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Gorkov equations for a pseudogapped high-temperature superconductor
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A phenomenological theory of superconductivity based on the two-body Cooperon propagator is presented.
This theory takes the form of a modified Gorkov equation for the Green’s function and allows one to model the
effect of local superconducting correlations and long-range phase fluctuations on the spectral properties of
high-temperature superconductors, both above and b&lowA model is proposed for the Cooperon propa-
gator, which provides a simple physical picture of the pseudogap phenomenon, as well as insights into the
doping dependence of the spectral properties. Numerical calculations of the density of states and spectral
functions based on this model are also presented, and compared with the experimental tSidlingnd
photoemissiofARPES data. It is found, in particular, that the sharpness of the peaks in the density of states
is related to the strength and the range of the superconducting correlations and that the apparent pseudogap in
STM and ARPES can be different, although the underlying model is the same.
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[. INTRODUCTION phase, and then this phase is treated as a classical variable
subject to thermal fluctuations. The theory of Franz and

The anomalous properties of high-temperature supercorMillis?! gives an example of this type of approach. Starting
ductors(HTS) have been the object of many investigationsfrom the form of the Green’s function in a uniform super-
over the last ten yeallsAmong these anomalous properties, flow, they extend it semiclassically to nonuniform situations
the pseudogap phenomenga substantial decrease of the assuming slow spatial variations of the superfluid velocity.
one particle density of states near the Fermi energy in th&his Green’s function is then averaged over a Gaussian dis-
normal state below a certain temperatii'e) has been stud- tribution of velocity fluctuations, which relates the result to a
ied by several experimental techniques. The pseudogap torrelation function of the velocities. A similar approach has
seen, in particular, in tunneling spectroscopynd ARPES  been used by Kwon and Dors&who treat the coupling to
(Refs. 3 and #experiments. On the theoretical front, many the fluctuating phase using a self-consistent perturbation
competing models have been proposetdOne of the popu- theory. As emphasized by Geshkenbegt al*® and
lar interpretations of the pseudogap is that superconductivitRanderig® strong pairing correlations should however be
formslocally at T*, but the phases of distant superconduct-incorporated at the basis of any model of the pseudogap re-
ing “droplets” remain incoherent until the superconducting gime.
transition temperaturd is reached:® This view is sup- A systematic theory of the effect of phase fluctuations on
ported by an increasing evidence that the pseudogap phére density of state@nd other propertigsn HTS, above and
nomenon is intimately connected to the underlying superconbelow T, must start by putting the phase-phase correlation
ducting phase, mainly because tihevave symmetry of the function at the core of the theory for superconductivity, at
pseudogap is the same as that of the gap in the supercondutlie same level as the size of the local gap. This program
ing phase>*° The phase fluctuation model of the pseudogapmplies that one avoids developing the theory of supercon-
state is different from the usual theory of superconductingluctivity by defining a gap function and an anomalous
fluctuations, which involves both size and phase fluctuapropagator. This is equivalent to writing the BCS theory in a
tions!’ particle number conserving scheffie., in the canonical en-

A theory of the pseudogap abovk. has also conse- semble, avoiding the definition of an anomalous amplitude
guences below ... In particular, it is connected to the char- between states with different particle numbefEhis theory
acter of the excitations responsible for destroying supercoras actually been written down forty years ago by Kadanoff
ductivity. Different mechanismé&hermal phase fluctuations, and Martirf* (KM), and rediscovered by others, in particular
quantum phase fluctuations, nodal quasiparticlesy all  for the discussion of Josephson arrdydhe KM theory is
contribute to the properties in the superconducting state, andased on the two-body Cooperon propagator, and describes
these contributions may be of varying importance if one conquite naturally the effect of phase fluctuations. This theory
siders low temperatures or temperatures figat® One may has already been applied to the HTS in a nice series of papers
add that the clue to a theory of high-temperature supercorby Levin et al,?® but with a different interpretatiofnot re-
ductivity will go through the explanation of detailed proper- lated to phase fluctuatiopsa different focus, and a different
ties, like the absence of quasiparticles abdyeand their  formalism than in our work! In this paper we rewrite the
appearance below,,*° or the anomalous properties of the basic KM equations for the case of a lattice Hamiltonian, we
density of states in vorticed. show again how the standard BCS theory is recovered with a

Within a direct extension of the BCS theory to the dropletstraightforward approximation for the two-body Cooperon
model, the inclusion of phase fluctuations must be done ircorrelation function, and we then derive the basic equations
two steps. First, one introduces a local BCS gap, with dor a pseudogap state, in particular the equivalent Gorkov
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equations which have to be used in the calculation of vortex

states.
II. KADANOFF-MARTIN EQUATIONS
IN A LATTICE MODEL
We consider the lattice Hamiltonian
=20 tiCiuCot 2 Vibiby. (1)
ijo

In this, ¢/, creates an electron at sitandb =c/ lcIT creates
a Cooper pair at site We assume thatandV are symmetric

and real. The usual Gorkov equations can then be written e corr

a single equation:

[G%wn)] *G(wn) =1+3 () G(wp), 2
whereg;;(7)=—(T {ci;(7)c/,(0)}) and

Si(on)==2 Vi B, BI VG (—wy). (3

fara
[go(wn)]” =iwyd;—t;; is the free Green’s functiony,
are the odd Matsubara frequencies, &e (b;). The nota-
tion [G°]71G implies matrix multiplication in the{i,j}
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1
errl(Qm): 5 2 ; girZ(Qm+ wy)
|r2( wn)VJILjr (Qm) (6b)

for T<T., where(},, are the even Matsubara frequencies.
The fact that the inhomogeneous term in the ladder equation
for L has to be dropped when calculating the propagator in
the condensed state is not much commented upon in the
original paper of KM, but it is related to the range of
L¢r,(2r), Which is finite aboveT, and infinite belowT,

(see below In fact, the quantity=, . L (Qp) is of the
orderN? below T, (whereN is the number of sitdsvhereas
esponding sum of the inhomogeneous term in Eq.
(6a) is only of orderN.

It must be noted that the integral equation E&g) has the
same form as the one used in conventional fluctuation theory
above the transition temperature, and which describes fluc-
tuations around a zero mean-field value of the order param-
eterA. It is known that conventional fluctuations also lead to
pseudogap effects. In our approach, the superconducting
order is related directly to off-diagonal long-range order
(ODLRO), i.e., the long-range properties of the functibn
and there is no need to speak about a local order parameter as
in the theory of Franz and Milli§! There is therefore much
more freedom in the phenomenological forms one may as-

space. These equations are supplemented by the self-consisimne forL. We also point out that th§G° scheme is im-

tent equation foB; (or A;) and the self-consistent equation
relating the number of particles to the chemical potential.
The equation foB; is

— Fi(0%) ———2 Fiiwg)e e (4)

with 775 (1) = —(TAc] (7)c],(0)}).

The Kadanoff-Martin correlation function description of
superconductivity consists simp{gfter a long and thorough
discussion of higher order correlation functipis replacing

S in Eq. (2) by

E|J(w 2 z Vlrlerrl(wn+wm)vrzjgjoi(wm)

B om 12
5

whereerrl(r):<TT{b,l(r)bf2(0)}> is the Cooperon propa-
gator. The self-consistent equation ris replaced by the
equations

o (Q Q== Gryr (Ot @p) P (—wp)

@n

1
- E wzn ; gir2(9m+ wp)

X G (= op)Vjikir, () (6a)

for T>T., and

posed in this framework by the requirement that the BCS
theory be recovered beloW, in the appropriate limit. This
happens when one sets

errl( T)= BrlB*

ry?

errl(Qm) = ,BBrlB:fnm,o

in Eq. (5). The self-consistent equation E@b) for L then
goes over into the self-consistent equation &g for B, and
clearly Eq.(5) goes into Eq(3). In the BCS framework, the
Thouless criterion forT. becomes the gap equation for
T<T,.

The KM description of superconductivity, which is en-
tirely based on the properties of the functibnis thus seen
to be a natural starting point if one wants to introduce ex-
plicitly local order and phase fluctuations in the physical
description of high-temperature superconductors. This is
done in the next section.

IIl. PHENOMENOLOGICAL DESCRIPTION OF A
PSEUDOGAPPED SUPERCONDUCTOR

Our fundamental assumption is that B§) is generally
valid, in the sense that it expresses in general the single
particle Green’s function in terms of the Cooperon propaga-
tor, regardless of the model or the approximations involved
in calculating this propagator. Our purpose in this paper is to
explore the experimental consequences of a simple heuristic
form for L, which is the translation of the physical picture
presented in the Introduction. For>T., we write:

L (1)=[B%?R(r1p/00) +|B?F(ry,ro, ) (78
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with ry,=|r;—r,| and R(x) some cutoff function which Inspection of Eq(10b), together with Eq(8), shows that in
vanishes rapidly fox>1. This equation expresses the fact our phenomenological model beloly, a pseudogapped su-
that there are strong superconducting correlations at the scaberconductor obeys the following modified Gorkov equa-
00, represented by a finite value BP, going to zero gradu- tions:

ally at a temperatur&* . The strength of the superconducting

correlations between “droplets” is represented by an ampli- ~ _ ~

tudeB?! and a functiorF:<P|—T{ei[¢(rl,r§)—¢(r2,0)]}> vahich is P {[go(wn)] 1g(wn)}ij +§I: ViIBllj:ﬁ(wn): 5ij (119

the correlation function of the phases. Both amplitu@8s

and B! are real, temperature dependent, and are assumed -

uniform in space. The phase physics can be mapped onto a  {[G°(— @)1 (wp)}j— 2 ViiBl*Gij(wn) =0.
two-dimensionaXY model (2D-XY), and we therefore iden- ! (11b)

tify F with the correlation function in that model, above the
Kosterlitz-Thouless(KT) transition?® The temperature de- We emphasize that the paramet&$and B! of the model
pendence of is controlled by the correlation lengd(T). must be considered as phenomenological quantities to be fit-
As T approached . from above(we identify T, with the KT  ted by comparison with experiment.

transition temperatuje¢ diverges and- approaches 1. For Quantum Monte Carl¢QMC) calculations of the pairing
T<T., F is assumed to factorize in the BCS mean-fieldcorrelations were recently reported for the attractive Hubbard

fashion,F =(e'?("J)(e™'?("2)), and we thus write: model at zero temperaturé Although these results are re-
o2 1 o1a stricted to short distances<(6—-10 lattice siteswe tenta-
szfl(T):|B | R(r12/90)+BrlBr2’ (7b) tively connect our model to the QMC calculations with the

following arguments. For the system sizes considered in the
QMC calculations(typically 14X 14 siteg the correlation
function for the largest distance in the system has not con-
verged to its asymptotic value. We attribute the slow de-
Krease of the correlations at intermediate distaiises inset

where the phase has been included in the ampliBid& his
phase can be made gauge covariant in the usuaPWale
position dependence & in Eq.(7b) also reflects a possible
variation of its modulus in space, as it happens near magnet

ducting state. When introduced into the equation for the self: - . . . .
energy, Eq.(7b) for L means that the self-energy in the strength of the pairing correlations at intermediate distances

. Increases, and differs increasingly from the BCS result, as

herent part; this appears to be the case in some recent cal

lations based on a fermion-boson modshispection of Egs. BCS to the QMC correlations at intermediate distances is

(7b) and (6) shows that if, in the ladder approximation for a also an increasing function dd/t. The simplest BCS ap-

homogeneous system, it turns_ O_Ut thay;, is the sum of a proximation to Eq(7b) is to replace the cutoff functioR by
constant term and a term of finite range, then the constan{ describing correlations which are independent,cdindr ,
term will obey Eq.(6b), whereas the finite range term will (in a homogeneous system, the second term of(Ba).is a
obey Eq.(6a. constant|BY[?). With this approximation, one can account

Equation(7) translates into the following equation for for the above trends by assuming that bBthand the ratio
BYB! increase ad)/t increases. Finally, we shall include in

[G%(wn)]™G(wn)=1+3 wn)G(wy), (8 our numerical calculations the “onsite” correlations found
where in Ref. 31 for distances within two lattice spacings, by add-
ing a term
>0 ._.1: 0 fl
[g (wn)]lj [g (wn)]” L?:rl:(|BO|2+|Bl|2)e72r12/a (12)
+> Virl|BO|2R(r12/QO)Vr2ngQi(_wn) to the model Eq(7), wherea is the lattice parameter. We
f1f2 find, however, that this correction has a negligible impact on

(9)  the spectral functions, and could equally be dropped without

and changing the results presented below.

1 1 112 IV. NUMERICAL RESULTS
SHon)== 722 2 Vi [BYPF(ri.rp,0nt o) , o ,
om T1f We now use the general equations derived in Section II,
0 together with the model Eq$7) and (12), to calculate the
.G? > -
XViGitem), =T (103 temperature dependence of the density of states and spectral
functions in a homogeneous system. The calculations are
1 _ 1pl« 0, _ compared with the STM and ARPES experimental results for
o = Vi B B, *V,..G: , T<T.. ;
Zij(@n) PRREE R A 2195l (~ @n) ¢ Bi,Sr,CaCyOg (BSCCO. In order to reduce the number of
(10b) adjustable parameters, we take for the correlation function

rqr
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For a translationally invariant system and our model
Cooperon propagator, E() can be recast as

|BYB'| T=0
) ' dg VA(QL(g)
A\ Ui 2<k,wn>=f T (13)
N oz (2m)* lont ek
; %Aq whereV(q) =V, + 2V, (cosga+cosq,a), L(q) is the Fourier
0 \ . \ \ transform ofL(r), ande, is the free dispersion. Her¥, and
V, are the onsite and nearest-neighbor potentials, respec-
T=2Tc tively, and we neglect next-nearest-neighbor interactions;

we assume/;=V,/4 in all of our calculations. For the dis-
persion, we use a tight-binding expression which fits the
BSCCO Fermi surface and corresponds to a bandwidth of 2
eV.2 The self-energy at real frequencies is evaluated by
making the analytic continuationw,— w " =w+i0" in Eq.
(13) and discretizing the Brillouin-zone integrifl The spec-
0 a 6 s 10 tral function is then calculated according t(k,w)=
rla —Umim{[o"—e,—2(k,0")]™ 1}, and the density of states
is N(w) = [g7A(k,w)dk. It is easy to check from Eq13)
FIG. 1. Model two-body Cooperon correlation function at tem- that, if L(q)>0—a condition obeyed by our model—then
peratures below and abowe . The increase of the correlations for (he Green'’s function is analytic in the upper half of the com-

r=ais due toL*in iq'l%z)' Below T, L(r) converges to the 0y plane, the spectral functioh(k, ») is positive, and the
finite asymptotic valugB*"|- at distances of the order,=50a if G , ; ~1

reen’s function goes to zero as - for 0,
B°>0 and of the ordea if B°=0. AboveT,, the range of_(r) is g |o]—

finite. If B®>0, this range is given by maa,,&T)] while if B®
vanishes it is given by(T).

L(r)/|B'?

A. Scanning tunneling spectroscopy

Neglecting possible anisotropies of the tunneling matrix
element as well a¥,-dispersion effects, we calculate the
tunneling conductance as the convolution of the density of
states with the derivative of the Fermi function. The result is
~0.21, b~1.73, andJ~T./0.89% The length scale; is  shown in Fig. 2 for various temperatures. In order to focus
the lattice parameter of the effective 20¢ model describ- on the effect of local superconductivity and phase fluctua-
ing phase fluctuations. We found that the main features in théions, we have kept the model parameters independent of
spectral properties abovi, are rather insensitive to the de- temperature: the whole temperature dependence of the
tails of the correlation function. We have explicitly checked curves, in Fig. 2, relates to the variation of the correlation
this point by comparing different functiorfs, in particular  |ength ¢ and Fermi function withT. A better fit to the ex-
functions which give a better description of the correlationsperimental data could be obtained, in principle, by allowing
in the XY model. The cutoff functiorR is modeled as exp the amplitudesB® and B! to vary with temperature. This
(=rleo). would not, however, change the qualitative conclusions we

The four parameterg,, ¢, B°, andB! are chosen to wish to draw. In Fig. 23), B is larger tharB! while in Fig.
achieve good agreement with the experimental results. We(b) B! is larger tharB°. In the next section, we argue that
use the valu@,=50a; if the first term in the right-hand side these two typical cases correspond to underddjpi) and
of Eq. (7b) is the dominant oneR°>B"?), we found that a overdopedOD) situations, respectively. The spectra shown
relatively large value ob, is needed in order to obtain well in Fig. 2 reproduce some of the characteristic features ob-
developed coherence peaks in the zero-temperature densigrved experimentally in BSCCO sampfeBoth UD and
of states. In addition, we see that, according to the previou®D curves evolve smoothly acro3s into a pseudogapped
discussiongo must be large with respect to 14a. The pa-  spectrum, the peak-to-peak distance remaining approxi-
rameterg; controls the temperature evolution of the spectralmately temperature independent. Moreover, the coherence
functions abovél ., and takes the valug,=5a. The larger peaks and the gap structure disappear more rapidly in the OD
01, the wider the temperature region abdyein which local  case as the temperature is raised, which is also consistent
phase coherence contributes to the pseudogap. The amplisth the experimental findings. The model, however, is not
tude B? is adjusted to fix the gap energy to40 meV. Fi-  able to account for a number of experimental observations,
nally, the ratioB®/B* is varied in order to control the relative such as the asymmetry in the temperature dependence of the
importance of short range superconducting correlations angositive and negative-bias conductance peaks, or the dip
long-range phase fluctuations. The behavior of the resultingtructure recorded at 2A below T,. We also note that the
Cooperon propagatdr(r,) is illustrated in Fig. 1 for tem- model Eqs(7) hass-wave symmetry. The calculated spectra
peratures below and above, and for different values of are therefore not expected to agree in details with experiment
|BY/BY. at low energies.

F(ri,ro,7)=exgd—rp/é(T)], which describes time-
independent phase-phase correlations atiqueThe corre-
lation length¢ is equal top e exdb/(T—T.)/J], with «
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FIG. 3. Calculated zero-bias conductance as a function of tem-
perature for underdope@D, black symbolg and overdopedOD,

K white symbol$ systems. The parameters are the same as in Fig. 2.
= © The dashed lines show the conductance obtained by thermally
-‘é 60 broadening th& =0 spectra. The dotted line is obtained by letting
s 80 B! go to zero in the OD situation. The vertical axis starts at zero.
s 85
D 90 0 o .
= 100 =0 and B”(300 K)=B"(0 K)/2, one obtains the dashed
° 110 spectra in Fig. 2, which no longer exhibit a sizable

::2 pseudogap structure.

200 The difference between the temperature evolutions of the

300 UD and OD spectra is best seen in Fig. 3, where we plot the

0000 5 00 590 calculated zero-bias conductance. Beldw, the zero-bias

conductance is larger in the UD case due to strong incoherent
correlations. Abovd ., the conductance increases sharply in

FIG. 2. Tunneling conductance as a function of temperaturethe OD case, corresponding to the filling of the gap. In either
The model parameters represéar underdoped {,B°=15 mev, ~UD and OD cases, the zero-bias conductance afqQves
B%B'=2) and(b) overdoped ¥,B°=7 meV, B%B'=0.5) situa- larger than the value expected by thermally broadening the
tions. The critical temperature & =80 K (bold line). The dashed T=0 spectrasee Fig. 3
lines show theT =300 K spectra corresponding ®'=0 and(a) From a general point of view, one can confirm from our
VB%=7.5 meV,(b) V,B°=3.5 meV. The particle-hole asymmetry calculations that the sharpness of the peaks in the density of
in the background conductance is due to the free electron density aftateg(and correspondingly the size of the zero-bias conduc-
states. The curves have been shifted for clarity. tance is related to the strength and range of the supercon-

ducting correlations. The larger the raf}/B° and/or the

According to our model, the local superconducting corre-longer the range,, the sharper the peakthe smaller the
lations responsible for the high-temperature pseudogap alszero-bias conductangeAs an example, we show in Fig. 3
have implications belowT,. In the underdoped case, the the conductance obtained by letting the coherence &tm
local (incoherenk superconducting correlations broaden thego to zero in the OD situation. Comparison of the curves
zero temperature density of states. The resulting conductaneéth and withoutB* shows that the phase coherence has the
spectra have small coherence peaks and a rounded line-shagféect to depress the density of states at the Fermi energy—
around the Fermi energy. In the overdoped case, in contragherefore raising the coherence peaks—beldwand in
the T=0 curve looks more like a-wave BCS spectrum. some temperature range aboVg, where the correlation

As the temperature increases from zerd@{o the density length&(T) is large.
of states remains unchanged in both UD and OD cases, and
the temperature dependence of the conductance spectra re-
lates solely to the Fermi function. This behavior persists
aboveT, in the UD case owing to the dominant role Bf Experimentally, it is found that the temperature depen-
(which is T independent in our calculationdn the OD situ-  dence of the energy dispersion curves measured by ARPES
ation, on the contrary, the gap fills in rapidly abovgas the  near (7,0) depends on doping. In overdoped samples, the
contribution of B! disappears due to increasing phase flucleading-edge midpoint energy moves toward the Fermi
tuations; at elevated temperatures, only a weak pseudogamergy—suggesting that the gap closes—asncreases
due toB° remains. Figure 2 also illustrates the effect of theaboveT, . The temperature variations of the midpoint energy
temperature dependence of the amplitu@sand B. At  are usually smaller in underdoped sampiés.
room temperatureB’ is expected to vanish ang® is ex- Apart from a matrix element, the ARPES intensity is just
pected to be smaller than at low temperature. Takdlg the product of the spectral and Fermi functions. This quan-

V (mev)

B. Angle-resolved photoemission
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_ _ _ circles systems. The squares show the energy of the quasiparticle
FIG. 4. Calculated ARPES intensity near,0) as a function of  at ak point just below the Fermi surface along the-Y line.
temperature for underdopedD) and overdopedOD) systems.

o ettt 100 onoui s o R eror bas(Ref. 4 or sighty deceasing abote:
; S ' : . ; (Ref. 21). The trend in Fig. 5 is similar. The slight decrease
ing the Fermi surface used in the calculations and the Fermi cross- -
ing near @,0). of the gap abové . in the U_D case results from the suppres-
sion of the phase correlations as the temperature is raised.
The spectral line shapes in Fig. 4 are considerably sharper
tity, calculated at the Fermi crossing near thlepoint, is  than what is usually measured by ARPES, especially at el-
shown in Fig. 4 as a function of temperature. A clear differ-evated temperatures. The estimated experimental resolution
ence between the temperature evolution of the spectral pealf ~10 meV cannot alone explain this difference. Similar
in the UD and OD cases can be seen. Consistently with exconclusions have been reached in Ref. 21. It was shown there
periment, the peak shifts toward the Fermi energy in the ODhat the inverse quasiparticle lifetime implied by fitting the
case adl increases. In the UD case, the peak position is taexperimental spectra is an order of magnitude larger in
first approximation independent of temperature. Belbyy ~~ ARPES with respect to STM. Inhomogeneities in the sample
the curves are almost identical to the spectrumatbecause properties could explain this discrepantysince a much
the temperaturd <T.~7 meV is small with respect to the larger region of the sample surface is probed by ARPES
peak energy-35 meV) and are not shown. One can see thatompared to STM. Figure 4 also shows that in our model, the
the quasiparticle peak is much sharper atn the overdoped quasiparticle peak below the Fermi energy is present at all
as compared to the underdoped system. This has also bemperature in the normal state, in disagreement with the
seen experimentalfyand can easily be understood in our experimental findings in underdoped and optimally doped
model. The destruction of long-range order by phase fluctuasamples® As a result, the particle-hole symmetric peak
tions clearly affects qualitatively the spectral functions in theabove the Fermi energy shows up as the Fermi function
OD case where the transition acrdgsis accompanied by a broadens with increasing.
decrease of the quasiparticle lifetime and increase of the in- The temperature dependence of the OD quasiparticle peak
tensity at the Fermi energy. in Fig. 5 contrasts with the apparent temperature indepen-
The position of the main quasiparticle peak in Fig. 4 isdence of the gap width in Fig. 2. The coherence peaks in the
reported in Fig. 5 as a function of temperature. The temperadensity of states are due to quasiparticle states with momenta
ture dependence of the gap was studied in Refs. 21 and 4 ljyst nearbyke. Therefore, one may expect that the energies
fitting the experimental ARPES curves to a three parameteof all these quasiparticles evolve in the same way as the
Green'’s function. For overdoped samples, the gap was foun@mperature increases. In this case, the coherence peaks
to decrease with increasing temperatdref. 4, in a way  would rigidly follow this temperature evolution and both the
very similar to what we obtain in the OD case, although theSTM and ARPES gaps would close in the OD situation. We
decrease was found to begin already below (Note that a  have found, however, that in our model the energies of the
small finite gap persists at all temperatures in our calculaguasiparticles at and nearlk¢ have different temperature
tions, since no temperature dependenceBbfand B! was  dependencies in the OD case. This is illustrated in Fig. 5,
taken into account. In a real situatid®? andB* would both  where we plot the energy of a quasiparticle with a momen-
vanish at some temperature abolg.) In the underdoped tumk just below the Fermi surface along tMe-Y line. For
samples, the gap was found to be temperature independeh T, this particulark point contributes to the coherence
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peaks in the density of states, since the corresponding energyndB?, respectively. In the underdoped HTS we assume that
is within 2 meV of the energy dte. At 200 K, instead, the the ratio BY/B* is larger than in the overdoped HTS. We
two energies differ by~5 meV in the OD case, which is tentatively claim thaB® is related to the single-particle en-
approximately half the width of the zero-temperature coherergy gapA, measured by single-particle spectroscopy, while
ence peaks. This explains why the STM gap fills in instead3? is related to the coherence gap measured in Andreev
of closing although the ARPES gap lgt closes. Thus, our reflection or Josephson experiments. As shown by
results show that the apparent “visual”’ pseudogap may beDeutscheF,GAp andA. differ in the HTS: the ratia\ , /A is
different in STM and ARPES data, even if each measureelose to one in the overdoped region and increases as the
ment is in agreement with the same underlying theory. doping is reduced.
In this paper, we do not attempt to calculate the Cooperon
V. CONCLUSION propagator using one or the other theoretical method. We
) ) ) first want to derive some empirical constraints on the func-
Many workers in the field share the belief that the oy | from direct comparison with experiments. Our ap-
pseudogap phase in HTS is a kind of mixed State'_Whe_rB\;oach is also limited, at this stage,gavave gap symmetry.
strong short range superconducting correlations coexist witye are currently working on an extension of these calcula-
Iong-ra_nge phase disorder. This fact shoulld reflect in theions for d-wave symmetry and on the calculation of the
properties of the Cooperon propagator, which should showensity of states in vortices. Also, comparisons of our model
“partial” superconductivity even abovd .. In this paper, Eq. (7b), which should also be valid in presence of a mag-
we have shown that itis possible to describe the properties qfetic field and in inhomogeneous situations, with other de-
pseudogapped superconductors by writing the supercondugsileq spectroscopic data beldty, (vortices and Josephson

tivity theory in general in terms of this Cooperon propagator,qfiect in particulay will show whether the approach pre-
and that reasonable phenomenological assumptions about thgnted here is a fruitful one.

form of this propagator lead to good agreement with experi-

mental data. We have thus a theoretical framework which is

valid both above and below,, Withogt special trt_aatment of ACKNOWLEDGMENTS
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