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Instabilities in Josephson ladders with current induced magnetic fields
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~Received 6 October 2000; revised manuscript received 28 December 2000; published 16 March 2001!

We report on a theoretical analysis, consisting of both numerical and analytic work, of the stability of
synchronization of a ladder array of Josephson junctions under the influence of current induced magnetic fields.
Surprisingly, we find that as the ratio of the mutual to self-inductance of the cells of the array is increased a
region of unstable behavior occurs followed by reentrant stable synchronization. Analytic work tells us that in
order to understand fully the cause of the observed instabilities the behavior of the vertical junctions, some-
times ignored in analytic analyses of ladder arrays, must be taken into account.
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Ladder arrays of Josephson junctions are intriguing s
tems for a wealth of reasons: the possibility of phase locki
or synchronizing, a maximal subset of junctions sugge
their use as microwave sources;1 they offer rich dynamical
behavior, accessible to both theorists and experimentalist
the field of coupled nonlinear oscillators~with recent interest
in the prediction and observation of discrete rotobreather!;2

their complexity is between that of better understood o
dimensional serial and parallel arrays and full tw
dimensional arrays~e.g., square arrays!, and thus they offer a
nice link between the two geometries; and ladder arrays
under circumstances that are partially understood, be m
eled by the discrete sine-Gordon~DSG! equation,3 which is
itself a source of research interest among many.4 With a
desire to understand better the conditions under which st
synchronization can occur, we consider ladder arrays w
periodic boundary conditions biased with uniform dc b
currentsI B greater than the critical currents of the junction
and we include the effects of current induced magnetic fie
~CIMF’s! via self and mutual inductances of the cells of t
array~see Fig. 1!. Since the array is current-biased above
critical current there will be a nonzero voltage across so
subset of junctions in the array. These ‘‘active’’ junctions a
synchronized, or phase locked, if their voltages, after so
initial transients, are identical functions of time. Furthe
more, previous workers have established that the effect
CIMF’s may be important5 in determining the static and dy
namics properties of arrays, and so it is natural to cons
the effects of CIMF’s on synchronization as well.

In this paper we present numerical and analytical e
dence that mutual inductance between cells of a ladder a
can lead to rich dynamical behavior, including destabiliz
tion of synchronization and reentrant synchronization as
relative size of the mutual to self inductance of the cells
increased. The instability results for a finite range of valu
of the mutual inductance and occurs when, for the resistiv
and capacitively shunted junction~RCSJ! model, the numeri-
cal solutions to the model equations diverge with time.
addition to our numerical solutions we also investigate
dynamics analytically. Namely, the two coupled RCSJ eq
tions for the horizontal and vertical junctions can be appro
mately decoupled. The simplified equations allow us to c
culate analytically the Floquet exponents, which measure
degree of stability of the synchronization. Then, by dire
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comparison of the analytic results for the Floquet expone
based on the simplified equations, and the numerical res
for the Floquet exponents, based on the full RCSJ equati
we learn valuable information about the roles of the horizo
tal and vertical junctions in the array. This technique appe
to be a powerful way to analyze the relative importance
subsets of junctions that experience different local con
tions.

Josephson junctions consist of superconducting isla
separated by a thin layer of nonsuperconducting materia
the superconductors, the coherent motion of the pa
electrons, or Cooper pairs, leads to a wavefunction of
form C5uCueiu, whereu is the macroscopic phase of th
superconductor. The equations describing the dynamics
single junction depend on the gauge-invariant phasediffer-
ence, or Josephson phase, across the junction,f5u12u2

2(2p/F0)*1
2A•dl, whereA, the vector potential due to a

external magnetic field, is integrated along a path from o
side of the junction to the other.F05\/2e is the magnetic
flux quantum, where\ is Planck’s constant divided by 2p
ande is the electronic charge. We assume in this work t
A50.

Consider a ladder array of underdamped junctions withN
cells and periodic boundary conditions, as shown in Fig
Each junction has a McCumber parameterbc
[2pCIcxR

2/F0, whereC(R) is the junction’s capacitance
~resistance!, andI cx is the critical current of a ‘‘horizontal’’
junction. We assume each cell of four junctions is describ
by a self-inductanceL and also has a mutual inductanc
2M (M.0) with each of its two nearest neighbors, whe
M,L. As an adjustable parameter in the theory,M /L is
allowed to range between zero and one. Basic physics a
ments for a simple ladder with nearest-neighbor mutual
ductance precludesM /L from exceeding 0.5.6 Nevertheless,
it is informative and worthwhile to study the behavior of th
model equations over the range 0,M /L,1. Furthermore,
such theoretical work could pique the interest of others
try, using modern fabrication techniques, to enhance the
tual over the self-inductance of the cells and thereby pr
the broader range ofM /L values studied here. Alternatively
one could point to these results forM /L.0.5 as an interest-
ing portent to the behavior that might be observed in arr
with overlapping cells or in three-dimensional arrays.

An analysis based on the RCSJ equations and includ
©2001 The American Physical Society03-1
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B. R. TREES AND R. A. MURGESCU PHYSICAL REVIEW B63 144503
the effect of induced magnetic flux leads to a pair of coup
equations for the Josephson phases of the horizontal and
tical junctions,

bcf91f81sinf1
1

bL
ZTr

•X21
•~Z•f12c!50, ~1!

bcc91c81a sinc1
1

bL
X21

•~Z•f12c!50, ~2!

wherebL[2pLI cx /F0 is the dimensionless self-inductanc
of a cell, anda[I cy /I cx is the critical current anisotropy. Al
our work presented here corresponds toa51. The prime
symbols denote differentiation with respect to dimensionl
time, t[t/tc wheretc[\/2eIcxR. These equations are com
pactly represented in matrix notation, wheref and c are
N-dimensional vectors representing the Josephson phas
the horizontal and vertical junctions, respectively.Z is an
N3N matrix that depends on geometry, andX is the dimen-
sionless inductance matrix, alsoN3N in size. The diagona
terms ofX represent the self-inductance of a given cell, i.
Xj j 511, while the mutual inductance of the neare
neighbor cells is represented by the termsXj , j 6152mL ,
wheremL[M /L is the dimensionless mutual inductance. A
other elements ofX are zero. Equations~1! and ~2! were
solved numerically forf, c, f8, andc8 via a fourth-order
Runge-Kutta algorithm as a function of the parametersN,

FIG. 1. Ladder array of Josephson junctions with perio
boundary conditions. The horizontal junctions, along the rungs
the ladder, are parallel to thex axis, while the vertical junctions are
parallel to they axis. A dc bias current,I B , is injected at each node
on one side and extracted from the opposite side. The Josep
phase for the horizontal~vertical! junction in thej th plaquette isf j

(c j ).
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bc , bL , mL , and i B[I B /I cx ~the dimensionless bias cur
rent!. The starting configuration consisted of random vo
ages and zero Josephson phases.

As described elsewhere for a similar system7 a stability
analysis of the solutions to Eqs.~1! and~2! follows by letting
f5f01h andc5c01d, wheref0 andc0 are solutions to
these equations. Equations~1! and ~2! are linearized with
respect toh andd. The time dependence of the perturbatio
has the formh;eltct andd;eLtct, wherel (L) represent
the Floquet exponents for the horizontal~vertical! junctions.
If Re(ltc).0 or Re(Ltc).0 we expect unstable behavio
of the array for the given set of circuit parameters. In fact,
are interested in that exponent whose magnitude is close
zero, as that describes the stability of the longest-lived m
of the array.

Figure 2~a! shows the minimum Floquet exponent as
function ofmL for a 5-cell ladder. The symbols are results
a numerical stability analysis of Eqs. 1 and 2. The mean
of the error bars visible in the figure requires some expla
tion. For the values of dimensionless capacitance (bc510)
and dimensionless self-inductance (bL5100) used here, the
array exhibits interesting behavior when its phase-locked
lutions are perturbed. In fact, the numerically calculated F
quet exponents are a relatively weak function of the run ti
of the code. That is, as the number of time steps employe
the Runge-Kutta method is systematically increased, the
merically calculated exponents oscillate about a well-defin
mean value. The size of the oscillations is small, with a st
dard deviation of the mean, for a sample of eight to t
different run times, that is about one percent of the me
value of the exponent. Such behavior of Josephson junc
arrays has been previously observed7 and is characteristic o
arrays that are only weakly stable.~Note the small magnitude
of lmin .) In addition to the weak dependence of the exp
nents on the run time of the code, we also found a we
dependence of the exponents on the initial values of the v
ages,f8 andc8. We thereforealsoaveraged the numerically
calculated exponents over eight to ten different sets of r
domly assigned initial voltages. The results in Figs. 2~a!,
2~b!, and 2~c! then represent a double average, for each va
of mL , over run time and initial voltage. The error bars re
resent the standard deviation of the mean of the resulting
of exponents for each value ofmL . The small size of the
error bars, which are clearly less than the size of the symb
themselves, implies that these averaged results are in
meaningful.

Based on Fig. 2~a!, we see that asmL is increased from
zero towards 0.5, the stability of phase locking increases
shown by the negative exponent of growing magnitu
while the degree of stability decreases for increasingmL
greater than approximately 0.6. Even more interesting is
behavior of the ladder in the range 0.5<mL&0.6. For these
values of the mutual inductance the ladder is actually
stable. This is evidenced by very rapidly growing phases
voltages with time as Eqs.~1! and ~2! are numerically inte-
grated. ForN55, the lower limit of this instability region is
mL

(1)50.5 independent of other circuit parameters such asbc

andbL . The upper limit of this region, which we denote b
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FIG. 2. Minimum Floquet exponent for periodic ladders versus the dimensionless, nearest-neighbor mutual inductance. The
symbols with error bars are the results of a numerical stability analysis based on Eqs.~1! and ~2!. Each circle is an average over differe
values of the run time of the code and also different values of the initial voltages. The error bars represent the standard deviation of
exponent. Each circle represents an average of a set of eight to ten different~random! initial voltages, where for each particular set of initi
voltages, the Floquet exponents for fifteen different run times were calculated. The solid line represents an analytic result@Eq. ~3!# based on
the horizontal junctions.~a! N55, i B510, bc510, andbL5100. The analytic result predicts stable phase-locked solutions for 0<mL

<1. The numerical results exhibit an instability, however, formL
(1)<mL<mL

(2) , wheremL
(1)50.5 andmL

(2) is dependent on the startin
configuration of phases and voltages, as well as on the value ofbL . The region is denoted by vertical lines on the graph. The dotted ver
line represents that the upper boundary of the instability region is not well defined for these average exponents. This instability o
with the vertical junctions. INSET: geometric quantityg0

(5) versusmL . @See Eq.~4!.# ~b! N55, i B510, bc510, andbL510. Decreasing the
self-inductance has resulted in more stable phase locking formL,0.5, in which region, additionally, the exponents equal21/2bc , inde-
pendent ofmL . But the instability region formL.0.5 has grown significantly due to the decrease in the value ofbL . ~c! N57, i B510,
bc510, andbL5100. In this case, the geometry of the ladder leads to an instability formL.0.8 that originates with the horizontal junction
The boundary of this ‘‘largemL’’ instability is marked in the figure with a vertical line atmL50.8. The instability due to thevertical
junctions nearmL50.5 still exists, as it did in the ladder withN55.
ti
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mL
(2) , depends on such quantities as the value of the star

voltages as well as on the value ofbL . For example, for a
fixed set of starting voltages, we find thatmL

(2) is a decreas-
ing function of bL . We have denoted the variability of th
14450
ngvalue ofmL
(2) by drawing a dotted vertical line in the figure

Such a line is meant to convey merely that the upper bou
ary of the instability region is not well defined for thes
averaged exponents. In any event, precise knowledge ofmL

(2)
3-3
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B. R. TREES AND R. A. MURGESCU PHYSICAL REVIEW B63 144503
is not crucial here, but the knowledge that the instabi
region existsis important. Also, it is interesting to note tha
this instability region does not appear at all if both the pha
and the voltages are initialized to zero!~See discussion be
low for the reason for this behavior.!

Physically, this instability is due to a competition betwe
the self-inductance of a given loop~say loop j ), which
wishes to have a current with a given sense of circulati
and the mutual inductance of the two neighboring loopsj
61), which wish to have the current in loopj flow in the
opposite sense. We have also looked at ladders withN56,
7, 8, and 9. All show this instability in the vicinity ofmL
50.5. Indeed, we would expect this competition-induced
stability to be independent of ladder size for the case
nearest-neighbor mutual inductance in that the onset of
instability should always occur atmL50.5.

If, for N55, we reduce the value of the dimensionle
self-inductance such thatbL510 and keepbc510, then for
mL,0.5 the phase-locked solutions are more stable,
shown by the larger value ofulminu seen in Fig. 2~b!. Fur-
thermore, the weak dependence of the numerically calcul
exponents on run time and initial voltage disappears co
pletely, as evidenced by the lack of error bars in the figure
Fig. 2~b! we see that formL,0.5 the exponents equa
21/2bc , independent ofmL , and we also note that the in
stability region formL*0.5 has increased significantly wit
the decrease in value ofbL , as mentioned previously.

Interestingly, we find that ladders withN57, 8, and 9
also exhibit asecondinstability region that the 5-cell ladde
does not exhibit. Figure 2~c! shows the Floquet exponen
for N57. This second instability region has an onset a
value ofmL

(3).mL
(2) that is dependent on ladder size. We no

turn to an analytic calculation of the Floquet exponen
which helps us understand the source of these instabiliti

A reasonable starting approximation is to ignore the c
pling between the horizontal and vertical junctions butoth-
erwise not to ignore the effects of the vertical junctions. That
is, we letc50 in Eq.~1! andf50 in Eq.~2!, but we do not
then completely ignore Eq.~2! and study only the horizonta
junctions. An analysis like that described in Ref. 7 applied
Eq. ~1! leads to a Mathieu equation describing the time
pendence of the perturbations to thehorizontal Josephson
phases. In such a case, the corresponding Floquet expo
for the horizontal junctions can be calculated analytica
The result is

Re~lmtc!52
1

2bc
6

1

2bc
ReA124vm

(N)S bc

bL
D , ~3!

where we can think ofvm
(N) as theeffectivenormal-mode

frequencies of the ladder withN plaquettes. For example,

vm
(5)5@4 sin2~mp/N!12mL$cos~2pm/N!

2cos~4pm/N!%#/~mL
22mL21!,

where 0<m<N21. Note thatvm
(N) is a function ofmL .

Equation~3! was used to produce the solid curves in Fig
2~a!, 2~b!, and 2~c!. Note that if, for particular values o
vm

(N) , bc andbL , the argument of the square root in Eq.~3!
14450
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is positive and larger than one, then at least one of the F
quet exponents will be positive, signaling unstable pha
locked solutions. In fact, sincebc.0 and bL.0 such an
instability will occur if vm

(N),0! Plots ofv1
(N) versusmL for

N55 and 7 ~not shown here! demonstrate thatv1
(5).0 for

0<mL<1, but v1
(7) is negative for mL.0.8. We have

checked thatvm
(N).0 for mÞ1 and forN55 and 7. Thus

the cause of this instability in the 7-cell ladder formL
.mL

(3) is them51 normal mode. That is, this instability is
geometrical effect, in that it does not occur forN55, for
example, and it is triggered by an effective normal mo
frequency of the horizontal junctions becoming negative.

This analytic work, however, doesnot point to the hori-
zontal junctions as the cause of the instability nearmL*0.5.
To appreciate this behavior it is crucial to look to the vertic
junctions. A procedure similar to that which led to Eq.~3!
leads to a set of effective Floquet exponents for the vert
junctions

Re~Lmtc!52
1

2bc
6

1

2bc
A124bcFa cosc01

2gm
(N)

bL
G , ~4!

FIG. 3. Characteristic~dimensionless! voltages across the hori
zontal junctions in a ladder withN57, i B510, bc510, andbL

5100. These voltages correspond to the Floquet exponent
smallest magnitude and are plotted as a function of position of
junction along the array. The voltages are actually a subset of
eigenvectors of a matrix used to calculate the Floquet expone
The characteristic voltages for five different values of the mut
inductance,mL , are shown. For the two values ofmL corresponding
to unstable phase locking (mL50.90,0.95) there is a noticeable di
ference in the spatial dependence of the voltages compared to
voltages calculated formL50.1, 0.6, and 0.7, for which stabl
phase locking was observed. The voltages corresponding to
larger values of the mutual inductance tend to have a larger am
tude and to exhibit less spatial variation in sign as one moves a
the array. The lines are intended as guides to the eye.~The quantity
Vc is defined viaVc[I cxR.!
3-4
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where the geometrical factorgm
(N) is also a function ofmL

and is similar but not identical tovm
(N) :

gm
(5)~mL!5~mL

423mL
211!/~125mL

215mL
422mL

5!

1F2mL~12mL!cosS 2pm

N D
12mL

2cosS 4pm

N D G Y ~2mL
323mL

22mL11!.

In this case, the vertical junctions will exhibit an expone
tially growing Josephson phase ifgm

(N),2(abLcosc0)/2.
Now a plot of g0

(5) versusmL @see the insert in Fig 2~a!#
shows that the function abruptly becomes negative atmL
50.5 and asymptotically approaches zero from the nega
side asmL is increased further.~We have checked thatgm

(5)

.0 for mÞ0. Also, we see similar behavior for the 7-ce
ladders.! If we assume that cosc0.0, then the vertical junc-
tions will be unstable forgm

(N),0. Based on the behavior o
g0

(5) an instability region will exist for a range ofmL values,
mL

(1)<mL<mL
(2) where mL

(1)50.5 andmL
(2) will depend on

a, bL , and cosc0. For example, asbL increases we expec
that mL

(2) will decrease, i.e., approach a value of 0.5. W
have indeed seen such behavior of the numerical res
for the Floquet exponents. Also, the inequalitygm

(N)

,2(abLcosc0)/2 suggests that the value ofmL
(2) should

depend on the value of cosc0. Recall our discussion of Fig
2~a!, where we noted that the value ofmL

(2) does indeed
depend on the choice of the starting configuration of pha
and voltages. In general, then, it is clear that the instab
near mL50.5 originates with thevertical junctions and
would thus be missed by an analysis that was based sole
the horizontal junctions. It is also clear why this instabili
does not appear numerically whenboth the Josephson phase
and the voltages across the junctions are initialized to z
In such a scenario, although the horizontal junctions may
active, the only possible solution for the vertical junctions
to keep zero voltages and Josephson phases for all ti
Since we know this instability region is triggered by th
vertical junctions, the vertical junctions have no chance
‘‘go unstable’’ and thus the instability never appears.

We have also studied the characteristic voltages acros
horizontal junctions that correspond to particular values
the Floquet exponents. That is, the process of numeric
calculating the Floquet exponents involves finding the eig
values and eigenvectors of a matrix. The eigenvalues g
the values of the Floquet exponents themselves, and
each particular exponent has a corresponding eigenve
which in turn represents a set of values for the voltages
Josephson phases for each of the junctions in the array. T
y
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each eigenvector gives, in a sense, a geometrical pictur
the behavior of the junctions for the corresponding Floq
exponent.~see Fig. 3! For a seven-cell ladder we have looke
at the eigenvector corresponding to the exponent of m
mum size for several different values ofmL . These numeri-
cal results were obtained by initializing all junction voltag
and Josephson phases to zero. Figure 3 only shows the
ages across the horizontal junctions because the ver
junctions generally have voltages of two to four orders
magnitude smaller. Careful consideration of the graph, wh
plots the characteristic voltages as a function of the posi
of the horizontal junction along the ladder, shows that th
is a distinction between the spatial behavior of the volta
for mL50.9 and 0.95 and all the other values ofmL depicted.
For mL50.90 and 0.95, both of which correspond to unsta
phase-locking in the seven-cell ladder, the amplitude of
voltages is generally larger and shows less variation of s
as one moves along the array. Those values of the mu
inductance depicted in the graph and for which stable ph
locking occur (mL50.1,0.6,0.7) result in voltages of
smaller amplitude which also tend to exhibit greater var
tions in sign along the ladder. So there does indeed appe
be a geometrical difference in the behavior of the horizon
junctions asmL crosses over into the unstable region.

We conclude that mutual inductance between cells of
underdamped ladder array has the effect of destabilizing s
chronization for ranges of values ofmL , the ratio of the
mutual to self-inductance. These specific ranges ofmL that
lead to unstable behavior are geometry dependent. An
lytic calculation of the Floquet exponents based on the h
zontal junctions agrees with the numerical exponents, ba
on the full RCSJ equations, for those values ofmL for which
stable phase locking occur. To understand the cause of al
observed instabilities, however, it is crucial in the analy
work to consider the behavior of the vertical junctions.

Although some values of the mutual inductance used
these simulations can not be obtained in simple ladder
rays, this work suggests that experimentalists may wish
attempt fabrication of arrays that enhances the mutual o
the self-inductance, perhaps making it possible to look
the rich dynamical behavior predicted here. Certainly
searchers working on the problem of coherent emission fr
Josephson junction arrays should be aware this potentia
unstable behavior exists.
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