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Gorkov equations for a pseudogapped high-temperature superconductor

B. Giovannini and C. Berthod
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~Received 3 August 2000; published 21 March 2001!

A phenomenological theory of superconductivity based on the two-body Cooperon propagator is presented.
This theory takes the form of a modified Gorkov equation for the Green’s function and allows one to model the
effect of local superconducting correlations and long-range phase fluctuations on the spectral properties of
high-temperature superconductors, both above and belowTc . A model is proposed for the Cooperon propa-
gator, which provides a simple physical picture of the pseudogap phenomenon, as well as insights into the
doping dependence of the spectral properties. Numerical calculations of the density of states and spectral
functions based on this model are also presented, and compared with the experimental tunneling~STM! and
photoemission~ARPES! data. It is found, in particular, that the sharpness of the peaks in the density of states
is related to the strength and the range of the superconducting correlations and that the apparent pseudogap in
STM and ARPES can be different, although the underlying model is the same.
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I. INTRODUCTION

The anomalous properties of high-temperature superc
ductors~HTS! have been the object of many investigatio
over the last ten years.1 Among these anomalous propertie
the pseudogap phenomenon~a substantial decrease of th
one particle density of states near the Fermi energy in
normal state below a certain temperatureT* ) has been stud
ied by several experimental techniques. The pseudoga
seen, in particular, in tunneling spectroscopy2 and ARPES
~Refs. 3 and 4! experiments. On the theoretical front, ma
competing models have been proposed.5–14 One of the popu-
lar interpretations of the pseudogap is that superconduct
forms locally at T* , but the phases of distant supercondu
ing ‘‘droplets’’ remain incoherent until the superconductin
transition temperatureTc is reached.5,6 This view is sup-
ported by an increasing evidence that the pseudogap
nomenon is intimately connected to the underlying superc
ducting phase, mainly because thed-wave symmetry of the
pseudogap is the same as that of the gap in the supercon
ing phase.15,16The phase fluctuation model of the pseudog
state is different from the usual theory of superconduct
fluctuations, which involves both size and phase fluct
tions.17

A theory of the pseudogap aboveTc has also conse
quences belowTc . In particular, it is connected to the cha
acter of the excitations responsible for destroying superc
ductivity. Different mechanisms~thermal phase fluctuations
quantum phase fluctuations, nodal quasiparticles! may all
contribute to the properties in the superconducting state,
these contributions may be of varying importance if one c
siders low temperatures or temperatures nearTc .18 One may
add that the clue to a theory of high-temperature superc
ductivity will go through the explanation of detailed prope
ties, like the absence of quasiparticles aboveTc and their
appearance belowTc ,19 or the anomalous properties of th
density of states in vortices.20

Within a direct extension of the BCS theory to the drop
model, the inclusion of phase fluctuations must be done
two steps. First, one introduces a local BCS gap, with
0163-1829/2001/63~14!/144516~8!/$20.00 63 1445
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phase, and then this phase is treated as a classical var
subject to thermal fluctuations. The theory of Franz a
Millis 21 gives an example of this type of approach. Starti
from the form of the Green’s function in a uniform supe
flow, they extend it semiclassically to nonuniform situatio
assuming slow spatial variations of the superfluid veloc
This Green’s function is then averaged over a Gaussian
tribution of velocity fluctuations, which relates the result to
correlation function of the velocities. A similar approach h
been used by Kwon and Dorsey,22 who treat the coupling to
the fluctuating phase using a self-consistent perturba
theory. As emphasized by Geshkenbeinet al.13 and
Randeria,23 strong pairing correlations should however
incorporated at the basis of any model of the pseudogap
gime.

A systematic theory of the effect of phase fluctuations
the density of states~and other properties! in HTS, above and
below Tc , must start by putting the phase-phase correlat
function at the core of the theory for superconductivity,
the same level as the size of the local gap. This progr
implies that one avoids developing the theory of superc
ductivity by defining a gap function and an anomalo
propagator. This is equivalent to writing the BCS theory in
particle number conserving scheme~i.e., in the canonical en-
semble, avoiding the definition of an anomalous amplitu
between states with different particle numbers!. This theory
has actually been written down forty years ago by Kadan
and Martin24 ~KM !, and rediscovered by others, in particul
for the discussion of Josephson arrays.25 The KM theory is
based on the two-body Cooperon propagator, and descr
quite naturally the effect of phase fluctuations. This theo
has already been applied to the HTS in a nice series of pa
by Levin et al.,26 but with a different interpretation~not re-
lated to phase fluctuations!, a different focus, and a differen
formalism than in our work.27 In this paper we rewrite the
basic KM equations for the case of a lattice Hamiltonian,
show again how the standard BCS theory is recovered wi
straightforward approximation for the two-body Cooper
correlation function, and we then derive the basic equati
for a pseudogap state, in particular the equivalent Gor
©2001 The American Physical Society16-1



te

n

n
n
.

of

-

s.
tion
r in
the
f

Eq.

ory
uc-

am-
to
ting
er

er as

as-

CS

r

-

x-
al
is

gle
ga-
ed
to

istic
e

B. GIOVANNINI AND C. BERTHOD PHYSICAL REVIEW B 63 144516
equations which have to be used in the calculation of vor
states.

II. KADANOFF-MARTIN EQUATIONS
IN A LATTICE MODEL

We consider the lattice Hamiltonian

H5(
i j s

t i j cis
† cj s1(

i j
Vi j bi

†bj . ~1!

In this,cis
† creates an electron at sitei andbi

†5ci↓
† ci↑

† creates
a Cooper pair at sitei. We assume thatt andV are symmetric
and real. The usual Gorkov equations can then be writte
a single equation:

@G 0~vn!#21G~vn!511S̃~vn!G~vn!, ~2!

whereGi j (t)52^Tt$ci↑(t)cj↑
† (0)%& and

S̃ i j ~vn!52(
r 1r 2

Vir 1
Br 1

Br 2

! Vr 2 jG j i
0 ~2vn!. ~3!

@G 0(vn)# i j
215 ivnd i j 2t i j is the free Green’s function,vn

are the odd Matsubara frequencies, andBi5^bi&. The nota-
tion @G 0#21G implies matrix multiplication in the$ i , j %
space. These equations are supplemented by the self-co
tent equation forBi ~or D i) and the self-consistent equatio
relating the number of particlesN to the chemical potential
The equation forBi is

Bi52Fi i ~01!52
1

b (
vn

Fi i ~vn!e2 ivn01
, ~4!

with F i j
! (t)52^Tt$ci↓

† (t)cj↑
† (0)%&.

The Kadanoff-Martin correlation function description
superconductivity consists simply~after a long and thorough
discussion of higher order correlation functions! in replacing

S̃ in Eq. ~2! by

S i j ~vn!52
1

b (
vm

(
r 1r 2

Vir 1
Lr 2r 1

~vn1vm!Vr 2 jG j i
0 ~vm!

~5!

whereLr 2r 1
(t)5^Tt$br 1

(t)br 2

† (0)%& is the Cooperon propa

gator. The self-consistent equation forB is replaced by the
equations

Lr 2r 1
~Vm!52

1

b (
vn

Gr 2r 1
~Vm1vn!G r 1r 2

0 ~2vn!

2
1

b (
vn

(
i j

Gir 2
~Vm1vn!

3G ir 2

0 ~2vn!Vji L jr 1
~Vm! ~6a!

for T.Tc , and
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~Vm!52

1

b (
vn

(
i j

Gir 2
~Vm1vn!

3G ir 2

0 ~2vn!Vji L jr 1
~Vm! ~6b!

for T,Tc , whereVm are the even Matsubara frequencie
The fact that the inhomogeneous term in the ladder equa
for L has to be dropped when calculating the propagato
the condensed state is not much commented upon in
original paper of KM, but it is related to the range o
Lr 2r 1

(Vm), which is finite aboveTc and infinite belowTc

~see below!. In fact, the quantity( r 1r 2
Lr 2r 1

(Vm) is of the

orderN2 belowTc ~whereN is the number of sites! whereas
the corresponding sum of the inhomogeneous term in
~6a! is only of orderN.

It must be noted that the integral equation Eq.~6a! has the
same form as the one used in conventional fluctuation the
above the transition temperature, and which describes fl
tuations around a zero mean-field value of the order par
eterD. It is known that conventional fluctuations also lead
pseudogap effects. In our approach, the superconduc
order is related directly to off-diagonal long-range ord
~ODLRO!, i.e., the long-range properties of the functionL,
and there is no need to speak about a local order paramet
in the theory of Franz and Millis.21 There is therefore much
more freedom in the phenomenological forms one may
sume forL. We also point out that theGG 0 scheme is im-
posed in this framework by the requirement that the B
theory be recovered belowTc in the appropriate limit. This
happens when one sets

Lr 2r 1
~t!5Br 1

Br 2

! , Lr 2r 1
~Vm!5bBr 1

Br 2

! dVm,0

in Eq. ~5!. The self-consistent equation Eq.~6b! for L then
goes over into the self-consistent equation Eq.~4! for B, and
clearly Eq.~5! goes into Eq.~3!. In the BCS framework, the
Thouless criterion forTc becomes the gap equation fo
T,Tc .

The KM description of superconductivity, which is en
tirely based on the properties of the functionL, is thus seen
to be a natural starting point if one wants to introduce e
plicitly local order and phase fluctuations in the physic
description of high-temperature superconductors. This
done in the next section.

III. PHENOMENOLOGICAL DESCRIPTION OF A
PSEUDOGAPPED SUPERCONDUCTOR

Our fundamental assumption is that Eq.~5! is generally
valid, in the sense that it expresses in general the sin
particle Green’s function in terms of the Cooperon propa
tor, regardless of the model or the approximations involv
in calculating this propagator. Our purpose in this paper is
explore the experimental consequences of a simple heur
form for L, which is the translation of the physical pictur
presented in the Introduction. ForT.Tc , we write:

Lr 2r 1
~t!5uB0u2R~r 12/%0!1uB1u2F~r 1 ,r 2 ,t! ~7a!
6-2
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GORKOV EQUATIONS FOR A PSEUDOGAPPED HIGH- . . . PHYSICAL REVIEW B 63 144516
with r 125ur 12r 2u and R(x) some cutoff function which
vanishes rapidly forx.1. This equation expresses the fa
that there are strong superconducting correlations at the s
%0, represented by a finite value ofB0, going to zero gradu-
ally at a temperatureT* . The strength of the superconductin
correlations between ‘‘droplets’’ is represented by an am
tudeB1 and a functionF5^Tt$e

i [f(r 1 ,t)2f(r 2 ,0)]%& which is
the correlation function of the phases. Both amplitudesB0

and B1 are real, temperature dependent, and are assu
uniform in space. The phase physics can be mapped on
two-dimensionalXY model~2D-XY!, and we therefore iden
tify F with the correlation function in that model, above th
Kosterlitz-Thouless~KT! transition.28 The temperature de
pendence ofF is controlled by the correlation lengthj(T).
As T approachesTc from above~we identifyTc with the KT
transition temperature!, j diverges andF approaches 1. Fo
T,Tc , F is assumed to factorize in the BCS mean-fie
fashion,F5^eif(r 1)&^e2 if(r 2)&, and we thus write:

Lr 2r 1
~t!5uB0u2R~r 12/%0!1Br 1

1 Br 2

1!, ~7b!

where the phase has been included in the amplitudeB1. This
phase can be made gauge covariant in the usual way.29 The
position dependence ofB1 in Eq. ~7b! also reflects a possibl
variation of its modulus in space, as it happens near magn
vortex cores. Our assumption here is that short-range co
lations have a strong incoherent part, even in the super
ducting state. When introduced into the equation for the s
energy, Eq.~7b! for L means that the self-energy in th
superconducting state is the sum of a coherent and an i
herent part; this appears to be the case in some recent c
lations based on a fermion-boson model.30 Inspection of Eqs.
~7b! and~6! shows that if, in the ladder approximation for
homogeneous system, it turns out thatLr 2r 1

is the sum of a
constant term and a term of finite range, then the cons
term will obey Eq.~6b!, whereas the finite range term wi
obey Eq.~6a!.

Equation~7! translates into the following equation forG:

@ G̃0~vn!#21G~vn!511S1~vn!G~vn!, ~8!

where

@ G̃0~vn!# i j
215@G 0~vn!# i j

21

1(
r 1r 2

Vir 1
uB0u2R~r 12/%0!Vr 2 jG j i

0 ~2vn!

~9!

and

S i j
1 ~vn!52

1

b (
vm

(
r 1r 2

Vir 1
uB1u2F~r 1 ,r 2 ,vn1vm!

3Vr 2 jG j i
0 ~vm!, T.Tc ~10a!

S i j
1 ~vn!52(

r 1r 2

Vir 1
Br 1

1 Br 2

1 !Vr 2 jG j i
0 ~2vn!, T,Tc .

~10b!
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Inspection of Eq.~10b!, together with Eq.~8!, shows that in
our phenomenological model belowTc , a pseudogapped su
perconductor obeys the following modified Gorkov equ
tions:

$@ G̃0~vn!#21G~vn!% i j 1(
l

Vil Bl
1F̃i j

! ~vn!5d i j ~11a!

$@G 0~2vn!#21F̃!~vn!% i j 2(
l

Vli Bl
1!Gi j ~vn!50.

~11b!

We emphasize that the parametersB0 and B1 of the model
must be considered as phenomenological quantities to be
ted by comparison with experiment.

Quantum Monte Carlo~QMC! calculations of the pairing
correlations were recently reported for the attractive Hubb
model at zero temperature.31 Although these results are re
stricted to short distances (;6 –10 lattice sites! we tenta-
tively connect our model to the QMC calculations with th
following arguments. For the system sizes considered in
QMC calculations~typically 14314 sites! the correlation
function for the largest distance in the system has not c
verged to its asymptotic value. We attribute the slow d
crease of the correlations at intermediate distances~see inset
of Fig. 4 in Ref. 31! to a large value of%0 with respect to the
system size. The results of Ref. 31 also show that
strength of the pairing correlations at intermediate distan
increases, and differs increasingly from the BCS result,
the Hubbard interactionU/t increases. Closer inspection o
the data in Fig. 3 of Ref. 31 indicates that the ratio of t
BCS to the QMC correlations at intermediate distances
also an increasing function ofU/t. The simplest BCS ap-
proximation to Eq.~7b! is to replace the cutoff functionR by
1, describing correlations which are independent ofr 1 andr 2
~in a homogeneous system, the second term of Eq.~7b! is a
constantuB1u2). With this approximation, one can accou
for the above trends by assuming that bothB0 and the ratio
B0/B1 increase asU/t increases. Finally, we shall include i
our numerical calculations the ‘‘onsite’’ correlations foun
in Ref. 31 for distances within two lattice spacings, by ad
ing a term

Lr 2r 1

os 5~ uB0u21uB1u2!e22r 12 /a ~12!

to the model Eq.~7!, wherea is the lattice parameter. We
find, however, that this correction has a negligible impact
the spectral functions, and could equally be dropped with
changing the results presented below.

IV. NUMERICAL RESULTS

We now use the general equations derived in Section
together with the model Eqs.~7! and ~12!, to calculate the
temperature dependence of the density of states and spe
functions in a homogeneous system. The calculations
compared with the STM and ARPES experimental results
Bi2Sr2CaCu2O8 ~BSCCO!. In order to reduce the number o
adjustable parameters, we take for the correlation func
6-3
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B. GIOVANNINI AND C. BERTHOD PHYSICAL REVIEW B 63 144516
F(r 1 ,r 2 ,t)5exp@2r12/j(T)#, which describes time-
independent phase-phase correlations aboveTc . The corre-
lation lengthj is equal to%1a exp@b/A(T2Tc)/J#, with a
'0.21, b'1.73, andJ'Tc/0.89.32 The length scale%1 is
the lattice parameter of the effective 2D-XY model describ-
ing phase fluctuations. We found that the main features in
spectral properties aboveTc are rather insensitive to the de
tails of the correlation function. We have explicitly check
this point by comparing different functionsF, in particular
functions which give a better description of the correlatio
in the XY model. The cutoff functionR is modeled as exp
(2r/%0).

The four parameters%0 , %1 , B0, and B1 are chosen to
achieve good agreement with the experimental results.
use the value%0550a; if the first term in the right-hand side
of Eq. ~7b! is the dominant one (B0.B1), we found that a
relatively large value of%0 is needed in order to obtain we
developed coherence peaks in the zero-temperature de
of states. In addition, we see that, according to the previ
discussion,%0 must be large with respect to;14a. The pa-
rameter%1 controls the temperature evolution of the spect
functions aboveTc , and takes the value%155a. The larger
%1, the wider the temperature region aboveTc in which local
phase coherence contributes to the pseudogap. The a
tude B0 is adjusted to fix the gap energy to;40 meV. Fi-
nally, the ratioB0/B1 is varied in order to control the relativ
importance of short range superconducting correlations
long-range phase fluctuations. The behavior of the resul
Cooperon propagatorL(r 12) is illustrated in Fig. 1 for tem-
peratures below and aboveTc and for different values of
uB0/B1u.

FIG. 1. Model two-body Cooperon correlation function at te
peratures below and aboveTc . The increase of the correlations fo
r &a is due toLos in Eq. ~12!. Below Tc , L(r ) converges to the
finite asymptotic valueuB1u2 at distances of the order%0550a if
B0.0 and of the ordera if B050. AboveTc , the range ofL(r ) is
finite. If B0.0, this range is given by max@%0,j(T)# while if B0

vanishes it is given byj(T).
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For a translationally invariant system and our mod
Cooperon propagator, Eq.~5! can be recast as

S~k,vn!5E
BZ

dq

~2p!2

V2~q!L~q!

ivn1«q2k
~13!

whereV(q)5V012V1(cosqxa1cosqya), L(q) is the Fourier
transform ofL(r), and«k is the free dispersion. Here,V0 and
V1 are the onsite and nearest-neighbor potentials, res
tively, and we neglect next-nearest-neighbor interactio
we assumeV15V0/4 in all of our calculations. For the dis
persion, we use a tight-binding expression which fits
BSCCO Fermi surface and corresponds to a bandwidth
eV.33 The self-energy at real frequencies is evaluated
making the analytic continuationivn→v15v1 i01 in Eq.
~13! and discretizing the Brillouin-zone integral.34 The spec-
tral function is then calculated according toA(k,v)5
21/p Im$@v12«k2S(k,v1)#21%, and the density of state
is N(v)}*BZA(k,v)dk. It is easy to check from Eq.~13!
that, if L(q).0—a condition obeyed by our model—the
the Green’s function is analytic in the upper half of the co
plex plane, the spectral functionA(k,v) is positive, and the
Green’s function goes to zero asv21 for uvu→`.

A. Scanning tunneling spectroscopy

Neglecting possible anisotropies of the tunneling mat
element as well askz-dispersion effects, we calculate th
tunneling conductance as the convolution of the density
states with the derivative of the Fermi function. The resul
shown in Fig. 2 for various temperatures. In order to foc
on the effect of local superconductivity and phase fluct
tions, we have kept the model parameters independen
temperature: the whole temperature dependence of
curves, in Fig. 2, relates to the variation of the correlati
length j and Fermi function withT. A better fit to the ex-
perimental data could be obtained, in principle, by allowi
the amplitudesB0 and B1 to vary with temperature. This
would not, however, change the qualitative conclusions
wish to draw. In Fig. 2~a!, B0 is larger thanB1 while in Fig.
2~b! B1 is larger thanB0. In the next section, we argue tha
these two typical cases correspond to underdoped~UD! and
overdoped~OD! situations, respectively. The spectra show
in Fig. 2 reproduce some of the characteristic features
served experimentally in BSCCO samples.2 Both UD and
OD curves evolve smoothly acrossTc into a pseudogapped
spectrum, the peak-to-peak distance remaining appr
mately temperature independent. Moreover, the cohere
peaks and the gap structure disappear more rapidly in the
case as the temperature is raised, which is also consis
with the experimental findings. The model, however, is n
able to account for a number of experimental observatio
such as the asymmetry in the temperature dependence o
positive and negative-bias conductance peaks, or the
structure recorded at;2D below Tc . We also note that the
model Eqs.~7! hass-wave symmetry. The calculated spect
are therefore not expected to agree in details with experim
at low energies.
6-4
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According to our model, the local superconducting cor
lations responsible for the high-temperature pseudogap
have implications belowTc . In the underdoped case, th
local ~incoherent! superconducting correlations broaden t
zero temperature density of states. The resulting conduct
spectra have small coherence peaks and a rounded line-s
around the Fermi energy. In the overdoped case, in cont
the T50 curve looks more like as-wave BCS spectrum.

As the temperature increases from zero toTc , the density
of states remains unchanged in both UD and OD cases,
the temperature dependence of the conductance spectr
lates solely to the Fermi function. This behavior persi
aboveTc in the UD case owing to the dominant role ofB0

~which isT independent in our calculations!. In the OD situ-
ation, on the contrary, the gap fills in rapidly aboveTc as the
contribution ofB1 disappears due to increasing phase fl
tuations; at elevated temperatures, only a weak pseudo
due toB0 remains. Figure 2 also illustrates the effect of t
temperature dependence of the amplitudesB0 and B1. At
room temperature,B1 is expected to vanish andB0 is ex-
pected to be smaller than at low temperature. TakingB1

FIG. 2. Tunneling conductance as a function of temperatu
The model parameters represent~a! underdoped (V0B0515 meV,
B0/B152) and~b! overdoped (V0B057 meV, B0/B150.5) situa-
tions. The critical temperature isTc580 K ~bold line!. The dashed
lines show theT5300 K spectra corresponding toB150 and ~a!
V0B057.5 meV,~b! V0B053.5 meV. The particle-hole asymmetr
in the background conductance is due to the free electron densi
states. The curves have been shifted for clarity.
14451
-
so

ce
ape
st,

nd
re-

s

-
ap

50 and B0(300 K)5B0(0 K)/2, one obtains the dashe
spectra in Fig. 2, which no longer exhibit a sizab
pseudogap structure.

The difference between the temperature evolutions of
UD and OD spectra is best seen in Fig. 3, where we plot
calculated zero-bias conductance. BelowTc , the zero-bias
conductance is larger in the UD case due to strong incohe
correlations. AboveTc , the conductance increases sharply
the OD case, corresponding to the filling of the gap. In eit
UD and OD cases, the zero-bias conductance aboveTc is
larger than the value expected by thermally broadening
T50 spectra~see Fig. 3!.

From a general point of view, one can confirm from o
calculations that the sharpness of the peaks in the densi
states~and correspondingly the size of the zero-bias cond
tance! is related to the strength and range of the superc
ducting correlations. The larger the ratioB1/B0 and/or the
longer the range%0, the sharper the peaks~the smaller the
zero-bias conductance!. As an example, we show in Fig.
the conductance obtained by letting the coherence termB1

go to zero in the OD situation. Comparison of the curv
with and withoutB1 shows that the phase coherence has
effect to depress the density of states at the Fermi energ
therefore raising the coherence peaks—belowTc and in
some temperature range aboveTc , where the correlation
lengthj(T) is large.

B. Angle-resolved photoemission

Experimentally, it is found that the temperature depe
dence of the energy dispersion curves measured by AR
near (p,0) depends on doping. In overdoped samples,
leading-edge midpoint energy moves toward the Fe
energy—suggesting that the gap closes—asT increases
aboveTc . The temperature variations of the midpoint ener
are usually smaller in underdoped samples.3,4

Apart from a matrix element, the ARPES intensity is ju
the product of the spectral and Fermi functions. This qu

.

of

FIG. 3. Calculated zero-bias conductance as a function of t
perature for underdoped~UD, black symbols!, and overdoped~OD,
white symbols! systems. The parameters are the same as in Fig
The dashed lines show the conductance obtained by therm
broadening theT50 spectra. The dotted line is obtained by lettin
B1 go to zero in the OD situation. The vertical axis starts at ze
6-5
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B. GIOVANNINI AND C. BERTHOD PHYSICAL REVIEW B 63 144516
tity, calculated at the Fermi crossing near theM point, is
shown in Fig. 4 as a function of temperature. A clear diff
ence between the temperature evolution of the spectral p
in the UD and OD cases can be seen. Consistently with
periment, the peak shifts toward the Fermi energy in the
case asT increases. In the UD case, the peak position is
first approximation independent of temperature. BelowTc ,
the curves are almost identical to the spectrum atTc ~because
the temperatureT,Tc'7 meV is small with respect to th
peak energy;35 meV) and are not shown. One can see t
the quasiparticle peak is much sharper atTc in the overdoped
as compared to the underdoped system. This has also
seen experimentally4 and can easily be understood in o
model. The destruction of long-range order by phase fluc
tions clearly affects qualitatively the spectral functions in t
OD case where the transition acrossTc is accompanied by a
decrease of the quasiparticle lifetime and increase of the
tensity at the Fermi energy.

The position of the main quasiparticle peak in Fig. 4
reported in Fig. 5 as a function of temperature. The temp
ture dependence of the gap was studied in Refs. 21 and
fitting the experimental ARPES curves to a three param
Green’s function. For overdoped samples, the gap was fo
to decrease with increasing temperature~Ref. 4!, in a way
very similar to what we obtain in the OD case, although
decrease was found to begin already belowTc . ~Note that a
small finite gap persists at all temperatures in our calcu
tions, since no temperature dependence ofB0 and B1 was
taken into account. In a real situation,B0 andB1 would both
vanish at some temperature aboveTc .) In the underdoped
samples, the gap was found to be temperature indepen

FIG. 4. Calculated ARPES intensity near (p,0) as a function of
temperature for underdoped~UD! and overdoped~OD! systems.
The parameters are the same as in Fig. 2. The curves have
shifted for clarity. Inset: representation of the Brillouin zone sho
ing the Fermi surface used in the calculations and the Fermi cr
ing near (p,0).
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within error bars~Ref. 4! or slightly decreasing aboveTc
~Ref. 21!. The trend in Fig. 5 is similar. The slight decrea
of the gap aboveTc in the UD case results from the suppre
sion of the phase correlations as the temperature is raise

The spectral line shapes in Fig. 4 are considerably sha
than what is usually measured by ARPES, especially at
evated temperatures. The estimated experimental resolu
of ;10 meV cannot alone explain this difference. Simil
conclusions have been reached in Ref. 21. It was shown t
that the inverse quasiparticle lifetime implied by fitting th
experimental spectra is an order of magnitude larger
ARPES with respect to STM. Inhomogeneities in the sam
properties could explain this discrepancy,35 since a much
larger region of the sample surface is probed by ARP
compared to STM. Figure 4 also shows that in our model,
quasiparticle peak below the Fermi energy is present a
temperature in the normal state, in disagreement with
experimental findings in underdoped and optimally dop
samples.19 As a result, the particle-hole symmetric pea
above the Fermi energy shows up as the Fermi func
broadens with increasingT.

The temperature dependence of the OD quasiparticle p
in Fig. 5 contrasts with the apparent temperature indep
dence of the gap width in Fig. 2. The coherence peaks in
density of states are due to quasiparticle states with mom
just nearbykF . Therefore, one may expect that the energ
of all these quasiparticles evolve in the same way as
temperature increases. In this case, the coherence p
would rigidly follow this temperature evolution and both th
STM and ARPES gaps would close in the OD situation. W
have found, however, that in our model the energies of
quasiparticles at and nearbykF have different temperature
dependencies in the OD case. This is illustrated in Fig
where we plot the energy of a quasiparticle with a mom
tum k just below the Fermi surface along theM –Y line. For
T,Tc , this particulark point contributes to the coherenc

een
-
s-

FIG. 5. Temperature dependence of the quasiparticle en
~maximum of the curves in Fig. 4! at the Fermi crossing near (p,0)
for underdoped~UD, black circles!, and overdoped~OD, white
circles! systems. The squares show the energy of the quasipar
at ak point just below the Fermi surface along theM –Y line.
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peaks in the density of states, since the corresponding en
is within 2 meV of the energy atkF . At 200 K, instead, the
two energies differ by;5 meV in the OD case, which is
approximately half the width of the zero-temperature coh
ence peaks. This explains why the STM gap fills in inste
of closing although the ARPES gap atkF closes. Thus, our
results show that the apparent ‘‘visual’’ pseudogap may
different in STM and ARPES data, even if each measu
ment is in agreement with the same underlying theory.

V. CONCLUSION

Many workers in the field share the belief that t
pseudogap phase in HTS is a kind of mixed state, wh
strong short range superconducting correlations coexist
long-range phase disorder. This fact should reflect in
properties of the Cooperon propagator, which should sh
‘‘partial’’ superconductivity even aboveTc . In this paper,
we have shown that it is possible to describe the propertie
pseudogapped superconductors by writing the supercon
tivity theory in general in terms of this Cooperon propagat
and that reasonable phenomenological assumptions abou
form of this propagator lead to good agreement with exp
mental data. We have thus a theoretical framework whic
valid both above and belowTc , without special treatment o
the pseudogapped phase. Our main assumption is tha
relevant difference between overdoped and underdoped
is in the relative magnitude of the short and long range p
of the Cooperon propagator, described by the parameterB0
ro

T
i,

no
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andB1, respectively. In the underdoped HTS we assume
the ratio B0/B1 is larger than in the overdoped HTS. W
tentatively claim thatB0 is related to the single-particle en
ergy gapDp measured by single-particle spectroscopy, wh
B1 is related to the coherence gapDc measured in Andreev
reflection or Josephson experiments. As shown
Deutscher,36 Dp andDc differ in the HTS: the ratioDp /Dc is
close to one in the overdoped region and increases as
doping is reduced.

In this paper, we do not attempt to calculate the Coope
propagator using one or the other theoretical method.
first want to derive some empirical constraints on the fu
tion L from direct comparison with experiments. Our a
proach is also limited, at this stage, tos-wave gap symmetry.
We are currently working on an extension of these calcu
tions for d-wave symmetry and on the calculation of th
density of states in vortices. Also, comparisons of our mo
Eq. ~7b!, which should also be valid in presence of a ma
netic field and in inhomogeneous situations, with other
tailed spectroscopic data belowTc ~vortices and Josephso
effect in particular! will show whether the approach pre
sented here is a fruitful one.
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