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Resonant-cavity-induced phase locking and voltage steps in a Josephson array
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We describe a simple dynamical model for an underdamped Josephson junction array coupled to a resonant
cavity. From numerical solutions of the model in one dimension, we find(thatirrent-voltage characteristics
of the array have self-induced resonant st&IRS), (ii) at fixed disorder and coupling strength, the array locks
into a coherent, periodic state above a critical number of active Josephson junctiofi§i,) amdenN, active
junctions are synchronized on an SIRS, the energy emitted into the resonant cavity is quadratig .wAth
three features are in agreement with a recent experifferBarbara, A. B. Cawthorne, S. V. Shitov, and C. J.
Lobb, Phys. Rev. Lett82, 1963(1999].
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[. INTRODUCTION signed experiments on one-dimensional arrays might pro-
duce similar results to those seen in two dimensions.

Arrays of Josephson junctions have long been studied The remainder of this paper is organized as follows. In
both experimentalfyand theoreticall§ as a potentially con- Sec. II, we present our model Hamiltonian. Section Il gives
trollable source of microwave radiation. Most studies haveour numerical results, and Sec. IV gives some brief conclud-
been carried out on overdamped junction arrays with extering remarks.
nal loads. Typically, a dc current is injected into the array,
producing ac voltage oscillations in each of the junctions. If
all the junctions are locked to the same frequency, then the Il. MODEL
radiated power should vary as the square of the number of
junctions. Overdamped junctions are usually studied, be- We begin with the following Hamiltonian model for a
cause underdamped junctions can exhibit hysteresis and chare-dimensional array dfl Josephson junctions placed in a
otic behavior. However, even overdamped arrays haveesonant cavity, which we assume supports only a single
proven difficult to synchronize: their largest experimentally photon mode of frequenci:
achieved dc to ac conversion efficiency is only about1%.

Recently, Barbarat al* achieved a 17% degree of power
conversion in amnderdampedwo-dimensional array placed
within a resonant electromagnetic cavity. In this case, thdd=Hnoorit HctHj
synchronization was achieved by an indirect coupling be-
tween each junction and the electromagnetic field of the cav- —40
ity mode. The results were characterized by striking thresh-
old behavior: typically no synchronization was achieved for
arrays shorter than a certain threshold number of junctions.

In this article, we present and numerically study a simple i ) i
model for the dynamics of an underdamped Josephson junél€r€:HphotoniS the energy contained in the photon mode of
tion array coupled to a resonant cavity. This model generalthe cavity,Hc is the capacitive energy, amt), is the Joseph-
izes one used recently to describe the energetics of suchSen energy of the arraya™ and a are photon creation and
systen® It bears many resemblances to previous dynamicafnnihilation operatordi_cj:q?/ (2C)) is the approximate ca-
models, which either connect this array to laser action irPacitive energy of a single junction, afity;=%1;/q is the
excitable two-level atonfsor introduce various types of im- Josephson coupling energy of a junctiavhereC; is a ca-
pedance loads to provide global coupling betweerPacitancel; a critical current, andj=2|e| is the Cooper
junctions’*°In our model, however, we infer the equations Pair charge Finally, y;= ¢;—[(2m)/Po][;A-ds=¢;— A,
of motion starting from a more conventional Hamiltonian iS the gauge-invariant phase difference across a junction,
which describes Josephson junctions coupled to a vectd¥here ¢; is the phase difference across a junction in the
potential** Even though our model is only one-dimensional, @bsence of the vector potenti&l, ®,=hc/q is the flux
our results show many of the features seen experimentally ifuantum, and the line integral is taken across the junction.
two-dimensional array%lincluding (i) mode locking into a We assume thak arises from the electromagnetic field of
coherent state above a critical numbgrof active junctions, the normal mode of the cavity. In Gaussian units, this vector
(i) a quadratic dependence of the energy on the number gfotential is given b#*2 A(x,t)=\(hc?)/(2Q)(a(t)
active junctions aboveé\,, and (i) most strikingly, self- +a'(t))E(x); here E(x) is the electric field of the mode,
induced steps at voltages corresponding to multiples of theormalized so thaf'y d®x|E(x)|?=1, V being the system
cavity frequency. Thus, the results suggest that suitably devolume. Similarly}® A;= \[g;(a+a"), where

N N
+]§1 ECJ Jz_zl EJJ COS()/]) (1)

1
Ta+ =
aa+2
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2 . ~

hc? (2m)3 J bi=n
= E(x)-ds (2) J ]
is an effective coupling constant describing the interaction nj:|c—(1+A1) - —QJ”j_Sir‘(ﬁbj_ZaR),

between the junction and the cavity.
The time-dependence of the operatarsa’, n;, and¢;
follows from Eq.(1) together with the Heisenberg equations

()

. . . . 5R255| ’
of motioniAO=[O,H], where[ ..., ...] is a commutator
and O an operator. In order to evaluate these equations of . - ~
motion, we use the relationa,a’]=1, [a,a]=[a',a'] a=—Qag+9>, (1+A))sin(¢;—2ag).
j

=0, and[nj,* ¢]=Fidj, with other commutators set
equal to zero; we also make use of the operator relatior|1_|ere we have redefined the effective coupling @s
[A,F(B)]=[A,B]F’(B) for any functionF(B) of an opera- i . _ o

tor B. =gw;/w,, and introduced a damping coefficier®,

To simplify the resulting equations, we introduce the no-=w,R;C;, whereR; is the shunt resistance. We also intro-
tation a=ag+ia, and w);=2wcjw;;, wherewc;=Ec;/f  duce a disorder parametay=(I¢—Ic)/lc, wherel is a
and w;;=E;;/h. We also define a dimensionless naturalSuitable average critical cur_rent_. In writing these equations,
time 7=w,t, wherew, is a suitable average value af; . we have also mad(_a the S|mpI|fy|_ng assumption that_ both
For numerical convenience, we assume tjjahas the same CjR; andl;/C; are independent gf so that each junction

value g for each junction(this is plausible in the long- Nas the same damping coefficiédj. The equations of mo-

wavelength limit where the electric field varies on a scalelion include no dissipation due to the cavity walls, though

large compared to the array siz&hen, after some algebra, this effect could readily be included similarly via a cavidy

h i f . b into the folmT factor. Note that the first two equations in E8) reduce to
the equations of motion can be (_:ast Into the WEJ the RCSJ model in the limit of no coupling to the cavity

-n = 2\ i TNn S 0% ~
=0, N+ (wp/wp)sin(é—2ar) =0, az—2a =0, and a (g=0), and the last two equations to those of a harmonic

+Qar— g3 (wy;/wp)sin(¢—2ag)=0. Here the dot repre- oscillator with eigenfrequence.
sents a derivative with respect tg and we have intro-

duced the new variablesag= Jogag, a=+ga,, n . NUMERICAL RESULTS
=(2wcjlwp)n;, andQ=Q/w,. . -
As stated above, these equations describe the time evolu- We have solved Eqs3) for the variablesn;, ¢;, ag,
tion of various operators, not all of which commute with oneanda, numerically by implementing the adaptive Bulrisch-
another. Furthermore, they do not include either damping oStoer method, which is both fast and accuraté/e choose
a driving current. In order to make these equations amenable;, for each junctionj, randomly and independently from a
to numerical computation, we therefore replace the operatonsniform distribution betweeh,(1—A) andl.(1+A), where
by c-numbers. This procedure should be reasonable when the is a measure of the disorder, but for convenience we as-

eigenvalues ofi;>1.° We can include the important effects sume thafj is independent of. We initialize the simulations
of dissipation within a Hamiltonian formalism by coupling with all the phases randomized betweE®27], and a
each phase degree of freedom to a separate collection a,=n;=0. We then let the system equilibrate for a time
of harmonic oscillators with a suitable spectral density,interval A7=10¢, after which we evaluate averages over a
as has been discussed by Chakravattyhl.“ Specifically,  time intervala r=2x 10%, using 26 evenly spaced sampling
we may add a term tdd of the form = ,[;=,fPxY  points,

+3,((1/2m) (pW) 2+ (M /2) 02x1%)], where thef) are In Fig. 1, we show the current-voltage characteristics for

appropriate coupling constants, anff’ and p{/) are the N=40 junctions withA =0.05 andg=0.001, evaluating the
canonically conjugate harmonic oscillator variables. Iftime-averaged voltage from the Josephson relation)

the spectral density of the harmonic oscillatod =[1/Q,1(=".,¥:). A striking feature of this plot is theelf-

= (1y2 _ — . =17 ) .

= (m2)Z [ () IM,0,]8 (0= w,) = (il2m)aj|w|0(wc  induced resonant stepSIRS, at which (V) remains ap-
—hw), whferewc is a CUtOg f/reunenc()j/ ;Omlﬁj(fgb;g tOha typical proximately constant over a range of applied current. The
phonon frequencye; =Ry/R;, and Ry=h/(2e)?, then it . =

can be shown that the diss%pation is ohri¢® Integrating most prominent step occurs &W)/(NRlc)=Q/Q;, but

out the variablesx” and p)) then leads to the usual there is another, less obvious, step &/R);. We believe
resistively-shunted junction equatiSrwith ohmic damping  the steps occur at alh§/n)Q/Q;, wherem andn are inte-
corresponding to a shunt resistanRe. A driving current  gers, as further discussed below. Similar steps were seen
can be included similarly in the Hamiltonian formalism experimentally in awo-dimensionakrray of underdamped

by adding © H a “washboard potential” of the form Josephson junctions coupled to a resonant cévifihe

(ﬁl/q)EjN:l¢j . present results suggest that similar steps may also be observ-
These modifications lead to the following equations ofable even in experiments on one-dimensional arrays.
motion for the N+ 2 variables¢;, n;, agr, anda,: When we solve the system of equatiof® numerically
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FIG. 1. Left scale: Current-voltag@V) characteristics for an FIG. 2. Power spectrumP(w), of the ac voltage across the

underdamped Josephson arrayNof 40 junctions and system pa- array, plotted versus frequenay, at two driving currents(a) and

rameterd) =2.2, Q;= 20, A=0.05, andy=0.001, as defined in (b) I/1:=0.492, gorresponding to the first integer SIRS, érydand

the text. Right-hand scale: total photon energy in the cafity .(d) I(IC=0.90, slightly off a SIRS. Other parameters are the same as

=(ag+a?). Predicted voltages for the integer self-induced resonant’| Flg,' 1. (b) ar.1d (d) are the same a&) .andv(c) except that.the

steps(SIRS are shown as dotted lines. effective coupling to the resonant cavity g=0. The vertical
dashed line shows the resonant frequency of the cavity.

for a single junction, we find SIRS for fractions1/(Mm)

=1,4/3,3/2,5/3,2,5/2,3,4 .. . Thestep width in current is  time-averaged voltage across it, depending on the initial con-
very sensitive tay, and, indeed, we have thus far found the ditions. In the present cash, denotes the number of junc-
steps only for a limited range @f. For the larger, disordered tions (out of N total) which have a finite time-averaged volt-
arrays, we have not yet seen the fractional SIRS. age drop. We can tunil, by suitably choosing the initial

Figure 1 also shows the time-averaged total endigy conditions,; and ¢, for each junctior. _
= (32+73?) as a function of /1, for the same array. The total V& have studied the properties of the disordered array
energy in the cavity increases dramatically when the array i§2 = 0-10) for N=40 junctions, and a driving currertl
on a SIRS, and is very small otherwise. This sharp increase (2/Q;. This current not only lies well within the bistable
signals the onset of coherence within the array, as furtheregion, but also leads to a voltage on the first integer SIRS.
discussed below. The total, time-averaged energy of the cavi(N,) [nor-

Figure 2 shows the calcuzlated voltage power spectrumyjizeq toE(6)] for this case is plotted as a function N,
P(@)=|/Z.Vie 7)explwn)d", for two values of the driv- iy Fig. 3. The active junctions are unsynchronized up to a

ing current:1/I.=Q/Q, [Figs. 2a) and Zb)] and1/1,=0.9 _threshold valueN.=15. Above this valueE increases as a
[Elgs. 4c) z_ind 2d)]; all ot_her parameters are the same as ingyadratic function oN,, i.e., E=Co+c;Na+c,N2, where
Fig. 1. In Fig. Za), all the junctions are on the first %IRS and Co, Cy, andc, are constant&ull line in Fig. 3). By contrast,

the power spectrum has peaks at the cavity frequéh@nd  E s approximately independent of, for N,<N.. At N,

its harmonics. In Fig. @), the array is tuned off the step. _ . . . . = .
. .~ =N, there is a discontinuous jump E1by approximately a
The power spectrum shows that the array is not synchromze%ctgr of 3 (see inset to figur‘)e{A siﬁ)nilaryqug%ratic depi/en-

|nr t)r(]i':] ctafe; t'?ﬁt?rai?]’ dit\t]ig |n|dr|V|dunaI njtufr;ctloni ?SC'"itdetr?pipence above a synchronization threshold was also seen in
EO qeyad € bh ua eslo ?:. sgguedczej)a ClRef. 4, though for a two-dimensional array in an applied
armonics and stbharmonics. 1 g an » WE€ T \weak magnetic field. By contrast, if the system is in the

show the same case as in FigaPand 2c), respectively, bistable region, butottuned to a self-induced resonant step,

except that the co_uplmg constar, is artificially and Set  E doesnotincrease quadratically witN, . Instead, we find
equal to zero. In this case, the junctions are, of course, inde=

pendent of one another, and the result is that of a disordered(Na) €xhibits a series of plateaus separated by discontinu-

one-dimensional Josephson array with no coupling betweeRUS Jumps(not shown in the figure o
the junctions. To measure the degree of synchronization among the Jo-

Next, we turn to the dependence of these properties on thgEPNSon junctions, we plot tiuramoto order parametet’
number of active junctions\,, in the array. The concept of (/) for the same parameters, as a function of number of
active junction number, in the terminology of Ref. 9, is active junctionsNg, (right-hand scale in Fig.)3(r) is de-

X Ng

meaningful only for underdamped junctions. As is well fined by (r)=(|(1/N,)=;2, exp(¢)l),, where(...), de-
known, an underdamped junction is bistable and hysteretic inotes a time average. Note that)=1 represents perfect
certain ranges of current, and can have either zero or a finitgynchronization among the active junctions, whilg=0
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350 — 1.0 conventional Josephson junctions, and occur, we believe, for
12 - . = a similar reason. Namely, when a current is applied to a
800 gt ] I 5 junction, it produces a time-dependent responsegn set-
© 250 | 4F " 0-8§ ting it into motion at the natural oscillation frequency of the
o 0 z**:**gfi L g cavity, Q. This oscillation then acts back on the junction like
=" 200 | a an ac current, so that the junctions experience the combined
| * Energy 0 63 effects of a dc and an ac current. This combination produces
Z 150 - - Eiﬂed curve o constant-voltage steps in the junction, just as in a conven-
5 © o Ruramoto <r> £ tional junction.
g 100 | o 042 This argument can be made a little more precise if we
5 A A consider the time-dependent responsegfvhen a voltage
r p G & ) ) . X ) ) ~
©9 v is applied to the junction. We write this response &s
%6 PP YS 20 25 2002 =a, cos)r+ap)+a; SinQ;Vr+a,), wherea; and «; are

Active junctions N constants. The Josephson current through the junction is then
a ~ ~

I.sin(p—2ag). If we substitute the above form fag into

e expression for the current, and use standard expansions

r quantities of the form siA+ B cos(@7) in terms of

FIG. 3. Left-hand scale and asterisks: Photon endigy the
resonant cavity when the array is current driven on a SIRS, plotter?;

versus number of active junctionil,. The array parameters are > s ) ;
~ ~ ~ Bessel function$® we find that there is a nonzero dc current
N=40, 0=2.2, Q;=20, A=0.10, g=0.001, andl/I ;= Q/Q,

(see text Full curve shows the best fit & to the functionc,N2 wheneverQ;V=(n/m){}, wheren andm are integers. This
+¢,N,+ ¢ for N,>15, the threshold for synchronization. Inset: cOndition is similar to that for the occurrence of a Shapiro

step in a conventional Josephson junction driven by a com-
bined dc and ac voltage. The results of Fig. 1 show that at

(see text, for the same array. Dots connecting circles are guides tdeast the integer steps can be seen within the model of Egs.

the eye. The sharp increase(in) and the quadratic increase fn @) fpr a suitable choice of junction and cavity parameters.
_ Finally, we speculate about the reasons for the occurrence
both start neaN,=15.

of the SIRS even in one-dimensional arrays. The arguments
would correspond to no correlations between the diﬁerenglr:/er}dabo¥edsuggzst th?; thg. occurrenﬁ: OffS;JhCh resonatr:ctes
phase differencesp; . As is clear from Fig. 3, there is an zn?uon rtlr?e e?(ips?er;ncgnof aesuiltr:lglnes:ggitlzgdoac d(raivaerr?rzl(,jeeud
abrupt increase ifr) at N,=N,, indicative of adynamical y ' ’

transitionfrom an unsynchronized to a synchronized state, aégcgﬁg ertljrggrr:t?; ooﬁfgévfotfgs?;iuvcvﬂhstﬁgs Irr:asle?w ta,:gé;has
N, is increased past a critical value, while other parameterg y P ' b :

are kept fixed. As expected from similar transitions in other dirr!r(]anzlijor?\gagr,rawe o?a\l:(ri dg:gZﬁ?tZﬂ ?Jorsr]gdr?slo];\or'uanc?igi-s
models’® this transition is not inhibited by the finite disorder " #°1% resoﬁam cavite We %ave oy d'?e g theJcIassicaI
in the I.'s. Note that(r) approaches unity for larg8l,, -oup . Y. X .
. L : LU A limit of the Heisenberg equations of motion for this model,
representing perfect synchronization. This transition is the . L .
. S valid in the limit of large numbers of photons, and included
dynamic analog of that analyzed by an equilibrium mean- . . X .
. . damping by coupling each phase difference to an ohmic heat
field theory in Ref. 5. . ) .
bath. In the presence of a dc current drive, we find numeri-
cally that (i) the array exhibits self-induced resonant steps
IV. DISCUSSION (SIRS, similar to Shapiro steps in conventional arragis)

Ehere is a transition between an unsynchronized and a syn-

numerical results. At present, although these results agree ﬁpronized state as the number of active junctions is increased

many respects with experiment, we can give only somé"’h'le other parameters are held fixed; afiid) when the

rough intuitive arguments why these results emerge from ouf"ay 1S biased on the f|_rst integer SIRS’. the tOta.‘l energy
: - increases quadratically with number of active junctions. All
equations of motion. . : .
these features appear consistent with experithéhurther

First, the existence of a transition from incoherence to qvi q . q in wheth h
coherence, as a function of the number of active junction tudy Is un erway in order to a;certa!n whether or not t ese
eatures remain true of two-dimensional arrays and with

N,, is undoubtedly a consequence of the “mean-field-like” ) . .

nature of the interaction between the junctions and the cadauge-invariant damping.
ity. Specifically, because each junction is effectively coupled
to every other junction via the cavity, the strength of the

E(N,) nearN,=15, showing jump near synchronization threshold.
Right-hand scale and open circles: Kuramoto order paramgter,

We now briefly discuss the physics behind the presen
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