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Saddle-point states and energy barriers for vortex entrance and exit in superconducting disks
and rings
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The transitions between the different vortex states of thin mesoscopic superconducting disks and rings are
studied using the nonlinear Ginzburg-Landau functional. They are saddle points of the free energy representing
the energy barrier which has to be overcome for transition between the different vortex states. In small
superconducting disks and rings the saddle point state between two giant vortex states, and in larger systems
the saddle point state between a multivortex state and a giant vortex state and between two multivortex states
is obtained. The shape and the height of the nucleation barrier is investigated for different disk and ring
configurations.
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[. INTRODUCTION ticity L. This hysteresis effect is a consequence of the pres-
ence of an energy barrier between the states with vorticity
The study of superconducting samples with sizes compaandL+ 1. The latter corresponds to different minima of the
rable to the penetration depth ) and the coherence length free energy in configurational space and the lowest barrier
(¢) became possible due to recent progress in nanofabric&etween those two minima is a saddle point. This barrier
tion technologies. This evolution resulted in an increase ofrises from the fact that the superconducting current around a
interest in the investigation of flux penetration and flux ex-VOrtexis in the opposite direction to the screening currents at
pulsion in such mesoscopic samples in order to explain th1® surface of the sampté This Bean-Livingston model has

. . Q_ 3 .
hysteresis behavior and the different phase transitions in thiﬁeen refined to different sample geometffe€>The time of
superconducting samplésts ux penetration and expulsion is determined by the height of

. _ the energy barrier.
Itis well "”°Wf.‘ that for typ.e-II ((_)‘/§>1/‘/§.) super- The experimental consequences of the existence of these
conductors the triangular Abrikosov vortex lattice is ener-

. . o metastable states af@ hysteretic behaviof,(ii) paramag-
getically favored in the magnetic field rangta<H<Hc,  netic Meissner effed 2 iii) fractional flux penetratiof

where « is the Ginzburg-LandadGL) parameter, antic,  and(iv) negative flux entranc®,i.e., a decrease of the flux
andHc, are the first and second critical fields of a type-Il penetration through the superconducting disk with increasing
superconductor. Since the effective London penetratior\l,orticity and increasing magnetic field.

depth A =)\?/d increases considerably in thin films one ex-  Schweigert and Peetéfstudied flux penetration and ex-
pects the appearance of the Abrikosov multivortex state evepulsion in thin superconducting disks and presented an ap-
in thin type-I (< 1/y/2) superconductors when the thicknessproach to find the saddle point states. They calculated the
d<\. But, in small confined systems there is a competitionheight of the free energy barriers which separate the stable
between the boundary of the sample, which tries to imposetates with different vorticityL.. We will extend their ap-

the symmetry of the sample boundary on the vortex configuproach and present a systematic study of flux penetration and
ration, and this triangular Abrikosov state. As a consequencesxpulsion in thin superconducting disks and disks with a hole
the effective GL parametet* =A/¢ is no longer the only in the center, i.e., mesoscopic ring structures.

controlling parameter which determines the shape of the vor- Bezryadin et al®? used the nonlinear GL equation to
tex configuration in thin mesocopic superconductingstudy the phase diagram of a thin-wire loop and a thin film
sample$. Previous theoretical and experimental studies ofwith a circular hole in the limit<*>1. They performed a
superconducting disks and ririgs®found that, as a function stability analysis of the giant vortex state with vorticityby

of the applied field, there are transitions between circulaanowing only the admixture of thé.+1 vortex state. A
symmetric vortex statealled giant vortex statgsvith dif-  more rigorous stability analysis was performed by Horane
ferent vorticityL. Experimentally it was found that the mag- et al®* who studied the saddle points between two vortex
netic field at which the transition—L +1 occurs does not states of a one dimensional wire of zero width. They allowed
necessarily coincides with the magnetic fiélgh where the  for more possible nonuniform perturbations which may make
vorticity of the ground state changes frdnto L+1, i.e., it the vortex state unstable. They found that the transition be-
is possible to drive the system in a metastable state. This isveen two angular momentum states occurs through a saddle
typical for first order phase transitions. For increasing appoint which has a zero in the order parameter at some point
plied field, the state with vorticity. remains stable up to the along the ring. Such a zero creates a phase slip center, allow-
penetration fieldH,>H;, and transits then to the supercon- ing the phase winding required for the transition. Our sys-
ducting state with vorticityL +1. For decreasing applied tems have a nonzero radial width and consequently such a
field, the state with vorticity.+ 1 remains stable down to the scenario is not possible because the order parameter is not
expulsion fieldH,<H,, before going to the state with vor- allowed to be zero along a radial line. In fact it was found in
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Ref. 31 that for a disk geometry, the saddle point for flux . B .

penetration corresponds to a state with suppressed supercon- G=G,+ J df( al W+ §|‘I’|4+ WELW |, 1)

ductivity at the disk edge which acts as a nucleus for the

following vortex creation. In the present paper we will find whereG, G, are the free energies of the superconducting and

that for rings with a finite width this picture has to be modi- the normal states}’ is the complex order parameter,and

fied because of the presence of two boundaries, i.e., tw§ are the GL coefficients which depend on the sample tem-

edges. peratureL is the kinetic energy operator for Cooper-pairs of
Recently, Palacid$ calculated saddle point states and thechargee* = 2e and massn* =2m, i.e.,

energy barriers responsible for the metastabilities of super- . R R

conducting mesoscopic disks using the lowest Landau level L=(—iAV—e*Alc)/2m*, 2

approximation. The central idea of his method was to find S - . : .

gggeric stationary solutions of the Ginzburg-Landau func\Ver€ A=e€sHop/2 is the vector potential of the uniform

tional and to project the order parameter onto smaller Subr_nagnetic fielcH, written in cylindrical coordinatep and ¢.
By expanding the order paramet&r=2i’\'ci<pi in the or-

spaces spanned by a finite numberof eigenfunctions . i =
{LyLy, ...L} where O<L;<L,<---<L,. Palacios re- thonormal eigenfunctions of the kinetic energy operator

stricted himself td <3 and therefore his approach is a spe-L@i=€i¢;,>” the difference between the superconducting
cial case of the one of Ref. 31 where no such restrictioh on and the normal state Gibbs free energy can be written in
was imposed and where also different radial states were irferms of complex variables as
cluded. Yampolskii and Peetéfdnvestigated the influence
of the boun_dary conditiofsurface enhanceme)rtm the su- F=G-G,=(a+¢)C,Cr+ EALHCi* c*c.c, 3
perconducting states and the energy barriers between those 2 !
vortex states. They also restricted their calculations<t@. . o -
Recently, Akkermansetal?® studied the behavior of Where the matrix elementdy,=Jdre ¢ oxe are calcu-
metastable vortex states in infinite superconducting cylinderitéd numerically. The boundary condition for these cor-
for k>1, i.e., the London regime. They considered the sitylesponding to zero current density in the insulator media, is
ation where the vortices are symmetrically distributed along .
a closed ring and they found structural phase transitions of e*A
vortex patterns between the metastable states. The key con-
cept was the introduction of a special curbe which em-
bodies the main geometric features of a vortex configurationThese eigenenergieg and the eigenfunctiong; depend
This curve appears mathematically as a limit cycle of theon the sample geometry. For thin axial symmetric samples
system of currents generated by the vortex pattern and septie  eigenfunctions have the formej_(, ) (p,®)
rates the paramagnetic and diamagnetic domains. =exp(l #)fn(p), wherel is the angular momentum and the
The paper is organized as follows. In Sec. Il we presentndexn counts different states with the sainend equals the
the theoretical model and the calculation method to obtaimumber of nodes in the radial direction. Thus, the order pa-
the saddle points. In Sec. Il we study thin superconductingameter¥” can be written as
disks and extend and supplement our previous redtitge
make a distinction between small and large superconducting ¢=2 z c (5)
disks. In small disks only the giant vortex state appears, S 4 ol enl
while in larger disks multivortices can nucleate and transi- .
tions between different multivortices are possitté®in Sec.  We do not restrict ourselves to the lowest landau level ap-
IV we consider superconducting rings, where we make @roximation (i.e., n=1) and expand the order parameter

distinction between small and large rings. Our results ar@Ver all eigenfunctions with energgi<e, , where the cut-
summarized in Sec. V. ting parametek, is chosen such that increasing it does not

influence the results. The typical number of complex compo-
nents used are in the ranfje= 30— 50. Thus the supercon-
ducting state is mapped into a 2D clusteMbparticles with
coordinatesX; ,y;) —[Re(C;),Im(C,;)], whose energy is de-

In the present paper we consider very thin superconductermined by the Hamiltoniaf3). The energy landscape in
ing disks with radiudR and thicknessl, and superconducting this (2N+ 1)-dimensional space is studied where the local
rings with inner radiu}; and outer radiufR,. These meso- minima and the saddle points between them will be deter-
scopic superconducting systems are immersed in an insulamined together with the corresponding vortex states.
ing medium in the presence of a perpendicular uniform mag- To find the superconducting states and the saddle point
netic field Hy. To solve this problem, we follow the states we use the technique described in Ref. 31. A particular
numerical approach of Schweigert and PeeterSor very  state is given by its set of coefficiert§;}. We calculate the
thin disks and rings, i.e\Wd<\?, with W=R the radius of free energy in the vicinity of this pointdéG=G(C")
the disk orW=R,—R; the width of the ring, the demagne- —G(C) where{C"} is the set of coefficients of a state very
tization effects can be neglected and the Ginzburg-Landaadlose to the initial one. This free energy is expanded to sec-
functional can be written as ond order in the deviation§=C"—-C,

(—ifﬁ— @ =0. (4)

Il. THEORETICAL FORMALISM
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8G=F6m+Bmnondm+Dmndr 8 +c.c., (6) 0.0 oy
where -
A -0.2
Fm=(a+ €|)Cm+BArkn|JC]C’kCC| y (7a) "
0 ° -0.4
Bmn=(@+ €m)l mnt 2BAL"CC}t , (7b) T 06 i
Dmn= IBATIanCI ) (70 08
and | ,,, is the unit matrix. Using normal coordinate,
=kuﬁ] we can rewrite the quadratic form &S =2 (y, Xy -1.0
+ 7x2). To find the eigenvalues, and the eigenvectorg,
we solve numerically the following equation: 0.0
B+RegD) Im(D) ||Re(Q¥) Re(QY) o -0.2
m©®)  B-ReD)||Im(Q4|~ my|
o0.4
Starting from a randomly choosen initial set of coeffi- L\l-
cients, we calculate a nearby minimum of the free energy by Lk -0.6
moving in the direction of the negative free energy gradient [
—vy. The set of coefficients of this minimum determines -0.8
then the ground state or a metastable state. Starting from the
initial set of coefficients we can also calculate a nearby -1.0 . . . .

saddle point state by moving to a minimum of the free en- 0 O. = 05 '1 0. 15 50

ergy in all directions, except the one which has the lowest ) ) ’ ) )
eigenvalue. In this direction we move to a local maximum. H /H

Repeating this procedure for many randomly choosen initial 0 c2

S?ts of coeﬁici_ent$Ci} for fixed magnetic field, we find the . FIG. 1. The energy of the minima in the free enefgand the
different possible superconductllng .states and saddle po"etnergy of the saddle points as a function of the applied magnetic
states. To calculate .the magnetic fleld. dependence we staflig H,, for a superconducting disk with radi®=2.0¢. (8) When
from a sgpereonductlng state at a certain field and we chanqe“y one term is included, i.e.n(l)=(1|) (dotted curvg when
the applied field by small increments. By moving into the yyq | values are included, i.e.n(l;) and (,1,) (solid curves, with
direction of the nearest minimum or saddle point, the correhe corresponding energy of the saddle pditashed curves (b)
sponding state will be found for the new magnetic field, pro-The giant vortex energgsolid curves and the saddle point energy

vided that the field step is small enough. (dashed curvgswhen an arbitrary large number of terms are in-
cluded. The free energy is scaled with the condensation ergygy
ll. SUPERCONDUCTING DISKS = a?7R%d/28.

In the present section we discuss superconducting disks., o .
Although the system is circular symmetric, in general we ardlifferent values ofl, =0, 1, and 2, in different magnetic
not allowed to assume thalt (p, ) =F(p)e'-* because of field regions. In Fig. (a) the free energy of thesel states,
the nonlinear term in the GL functional. Nevertheless, inmeasured in units of the condensation energy
small disks the confinement effects are dominant and this a®mR?d/23, is shown by the dotted curves as a function
imposes a circular symmetry on the superconducting conder®f the applied magnetic field,. Next, we take into account
sate, which means that only the “giant” vortex state, i.e., atwo values ofl andn=1, i.e., ‘I'=C|1<p|1+ C|2(p|2 as was
circular symmetric vortex state, is realized. For larger diskgjone in, e.g., Ref. 26. With this approach we findstates
and not too Iarge magnetic flelds,_the confinement effects aith L=0,1,2 and because of the concomittant existence of
no longer dc_Jm|_nant and multlvo_rtlces can nucleate in a CeTyo minima also saddle point states with (,)=(0,1) and
tain magnetic field range. For thls reason we make a d'St'nC(l,Z) appear. These are the saddle point states for the transi-
tion between small and large disks. tion betweerL states withL=1, andL=1,. In Fig. 1(a) the

) _ L states for this approach are given by the solid curves and
A. Small disks: Giant vortex state the saddle point states by the dashed curves. The inset shows

We consider superconducting disks with radRis 2.0¢.  the transition between the=1 state and th& =2 state in
First we investigate the influence of the number of terms inmore detail. Notice that including one extra term in Eg).
the expansion of E(q5) on the energy of the minima and the reduces appreciably the stability region of the different giant
saddle points. For the approach timat 1 (i.e., lowest Lan- vortex states, i.e., its metastable region is strongly reduced.
dau level and if only onel is taken into account for each ThelL states are only stable up to the point where its energy
state, i.e. W =C,¢,, we find three different states for three equals the saddle point states.
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FIG. 2. The transition barrigd for transitions between different Al

L-states for a superconducting disk with radRis 2.0¢ when tak-
ing into account only two values df(dashed curvesand for the
numerical “exact” result(solid curve$. The inset shows the second
barrier in more detail.

Figure X1b) shows the free energy as a function of the
applied magnetic field if we do not restrict ourselves to the %/
lowest landau level and if we expand the order parameter e~
over all eigenfunctions with energgi<e, , where the cut-
ting parametek, is chosen such that increasing it does not
influence the results. The solid and the dashed curves indi-
cate, respectively, the stable states and the saddle point 2
states. The transition between the-1 state and thé. =2
state is enlarged in the inset. Notice that the stability region
of the L states is further reduced. Allowing more basis func- ;
tions in Eq.(5) does not have a strong influence on the en- W
ergy of thelL states, e.g., compare the dotted and the solid
curves in Fig. 1a), but it considerably decreases the energy Al
of the saddle point between thestates. In doing so, it re-
duces strongly the stability range of the metastable states,

and consequently it reduces the size, i.e., the width in the . 2
magnetic field range, of the hysteresis effédtor example, X/& x/&

we found (i /Hep,He/Hep,Hp/H)~(1.0,0.52,1.25),

(1.0,0.715,1.245), and (1.0,0.73,1.24) for the 0—~L=1 FIG. 3. The spatial distribution of the superconducting electron

transition when we include two, three, and an arbitrary numdensity|¥|? (a)—(d) and the phase of the order parameg+(h) in

ber of basis function in Eq(5), respectively. Similarly, the saddle point state corresponding to the transition fromLthe
we found for theL=1<L=2 transition H,/H ,H/ =1 state to thd.=2 states in a superconducting disk with radius
He Hy/Hep)~(1.715,1.52,1.81), (1.715,1.535,1.80) andR=2.0¢ for the magnetic fields indicated by the open circles in the
(1.715?1.555,1.795) including two, three, and an arbitrary"Set of Fig. 2Ho/Hc;=1.615(a),(e), 1.665(b),(f), 1.715(i.e., the
number of basis functions, respectively. These results clearl{paximum of the barrier(c),(g) and 1.765d),(h). High Cooper-pair
show that one has to exert some caution to cutoff the expa lensity Is given by dark regions, .lOW Cooper-pair density by light
sion in Eq.(5) when calculating the saddle point and thus theigg:gzz Phases=0 are given by light regions ang=2 by dark
energy barriers. Notice that the expulsion fiegdd/H., is glons.

most strongly influenced by the number of terms in E5J.  etration fieldsH,, slightly. The energy barrier is smaller for
In Fig. 2 the transition barrierd, i.e., the energy differ- higherL—L+1 transitions which occur at larger magnetic
ence between the saddle point state and the nearby metge|ds. The inset shows the barrier betweenltiel and the
stable states are plotted. We show the “exact” numerical_ =2 state in more detail.
results(solid curveg and the results when including only two  The spatial distribution of the superconducting electron
values of | with n=1, ie., ¥=Cj ¢ +C ¢, (dashed density|¥|2 in the saddle point state corresponding to the
curves. Notice that by approximating the order parametertransition from thelL =1 state to thd.=2 states is depicted
better: (i) it substantially lowers the energy barriefs) it in Figs. 3a)—3(d) for the magnetic fields indicated by the
increases the expulsion field,, and (i) lowers the pen- open circles in the inset of Fig. 2, i.eHy/H:,=1.615,
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with radiusR=4.0¢ for L=2, 3, 4, and 5. The insetg)—(d) show
FIG. 4. The free energy as a function of the applied magnetic,the spatial distributipn _of the supercon(_jucting electron d_ensity_for
field H, for a disk with radiusR=4.0¢. The differentL states are | =15 at the magnetic fields corresponding to the open circles; i.e.,
given by solid curves when in the giant vortex states and by dasheflo/Hc2=0.8, 0.85, 0.9, and 0.95, respectively. The transition from
curves when in the multivortex states, while the saddle point state@Ultivortex state to giant vortex state occurs at the transition field
are given by the dotted curves. The open circles correspond to tHeme -

transitions between the multivortex state and the giant vortex state N ) _ _
for fixed L. The inset shows the transition barrig¢ras a function of  transition points between the multivortex state and the giant

the applied field for the differerit«s L+ 1 transitions. vortex state for fixed.. The inset shows the transition barrier
U as a function of the applied field for the differebt-L
1.665, 1.715(i.e., the maximum of the barrieand 1.765, +1 transitions. To distinguish qualitatively the giant vortex
respectively. In Ref. 31 similar results were shown for thestate from the multivortex state for fixedwe considered the
L=0<L=1 saddle point. Higllow) Cooper-pair density is Value of the Cooper-pair density¥'|? in the center of the
given by dark(light) regions. The little white spots in the disk. Figure 5 showk¥ |2, which is zero for a giant vortex
superconductor show the centers of the vortices. With instate and nonzero in the multivortex states when there is no
creasing field, one vortex moves from the center to the outevortex in the center of the disk. F&=4.05 we find only
region of the disk, and the state changes from2 to L multivortex states folL=2, 3, 4, and 5 and the transition
=1. This is better illustrated by the contour plots of thefrom the multivortex state to the giant vortex state occurs at
phase of the order parameter which is shown in Fige.-3 Hmg/H=0.52, 0.77, 0.875, and 0.935, respectively. Of
3(h) for the same configurations. Along a closed path, whichcourse, foil.=1 there is no distinction between the giant and
lies near the edge of the superconductor, the phase differentiee multivortex state. Fdr =5 the spatial distribution of the
A is always given by times 2, with L the vorticity or ~ superconducting electron density is given in the ingats
winding number. Light regions indicate phases0 and (d) of Fig. 5 at the magnetic fields corresponding to the open
dark regionse=<2w. When encircling the superconductor circles in Fig. 5, i.e.Hq/H;,=0.8, 0.85, 0.9, and 0.95, re-
near the boundary, we find that the phase differehgeis  spectively. In the multivortex state the vortices move to-
equal to 227 in Figs. 3e)—-3(g) andAe=1X27 in Fig.  wards the center with increasing magnetic field and at the
3(h), which means vorticy. =2 and 1, respectively. At the same time the vortices become wider, and therefore, the
maximum of the barrier, i.e., when the energy of state Cooper-pair density in the center decreases until the axial
=1 andL=2 are identical, the saddle point transits from Symmetry is recovered at the transition fieltlyg
vorticity L=2 toL=1. At this point the Cooper-pair density =0.93H,.
is zero at the boundary of the disk which acts as a nucleation Next, we will study the energy barriet$ in more detail.
center for flux penetration and expulsith. For a superconducting disk with radi&&s=4.0¢ the energy
barriers for the different. <L +1 transitions are shown in
the inset of Fig. 4. The height of the energy barrier for the
L« L+1 transition decreases with increasingThe differ-

We consider now a larger superconducting disk with ra-ence between penetration and expulsion field decreases also
dius R=4.0¢ in which multivortex states can nucleate in with increasingL. Figure &a) shows the free energy of the
certain magnetic field rang&s® Figure 4 shows the free L=4 and theL =5 states in more detaibolid curves for the
energy as a function of the applied magnetic fielgl The  giant vortex state and dashed curves for the multivortex
energy of the differentt states is given by solid curves when state together with the energy of the saddle point state be-
they are in the giant vortex state and by dashed curves wheween these statdégash-dotted curye Figure Gb) gives the
they are in the multivortex state and the saddle point statesorresponding energy barrier. The open circles correspond to
are given by the dotted curves. The open circles give théhe transition from multivortex to giant vortex state. The bar-

B. Large disks: Multivortex states
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FIG. 7. The absolute value of the slopg of the energy barrier
for a superconducting disk witR=4.0¢ as a function ofL for H
<H . (closed circlesand forH=H,,,, (open circles The inset
shows the maximum barrier height as a function of the vorticity
The solid and dashed curves are the results of a fit.

L>1 the reverse is true. For increasibhghe slope decreases
and the behavior could be fitted to

(solid curves for giant vortex states and dashed curves for multivor-

tex statep and the saddle point states between these stetesh-
dotted curve for a superconducting disk with radit&= 4.0¢; and

(b) the energy barrier corresponding with this transition. The open

circles correspond with the transition from multivortex to giant vor-
tex state for fixed.. The insets show the spatial distribution of the
superconducting electron density'|? for the saddle point states
indicated by triangles, i.e., at the magnetic fieldg/H.,=0.81,
0.885, 0.96(the barrier maximum and 1.035. It is the transition
between a multivortex state with="5 and a giant vortex state with
L=4.

rier height is clearly not influenced by the transition from

a+bL

with a=0.02586, b=—0.00300, andc=1.40357 for H
=<Ha and a=0.02322, b=—0.00217, andc=1.26502

for H=H .. These fitting curves are shown in Fig. 7 by the
solid line for H=<H,,, and by the dashed line foH

=H ax- In the inset of Fig. 7 the maximum of the barrier
height U .o« is given by the symbols as a function of the
vorticity L. The barrier height decreases for increasing vor-
ticity and the behavior could be fitted to

multivortex to giant vortex state, i.e., there are no jumps or

discontinuities at the transition. The spatial distribution of
the superconducting electron densjty|? for this saddle
point state is depicted in the insets of Figbgfor the con-
figurations indicated by the triangles, i.ddy/H;,=0.81,
0.885, 0.96(the barrier maximum and 1.035, respectively.

B a+blL
_1+c\/f'

with a=0.07229,b=—0.00791, anct=0.48657, which is
shown by the solid curve.

U max

Fo

(L)

Notice that also in the saddle point the transition between a For larger superconducting disks and higher valuek, of

multivortex state withL =5 and a giant vortex state with
=4 is clearly visible.

Near the maximum of the barrier, the barrier height
changes linearly with magnetic field. Therefore, we can ap
proximate the energy barriéf near its maximuny ., by

o H_Hmax
Heo

U max

Fo

U
F_O ’
where the sloper is positive forH=<H,,,, and negative for
H=H .. In Fig. 7 the absolute value of the slope| is
given as a function ot for H=H,,,, by the closed circles
and forH=H,,,, by the open circles. The absolute value of
the slope is different for the left and the right side of the
maximum of the barrier. Notice that far=0 andL=1, | «|

is larger forH=<H,,,, as compared ttd=H,,,,, while for

different configurations of multivortices can occur with the
same vorticity’>?"3 Figure 8 shows the free energy as a
function of the applied field for the superconducting states
with vorticity L=6 andL=7. For both vorticities two con-
figurations are possibléi) L vortices on a ring and no vortex
in the center(solid curve and (ii) L—1 vortices on a ring
and 1 in the centefdashed curve The vortex state is com-
pletely determined by the number of vortices in the center
L centerand the total number of vorticds For this reason we
characterized the states by the indicésgfie;L) in Fig. 8.
The insets show the Cooper-pair densityHgt/H.,=0.6 for

the (0;6) state, the(1;6) state, the(0;7) state, and the
(1;7) state, respectively. Notice further that for such large
radius, there is no transition from a multivortex to a giant
vortex state for these values lof For the sake of clarity, only
the free energy of the saddle point state between(1h&)
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FIG. 8. The free energl as a function of the applied magnetic
field H, of the (0;6) and the(0;7) state(solid curves, the(1;6) and
the (1;7) state(dashed curvegs and the saddle point statdash-

FIG. 10. The free energy for a superconducting ring with radius
Ry=2.0¢ and hole radiuR;=1.0¢ as a function of the applied
magnetic field for the different giant vortex stateslid curve$ and

dotted curve between thd1;7) and(0;6) state for a superconduct- for the saddle point state@ashed curvés The inset shows the
ing disk with radiusR=6.0¢. The insets show the Cooper-pair den- energy barrietU for the transitions between differehtstates as a
sity of the (0,6) state, the(1;6) state, the(0;7) state, and th€1;7)  function of the difference between the applied magnetic fiéjd
state at the thermodynamic transition fiéth/H_,=0.6 between and theL—L+1 transition fieldH, . ;.

the (0;6) and the(1;7) state.

state and thg0;6) state is given, as an example, by thefor the differentL states(solid curve$ together with the
dash-dotted curve in Fig. 8. This state describes the expubaddle point statesdashed curves We find giant vortex
sion of one vortex when the system transits fromltke7 to  states withL=0,1,2,3,4. Comparing this result with the re-
the L=6 configuration and is illustrated in Figs(a®-9(c) sult for a disk with radiuR=2.0¢, morelL states are pos-
where we show the spatial distribution of the superconductsible and the superconducting/normal-transition moves to
ing electron density|¥|? in the saddle point state at larger magneti.c. field* The inset shows the energy barrier
Ho/He=0.5, 0.6, and 0.7, respectively. To transit fram Y for the transitions between the differdnstates as a func-
—7 toL=6, one vortex on the ring moves towards the out-tion of the difference between the applied magnetic fieid
side of the disk and the vortex in the center takes the fre@nd theL—L+1 transition fieldH, ., . . For increasind.,

| the rina. Hiaki _pAi TR the height of the energy barrier and the difference between
Szfr(lz(e(licz;t) ?erglgrilgns 'ghlow) Cooper-palr density is given by the penetration and the expulsion field decreases. The energy

barrier near its maximum can be approximated W,

=U max/ Fot a(H—H20/H¢,, and we determined the slope

a1 +1; @g1=—0.8 forH=H,and 0.9 forH=H .,
Now, we will consider superconducting disks with radius ;_,,=—0.6 for H=H 5 and 0.75 fortH=H, .y, a>_.3=

Ry with a hole in the center with radiug;. For the same —0.3 for H=H, and 0.42 forH=H, and az 4=

reason as in Sec. Il we make a distinction between small ane- 0.013 forH=<H ., and 0.038 forH=H,,,,. The slope

large systems. decreases again for increasingnd the absolute value of the

slope forH=H . is smaller than foH =H,,,, for everyL,

although the difference is relatively smaller than in the pre-

As an example, we consider a superconducting ring wit/ious disk case where we found,_,=—0.31 for H
radiusR, = 2.0¢ and hole radiu® = 1.0¢. In Fig. 10 the free  =Hmax @nd 0.44 forH=H 5, and a;_,=—0.06 for H
energy is shown as a function of the applied magnetic field Hmaxand 0.1 forH=H g,

IV. SUPERCONDUCTING RINGS

A. Small rings: Giant vortex state

FIG. 9. The spatial distribution of the super-
conducting electron density¥|? for the transi-
tion between thd.=6 state and thé. =7 state
for a superconducting disk with radil® ¢=6.0
at the applied magnetic fieldd,/H.,=0.5 (a),
0.6 (b), and 0.7(c).

x/&
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-2 1.2+ g
I R/E=20]]
1ok Lb=3 R/&=1.0]]
W 2.0 2.1 2.2 2.3 2.4 2.5
>
H/H,,
-1t FIG. 12. The radial position of the vortex in the saddle point for
the 2-3 transition through the superconductor with radRg
) =2.0¢ andR;=1.0¢. The left inset shows the Cooper-pair density
2 along thex direction atHqy/H.,=2.315, and the right inset is a
X/E_, X/{j, contour plot of the phase of the order parameterHgt/H.,
=2.315.

FIG. 11. The spatial distribution of the superconducting electron
density|¥|? of the transition between the giant vortex states with
L=2 andL=3 for a superconducting ring witR;=2.0¢ and R;
=1.0¢ at Hy/H»,=2.1 (a), 2.2 (b), 2.315(c), and 2.4(d). High
density is given by dark regions and low density by light regions.

parameter aHqy/H ,=2.315, corresponding with the open
circle in Fig. 12. When encircling the superconductor near
the inner boundary of the ring, we find that the phase differ-
enceAg is equal to 227 which implies vorticityL=2.
. ) . When encircling the superconductor near the outer boundary,
Next, we investigate the 23 saddle point. AHo/He e find vorticityL = 3. If we choose a path around the vortex
=2.01 (expulsion field and 2.535(penetration fielg the (located atx,), the phase changes withm2and thusL
saddle point state.equals the gian.t.vortex states Wit =1. At the transition field Kl,/H.,=2.315) the center of
and L=2, respectively. The transition between these tWopg \ortex of the saddle point is clearly not situated at the
giant vortex states is illustrated in Figs. (&-11(d) which  ,ter houndary as was the case for superconducting disks
show the spatial distribution of the superconducting eIectroTsee, for example, Figs(®, 3(g), 6(b), 9(b), and Ref. 31
den_sity|\I'|2 corresponding with the open circles ?n the ipset To illustrate this more clearly, Figs. (8,13(b) show the
of Fig. 10 atHo/H,=2.1, 2.2, 2.313i.e., the barrier maxi-  5qia| position of the vortex during the transition between the
mum) and 2.4, respectively. Higtlow) density is given by  \jeissner state and thie= 1 state, and between tHe=1

dark (light) regions. With increasing field one vortex MOVes gate and thé. =2 state for a superconducting ring with ra-
from inside the ring, through the superconducting material,

to outside the ring. From Fig. 1d) one may infer that the
Cooper-pair density is zero along a radial line and that the 2.0
l.?.-.-f

vortex is, in fact, a sort of line. That this is not the case can
be seen from the left inset of Fig. 12 which shows the
Cooper-pair density|? along this radial line foHq/H.,

=2.315. The Cooper-pair density in the superconducting ma- I [
terial is zero only at the center of the vortex which is situated ws ; ;110 [ 1.0
at Xmin/é~1.5 and|¥|? is very small otherwise, i.e|¥|? E o
<0.01. In Fig. 12 the position of the vortex, i.e., xf,, iS

shown as a function of the applied field. Over a narrow field o5} : L o2 05 -
region the vortex moves from the inner boundary towards the [

outer boundary. Froniy/H ,=2.01 to 2.25 the center of R/E =0.0 (b)
the vortex is still situated in the hole but the vortex already %93 o 15 20

influences the superconducting stigee, for example, Figs.
11(a),11(b)]. FromHy/H.,=2.36 to 2.535 the center of the
vortex lies outside the ring, but it has still an influence on the g, 13, The radial position of the vortex féa) the 01 and
saddle point[see, for example, Fig. 1d)]. In the region (b) the 12 saddle point transition as a function of the applied
Ho/H¢,=2.25-2.36 the center of the vortex is situated in- magnetic field for a superconducting ring with radRis=2.0¢ and
side the superconductor. This is also illustrated by the conr,=0.0, 0.5, 1.0, and 14 The open circles indicate the transition
tourplot (right inset of Fig. 12 for the phase of the order fields.

H/H,,
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FIG. 14. The free energy for a superconducting ring wWeh FIG. 15. The energy barridd for the transitions between the

=4.0¢ andR;=1.0¢ as a function of the applied magnetic field for different L states in a superconducting ring wity=4.0¢ and R;

the differentL stateq(solid curves for giant vortex states and dashed=1.0¢ as a function of the applied magnetic field. The insets show
curves for multivortex statgsand the saddle point statédotted  the maximum height of the energy barrigr,,, and the transition
curves. The open circles correspond to the transition between thdield H;, as a function ofL for rings with Ry,=4.0¢ and R;=0.0,
multivortex state and the giant vortex state for fidedThe inset 1.0, 2.0, and 3.8

shows the spatial distribution of the superconducting electron den- , . -~ ,
sity |W|2 for the multivortex state with. =4 atHo/H,=0.8 (a), the maximum number df, i.e.,L =10, is the same as for the

L=5 at Hy/H,=0.9 (b) and L=6 at Hy/H,=1.0 (c). High disk case without a holesee Fig. 4. The spatial distribution

. . 2 . . .
Cooper-pair density is given by dark regions, low Cooper-pair den-Of th_e SuDercondUCt'ng electron denﬂ'tw is depicted In
sity by light regions. the insets(a)—(c) of Fig. 14 for the multivortex state with

L=4 atHy/H.,=0.8, L=5 atHy/H.,,=0.9 andL=6 at
Ho/H:»=1.0, respectively. Highllow) Cooper-pair density
'is given by dark(light) regions. Notice that there are always
9 —1 vortices in the superconducting material and one vor-

dius Ry=2.0¢ and for several values of the hole radius, i.e.
R;/¢é=0.0, 0.5, 1.0, and 1.5. The open circles indicate th
ground state transition fields. Only for the case of the dis ex appears in the hole, i.e., in the center of the ring.

without a hole the center of the vortex at the saddle point o energy barriers for the transitions between the differ-
occurs at the outer boundary of the disk for the magnetiGnt) states are shown in Fig. 15 as a function of the applied
field at which the ground state changes framio L+1.  magnetic field. By comparing this with the energy barriers
When the disk contains a hole in the center there are tweor a disk with no hole, we see that the barrier heights and
boundaries and the center of the above vortex is now locateghe transition fields are strongly differefgee the inset of
between those two boundaries. For a small hole with radiusig. 4). Therefore we show in the insets of Fig. 15 the maxi-
R;=0.5¢ the position of the vortex can be approximated bymum height of the energy barrigs ., and theL«L+1

the arithmetic mean of the inner and the outer radius, i.etransition fieldH, as a function ofL for superconducting
Xmin/ €=~ (Ro+R;)/2, and for a larger hole with radiug, disks with no hole(squareps and with a hole of radiug;
=1.5¢ by the geometric meaRyR;. The transition field =1.0¢ (circles, 2.0¢ (triangles, and 3. (starg. In all cases
increases and the magnetic field range, over which the trarthe height of the energy barrier decreases and the transition
sition occurs, decreases with increasingNotice that the fields increase with increasirlg By comparing the situation

transition field for theL =12 transition forR;/¢é=0.5is  With no hole and with a small hole witR;=1.0¢, we see
larger than the one foR;/¢=0.0 [see Fig. 18)], which  that the barriers fot <1 are higher for the disk with a hole

agrees with Fig. 4 of Ref. 14. with Rj=1.0¢ than for Rj=0.0¢, while they are smaller
whenL>1. Notice also that the value of the—L +1 tran-
sition field is sensitive to the presence of the hole with radius
R;=1.0¢ for smallL and insensitive for largdr. The reason

First, we consider superconducting rings with radRys  is that for smallL>0 such a central hole has always one
=4.0¢ and hole radiu®;=1.0¢. In Fig. 14 the free energy is vortex localized inside which favors certain vortex configu-
shown as a function of the applied magnetic field. The dif-rations above others, while for largérin both cases only
ferent L states are given by solid curves for giant vortexgiant vortices appear with sizes larger than the hole size and
states and dashed curves for multivortex states, while ththe presence of the hole no longer matters. For larger holes
saddle point states are given by the dotted curves. The opehe energy barrier decreases more slowly, because the free
circles correspond to the transition between the multivortexenergy of the different. states shows a more parabolical
state and the giant vortex state for fixedThese transitions type of behavior as a function of the magnetic field. The
occur atHyg/H=0.93, 1.035, and 1.14 fdt=4, 5, and transition field has a much smaller dependence on the radius
6, respectively. Notice that for such a small hole in the diskof the hole. Notice that the transition field f&%=3.0¢ is

B. Large rings: Multivortex states

144517-9
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4 FIG. 17. The free energy of the multivortex states wiitk 8
andL =9 (solid curve$ and the saddle point statdashed curves
between these multivortex states for a superconducting ring with
Ry=6.0¢ andR;=2.0¢ as a function of the applied magnetic field.
W The lower insets show the spatial distribution of the superconduct-
> ing electron densityW¥|? at the transition fieldH,/Hs,=0.695 for
ol L=8 andL=9. The upper insets show the spatial distribution of
the superconducting electron dengify|? for the saddle point states
, ; ‘ ; indicated by the open circles, i.e., ldt/H.,=0.63(a), 0.695(b),
'4.4 ) 0 2 4 2 0 2 4 and 0.76(c). High Cooper-pair density is given by dark regions,
X/& X/& low Cooper-pair density by light regions.

FIG. 16. The Cooper-pair density for the saddle point state trangnd therefore it is partially situated in the superconductor
sition between a multivortex state with=5 and a giant vortex  jiself.
itg;e (‘g'”;';;‘ll gtﬁ';;)/ ﬂ:ﬁ: %Sg (2); Oé?rsé?r']gt'%;s(c)'i\?e'i(ss(dég . Tostudy saddle point transitions between different multi-
régions’ low Cc.)oper.-pai? densit?/ byplight regioyns g y vortex states we have to increase the radius of_the ring to
' ' favor the multivortex states. Therefore, we consider a ring
with radiusRy=6.0¢ and hole radiuk;=2.0¢. Figure 17
linear as a function ok for small holes and.<9. Thisisin  shows the free energy of multivortex states witk8 and
good agreement with the results in the narrow ring limit,L=9. In both cases 3 vortices are trapped in the hole. The
where the transition between states with different vortitity lower insets show the spatial distribution of the supercon-
occurs when the enclosed fluk equals { + 1/2)¢q.>’ ducting electron densitj’|? at the transition fieldHy/H.,
Next, we investigate the saddle point states in these su=0.695 forL=8 andL=09. It is clear that there are only 5
perconducting rings. We make a distinction between differand 6 vortices in the superconducting material, respectively.
ent kinds of saddle point stateg$) between two giant vortex The free energy of these multivortex states is shown by solid
states,(ii) between a multivortex and a giant vortex state,curves, while the saddle point energy between these states is
(ii ) between two multivortex states with the same vorticitygiven by the dashed curve. Notice further, that there is no
in the hole and different vorticity in the superconducting transition from the multivortex states to the giant vortex
material, and(iv) between two multivortex states with the states withL=8 and 9 as long as these states are stable. The
same vorticity in the superconducting material but differentspatial distribution of the superconducting electron density
vorticity in the hole. The first saddle point transition was |¥|? for this saddle point state is depicted in the upper insets
already described for the case of small superconducting ringgt the magnetic fieldHy/H.,=0.63, 0.695(the barrier
(see Figs. 11 and 12Next, we study the saddle point state maximum, and 0.76, respectively. For increasing field one
between a multivortex state with=5 and a giant vortex vortex moves from the superconducting material to the outer
state withL =4 for the previous considered ring with radius boundary and hence the vorticity changes fram 9 to L

Ro=4.0¢ and hole radiusR;=1.0¢. Figures 16a)-16(f) =8. Notice that the vorticity of the interior boundary of the
show the Cooper-pair density for these saddle point states &hg does not change.
Hqo/H=0.83, 0.88, 0.93, 0.966.e., the barrier maximuin The fourth type of saddle point state to discuss islthe

1.03 and 1.06, respectively. Higlow) Cooper-pair density —L+1 transition between two multivortex states with the

is given by dark(light) regions. For increasing field one vor- same vorticity in the superconducting material but with a
tex moves to the outer boundary, while the others move tdlifferent vorticity in the hole. FoRy/é=4 andR,/é=6 we

the center of the ring where they create a giant vortex statalid not find such transitions regardless of the hole radius.
We remark that the giant vortex state is larger than the hol&his means that at least for these radii there is no transition
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oasF T T T T T T ) and for the 1-2 transition by the dashed curve. For the 0
1 —1 transition the characteristic magnetic fields decrease

0a3F ] with increasing hole radius. For the-12 transition the char-
ne o1 1 acteristic magnetic fields first increase to a maximum and
™% 0.09 ,/ — L=0oL=11 then decrease. This behavior was described and explained in
:,E 0.07 - I/ —e—-L=i1-oL=2] our previous papefsee, e.g., Fig. 17 of Ref. L4Notice that

the position of the minimum iJ ,,,, coincides with the po-

0.05¢ sition of the maximum irH,, .

0.03[

V. CONCLUSIONS

0.6 We studied the saddle points for transitions between dif-

ferent vortex states for thin superconducting disks and rings.
A distinction was made between small systems where the
confinement effects dominate and larger systems where mul-
tivortices can nucleate for certain magnetic fields. At the

entrance of the vortex into the superconducting material the
superconducting density becomes zero at a certain point at

(&

o 04

H/H

'0-20 T Y the edge of the disk or ring. Such a zero in the order param-
eter acts as a phase slip center which allows the vorticity to
Ri/zj. increase with one unit. For the case of the ring the vortex

may enter(or exit) the superconducting material from the
FIG. 18. (a) The maximum barrier height as a function of the jnner boundary or from the outer boundary of the ring.

hole radiusR; for a ring with radiusR,=4.0¢ for the transition We studied the transition between two giant vortex states
between the Meissner state and the 1 state(solid curvg and the  ith different vorticity L. One vortex moves through the su-
transition between the=1 state and the =2 state(dashed cune  herconducting material to the center of the disk or to the
and (b) the transition magnetic fielt,,, the expulsion magnetic 416 - pyring the transition the position of this vortex in the
field He and the penetration magnetic fielt}, as a function of the superconductor can be determined very precisely, because
hole radiusR; fpr the transition betwegn the Meissner state and th(=The Cooper-pair density is exactly zero in the centér of this
;r:dlthséiti(; osllt(;tgtjé\ézhir:jdctSrev);ransmon between the=1 state vortex. The tra_nsitipn between_a_ mu_Itivortex state and a giant

vortex state with different vorticity is also described. One

between such states which describes the motion of one Voy_ortgx leaves(enters the superconductor while the qther
vortices move towardsaway from the center of the disk.

ﬁ;r;g)?\;h:utg?lfnétrlgggh the superconducting material to For large enough (_jisk/ring radii, we calculated the tran§i'tion
Finally, we investigated the influence of the hole radiusbetween two mult_lvortex states. We f_ound such transitions
on the barrier for a fixed outer ring radius. Figure(d)8 between two multivortex states with dlﬁer_eqt v_ortlcitym
shows the maximum barrier height, i.e., the barrier height he superconductor but with the same vorticity in the cgnter/
the thermodynamic equilibriunt—L+1 transition, as a ole. Ong vortex enters/leaves the supercqrjductor while the
function of the hole radiu for a ring with radiusR, other vortices rearrange themselves. Transitions between dif-
! éerent multivortex states with the same vorticity in the super-
conducting material but different vorticity in the hole were
not found for the considered ring configurations, which
means that transitions between such states do not occur in

L=1 state(solid curve and for the transition between the

L=1 and theL =2 state(dashed curve For increasing hole

radius, the barrier height of the first transition rapidly in- .
. - - these particular cases.

creases in the rangR;=0.1¢ to Rj=1.5¢ and decreases . . .

X . ) . The maximum height of the energy barrier always de-
slowly afterwards. For a superconducting disk with radius for i . N h . he barri
R,—4.0¢ with a hole in the center with radiug = 1.5¢ the creases for increasing. Near the maximum, the barrier

0— ™ . . oL T height decreases linearly and its slope at the left side (
maximum barrier height for the-8 1 transition is twice as <H.__) of the maximum is not equal to the slope at the right
large as for a superconducting disk without a hole. The bar=; | ™M q P 9

rier height of the second transition first decreases, then ra gide H=Hmad. The barrier shape and height strongly de-

idly increases in the rangg, = 0.6 to R,=2.5¢ and then pend on the radius of the hole in the center of the disk.
slowly decreases again. In this case the maximum barrier
height for a superconducting disk with a hole with radius
R =2.5 is three times as large as for a superconducting disk This work was supported by the Flemish Science Foun-
without a hole. Hence, changing the hole radius stronglydation (FWO-VI), the “Onderzoeksraad van de Universiteit
influences the maximum height of the barrier. In Fig(18 Antwerpen,” the “Interuniversity Poles of Attraction Pro-
we plot the characteristic magnetic fields of the barrier as gram - Belgian State, Prime Minister's Office - Federal Of-
function of the hole radius, i.e., the transition magnetic fieldfice for Scientific, Technical and Cultural Affairs,” and the
H,, the expulsion magnetic fieltl,, and the penetration European ESF-Vortex Matter. Discussions with S. Yampol-
magnetic fieldH,, for the 0—1 transition by solid curves skii are gratefully acknowledged.
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