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Saddle-point states and energy barriers for vortex entrance and exit in superconducting disks
and rings
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The transitions between the different vortex states of thin mesoscopic superconducting disks and rings are
studied using the nonlinear Ginzburg-Landau functional. They are saddle points of the free energy representing
the energy barrier which has to be overcome for transition between the different vortex states. In small
superconducting disks and rings the saddle point state between two giant vortex states, and in larger systems
the saddle point state between a multivortex state and a giant vortex state and between two multivortex states
is obtained. The shape and the height of the nucleation barrier is investigated for different disk and ring
configurations.
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I. INTRODUCTION

The study of superconducting samples with sizes com
rable to the penetration depth (l) and the coherence lengt
(j) became possible due to recent progress in nanofab
tion technologies. This evolution resulted in an increase
interest in the investigation of flux penetration and flux e
pulsion in such mesoscopic samples in order to explain
hysteresis behavior and the different phase transitions in
superconducting samples.1–15

It is well known that for type-II (k5l/j.1/A2) super-
conductors the triangular Abrikosov vortex lattice is en
getically favored in the magnetic field rangeHc1,H,Hc2

wherek is the Ginzburg-Landau~GL! parameter, andHc1

and Hc2 are the first and second critical fields of a type
superconductor. Since the effective London penetra
depthL5l2/d increases considerably in thin films one e
pects the appearance of the Abrikosov multivortex state e
in thin type-I (k,1/A2) superconductors when the thickne
d!l. But, in small confined systems there is a competit
between the boundary of the sample, which tries to imp
the symmetry of the sample boundary on the vortex confi
ration, and this triangular Abrikosov state. As a consequen
the effective GL parameterk* 5L/j is no longer the only
controlling parameter which determines the shape of the
tex configuration in thin mesocopic superconducti
samples.6 Previous theoretical and experimental studies
superconducting disks and rings1–16 found that, as a function
of the applied field, there are transitions between circu
symmetric vortex states~called giant vortex states! with dif-
ferent vorticityL. Experimentally it was found that the mag
netic field at which the transitionL→L11 occurs does no
necessarily coincides with the magnetic fieldHtr where the
vorticity of the ground state changes fromL to L11, i.e., it
is possible to drive the system in a metastable state. Th
typical for first order phase transitions. For increasing
plied field, the state with vorticityL remains stable up to th
penetration fieldHp.Htr and transits then to the superco
ducting state with vorticityL11. For decreasing applie
field, the state with vorticityL11 remains stable down to th
expulsion fieldHe,Htr before going to the state with vor
0163-1829/2001/63~14!/144517~12!/$20.00 63 1445
a-

a-
f

-
e
in

-

n

n

n
e
-
e,

r-

f

r

is
-

ticity L. This hysteresis effect is a consequence of the p
ence of an energy barrier between the states with vorticitL
andL11. The latter corresponds to different minima of th
free energy in configurational space and the lowest bar
between those two minima is a saddle point. This bar
arises from the fact that the superconducting current arou
vortex is in the opposite direction to the screening current
the surface of the sample.17 This Bean-Livingston model ha
been refined to different sample geometries.18–23The time of
flux penetration and expulsion is determined by the heigh
the energy barrier.

The experimental consequences of the existence of th
metastable states are~i! hysteretic behavior,2 ~ii ! paramag-
netic Meissner effect,24–29 ~iii ! fractional flux penetration,30

and ~iv! negative flux entrance,30 i.e., a decrease of the flu
penetration through the superconducting disk with increas
vorticity and increasing magnetic field.

Schweigert and Peeters31 studied flux penetration and ex
pulsion in thin superconducting disks and presented an
proach to find the saddle point states. They calculated
height of the free energy barriers which separate the st
states with different vorticityL. We will extend their ap-
proach and present a systematic study of flux penetration
expulsion in thin superconducting disks and disks with a h
in the center, i.e., mesoscopic ring structures.

Bezryadin et al.32 used the nonlinear GL equation t
study the phase diagram of a thin-wire loop and a thin fi
with a circular hole in the limitk* @1. They performed a
stability analysis of the giant vortex state with vorticityL by
allowing only the admixture of theL11 vortex state. A
more rigorous stability analysis was performed by Hora
et al.33 who studied the saddle points between two vor
states of a one dimensional wire of zero width. They allow
for more possible nonuniform perturbations which may ma
the vortex state unstable. They found that the transition
tween two angular momentum states occurs through a sa
point which has a zero in the order parameter at some p
along the ring. Such a zero creates a phase slip center, a
ing the phase winding required for the transition. Our s
tems have a nonzero radial width and consequently suc
scenario is not possible because the order parameter is
allowed to be zero along a radial line. In fact it was found
©2001 The American Physical Society17-1
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Ref. 31 that for a disk geometry, the saddle point for fl
penetration corresponds to a state with suppressed supe
ductivity at the disk edge which acts as a nucleus for
following vortex creation. In the present paper we will fin
that for rings with a finite width this picture has to be mod
fied because of the presence of two boundaries, i.e.,
edges.

Recently, Palacios26 calculated saddle point states and t
energy barriers responsible for the metastabilities of su
conducting mesoscopic disks using the lowest Landau le
approximation. The central idea of his method was to fi
generic stationary solutions of the Ginzburg-Landau fu
tional and to project the order parameter onto smaller s
spaces spanned by a finite numberl of eigenfunctions
$L1 ,L2 , . . . ,Ll%, where 0<L1<L2<•••<Ll . Palacios re-
stricted himself tol<3 and therefore his approach is a sp
cial case of the one of Ref. 31 where no such restriction ol
was imposed and where also different radial states were
cluded. Yampolskii and Peeters34 investigated the influence
of the boundary condition~surface enhancement! on the su-
perconducting states and the energy barriers between t
vortex states. They also restricted their calculations tol<3.

Recently, Akkermanset al.25 studied the behavior o
metastable vortex states in infinite superconducting cylind
for k@1, i.e., the London regime. They considered the s
ation where the vortices are symmetrically distributed alo
a closed ring and they found structural phase transition
vortex patterns between the metastable states. The key
cept was the introduction of a special curveG, which em-
bodies the main geometric features of a vortex configurat
This curve appears mathematically as a limit cycle of
system of currents generated by the vortex pattern and s
rates the paramagnetic and diamagnetic domains.

The paper is organized as follows. In Sec. II we pres
the theoretical model and the calculation method to ob
the saddle points. In Sec. III we study thin superconduct
disks and extend and supplement our previous results.31 We
make a distinction between small and large superconduc
disks. In small disks only the giant vortex state appea
while in larger disks multivortices can nucleate and tran
tions between different multivortices are possible.35,36In Sec.
IV we consider superconducting rings, where we mak
distinction between small and large rings. Our results
summarized in Sec. V.

II. THEORETICAL FORMALISM

In the present paper we consider very thin supercond
ing disks with radiusR and thicknessd, and superconducting
rings with inner radiusRi and outer radiusR0. These meso-
scopic superconducting systems are immersed in an ins
ing medium in the presence of a perpendicular uniform m
netic field H0. To solve this problem, we follow the
numerical approach of Schweigert and Peeters.31 For very
thin disks and rings, i.e.,Wd!l2, with W5R the radius of
the disk orW5R02Ri the width of the ring, the demagne
tization effects can be neglected and the Ginzburg-Lan
functional can be written as
14451
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G5Gn1E drWS auCu21
b

2
uCu41C* L̂C D , ~1!

whereG, Gn are the free energies of the superconducting a
the normal states,C is the complex order parameter,a and
b are the GL coefficients which depend on the sample te
perature.L̂ is the kinetic energy operator for Cooper-pairs
chargee* 52e and massm* 52m, i.e.,

L̂5~2 i\¹W 2e* AW /c!/2m* , ~2!

where AW 5eWfH0r/2 is the vector potential of the uniform
magnetic fieldH0 written in cylindrical coordinatesr andf.

By expanding the order parameterC5( i
NCiw i in the or-

thonormal eigenfunctions of the kinetic energy opera
L̂w i5e iw i ,5–7 the difference between the superconducti
and the normal state Gibbs free energy can be written
terms of complex variables as

F5G2Gn5~a1e i !CiCi* 1
b

2
Akl

i j Ci* Cj* CkCl , ~3!

where the matrix elementsAkl
i j 5*drWw i* w j* wkw l are calcu-

lated numerically. The boundary condition for thesew i , cor-
responding to zero current density in the insulator media

S 2 i\¹W 2
e* AW

c
D U

n

w i50. ~4!

These eigenenergiese i and the eigenfunctionsw i depend
on the sample geometry. For thin axial symmetric samp
the eigenfunctions have the formw j 5(n,l )(r,f)
5exp(i l f) f n(r), wherel is the angular momentum and th
indexn counts different states with the samel and equals the
number of nodes in the radial direction. Thus, the order
rameterC can be written as

c5(
n

(
l

Cn,lwn,l . ~5!

We do not restrict ourselves to the lowest landau level
proximation ~i.e., n51) and expand the order paramet
over all eigenfunctions with energye i,e* , where the cut-
ting parametere* is chosen such that increasing it does n
influence the results. The typical number of complex com
nents used are in the rangeN530250. Thus the supercon
ducting state is mapped into a 2D cluster ofN particles with
coordinates (xi ,yi)↔@Re(Ci),Im(Ci)#, whose energy is de
termined by the Hamiltonian~3!. The energy landscape i
this (2N11)-dimensional space is studied where the lo
minima and the saddle points between them will be de
mined together with the corresponding vortex states.

To find the superconducting states and the saddle p
states we use the technique described in Ref. 31. A partic
state is given by its set of coefficients$Ci%. We calculate the
free energy in the vicinity of this pointdG5G(Cn)
2G(C) where$Cn% is the set of coefficients of a state ve
close to the initial one. This free energy is expanded to s
ond order in the deviationsd5Cn2C,
7-2
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SADDLE-POINT STATES AND ENERGY BARRIERS FOR . . . PHYSICAL REVIEW B63 144517
dG5Fmdm* 1Bmndndm* 1Dmndn* dm* 1c.c., ~6!

where

Fm5~a1e i !Cm1bAkl
m jCjCk* Cl , ~7a!

Bmn5~a1em!I mn12bAkl
mnCkCl* , ~7b!

Dmn5bAkl
mnCkCl , ~7c!

and I mn is the unit matrix. Using normal coordinatesdm

5xkQm
k we can rewrite the quadratic form asdG52(gkxk

1hkxk
2). To find the eigenvalueshk and the eigenvectorsgk

we solve numerically the following equation:

UB1Re~D ! Im~D !

Im~D ! B2Re~D !
UURe~Qk!

Im~Qk!
U5hkURe~Qk!

Im~Qk!
U. ~8!

Starting from a randomly choosen initial set of coef
cients, we calculate a nearby minimum of the free energy
moving in the direction of the negative free energy gradi
2gk . The set of coefficients of this minimum determin
then the ground state or a metastable state. Starting from
initial set of coefficients we can also calculate a nea
saddle point state by moving to a minimum of the free e
ergy in all directions, except the one which has the low
eigenvalue. In this direction we move to a local maximu
Repeating this procedure for many randomly choosen in
sets of coefficients$Ci% for fixed magnetic field, we find the
different possible superconducting states and saddle p
states. To calculate the magnetic field dependence we
from a superconducting state at a certain field and we cha
the applied field by small increments. By moving into t
direction of the nearest minimum or saddle point, the cor
sponding state will be found for the new magnetic field, p
vided that the field step is small enough.

III. SUPERCONDUCTING DISKS

In the present section we discuss superconducting di
Although the system is circular symmetric, in general we
not allowed to assume thatC(r,f)5F(r)eiLf because of
the nonlinear term in the GL functional. Nevertheless,
small disks the confinement effects are dominant and
imposes a circular symmetry on the superconducting cond
sate, which means that only the ‘‘giant’’ vortex state, i.e.
circular symmetric vortex state, is realized. For larger di
and not too large magnetic fields, the confinement effects
no longer dominant and multivortices can nucleate in a c
tain magnetic field range. For this reason we make a dist
tion between small and large disks.

A. Small disks: Giant vortex state

We consider superconducting disks with radiusR52.0j.
First we investigate the influence of the number of terms
the expansion of Eq.~5! on the energy of the minima and th
saddle points. For the approach thatn51 ~i.e., lowest Lan-
dau level! and if only onel is taken into account for eac
state, i.e.,C5Clw l , we find three different states for thre
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different values ofl, l 50, 1, and 2, in different magnetic
field regions. In Fig. 1~a! the free energyF of theseL states,
measured in units of the condensation energyF0

5a2pR2d/2b, is shown by the dotted curves as a functi
of the applied magnetic fieldH0. Next, we take into accoun
two values ofl and n51, i.e., C5Cl 1

w l 1
1Cl 2

w l 2
as was

done in, e.g., Ref. 26. With this approach we findL states
with L50,1,2 and because of the concomittant existence
two minima also saddle point states with (l 1 ,l 2)5(0,1) and
(1,2) appear. These are the saddle point states for the tr
tion betweenL states withL5 l 1 andL5 l 2. In Fig. 1~a! the
L states for this approach are given by the solid curves
the saddle point states by the dashed curves. The inset s
the transition between theL51 state and theL52 state in
more detail. Notice that including one extra term in Eq.~5!
reduces appreciably the stability region of the different gi
vortex states, i.e., its metastable region is strongly reduc
The L states are only stable up to the point where its ene
equals the saddle point states.

FIG. 1. The energy of the minima in the free energyF and the
energy of the saddle points as a function of the applied magn
field H0 for a superconducting disk with radiusR52.0j. ~a! When
only one term is included, i.e., (n,l )5(1,l ) ~dotted curve!, when
two l values are included, i.e., (n,l 1) and (n,l 2) ~solid curves!, with
the corresponding energy of the saddle point~dashed curves!. ~b!
The giant vortex energy~solid curves! and the saddle point energ
~dashed curves! when an arbitrary large number of terms are i
cluded. The free energy is scaled with the condensation energF0

5a2pR2d/2b.
7-3



he
th
et

o
nd
nt

io
c
n

ol
g
-
te
th

m

nd
ar
ar
a
he

e
ca
o

te

r
ic

on
he

e

t

d

ron

e
us
he

ht

B. J. BAELUS, F. M. PEETERS, AND V. A. SCHWEIGERT PHYSICAL REVIEW B63 144517
Figure 1~b! shows the free energy as a function of t
applied magnetic field if we do not restrict ourselves to
lowest landau level and if we expand the order param
over all eigenfunctions with energye i,e* , where the cut-
ting parametere* is chosen such that increasing it does n
influence the results. The solid and the dashed curves i
cate, respectively, the stableL states and the saddle poi
states. The transition between theL51 state and theL52
state is enlarged in the inset. Notice that the stability reg
of theL states is further reduced. Allowing more basis fun
tions in Eq.~5! does not have a strong influence on the e
ergy of theL states, e.g., compare the dotted and the s
curves in Fig. 1~a!, but it considerably decreases the ener
of the saddle point between theL states. In doing so, it re
duces strongly the stability range of the metastable sta
and consequently it reduces the size, i.e., the width in
magnetic field range, of the hysteresis effect.23 For example,
we found (Htr /Hc2 ,He /Hc2 ,Hp /Hc2)'(1.0,0.52,1.25),
(1.0,0.715,1.245), and (1.0,0.73,1.24) for theL50↔L51
transition when we include two, three, and an arbitrary nu
ber of basis function in Eq.~5!, respectively. Similarly,
we found for the L51↔L52 transition (Htr /Hc2 ,He /
Hc2 ,Hp /Hc2)'(1.715,1.52,1.81), (1.715,1.535,1.80), a
(1.715,1.555,1.795) including two, three, and an arbitr
number of basis functions, respectively. These results cle
show that one has to exert some caution to cutoff the exp
sion in Eq.~5! when calculating the saddle point and thus t
energy barriers. Notice that the expulsion fieldHe /Hc2 is
most strongly influenced by the number of terms in Eq.~5!.

In Fig. 2 the transition barriersU, i.e., the energy differ-
ence between the saddle point state and the nearby m
stable states are plotted. We show the ‘‘exact’’ numeri
results~solid curves! and the results when including only tw
values of l with n51, i.e., C5Cl 1

w l 1
1Cl 2

w l 2
~dashed

curves!. Notice that by approximating the order parame
better: ~i! it substantially lowers the energy barriers,~ii ! it
increases the expulsion fieldsHe , and ~iii ! lowers the pen-

FIG. 2. The transition barrierU for transitions between differen
L-states for a superconducting disk with radiusR52.0j when tak-
ing into account only two values ofl ~dashed curves! and for the
numerical ‘‘exact’’ result~solid curves!. The inset shows the secon
barrier in more detail.
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etration fieldsHp slightly. The energy barrier is smaller fo
higher L→L11 transitions which occur at larger magnet
fields. The inset shows the barrier between theL51 and the
L52 state in more detail.

The spatial distribution of the superconducting electr
density uCu2 in the saddle point state corresponding to t
transition from theL51 state to theL52 states is depicted
in Figs. 3~a!–3~d! for the magnetic fields indicated by th
open circles in the inset of Fig. 2, i.e.,H0 /Hc251.615,

FIG. 3. The spatial distribution of the superconducting elect
densityuCu2 ~a!–~d! and the phase of the order parameter~e!–~h! in
the saddle point state corresponding to the transition from thL
51 state to theL52 states in a superconducting disk with radi
R52.0j for the magnetic fields indicated by the open circles in t
inset of Fig. 2;H0 /Hc251.615~a!,~e!, 1.665~b!,~f!, 1.715~i.e., the
maximum of the barrier! ~c!,~g! and 1.765~d!,~h!. High Cooper-pair
density is given by dark regions, low Cooper-pair density by lig
regions. Phasesw*0 are given by light regions andw&2p by dark
regions.
7-4
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1.665, 1.715~i.e., the maximum of the barrier! and 1.765,
respectively. In Ref. 31 similar results were shown for t
L50↔L51 saddle point. High~low! Cooper-pair density is
given by dark~light! regions. The little white spots in th
superconductor show the centers of the vortices. With
creasing field, one vortex moves from the center to the o
region of the disk, and the state changes fromL52 to L
51. This is better illustrated by the contour plots of t
phase of the order parameter which is shown in Figs. 3~e!–
3~h! for the same configurations. Along a closed path, wh
lies near the edge of the superconductor, the phase differ
Dw is always given byL times 2p, with L the vorticity or
winding number. Light regions indicate phasesw*0 and
dark regionsw&2p. When encircling the superconducto
near the boundary, we find that the phase differenceDw is
equal to 232p in Figs. 3~e!–3~g! andDw5132p in Fig.
3~h!, which means vorticyL52 and 1, respectively. At the
maximum of the barrier, i.e., when the energy of stateL
51 and L52 are identical, the saddle point transits fro
vorticity L52 to L51. At this point the Cooper-pair densit
is zero at the boundary of the disk which acts as a nuclea
center for flux penetration and expulsion.31

B. Large disks: Multivortex states

We consider now a larger superconducting disk with
dius R54.0j in which multivortex states can nucleate
certain magnetic field ranges.6,35 Figure 4 shows the free
energy as a function of the applied magnetic fieldH0. The
energy of the differentL states is given by solid curves whe
they are in the giant vortex state and by dashed curves w
they are in the multivortex state and the saddle point st
are given by the dotted curves. The open circles give

FIG. 4. The free energy as a function of the applied magn
field H0 for a disk with radiusR54.0j. The differentL states are
given by solid curves when in the giant vortex states and by das
curves when in the multivortex states, while the saddle point st
are given by the dotted curves. The open circles correspond to
transitions between the multivortex state and the giant vortex s
for fixed L. The inset shows the transition barrierU as a function of
the applied field for the differentL↔L11 transitions.
14451
-
er

h
ce

n

-

en
es
e

transition points between the multivortex state and the g
vortex state for fixedL. The inset shows the transition barrie
U as a function of the applied field for the differentL↔L
11 transitions. To distinguish qualitatively the giant vorte
state from the multivortex state for fixedL we considered the
value of the Cooper-pair densityuCu2 in the center of the
disk. Figure 5 showsuCucenter

2 which is zero for a giant vortex
state and nonzero in the multivortex states when there is
vortex in the center of the disk. ForR54.0j we find only
multivortex states forL52, 3, 4, and 5 and the transitio
from the multivortex state to the giant vortex state occurs
HMG /Hc250.52, 0.77, 0.875, and 0.935, respectively.
course, forL51 there is no distinction between the giant a
the multivortex state. ForL55 the spatial distribution of the
superconducting electron density is given in the insets~a!–
~d! of Fig. 5 at the magnetic fields corresponding to the op
circles in Fig. 5, i.e.,H0 /Hc250.8, 0.85, 0.9, and 0.95, re
spectively. In the multivortex state the vortices move
wards the center with increasing magnetic field and at
same time the vortices become wider, and therefore,
Cooper-pair density in the center decreases until the a
symmetry is recovered at the transition fieldHMG
50.935Hc2.

Next, we will study the energy barriersU in more detail.
For a superconducting disk with radiusR54.0j the energy
barriers for the differentL↔L11 transitions are shown in
the inset of Fig. 4. The height of the energy barrier for t
L↔L11 transition decreases with increasingL. The differ-
ence between penetration and expulsion field decreases
with increasingL. Figure 6~a! shows the free energy of th
L54 and theL55 states in more detail~solid curves for the
giant vortex state and dashed curves for the multivor
state! together with the energy of the saddle point state
tween these states~dash-dotted curve!. Figure 6~b! gives the
corresponding energy barrier. The open circles correspon
the transition from multivortex to giant vortex state. The ba

ic

ed
es
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te

FIG. 5. The Cooper-pair densityuCu2 in the center of the disk
with radiusR54.0j for L52, 3, 4, and 5. The insets~a!–~d! show
the spatial distribution of the superconducting electron density
L55 at the magnetic fields corresponding to the open circles;
H0 /Hc250.8, 0.85, 0.9, and 0.95, respectively. The transition fro
multivortex state to giant vortex state occurs at the transition fi
HMG .
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B. J. BAELUS, F. M. PEETERS, AND V. A. SCHWEIGERT PHYSICAL REVIEW B63 144517
rier height is clearly not influenced by the transition fro
multivortex to giant vortex state, i.e., there are no jumps
discontinuities at the transition. The spatial distribution
the superconducting electron densityuCu2 for this saddle
point state is depicted in the insets of Fig. 6~b! for the con-
figurations indicated by the triangles, i.e.,H0 /Hc250.81,
0.885, 0.96~the barrier maximum!, and 1.035, respectively
Notice that also in the saddle point the transition betwee
multivortex state withL55 and a giant vortex state withL
54 is clearly visible.

Near the maximum of the barrier, the barrier heig
changes linearly with magnetic field. Therefore, we can
proximate the energy barrierU near its maximumUmax by

U

F0
5

Umax

F0
1a

H2Hmax

Hc2
,

where the slopea is positive forH&Hmax and negative for
H*Hmax. In Fig. 7 the absolute value of the slopeuau is
given as a function ofL for H&Hmax by the closed circles
and forH*Hmax by the open circles. The absolute value
the slope is different for the left and the right side of t
maximum of the barrier. Notice that forL50 andL51, uau
is larger forH&Hmax as compared toH*Hmax, while for

FIG. 6. ~a! The free energy of theL54 and theL55 states
~solid curves for giant vortex states and dashed curves for multi
tex states! and the saddle point states between these states~dash-
dotted curve! for a superconducting disk with radiusR54.0j; and
~b! the energy barrier corresponding with this transition. The op
circles correspond with the transition from multivortex to giant vo
tex state for fixedL. The insets show the spatial distribution of th
superconducting electron densityuCu2 for the saddle point state
indicated by triangles, i.e., at the magnetic fieldsH0 /Hc250.81,
0.885, 0.96~the barrier maximum!, and 1.035. It is the transition
between a multivortex state withL55 and a giant vortex state with
L54.
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L.1 the reverse is true. For increasingL the slope decrease
and the behavior could be fitted to

uaL↔L11~L !u5
a1bL

11cL
,

with a50.02586, b520.00300, andc51.40357 for H
&Hmax, and a50.02322, b520.00217, andc51.26502
for H*Hmax. These fitting curves are shown in Fig. 7 by th
solid line for H&Hmax and by the dashed line forH
*Hmax. In the inset of Fig. 7 the maximum of the barrie
height Umax is given by the symbols as a function of th
vorticity L. The barrier height decreases for increasing v
ticity and the behavior could be fitted to

Umax

F0
~L !5

a1bL

11cAL
,

with a50.07229,b520.00791, andc50.48657, which is
shown by the solid curve.

For larger superconducting disks and higher values oL,
different configurations of multivortices can occur with th
same vorticity.25,27,36 Figure 8 shows the free energy as
function of the applied field for the superconducting sta
with vorticity L56 andL57. For both vorticities two con-
figurations are possible;~i! L vortices on a ring and no vorte
in the center~solid curve! and ~ii ! L21 vortices on a ring
and 1 in the center~dashed curve!. The vortex state is com
pletely determined by the number of vortices in the cen
Lcenterand the total number of vorticesL. For this reason we
characterized the states by the indices (Lcenter;L) in Fig. 8.
The insets show the Cooper-pair density atH0 /Hc250.6 for
the (0;6) state, the(1;6) state, the(0;7) state, and the
(1;7) state, respectively. Notice further that for such lar
radius, there is no transition from a multivortex to a gia
vortex state for these values ofL. For the sake of clarity, only
the free energy of the saddle point state between the(1;7)

r-

n

FIG. 7. The absolute value of the slopeuau of the energy barrier
for a superconducting disk withR54.0j as a function ofL for H
&Hmax ~closed circles! and for H*Hmax ~open circles!. The inset
shows the maximum barrier height as a function of the vorticityL.
The solid and dashed curves are the results of a fit.
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SADDLE-POINT STATES AND ENERGY BARRIERS FOR . . . PHYSICAL REVIEW B63 144517
state and the(0;6) state is given, as an example, by t
dash-dotted curve in Fig. 8. This state describes the ex
sion of one vortex when the system transits from theL57 to
the L56 configuration and is illustrated in Figs. 9~a!–9~c!
where we show the spatial distribution of the supercondu
ing electron densityuCu2 in the saddle point state a
H0 /Hc250.5, 0.6, and 0.7, respectively. To transit fromL
57 to L56, one vortex on the ring moves towards the o
side of the disk and the vortex in the center takes the
place on the ring. High~low! Cooper-pair density is given b
dark ~light! regions.

IV. SUPERCONDUCTING RINGS

Now, we will consider superconducting disks with radi
R0 with a hole in the center with radiusRi . For the same
reason as in Sec. III we make a distinction between small
large systems.

A. Small rings: Giant vortex state

As an example, we consider a superconducting ring w
radiusR052.0j and hole radiusRi51.0j. In Fig. 10 the free
energy is shown as a function of the applied magnetic fi

FIG. 8. The free energyF as a function of the applied magnet
field H0 of the ~0;6! and the~0;7! state~solid curves!, the~1;6! and
the ~1;7! state ~dashed curves!, and the saddle point state~dash-
dotted curve! between the~1;7! and ~0;6! state for a superconduct
ing disk with radiusR56.0j. The insets show the Cooper-pair de
sity of the(0;6) state, the~1;6! state, the~0;7! state, and the~1;7!
state at the thermodynamic transition fieldH0 /Hc250.6 between
the ~0;6! and the~1;7! state.
14451
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for the different L states~solid curves! together with the
saddle point states~dashed curves!. We find giant vortex
states withL50,1,2,3,4. Comparing this result with the re
sult for a disk with radiusR52.0j, moreL states are pos
sible and the superconducting/normal-transition moves
larger magnetic fields.14 The inset shows the energy barri
U for the transitions between the differentL states as a func
tion of the difference between the applied magnetic fieldH0
and theL→L11 transition fieldHL→L11. For increasingL,
the height of the energy barrier and the difference betw
the penetration and the expulsion field decreases. The en
barrier near its maximum can be approximated byU/F0
5Umax/F01a(H2Hmax)/Hc2, and we determined the slop
aL→L11 ; a0→1520.8 for H&Hmax and 0.9 forH*Hmax,
a1→2520.6 for H&Hmax and 0.75 forH*Hmax, a2→35
20.3 for H&Hmax and 0.42 forH*Hmax, and a3→45
20.013 for H&Hmax, and 0.038 forH*Hmax. The slope
decreases again for increasingL and the absolute value of th
slope forH&Hmax is smaller than forH*Hmax for everyL,
although the difference is relatively smaller than in the p
vious disk case where we founda0→1520.31 for H
&Hmax and 0.44 forH*Hmax, and a1→2520.06 for H
&Hmax and 0.1 forH*Hmax.

FIG. 10. The free energy for a superconducting ring with rad
R052.0j and hole radiusRi51.0j as a function of the applied
magnetic field for the different giant vortex states~solid curves! and
for the saddle point states~dashed curves!. The inset shows the
energy barrierU for the transitions between differentL states as a
function of the difference between the applied magnetic fieldH0

and theL→L11 transition fieldHL→L11.
r-
FIG. 9. The spatial distribution of the supe
conducting electron densityuCu2 for the transi-
tion between theL56 state and theL57 state
for a superconducting disk with radiusR/j56.0
at the applied magnetic fieldsH0 /Hc250.5 ~a!,
0.6 ~b!, and 0.7~c!.
7-7
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Next, we investigate the 2↔3 saddle point. AtH0 /Hc2
52.01 ~expulsion field! and 2.535~penetration field! the
saddle point state equals the giant vortex states withL53
and L52, respectively. The transition between these t
giant vortex states is illustrated in Figs. 11~a!–11~d! which
show the spatial distribution of the superconducting elect
densityuCu2 corresponding with the open circles in the ins
of Fig. 10 atH0 /Hc252.1, 2.2, 2.315~i.e., the barrier maxi-
mum! and 2.4, respectively. High~low! density is given by
dark ~light! regions. With increasing field one vortex mov
from inside the ring, through the superconducting mater
to outside the ring. From Fig. 11~c! one may infer that the
Cooper-pair density is zero along a radial line and that
vortex is, in fact, a sort of line. That this is not the case c
be seen from the left inset of Fig. 12 which shows t
Cooper-pair densityucu2 along this radial line forH0 /Hc2
52.315. The Cooper-pair density in the superconducting
terial is zero only at the center of the vortex which is situa
at xmin /j'1.5 anduCu2 is very small otherwise, i.e.,uCu2

,0.01. In Fig. 12 the position of the vortex, i.e., ofxmin , is
shown as a function of the applied field. Over a narrow fi
region the vortex moves from the inner boundary towards
outer boundary. FromH0 /Hc252.01 to 2.25 the center o
the vortex is still situated in the hole but the vortex alrea
influences the superconducting state@see, for example, Figs
11~a!,11~b!#. FromH0 /Hc252.36 to 2.535 the center of th
vortex lies outside the ring, but it has still an influence on
saddle point@see, for example, Fig. 11~d!#. In the region
H0 /Hc252.2522.36 the center of the vortex is situated i
side the superconductor. This is also illustrated by the c
tourplot ~right inset of Fig. 12! for the phase of the orde

FIG. 11. The spatial distribution of the superconducting elect
densityuCu2 of the transition between the giant vortex states w
L52 andL53 for a superconducting ring withR052.0j and Ri

51.0j at H0 /Hc252.1 ~a!, 2.2 ~b!, 2.315 ~c!, and 2.4~d!. High
density is given by dark regions and low density by light region
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parameter atH0 /Hc252.315, corresponding with the ope
circle in Fig. 12. When encircling the superconductor ne
the inner boundary of the ring, we find that the phase diff
enceDw is equal to 232p which implies vorticityL52.
When encircling the superconductor near the outer bound
we find vorticityL53. If we choose a path around the vorte
~located atxmin), the phase changes with 2p and thusL
51. At the transition field (H0 /Hc252.315) the center of
the vortex of the saddle point is clearly not situated at
outer boundary as was the case for superconducting d
@see, for example, Figs. 3~c!, 3~g!, 6~b!, 9~b!, and Ref. 31#.

To illustrate this more clearly, Figs. 13~a!,13~b! show the
radial position of the vortex during the transition between
Meissner state and theL51 state, and between theL51
state and theL52 state for a superconducting ring with ra

n

FIG. 12. The radial position of the vortex in the saddle point
the 2↔3 transition through the superconductor with radiusR0

52.0j andRi51.0j. The left inset shows the Cooper-pair dens
along thex direction atH0 /Hc252.315, and the right inset is a
contour plot of the phase of the order parameter atH0 /Hc2

52.315.

FIG. 13. The radial position of the vortex for~a! the 0↔1 and
~b! the 1↔2 saddle point transition as a function of the appli
magnetic field for a superconducting ring with radiusR052.0j and
Ri50.0, 0.5, 1.0, and 1.5j. The open circles indicate the transitio
fields.
7-8
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SADDLE-POINT STATES AND ENERGY BARRIERS FOR . . . PHYSICAL REVIEW B63 144517
dius R052.0j and for several values of the hole radius, i.
Ri /j50.0, 0.5, 1.0, and 1.5. The open circles indicate
ground state transition fields. Only for the case of the d
without a hole the center of the vortex at the saddle po
occurs at the outer boundary of the disk for the magn
field at which the ground state changes fromL to L11.
When the disk contains a hole in the center there are
boundaries and the center of the above vortex is now loc
between those two boundaries. For a small hole with rad
Ri50.5j the position of the vortex can be approximated
the arithmetic mean of the inner and the outer radius,
xmin /j'(R01Ri)/2, and for a larger hole with radiusRi

51.5j by the geometric meanAR0Ri . The transition field
increases and the magnetic field range, over which the t
sition occurs, decreases with increasingL. Notice that the
transition field for theL51↔2 transition forRi /j50.5 is
larger than the one forRi /j50.0 @see Fig. 13~b!#, which
agrees with Fig. 4 of Ref. 14.

B. Large rings: Multivortex states

First, we consider superconducting rings with radiusR0
54.0j and hole radiusRi51.0j. In Fig. 14 the free energy is
shown as a function of the applied magnetic field. The d
ferent L states are given by solid curves for giant vort
states and dashed curves for multivortex states, while
saddle point states are given by the dotted curves. The o
circles correspond to the transition between the multivor
state and the giant vortex state for fixedL. These transitions
occur atHMG /Hc250.93, 1.035, and 1.14 forL54, 5, and
6, respectively. Notice that for such a small hole in the d

FIG. 14. The free energy for a superconducting ring withR0

54.0j andRi51.0j as a function of the applied magnetic field fo
the differentL states~solid curves for giant vortex states and dash
curves for multivortex states!, and the saddle point states~dotted
curves!. The open circles correspond to the transition between
multivortex state and the giant vortex state for fixedL. The inset
shows the spatial distribution of the superconducting electron d
sity uCu2 for the multivortex state withL54 at H0 /Hc250.8 ~a!,
L55 at H0 /Hc250.9 ~b! and L56 at H0 /Hc251.0 ~c!. High
Cooper-pair density is given by dark regions, low Cooper-pair d
sity by light regions.
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the maximum number ofL, i.e.,L510, is the same as for th
disk case without a hole~see Fig. 4!. The spatial distribution
of the superconducting electron densityuCu2 is depicted in
the insets~a!–~c! of Fig. 14 for the multivortex state with
L54 at H0 /Hc250.8, L55 at H0 /Hc250.9 andL56 at
H0 /Hc251.0, respectively. High~low! Cooper-pair density
is given by dark~light! regions. Notice that there are alway
L21 vortices in the superconducting material and one v
tex appears in the hole, i.e., in the center of the ring.

The energy barriers for the transitions between the diff
entL states are shown in Fig. 15 as a function of the appl
magnetic field. By comparing this with the energy barrie
for a disk with no hole, we see that the barrier heights a
the transition fields are strongly different~see the inset of
Fig. 4!. Therefore we show in the insets of Fig. 15 the ma
mum height of the energy barrierUmax and theL↔L11
transition fieldH tr as a function ofL for superconducting
disks with no hole~squares! and with a hole of radiusRi
51.0j ~circles!, 2.0j ~triangles!, and 3.0j ~stars!. In all cases
the height of the energy barrier decreases and the trans
fields increase with increasingL. By comparing the situation
with no hole and with a small hole withRi51.0j, we see
that the barriers forL<1 are higher for the disk with a hole
with Ri51.0j than for Ri50.0j, while they are smaller
whenL.1. Notice also that the value of theL→L11 tran-
sition field is sensitive to the presence of the hole with rad
Ri51.0j for smallL and insensitive for largerL. The reason
is that for smallL.0 such a central hole has always o
vortex localized inside which favors certain vortex config
rations above others, while for largerL in both cases only
giant vortices appear with sizes larger than the hole size
the presence of the hole no longer matters. For larger h
the energy barrier decreases more slowly, because the
energy of the differentL states shows a more parabolic
type of behavior as a function of the magnetic field. T
transition field has a much smaller dependence on the ra
of the hole. Notice that the transition field forRi53.0j is

e

n-

-

FIG. 15. The energy barrierU for the transitions between th
different L states in a superconducting ring withR054.0j and Ri

51.0j as a function of the applied magnetic field. The insets sh
the maximum height of the energy barrierUmax and the transition
field Htr as a function ofL for rings with R054.0j and Ri50.0,
1.0, 2.0, and 3.0j.
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B. J. BAELUS, F. M. PEETERS, AND V. A. SCHWEIGERT PHYSICAL REVIEW B63 144517
linear as a function ofL for small holes andL<9. This is in
good agreement with the results in the narrow ring lim
where the transition between states with different vorticityL
occurs when the enclosed fluxf equals (L11/2)f0.37

Next, we investigate the saddle point states in these
perconducting rings. We make a distinction between diff
ent kinds of saddle point states;~i! between two giant vortex
states,~ii ! between a multivortex and a giant vortex sta
~iii ! between two multivortex states with the same vortic
in the hole and different vorticity in the superconducti
material, and~iv! between two multivortex states with th
same vorticity in the superconducting material but differe
vorticity in the hole. The first saddle point transition w
already described for the case of small superconducting r
~see Figs. 11 and 12!. Next, we study the saddle point sta
between a multivortex state withL55 and a giant vortex
state withL54 for the previous considered ring with radiu
R054.0j and hole radiusRi51.0j. Figures 16~a!–16~f!
show the Cooper-pair density for these saddle point state
H0 /Hc250.83, 0.88, 0.93, 0.965~i.e., the barrier maximum!,
1.03 and 1.06, respectively. High~low! Cooper-pair density
is given by dark~light! regions. For increasing field one vo
tex moves to the outer boundary, while the others move
the center of the ring where they create a giant vortex st
We remark that the giant vortex state is larger than the h

FIG. 16. The Cooper-pair density for the saddle point state tr
sition between a multivortex state withL55 and a giant vortex
state withL54 at H0 /Hc250.83 ~a!, 0.88 ~b!, 0.93 ~c!, 0.965~d!,
1.03 ~e!, and 1.06~f!. High Cooper-pair density is given by dar
regions, low Cooper-pair density by light regions.
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and therefore it is partially situated in the superconduc
itself.

To study saddle point transitions between different mu
vortex states we have to increase the radius of the ring
favor the multivortex states. Therefore, we consider a r
with radius R056.0j and hole radiusRi52.0j. Figure 17
shows the free energy of multivortex states withL58 and
L59. In both cases 3 vortices are trapped in the hole. T
lower insets show the spatial distribution of the superc
ducting electron densityuCu2 at the transition fieldH0 /Hc2
50.695 forL58 andL59. It is clear that there are only 5
and 6 vortices in the superconducting material, respectiv
The free energy of these multivortex states is shown by s
curves, while the saddle point energy between these stat
given by the dashed curve. Notice further, that there is
transition from the multivortex states to the giant vort
states withL58 and 9 as long as these states are stable.
spatial distribution of the superconducting electron dens
uCu2 for this saddle point state is depicted in the upper ins
at the magnetic fieldsH0 /Hc250.63, 0.695 ~the barrier
maximum!, and 0.76, respectively. For increasing field o
vortex moves from the superconducting material to the ou
boundary and hence the vorticity changes fromL59 to L
58. Notice that the vorticity of the interior boundary of th
ring does not change.

The fourth type of saddle point state to discuss is theL
→L11 transition between two multivortex states with th
same vorticity in the superconducting material but with
different vorticity in the hole. ForR0 /j54 andR0 /j56 we
did not find such transitions regardless of the hole rad
This means that at least for these radii there is no transi

-

FIG. 17. The free energy of the multivortex states withL58
andL59 ~solid curves! and the saddle point state~dashed curves!
between these multivortex states for a superconducting ring w
R056.0j andRi52.0j as a function of the applied magnetic field
The lower insets show the spatial distribution of the supercond
ing electron densityuCu2 at the transition fieldH0 /Hc250.695 for
L58 andL59. The upper insets show the spatial distribution
the superconducting electron densityuCu2 for the saddle point state
indicated by the open circles, i.e., atH0 /Hc250.63 ~a!, 0.695~b!,
and 0.76~c!. High Cooper-pair density is given by dark region
low Cooper-pair density by light regions.
7-10
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between such states which describes the motion of one
tex from the hole through the superconducting material
wards the outer insulator.

Finally, we investigated the influence of the hole rad
on the barrier for a fixed outer ring radius. Figure 18~a!
shows the maximum barrier height, i.e., the barrier heigh
the thermodynamic equilibriumL→L11 transition, as a
function of the hole radiusRi for a ring with radiusR0
54.0j for the transition between the Meissner state and
L51 state~solid curve! and for the transition between th
L51 and theL52 state~dashed curve!. For increasing hole
radius, the barrier height of the first transition rapidly i
creases in the rangeRi50.1j to Ri51.5j and decrease
slowly afterwards. For a superconducting disk with rad
R054.0j with a hole in the center with radiusRi51.5j the
maximum barrier height for the 0→1 transition is twice as
large as for a superconducting disk without a hole. The b
rier height of the second transition first decreases, then
idly increases in the rangeRi50.6j to Ri52.5j and then
slowly decreases again. In this case the maximum ba
height for a superconducting disk with a hole with radi
Ri52.5j is three times as large as for a superconducting d
without a hole. Hence, changing the hole radius stron
influences the maximum height of the barrier. In Fig. 18~b!
we plot the characteristic magnetic fields of the barrier a
function of the hole radius, i.e., the transition magnetic fi
H tr , the expulsion magnetic fieldHe , and the penetration
magnetic fieldHp , for the 0→1 transition by solid curves

FIG. 18. ~a! The maximum barrier height as a function of th
hole radiusRi for a ring with radiusR054.0j for the transition
between the Meissner state and theL51 state~solid curve! and the
transition between theL51 state and theL52 state~dashed curve!
and ~b! the transition magnetic fieldHtr , the expulsion magnetic
field He and the penetration magnetic fieldHp as a function of the
hole radiusRi for the transition between the Meissner state and
L51 state~solid curve! and the transition between theL51 state
and theL52 state~dashed curve!.
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and for the 1→2 transition by the dashed curve. For the
→1 transition the characteristic magnetic fields decre
with increasing hole radius. For the 1→2 transition the char-
acteristic magnetic fields first increase to a maximum a
then decrease. This behavior was described and explaine
our previous paper~see, e.g., Fig. 17 of Ref. 14!. Notice that
the position of the minimum inUmax coincides with the po-
sition of the maximum inHtr .

V. CONCLUSIONS

We studied the saddle points for transitions between
ferent vortex states for thin superconducting disks and rin
A distinction was made between small systems where
confinement effects dominate and larger systems where m
tivortices can nucleate for certain magnetic fields. At t
entrance of the vortex into the superconducting material
superconducting density becomes zero at a certain poin
the edge of the disk or ring. Such a zero in the order para
eter acts as a phase slip center which allows the vorticity
increase with one unit. For the case of the ring the vor
may enter~or exit! the superconducting material from th
inner boundary or from the outer boundary of the ring.

We studied the transition between two giant vortex sta
with different vorticity L. One vortex moves through the su
perconducting material to the center of the disk or to
hole. During the transition the position of this vortex in th
superconductor can be determined very precisely, beca
the Cooper-pair density is exactly zero in the center of t
vortex. The transition between a multivortex state and a g
vortex state with different vorticityL is also described. One
vortex leaves~enters! the superconductor while the othe
vortices move towards~away from! the center of the disk.
For large enough disk/ring radii, we calculated the transit
between two multivortex states. We found such transitio
between two multivortex states with different vorticityL in
the superconductor but with the same vorticity in the cen
hole. One vortex enters/leaves the superconductor while
other vortices rearrange themselves. Transitions between
ferent multivortex states with the same vorticity in the sup
conducting material but different vorticity in the hole we
not found for the considered ring configurations, whi
means that transitions between such states do not occu
these particular cases.

The maximum height of the energy barrier always d
creases for increasingL. Near the maximum, the barrie
height decreases linearly and its slope at the left sideH
&Hmax) of the maximum is not equal to the slope at the rig
side (H*Hmax). The barrier shape and height strongly d
pend on the radius of the hole in the center of the disk.
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