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Instabilities in Josephson ladders with current induced magnetic fields
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We report on a theoretical analysis, consisting of both numerical and analytic work, of the stability of
synchronization of a ladder array of Josephson junctions under the influence of current induced magnetic fields.
Surprisingly, we find that as the ratio of the mutual to self-inductance of the cells of the array is increased a
region of unstable behavior occurs followed by reentrant stable synchronization. Analytic work tells us that in
order to understand fully the cause of the observed instabilities the behavior of the vertical junctions, some-
times ignored in analytic analyses of ladder arrays, must be taken into account.
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Ladder arrays of Josephson junctions are intriguing syseomparison of the analytic results for the Floquet exponents,
tems for a wealth of reasons: the possibility of phase lockingbased on the simplified equations, and the numerical results
or synchronizing, a maximal subset of junctions suggest$or the Floguet exponents, based on the full RCSJ equations,
their use as microwave Souréeﬁgey offer rich dynamical we learn valuable information about the roles of the horizon-
behavior, accessible to both theorists and experimentalists, fitl and vertical junctions in the array. This technique appears
the field of coupled nonlinear oscillatofwith recent interest  to be a powerful way to analyze the relative importance of
in the prediction and observation of discrete rotobreajtfers subsets of junctions that experience different local condi-
their complexity is between that of better understood ondlons.
dimensional serial and parallel arrays and full two- Josephson junctions consist of superconducting islands
dimensional arrayée.qg., square arraysand thus they offer a Separated by a thin layer of nonsuperconducting material. In
nice link between the two geometries; and ladder arrays carfie superconductors, the coherent motion of the paired
under circumstances that are partially understood, be mocglectrons, or Cooper pairs, leads to a wavefunction of the
eled by the discrete sine-Gord¢éRSG) equatior? which is ~ form ¥=|¥|e'’, where 6 is the macroscopic phase of the
itself a source of research interest among nianyith a  superconductor. The equations describing the dynamics of a
desire to understand better the conditions under which stabRingle junction depend on the gauge-invariant phdifer-
synchronization can occur, we consider ladder arrays wittence or Josephson phase, across the junctiors, 61— 6,
periodic boundary conditions biased with uniform dc bias— (27/®,) f2A-dl, whereA, the vector potential due to an
currentsl g greater than the critical currents of the junctions, external magnetic field, is integrated along a path from one
and we include the effects of current induced magnetic fieldside of the junction to the othe,=%/2e is the magnetic
(CIMF’s) via self and mutual inductances of the cells of theflux quantum, wheré: is Planck’s constant divided bym2
array(see Fig. 1 Since the array is current-biased above theande is the electronic charge. We assume in this work that
critical current there will be a nonzero voltage across somé =0.
subset of junctions in the array. These “active” junctions are  Consider a ladder array of underdamped junctions With
synchronized, or phase locked, if their voltages, after someells and periodic boundary conditions, as shown in Fig. 1.
initial transients, are identical functions of time. Further-Each junction has a McCumber parameteB.
more, previous workers have established that the effects ot 27 Cl.R?/®,, whereC(R) is the junction’s capacitance
CIMF’s may be importaritin determining the static and dy- (resistancg andl ., is the critical current of a “horizontal”
namics properties of arrays, and so it is natural to considgiunction. We assume each cell of four junctions is described
the effects of CIMF’s on synchronization as well. by a self-inductancd. and also has a mutual inductance

In this paper we present numerical and analytical evi-——M (M>0) with each of its two nearest neighbors, where
dence that mutual inductance between cells of a ladder arrdyl<L. As an adjustable parameter in the theoky/L is
can lead to rich dynamical behavior, including destabiliza-allowed to range between zero and one. Basic physics argu-
tion of synchronization and reentrant synchronization as thenents for a simple ladder with nearest-neighbor mutual in-
relative size of the mutual to self inductance of the cells isductance precludeldl/L from exceeding 0.8.Nevertheless,
increased. The instability results for a finite range of valuest is informative and worthwhile to study the behavior of the
of the mutual inductance and occurs when, for the resistivelynodel equations over the range<®i/L<1. Furthermore,
and capacitively shunted junctigRCSJ model, the numeri- such theoretical work could pique the interest of others to
cal solutions to the model equations diverge with time. Intry, using modern fabrication techniques, to enhance the mu-
addition to our numerical solutions we also investigate theual over the self-inductance of the cells and thereby probe
dynamics analytically. Namely, the two coupled RCSJ equathe broader range d¥l/L values studied here. Alternatively,
tions for the horizontal and vertical junctions can be approxi-one could point to these results fot/L>0.5 as an interest-
mately decoupled. The simplified equations allow us to caling portent to the behavior that might be observed in arrays
culate analytically the Floquet exponents, which measure theith overlapping cells or in three-dimensional arrays.
degree of stability of the synchronization. Then, by direct An analysis based on the RCSJ equations and including
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Ber B, mo, andig=lg/l., (the dimensionless bias cur-
renf). The starting configuration consisted of random volt-
ages and zero Josephson phases.
As described elsewhere for a similar sysfemstability
analysis of the solutions to Egd.) and(2) follows by letting
b= po+ n andy= o+ 6, wherepy and iy are solutions to
these equations. Equatiolis) and (2) are linearized with
respect toy andd. The time dependence of the perturbations
has the formy~eMc™ and 6~ e’'c”, where\ (A) represent
the Floquet exponents for the horizon¢aértical) junctions.
If Re(At;)>0 or Re(At.)>0 we expect unstable behavior
of the array for the given set of circuit parameters. In fact, we
are interested in that exponent whose magnitude is closest to
zero, as that describes the stability of the longest-lived mode
Ip

of the array.
Figure 2a) shows the minimum Floquet exponent as a
function of u, for a 5-cell ladder. The symbols are results of

~ : a numerical stability analysis of Egs. 1 and 2. The meaning
vi of the error bars visible in the figure requires some explana-

tion. For the values of dimensionless capacitanég=10)

tz and dimensionless self-inductangg, & 100) used here, the

]/J«r array exhibits interesting behavior when its phase-locked so-
lutions are perturbed. In fact, the numerically calculated Flo-

FIG. 1. Ladder array of Josephson junctions with periodicquet exponents are a relatively weak function of the run time
boundary conditions. The horizontal junctions, along the rungs obf the code. That is, as the number of time steps employed in
the ladder, are parallel to theaxis, while the vertical junctions are the Runge-Kutta method is systematically increased, the nu-
parallel to they axis. A dc bias currentg, is injected at each node merically calculated exponents oscillate about a well-defined
on one side and extracted from the opposite side. The JosephseRean value. The size of the oscillations is small, with a stan-
phase for the horizontaVertica) junction in thejth plaquette isp, dard deviation of the mean, for a sample of eight to ten
(). different run times, that is about one percent of the mean

) ) . value of the exponent. Such behavior of Josephson junction
the effect of induced magnetic flux leads to a pair of COUp|edarrays has been previously observadd is characteristic of

qquqtions_ for the Josephson phases of the horizontal and Ve{frays that are only weakly stabl®lote the small magnitude
tical junctions, of \ip.) In addition to the weak dependence of the expo-
nents on the run time of the code, we also found a weak
Bod+ ¢>’+sin¢+iZTr.X‘l-(Z- b+24)=0, (1) dependence of the exponents on the initial values of t_he volt-
L= = ages,¢’ andy’. We thereforaalsoaveraged the numerically
calculated exponents over eight to ten different sets of ran-
. ) 1., domly assigned initial voltages. The results in Figéa)2
B+’ +asing+ B_LK (Z-¢+2¢)=0, (2 2(b), and Zc) then represent a double average, for each value
of ., over run time and initial voltage. The error bars rep-
whereB =27LI.,/d, is the dimensionless self-inductance resent the standard deviation of the mean of the resulting set
of a cell, anda=1, /1. is the critical current anisotropy. All of exponents for each value gf_ . The small size of the
our work presented here correspondsatel. The prime error bars, which are clearly less than the size of the symbols
symbols denote differentiation with respect to dimensionlesshemselves, implies that these averaged results are indeed
time, r=t/t. wheret,=%/2el;,R. These equations are com- meaningful.
pactly represented in matrix notation, whegeand ¢ are Based on Fig. @), we see that ag, is increased from
N-dimensional vectors representing the Josephson phases z#ro towards 0.5, the stability of phase locking increases, as
the horizontal and vertical junctions, respectivelyis an  shown by the negative exponent of growing magnitude,
NX N matrix that depends on geometry, aXds the dimen-  while the degree of stability decreases for increasing
sionless inductance matrix, aldbx N in size. The diagonal greater than approximately 0.6. Even more interesting is the
terms ofX represent the self-inductance of a given cell, i.e.,behavior of the ladder in the range & <0.6. For these
Xjj;=+1, while the mutual inductance of the nearest-values of the mutual inductance the ladder is actually un-
neighbor cells is represented by the terXis;.,=—u, stable. This is evidenced by very rapidly growing phases and
whereu, =M/L is the dimensionless mutual inductance. All voltages with time as Eqg1) and (2) are numerically inte-
other elements oKX are zero. Equationél) and (2) were  grated. FoN=5, the lower limit of this instability region is
solved numerically forp, ¢, ¢’, andy’ via a fourth-order ,u(,_1)=0.5 independent of other circuit parameters sucBas
Runge-Kutta algorithm as a function of the parametdrs andpg, . The upper limit of this region, which we denote by

Y
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FIG. 2. Minimum Floquet exponent for periodic ladders versus the dimensionless, nearest-neighbor mutual inductance. The circular

symbols with error bars are the results of a numerical stability analysis based oflLEgsd(2). Each circle is an average over different
values of the run time of the code and also different values of the initial voltages. The error bars represent the standard deviation of the mean
exponent. Each circle represents an average of a set of eight to ten diffarean) initial voltages, where for each particular set of initial
voltages, the Floquet exponents for fifteen different run times were calculated. The solid line represents an analykq ré3lilbased on
the horizontal junctions(a) N=5, iz=10, 8.=10, andB, =100. The analytic result predicts stable phase-locked solutions £qw,0
<1. The numerical results exhibit an instability, however, fd'=<u, <u(?, where u{Y=0.5 andu(® is dependent on the starting
configuration of phases and voltages, as well as on the valge oT he region is denoted by vertical lines on the graph. The dotted vertical
line represents that the upper boundary of the instability region is not well defined for these average exponents. This instability originates
with the vertical junctions. INSET: geometric quanti;tﬁfs) versusu, . [See Eq(4).] (b) N=5,i5=10, B8.= 10, andB_ = 10. Decreasing the
self-inductance has resulted in more stable phase locking fer0.5, in which region, additionally, the exponents equdl/23., inde-
pendent ofy, . But the instability region fo, >0.5 has grown significantly due to the decrease in the valyg of(c) N=7, ig=10,

=10, andB,_ =100. In this case, the geometry of the ladder leads to an instabilify,for0.8 that originates with the horizontal junctions.
The boundary of this “largew,” instability is marked in the figure with a vertical line at, =0.8. The instability due to theertical
junctions neam, = 0.5 still exists, as it did in the ladder witi=5.

w?, depends on such quantities as the value of the startingalue of »\?) by drawing a dotted vertical line in the figure.
voltages as well as on the value Bf . For example, for a Such a line is meant to convey merely that the upper bound-
fixed set of starting voltages, we find thaf) is a decreas- ary of the instability region is not well defined for these
ing function of 8. . We have denoted the variability of the averaged exponents. In any event, precise knowledgéfc))f
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is not crucial here, but the knowledge that the instability 0.04

region existss important. Also, it is interesting to note that —a— =07

this instability region does not appear at all if both the phases 0.03 1 —a— u,=0.9 (unstable)
and the voltages are initialized to zer¢See discussion be- —6— =06

0024 —o— =01
—o— 1,=0.95 (unstable)

low for the reason for this behavigr.

Physically, this instability is due to a competition between
the self-inductance of a given loofsay loopj), which <0
wishes to have a current with a given sense of circulation,~_
and the mutual inductance of the two neighboring loops ( =
+1), which wish to have the current in logpflow in the
opposite sense. We have also looked at ladders Mit6,

7, 8, and 9. All show this instability in the vicinity of_

=0.5. Indeed, we would expect this competition-induced in-
stability to be independent of ladder size for the case of
nearest-neighbor mutual inductance in that the onset of the
instability should always occur at, =0.5. 008 L ' ' ' ' ' '

If, for N=5, we reduce the value of the dimensionless 1 2 3 4 5 6 7
self-inductance such tha =10 ar!d keep.= 10, then for i (horizontal junctions)

. <0.5 the phase-locked solutions are more stable, as

shown by the larger value di i, seen in Fig. g). Fur-

thermore, the weak dependence of the numerically calculated FIG. 3. Characteristi¢dimensionlessvoltages across the hori-
exponents on run time and initial voltage disappears comzontal junctions in a ladder with=7, iz=10, 8,=10, andB,
pletely, as evidenced by the lack of error bars in the figure. In=100. These voltages correspond to the Floquet exponents of
Fig. 2b) we see that foru <0.5 the exponents equal smallest magnitude and are plotted as a function of position of the
—1/28,, independent ofu, , and we also note that the in- junction along the array. The voltages are actually a subset of the
stability region foru, =0.5 has increased significantly with eigenvectors of a matrix used to calculate the Floguet exponents.
the decrease in value ¢ _, as mentioned previously. The characteristic voltages for five different values of the mutual

Interestingly, we find that ladders with=7, 8, and 9 inductancep, , are shqwn. For the two valuespf_ corre_sponding_
also exhibit asecondinstability region that the 5-cell ladder !0 unstable phase lockingi( =0.90,0.95) there is a noticeable dif-
does not exhibit. Figure (2) shows the Floquet exponents ference in the spatial dependence of the voltages compared to the

for N=7. This second instability region has an onset at a/0t2ges calculated fop, =0.1, 0.6, and 0.7, for which stable

(3) (2) . . phase locking was observed. The voltages corresponding to the
value ofp "> .that IS dep.endent on ladder size. We nOWIarger values of the mutual inductance tend to have a larger ampli-
turn to an analytic calculation of the Floquet exponents

) . ... —tude and to exhibit less spatial variation in sign as one moves along
which helps us understand the source of these instabilities o array. The lines are intended as guides to the @ quantity

_A reasonable starting approximatio_n is to igr_10re the COUv_is defined viaV,=1,R.)
pling between the horizontal and vertical junctions btlt-
erwise not to ignore the effects of the vertical junctiofisat
is, we letyy=0 in Eq.(1) and¢=0 in Eq.(2), but we do not
then completely ignore Eq2) and study only the horizontal is positive and larger than one, then at least one of the Flo-
junctions. An analysis like that described in Ref. 7 applied toquet exponents will be positive, signaling unstable phase-
Eq. (1) leads to a Mathieu equation describing the time delocked solutions. In fact, sinc@,>0 and 8, >0 such an
pendence of the perturbations to therizontal Josephson  instability will occur if {\)<0! Plots of {" versusu, for
phases. In such a case, the corresponding Floquet exponets=5 and 7(not shown heredemonstrate thab{®)>0 for
for the horizontal junctions can be calculated analytically.0<gu, <1, but »{” is negative foru, >0.8. We have
The result is checked thaw{)>0 for m#1 and forN=5 and 7. Thus
the cause of this instability in the 7-cell ladder fon
1 1 Re /1—4(1)(“)(&) 3 > u(? is them= 1 normal mode. That is, this instability is a
2B. 2B mAs) geometrical effect, in that it does not occur fdr=5, for
) (N) , example, and it is t_riggere(_j by_an effectiv_e normal_mode
where we can think ofw,,” as theeffectivenormal-mode  frequency of the horizontal junctions becoming negative.

0.01 1
0.00 1 .
-0.01 1
-0.02 1

-0.03 1

Dimensionless voltage across horizontal junctions

Re(Amte)=—

frequencies of the ladder witN plaguettes. For example, This analytic work, however, doe®ot point to the hori-
(5)_ . zontal jun(_:tions as the caus;_e_of the_instability near0.5.
wp =[4 sif(ma/N) + 2 {cog 2mm/N) To appreciate this behavior it is crucial to look to the vertical

_ 2 junctions. A procedure similar to that which led to E§)
cog4mm/N)}}/ (ui = p 1), leads to a set of effective Floquet exponents for the vertical

where 0<sm=N-1. Note thatw() is a function ofu, . junctions

Equation(3) was used to produce the solid curves in Figs. 1 1 5N
2(a), 2(b), and 2c). Note that if, for particular values of Rg A _t)=— + \/1—4[3 @ COSYy+——|, (4)
o, B, andg, , the argument of the square root in E8) me 2B. 2B ¢ B

144503-4



INSTABILITIES IN JOSEPHSON LADDERS WITH . .. PHYSICAL REVIEW B3 144503

where the geometrical factoy{") is also a function ofu, ~ each eigenvector gives, in a sense, a geometrical picture of

and is similar but not identical twﬁﬁ‘): the behavior of the junctions for the corresponding Floquet
(5) . 5 5 . 5 exponent(see Fig. 3 For a seven-cell ladder we have looked
Yo (p) = (u = 3uf +1)/(1=5u{ +5u —2u;) at the eigenvector corresponding to the exponent of mini-

mum size for several different values af . These numeri-
cal results were obtained by initializing all junction voltages
and Josephson phases to zero. Figure 3 only shows the volt-
47m ages across the horizontal junctions because the vertical
+2MECO<T) / (2,uf—3,uf—,u,_+ 1). junctions generally have voltages of two to four orders of
magnitude smaller. Careful consideration of the graph, which
In this case, the vertical junctions will exhibit an exponen-plots the characteristic voltages as a function of the position
tially growing Josephson phase i,f(n']\‘)<—(a/3,_cos<//o)/2. of the horizontal junction along the ladder, shows that there
Now a plot of y§,5) versusu, [see the insert in Fig(@] is a distinction between the spatial behavior of the voltages
shows that the function abruptly becomes negativeugt for u, =0.9 and 0.95 and all the other valueswaf depicted.
=0.5 and asymptotically approaches zero from the negativEor x, =0.90 and 0.95, both of which correspond to unstable
side asu is increased furthefWe have checked thatﬁf;’) phase-locking in the seven-cell ladder, the amplitude of the
>0 for m#0. Also, we see similar behavior for the 7-cell voltages is generally larger and shows less variation of sign
ladders). If we assume that cag,>0, then the vertical junc- as one moves along the array. Those values of the mutual
tions will be unstable foryEnN)<O. Based on the behavior of inductance depicted in the graph and for which stable phase
¥ an instability region will exist for a range of, values, locking occur  =0.1,0.6,0.7) result in voltages of a
wW=p <u® where uV=0.5 andu{® will depend on smaller amplitude which also tend to exhibit greater varia-

a, BL , and COSA'O' For examp|e’ aﬁL increases we expect tions in Sign along the ladder. So there does indeed appear to
that {® will decrease, i.e., approach a value of 0.5. WeP€ a geometrical difference in the behavior of the horizontal

have indeed seen such behavior of the numerical resulf§nctions asu, crosses over into the unstable region.
for the Floguet exponents. Also, the inequality®™ We conclude that mutual inductance between cells of an
: , n

< —(aB_cosiy)/2 suggests that the value Wf_z) should underdamped ladder array has the effect of destabilizing syn-

depend on the value of cgg. Recall our discussion of Fig. chronization fo_r ranges of values (m’. _the ratio of the
2(a), where we noted that the value @‘(Lz) does indeed mutual to self-inductance. These specific rangeg ofthat

. ) : : lead to unstable behavior are geometry dependent. An ana-
depend on the choice of the starting configuration .Of phaself/tic calculation of the Floquet exponents based on the hori-
and voltages. In general, then, it is clear that the instabilit

near w —05 oridinates with thevertical iunctions and Yzontal junctions agrees with the numerical exponents, based
pL =5 9 J on the full RCSJ equations, for those valuesu@ffor which

would thus be r_msse_:d by an analysis that was b_as_ed sol_e_ly QRable phase locking occur. To understand the cause of all the
the horizontal junctions. It is also clear why this instability

does not apnear numerically whbaththe Josephson phases observed instabilities, however, it is crucial in the analytic
bp y P P work to consider the behavior of the vertical junctions.

and the voltages across the junctions are initialized to zero. Although some values of the mutual inductance used in
In such a scenario, although the horizontal junctions may .b?hese simulations can not be obtained in simple ladder ar-

g:t;(\; ee’ thzee(:gh\//(ﬁ:):Sé?eai(yU;g)snef%rS?E Vﬁg'sci quorlcgﬁntisn']serays, this work suggests that experimentalists may wish to
. P ges _-osephson pha gttempt fabrication of arrays that enhances the mutual over
Since we know this instability region is triggered by the

o~ . o . the self-inductance, perhaps making it possible to look for

vertical junctions, the vertlcgl Junqlons have no chance tche rich dynamical behavior predicted here. Certainly re-

go unstable” and thgs the instability never appears. searchers working on the problem of coherent emission from
We have also studied the characteristic voltages across t

horizontal junctions that correspond to particular values o sephson junction arrays should be aware this potential for

the Floquet exponents. That is, the process of numericall;l/mstaIble behavior exists.

calculating the Floquet exponents involves finding the eigen- The authors wish to thank Barbara Andereck, Tom
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