while other parameters are held fixed; and~iii ! when the
array is biased on the first integer SIRS, the total ene
increases quadratically with number of active junctions.
these features appear consistent with experiment.4 Further
study is underway in order to ascertain whether or not th
features remain true of two-dimensional arrays and w
gauge-invariant damping.
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