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Field-dependent surface impedance tensor in amorphous wires with two types of magnetic
anisotropy: Helical and circumferential

D. P. Makhnovskiy, L. V. Panina, and D. J. Mapps
Department of Electronic, Communication and Electrical Engineering, University of Plymouth, Drake Circus,

Plymouth, Devon PL4 8AA, United Kingdom
~Received 27 June 2000; published 21 March 2001!

This paper concerns the theoretical and experimental investigation of the magnetoimpedance~MI ! effect in
amorphous wires in terms of the surface impedance tensor§̂. Physical concepts of MI and problems of
significant practical importance are discussed using the results obtained. The theoretical analysis is based on
employing the asymptotic-series-expansion method of solving the Maxwell equations for a ferromagnetic wire
with an ac permeability tensor of a general form associated with magnetization rotation. The magnetic-
structure-dependent impedance tensor§̂ is calculated for any frequency and external magnetic field, and is not
restricted to the case when only strong skin effect is present. This approach allows us to develop a rigorous
quantitative analysis of MI characteristics in wires, depending on the type of magnetic anisotropy, the magni-
tude of dc bias current, and an excitation method. The theoretical model has been tested by comparing the
obtained results with experiment. For the sake of an adequate comparison, the full tensor§̂ is measured in
CoFeSiB and CoSiB amorphous wires having a circumferential and helical anisotropy, respectively, by deter-
mining theS21 parameter. In cases when the rotational dynamics is responsible for the impedance behavior,
there is a reasonable agreement between the experimental and theoretical results. Such effects as the ac biased
asymmetrical MI in wires with a circumferential anisotropy, and the transformation in MI behavior caused by
a dc current~from that having a symmetric hysteresis to an asymmetric anhysteretic one! in wires with a helical
anisotropy are discussed.

DOI: 10.1103/PhysRevB.63.144424 PACS number~s!: 75.40.Gb, 75.50.Kj, 75.30.Gw
d
h
-
so
nc
he
ls

or
3
or
so
l
en
en
re
p
t
t

ire
h
n
a

s
ne
so

d

cies
a
ag-
t
ac

olt-
ltage
etic
dy-
nt
the

ag-
me-
he

etic

n

t

I. INTRODUCTION

This paper addresses the magnetic-structure-depen
impedance analysis in amorphous magnetic wires with a
lical ~or circumferential! anisotropy, including such practi
cally important phenomena as the role of a magnetic ani
ropy and a dc bias current in controlling magnetoimpeda
~MI ! characteristics, asymmetrical MI, and the role of t
off-diagonal impedance in asymmetrical MI. We have a
carried out an experimental investigation of these effects
be able to demonstrate the consistency between the the
ical and experimental results. Since its discovery in 1991

the MI effect has received much attention due to its imp
tance in developing new-generation micromagnetic sen
of high performance.1–4 However, most of the theoretica
work is restricted to specific conditions not always consist
with the experiment. In certain cases, conflicting experim
tal results of MI in materials with similar magnetic structu
have been reported. This has occurred when different ty
of excitation have been used. This is particularly related
the case of a complicated magnetic configuration, such as
case of a helical magnetization in a ferromagnetic w
Therefore, rigorous theoretical and experimental researc
MI effects accounting for specific magnetic structures a
excitation methods remains to be of considerable interest
importance.

In general, the MI effect involves a very large and sen
tive change in the voltage measured across a ferromag
specimen with a well-defined transverse magnetic ani
ropy, carrying a high-frequency current and subjected to a
magnetic field. For example, in the case of 30-mm diameter
0163-1829/2001/63~14!/144424~17!/$20.00 63 1444
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amorphous wires of a composition (Co0.94Fe0.06!72.5Si12.5B15
~having a circumferential anisotropy!, the voltage~or imped-
ance! change can be as much as 10–50%/Oe at frequen
of several megahertz.5–8 Considering MI as a change in
complex resistance, it has a direct analogy with giant m
netoresistance~GMR!. In earlier work there was an attemp
to regard it as a new ac GMR effect, explained in terms of
quantum magnetotransport.9,10 However, this approach failed
to explain a very large nominal change in the measured v
age as a change in true resistance, as well as the vo
dependence with frequency in the presence of a dc magn
field. It soon became clear that the effect has an electro
namic origin owing to the redistribution of the ac curre
density under the application of the dc magnetic field. In
original theoretical work on MI5,6 the current density has
been calculated with the assumption that the variable m
netic properties can be described in terms of a total per
ability having a scalar or quasidiagonal form. This allows t
impedance of a magnetic object@and the voltage induced
across it by the ac currenti 5 i 0 exp(2jvt)] to be found es-
sentially in the same way as in the case of a nonmagn
material.11 In this approach, the voltage responseV is of the
form

V5Z~a/dm!i , ~1!

where the impedanceZ is calculated as a function of a ski
depth

dm5c/A2psvm t. ~2!

Herec is the velocity of light,s is the conductivity,m t is the
effective transverse permeability~with respect to the curren
©2001 The American Physical Society24-1



kin
r-
en
b
iv
q

ex
a
in

-
p
cu
e
c
ire
d
bi
rre

ld
lo
th
a

t
na
s

u

er
te

-

s.
n

I
tic
lm
tic
nt
h
h
eo

a

e
so
e
ro
e
n

stic
ratio
n
o

e-

de-

The
y-
con-
ugh
ffu-

cu-
ire
ag-
ess
six
ted

etic

in
I

ire
-

s-
fi-

tric

eri-

D. P. MAKHNOVSKIY, L. V. PANINA, AND D. J. MAPPS PHYSICAL REVIEW B63 144424
flow!, and 2a is a characteristic cross-section size. If the s
effect is stronga/dm@1, the impedance is inversely propo
tional to the skin depth, therefore, the magnetic-field dep
dence of the transverse permeability controls the voltage
havior. This simple consideration has provided a qualitat
understanding of the MI behavior, and in certain cases E
~1! and ~2! have given a reasonable agreement with the
perimental results. A good example is the MI effect in
Co-based amorphous wire. A tensile stress from quench
~and enhanced by tension annealing! coupled with the nega
tive magnetostriction results in a circumferential anisotro
and a corresponding left- and right-handed alternative cir
lar domain structure.12,13 The ac current passing through th
wire induces an easy-axis magnetic field that moves the
cular domain walls so that they nearly cross the entire w
The circular magnetization is very sensitive to the axial
magnetic field, which is a hard-axis field. The ac permea
ity associated with this process is circumferential and co
sponds tom t introduced in Eq.~2!. Substituting in Eq.~1!
and ~2! this circular permeability accounting for the fie
dependence and the frequency dispersion due to the
domain-wall damping gives a very good agreement with
experimental MI spectra for frequencies lower than the ch
acteristic frequency of the domain-wall relaxation~;1–10
MHz for 30-mm diameter wires!.5,6 Typically, the rotational
relaxation is a faster process, and for higher frequencies
magnetization rotation dynamics dominate. The rotatio
permeability has an essential tensor form, which make
difficult to use Eq.~1! and ~2! for higher frequencies: the
difference between the experimental and theoretical res
becomes quite considerable.

Further experiments on MI have resulted in the discov
of such phenomena as asymmetrical or bistable MI in twis
~or torsion annealed! amorphous wires,14–18 asymmetrical
MI in annealed amorphous ribbons19,20 and in films with
crossed anisotropy,21 and the effect of an ac bias field pro
ducing asymmetrical voltage response in systems having
magnetic asymmetry in the dc magnetic configuration.22,23

Regarding these phenomena, the approach based on Eq~1!
and ~2! can fail to provide even a qualitative explanatio
especially in the case of the ac biased asymmetrical MI.

Another theoretical difficulty is related to the case of M
in the multilayered films consisting of two upper magne
layers sandwiching a nonmagnetic conductor. If the fi
width is smaller than a certain critical value, the magne
flux leakage through the inner conductor becomes esse
in determining the impedance tensor of the total system. T
effect is known to give a considerable contribution to a hig
frequency inductance of similar systems. The existing th
retical approach to this problem24–27does not account for the
tensor form of the permeability, which is not correct for
practically important case of a transverse~or crossed! mag-
netic structure in the outer layers.28

Therefore, numerous experimental results on MI requir
more realistic theory taking into account a specific ten
form of the ac permeability and impedance. In the pres
paper, a general approach to solving electrodynamic p
lems for ferromagnetic objects characterized by a given p
meability tensor is proposed and is based on the expansio
14442
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Maxwell’s equations in asymptotic series. The characteri
parameter of these expansions can be chosen to be the
b5a/d whered5c/A2psv is the nonmagnetic penetratio
depth (m t51). Constructing the asymptotic serious for tw
limiting casesb@1 and b!1 and matching them in the
intermediate region, the solution for ac field distribution b
comes valid in the entire frequency~or dc magnetic field!
range. For obtaining the asymptotic series in the caseb@1, a
singular perturbation method is used that is needed to
scribe the field distribution in the surface layer. Forb!1, a
standard regular perturbation method can be employed.
asymptotic method for solving the problems of electrod
namics such as the impedance analysis in ferromagnetic
ductors has been used for the first time in this case, altho
it has been known in such fields as heat transmission, di
sion, and certain problems in optics.29–31

The method of asymptotic series is applied to the cal
lation of the surface impedance tensor in a magnetic w
having in general a helical magnetic anisotropy. The ac m
netization is assumed to be related to the rotational proc
and is described by a tensor of a general form having
different components. Considering that the wire is subjec
to an ac currenti and an ac axial fieldhex, and its static
magnetic structure can be modified by a dc axial magn
field Hex and a dc currentI b ~see Fig. 1!, a quantitative
explanation of a number of high-frequency MI effects
wires can be given. This includes the modification of M
characteristics under the effect of the dc current in a w
with a helical anisotropy. Without dc bias, the plots of im
pedance vsHex exhibit a symmetric hysteresis. With increa
ing bias field, the hysteresis area shifts and shrinks, and
nally disappears, resulting in highly sensitive asymme
impedance plots.

To demonstrate consistency between theory and exp

FIG. 1. Principle directions and quantities used.
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FIELD-DEPENDENT SURFACE IMPEDANCE TENSOR IN . . . PHYSICAL REVIEW B63 144424
ment, measurements of the impedance tensor in amorp
wires with both types of anisotropy have been made un
proper conditions. A number of previously obtained resu
have been repeated here for the sake of an accurate com
son, since the MI behavior depends significantly on the
citation conditions. In the case of a helical anisotropy,
full impedance tensor has been obtained for the first tim
The role of the off-diagonal components of the impedan
can be seen if the voltage response is measured in the e
nal coil, or when the wire is subjected to the ac axial fie
For example, in the presence of bothi andhex, the voltage
measured across the MI element exhibits a strong asymm
that is due to the contribution of the off-diagonal tensor co
ponent.

The approach of the surface impedance tensor~and a ten-
sor permeability! to described the MI phenomena has be
previously used in a number of works using certain simp
fications. In the case of magnetic/metallic multilayers,28,32

the edge effects have been ignored completely, and the
system is treated as having infinite dimensions in plane.
asymptotic methods developed in the present work for a w
geometry can be modified for a two-dimensional impeda
analysis in the multilayer film that will be published els
where. Regarding the wire geometry, in Ref. 15 the asy
metrical MI has been considered for a low-frequency lim
(b!1). The method used turns out to have a very sl
convergence that has provided a qualitative approach o
In Ref. 33, the off-diagonal impedance has been analyzed
a wire with a circumferential anisotropy that does not inclu
the effect of a dc current to produce asymmetrical MI. B
sides, the approximation of very high frequencies (b@1)
has been used, treating the wire as a plane object. It se
that this approximation is not consistent with the experim
tal case. Almost all the experimental results on MI are o
tained for 30-mm diameter amorphous wires having the r
sistance of 130mV cm. In this case, the conditionb@1
requires the frequency to be in the gigahertz range, whe
the experiment is concerned with frequencies of 1–1
MHz. However, the range of frequencies and fields wh
this approximation is reasonable is much wider, as has b
proved in the present analysis. Calculating the higher-or
terms in the expansion~in the parameter 1/b!, we have dem-
onstrated that they contain a certain magnetic parametemef

and the actual validity condition isAmefb@1. It is worth
noticing that it was not possible to obtain this important co
clusion within the model used in Ref. 33, since calculat
the impedance for a plane geometry gives only zero-deg
terms and does not allow the next terms to be determine

The paper is organized as follows: Section II introduc
the surface impedance tensor with relation to a certain
excitation and voltage response measurement. Section
formulates the problem, presenting the linearized Maxwe
equations and the permeability tensor for the model un
consideration. Sections IV and V give solutions in high-b
@1) and low- (b!1) frequency limits, respectively. Sectio
VI concerns the numerical analysis of the behavior of
impedance tensor in a single-domain wire with two types
anisotropy~circumferential and helical!. In Section VII the
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experimental results are given, demonstrating a very g
agreement with the theory. Finally, we give concluding
marks in Sec. VIII.

II. VOLTAGE RESPONSE AND SURFACE IMPEDANCE
TENSOR

The GMI effect deals with a voltage response in a th
metallic magnetic material subjected to a high-frequency
citation. In the case of a wire, it is reasonable to use an
currenti and/or an ac axial fieldhex as a source of excitation
~see Fig. 2!. The voltage is measured either across the w
(Vw) or in the coil (Vc) mounted on it. The value ofVw is
determined by considering the energy consumption in
wire

iVw5
c

4p E
S
~e3h!ds, ~3!

where the integration is performed along the wire surfacee
and h are the ac electric and magnetic fields, andc is the
velocity of light. The voltageVc is found by integratinge
along the coil turns

Vc5 R edl. ~4!

As it follows from Eqs.~3! and~4!, the induced voltage can
be found by calculating the tangential components of
fields ēt ,h̄t at the wire surface. Since it is assumed that
wavelength is larger than the sample size, the field distri
tion outside the sample corresponds to the static case. T
the excitation method imposes the boundary conditions
the magnetic fieldh̄t . Using the cylindrical coordinates~r,w,
z! with the axisz along the wire~see Fig. 1!, the boundary
conditions can be written as

hw~a!5h̄w52i /ca, hz~a!5hex, ~5!

wherea is the wire radius. The electric fieldēt is related to
the magnetic fieldh̄t via the surface impedance tensor§̂,

ēt5 §̂~ h̄t3n!, ~6!

FIG. 2. Voltage response due to the ac excitation using currei
and fieldhex, measured across the wire in~a! and in the coil in~b!.
4-3
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D. P. MAKHNOVSKIY, L. V. PANINA, AND D. J. MAPPS PHYSICAL REVIEW B63 144424
wheren is a unit radial vector directed inside the wire. Com
paring Eqs.~3!–~6! it is seen that the impedance§̂ is the only
characteristic describing the voltage response in the sys
excited by the external magnetic fieldh ~of any origin!. In
ferromagnetic conductors,§̂ is a two-dimensional tenso
even for the electrically isotropic case.

The present analysis is concerned with the calculation
the surface impedance tensor for a wire with a uniform st
magnetization having a helical orientation. In this case,
tensor§̂ is constant on the surface. Writing vector Eq.~6! in
the coordinate representation, the components of§̂ can be
determined as

ēw52§wwh̄z1§wzh̄w , ēz52§zwh̄z1§zzh̄w , ~7!

where §zw5§wz because of symmetry. Substituting Eq.~7!
into Eqs.~3! and ~4! gives the voltage responses

Vw5ēzL5S §zz

2i

ca
2§zwhexDL, ~8!

Vc5ēw2panL5S 2§wwhex1§wz

2i

caD2panL, ~9!

whereL is the wire length andn is the number of coil turns
per unit length.

III. BASIC EQUATIONS

The calculation of§̂ is based on the solution of the Max
well’s equations for the fieldse andh together with the equa
tion of motion for the magnetization vectorM . An analytical
treatment is possible in a linear approximation with resp
to the time-variable parameterse, h, m5M2M0 , whereM0
is the static magnetization. Assuming a local relationship
tweenm andh: m5x̂h, the problem is simplified to finding
the solutions of the Maxwell equations with a given ac p
meability tensorm̂5114px̂,

curle5 j v~m̂h!/c, curlh54pse/c, ~10!

satisfying the boundary conditions~5!. Heres is the conduc-
tivity. Introducing the local permeability tensorm̂ corre-
sponds to neglecting exchange effects. This approximatio
reasonable for not very high frequencies, such that the
depth is still larger than the exchange length. Further
sumptions aboutm̂ are needed. The permeability depends
many factors, including the domain configuration, anis
ropy, stress distribution, and the mode of magnetizat
~domain-wall motion or magnetization rotation!. These fac-
tors can be complex in real materials, making modeling v
difficult. In this analysis, the domain structure is not cons
ered; it can be eliminated by a proper dc bias. It is assum
that M0 is aligned in a helical direction having a consta
angle u with the wire axis~the details of the dc magneti
structure are given in Sec. VI!. In this case,m̂ is determined
by the magnetic-moment rotation and is independent of
position. This is approximation even for an ideal mater
since a circumferential magnetization near the wire cen
results in an infinite exchange energy. Then, there is alw
14442
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a radial distribution in permeability that is stronger in th
case of a helical anisotropy due to a stress distribution. H
when we consider a high-frequency case, the permeabilit
predominantly a surface permeability~not affected by radial
changes!. In the low-frequency case where the radial chan
in permeability becomes important the magnetoimpeda
effect is relatively small. In fact, an averaged value of t
permeability can be used for a low-frequency approximati
We extrapolate the high-frequency result to the lo
frequency case using the same permeability parameter.
comparison between the theory and experiment is go
proving that this approach is reasonable and a radial di
bution in permeability is not significant for MI effects. Th
tensorm̂ has a general form with

mwr52m rw , m rz52mzr , mwz5mzw ,

due to the magnetic symmetry. Considering that the ti
dependence is given by exp(2jvt) and utilizing the cylindri-
cal symmetry@e5(ew ,ez), b5(bw ,bz)#, the Maxwell equa-
tions can be reduced to

]ez

]r
52

j v

c
bw ,

1

r

]~rew!

]r
5

j v

c
bz , ~11!

]hz

]r
52

4ps

c
ew ,

1

r

]~rhw!

]r
5

4ps

c
ez , ~12!

whereb5m̂h is the vector of magnetic induction. Sincebr
50 ~which satisfies the boundary conditions at the wire s
face!, the material equations are of the form

bw5m1hw1m3hz , bz5m3hw1m2hz . ~13!

The magnetic parameters are given by

m15mww1mwr
2 /m rr , m25mzz1m rz

2 /m rr ,
~14!

m35mwz2~mwrm rz!/m rr .

Substituting Eq.~13! into Eqs.~11! and~12! and eliminating
the electric fielde gives the equations for the magnetic-fie
componentshz andhw

r 2
]2hw

]r 2 1r
]hw

]r
1~k1

2r 221!hw52k3
2r 2hz ,

r 2
]2hz

]r 2 1r
]hz

]r
1k2

2r 2hz52k3
2r 2hw , ~15!

where ki
25m i(4p j vs/c2) and i 51,2,3. Equation~15! is

solved imposing boundary conditions~5! at the wire surface.
The boundary conditions atr 50 must exclude the infinite
solutions, requiring
4-4
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hw~r<a!,`, hz~r<a!,`. ~16!

Then, coupled Eq.~15! with conditions~5! and~16! are com-
pletely determined.

In the present analysis, asymptotic solutions
Eq. ~15! are found in two limiting cases:d!a and d@a,
where d5c/A2psv is the skin depth in a nonmagnet
material (m̂51), as a power series in a correspondi
small parameter (d/a or a/d). On the other hand, no
condition is imposed on the value of the magnetic skin de
d i5c/A2psvm i , where m i is a corresponding magneti
parameter defined by Eq.~14!. The series representatio
for the electric field e5(ez ,ew) is then deduced from
Eq. ~12!. If the surface valuesēw ,ēz are written in the
form linear with respect to the boundary valuesh̄w and
hex, the surface impedance tensor can be calculated f
Eq. ~7!.

To simplify the further analysis, it is useful to write th
tensor m̂ in the coordinate system with the axisz8iM0 ,
e
c
s-
om
d
ra
he
t

14442
f
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where it has the simplest form. In the case of a unifo
precession of the total magnetization vectorM aroundM0 ,
the susceptibility tensor in the prime coordinates (z8,w8,r )
related with the equilibrium magnetizationM0 ~see Fig. 1! is
of the form

x̂5S x1 2 j xa 0

j xa x2 0

0 0 0
D . ~17!

This form can be easily obtained from the lineariz
Landau-Lifshitz equation. The expressions forx1 ,x2 ,xa de-
pend on a given magnetic configuration and will be det
mined later. The susceptibility tensor can be converted to
original coordinate representation~r,w,z! by rotating the
prime system by angleu, which determines the direction o
M0 with respect to the wire axisz,
x̂5S x1 2 j xa cos~u! j xa sin~u!

j xa cos~u! x2 cos2~u! 2x2 sin~u!cos~u!

2 j xa sin~u! 2x2 sin~u!cos~u! x2 sin2~u!
D . ~18!
e
ular
n

he
er-
dary
id
se it

ries

on
Using Eq.~18! gives

m15114p cos2~u!x, m25114p sin2~u!x,

m3524p sin~u!cos~u!x, x5x22
4pxa

2

114px1
. ~19!

IV. HIGH-FREQUENCY APPROXIMATION

The singular perturbation method constructed with resp
to a small parameterb5d/a!1 is used to obtain asymptoti
solutions of Eq.~15! in the case of high frequencies. Cu
tomarily, this case is treated by considering the plane ge
etry. However, such an approach allows the only zero-or
terms to be found. For the purpose of building a gene
asymptotic solution valid in a wide frequency range, t
higher-order terms in the series expansion are importan
well.

Introducing a new variablex5r /a and multiplying Eq.
~15! by b2 gives

b2x2
]2hw

]x2 1b2x
]hw

]x
1~b1

2x22b2!hw52b3
2x2hz ,

b2x2
]2hz

]x2 1b2x
]hz

]x
1b2

2x2hz52b3
2x2hw . ~20!
ct

-
er
l

as

The boundary conditions for Eq.~20! are

hw~1!5h̄w , hz~1!5hex,

hw~x!,`, hz~x!,`, 0<x<1. ~21!

Hereb i
252 j m i . Equation~20! has a small parameter at th

second-order derivative and is related to so-called sing
perturbed equations.29–31 The solution of such an equatio
can be represented as the sum of two~regular and singular!
asymptotic series of powers of the small parameter. T
regular part approximates the solution within a certain int
nal area whereas the singular series is related to the boun
layer ~near x51) where the solution undergoes rap
changes. Such a layer is named a frontier layer. In our ca
corresponds to the skin depth. In the internal area 0,x,1,
the singular part decays exponentially and the regular se
has a smooth behavior.

Following the singular perturbation method, the soluti
of Eq. ~20! is written in the form

hw~x,h!5 (
n>0

bnRwn~x!1 (
n>0

bnSwn~h!, ~22!

hz~x,h!5 (
n>0

bnRzn~x!1 (
n>0

bnSzn~h!, ~23!
4-5
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whereRwn , Rzn andSwn , andSzn represent regular and sin
gular terms, respectively, andh5(x21)/b is the ‘‘fast’’
variable. Equations~20! and~21! written in terms of the fast
variableh become

~hb11!2
]2hw

]h2 1b~hb11!
]hw

]h
1@b1

2~hb11!22b2#hw

52b3
2~hb11!2hz ,

~hb11!2
]2hz

]h2 1b~hb11!
]hz

]h
1b2

2~hb11!2hz

52b3
2~hb11!2hw ,

hw~0!5h̄w , hz~0!5hex,

hw~h!,`, hz~h!,`, 21/b<h<0. ~24!

Substituting the regular series into Eq.~20! and the singular
series into Eq.~24!, and grouping together terms of the sam
power n of b, the asymptotic solution of degreen is con-
structed. In the case of the regular series, the zero-orden
50) approximation gives

b2
2Rz0~x!52b3

2Rw0~x!, b1
2Rw0~x!52b3

2Rz0~x!.
~25!

Eq. ~25! is satisfied only ifRz0(x)5Rw0(x)50. Proceeding
in a similar way, it can be shown that all higher-ord
terms turn out to be zero as well. Therefore, in the pres
case the solution does not have a regular part, which co
be expected as a consequence of the skin effect. The
tence of the regular solution would result in the deep ‘‘d
fusion’’ of the electromagnetic field inside the wire at hig
frequencies. According to the general property of singu
equations, the singular part decays exponentially as
@2a(12x)/d#; therefore the frontier layer corresponds to t
skin depthd.

Considering the singular series, the zero-order terms
found by solving the following equations:

]2Sw0

]h2 1b1
2Sw052b3

2Sz0 , Sw0~0!5h̄w ,

]2Sz0

]h2 1b2
2Sz052b3

2Sw0 , Sz0~0!5hex. ~26!
e
a
e
n
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To choose a physically reasonable solution, the follow
condition has to be imposed:

lim
b→0
x,1

S@~x21!/b#5 lim
h→2`

S~h!50. ~27!

The solution of Eq.~26! is taken in the formCy exp(jh),
wherey is the intrinsic vector of coupled equations,C is a
constant, andj satisfies to

j41j2~b1
21b2

2!1~b1
2b2

22b3
4!50. ~28!

Using b i
252 j m i , wherem i are determined by Eq.~19!, we

obtain

j156~12 j !, j256~12 j !Amef,

mef5114px. ~29!

In Eq. ~29!, only the sign ‘‘1’’ has to be taken to be consis
tent with condition ~27! since in this case the expone
exp(jh) is limited for anyh,0. Finally, the general solution
of Eq. ~26! is represented as

S hw

hz
D5C~1!S y1

~1!

y2
~1!DexpS ~12 j !a

d
~x21! D1C~2!

3S y1
~2!

y2
~2!DexpS ~12 j !a

d
Amef~x21! D . ~30!

There are two decay lengths in Eq.~30!: d and dm

5d/Amef. The formerd is related to a nonmagnetic but ele
trically conducting case describing the distribution of t
electromagnetic field having the local polarization with t
magnetic field parallel to the dc magnetizationM0 . The lat-
ter dm is a magnetic skin depth corresponding to the mo
with h perpendicular toM0 . In the case under consideratio
the vectorM0 is directed along the helical pass, resulting
the existence of both polarizations and the solution involv
the two characteristic decay lengths.

Defining C(1,2) from boundary conditions in Eq.~24!, the
zero-order estimate for the magnetic fieldshw ,hz is com-
pleted. Substituting Eq.~30! into Eq.~12! yields the solution
for the electric fielde. Then, from Eq.~7!, the surface im-
pedance tensor is deduced,
§̂5S §zz §zw

§wz §ww
D 5

c~12 j !

4psd S Amef cos2~u!1sin2~u! ~Amef21!sin~u!cos~u!

~Amef21!sin~u!cos~u! cos2~u!1Amef sin2~u!
D . ~31!
a
an

ity
rong
The high-frequency limit Eq.~31! for the surface impedanc
tensor ~or its certain components! has been obtained in
number of papers15,32,33,37regarding small regions at the wir
surface as flat surfaces, and imposing the boundary co
 di-

tions similar to Eq.~5!. However, this method restricts to
zero-order approximation only. The higher-order terms c
be important for determining more accurately the valid
conditions. For example, it has been considered that a st
4-6
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skin-effect approximation yielding Eq.~31! requires d/a
!1, which is much stronger than that involving the magne
skin depthdm /a!1. This opinion is based on the field dis
tribution in Eq. ~30! depending on both the decay param
eters. For an amorphous wire (s51016s21) of 30-mm diam-
eter the nonmagnetic skin depth becomes of the order ofa at
gigahertz frequencies. On the other hand, numerous ex
mental results on MI are concerned with frequencies
1–100 MHz, and it seems that the high-frequency case h
very limited use. Within the proposed method, the f
asymptotic series can be found. Considering this, the fi
order approximation is important in context to prove that
conditiondm /a!1 is sufficient to justify the use of Eq.~31!.

The first-order equations forSz1 andSw1 are of the form

]2Sz1

]h2 1b2
2Sz152b3

2Sw12
]Sz0

]h
, Sz1~0!50,

]2Sw1

]h2 1b1
2Sw152b3

2Sz12
]Sw0

]h
, Sw1~0!50. ~32!

Since the functions]Sz0 /]h and]Sw0 /]h are represented in
the exponential form, the particular solution of Eq.~32! is
given by

S̃z15~a1h1b1!ej1h1~a2h1b2!ej2h,

S̃w15~c1h1d1!ez1h1~c2h1d2!ej2h, ~33!

wherej1,2 are determined by Eq.~29!. The general solution
of coupled homogeneous Eq.~32! is of the form of Eq.~30!
where the constantsC(1) and C(2) are found from the zero
boundary conditions in Eq.~32!. The calculation process i
straightforward but time consuming and results in rat
cumbersome expressions. However, substituting the va
of b i specifically for the given problem, the result becom
as simple as

]Sz1

]h U
h50

52
1

2
hz ,

]Sw1

]h U
h50

5
1

2
hw . ~34!

Then, the first-order term for the impedance tensor is

§̂15
c~12 j !

4psd S d

aD S ~11 j !

4
0

0 2
~11 j !

4

D . ~35!

Comparing Eqs.~35! and ~31!, it is seen that the ratio o
§̂1 / §̂0 is of the order (d/a)/Amef or dm /a. Therefore, the
actual parameter in the expansion for the impedance
dm /a, proving the validity of the high-frequency results in
wider frequency region ifmef is sufficiently large.

V. LOW-FREQUENCY APPROXIMATION

Let us now construct the solution for the impedance in
opposite limit a/d!1. Having the high-frequency resu
~35!, it can be expected that in this case the actual param
of the expansion involves the magnetic skin depth as w
14442
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Then, it may be difficult to join the two asymptotes togeth
Therefore, we would like to build the low-frequency asym
tote such that it could be expanded to the casea/dm.1. The
solution of Eq.~15! is taken in the form

hw5h̄w

J1~k1ax!

J1~k1a!
1h̃w~x!, hz5hex

J0~k2ax!

J0~k2a!
1h̃z~x!,

~36!

whereJ0,1 are the Bessel functions of the first kind. In E
~36!, the first terms give the exact solutions for the homog
neous forms of Eq.~15!. This representation for fieldshw ,hz
is proving to be adequate to get almost a monotonic tra
tion from one asymptote to the other, changing a freque
or an external magnetic field. The functionsh̃w andh̃z deter-
mining the extent of coupling of Eq.~5! are found from

x2
]2h̃w

]x2 1x
]h̃w

]x
1~b1

2b2x221!h̃w

52hex

b3
2b2x2J0~b2bx!

J0~b2b!
2b3

2b2x2h̃z ,

x2
]2h̃z

]x2 1x
]h̃z

]x
1b2

2b2x2h̃z

52h̄w

b3
2b2x2J1~b1bx!

J1~b1b!
2b3

2b2x2h̃w , ~37!

satisfying the conditions

h̃w~1!50, h̃z~1!50,

h̃w~x!,`, h̃z~x!,`.

Here we use the same notationb5a/d for the small param-
eter though it is inverse to that used in Sec. IV. The solut
of Eq. ~37! is represented in terms of the asymptotic series
powers ofb, using the regular perturbation method

h̃w~x!5 (
n>0

bnh̃wn~x!, h̃z~x!5 (
n>0

bnh̃zn~x!,

J1~b1bx!

J1~b1b!
5xF11

b1
2b2

8
~12x2!G1O~b4!,

J0~b2bx!

J0~b2b!
5F11

b2
2b2

4
~12x2!G1O~b4!. ~38!

Substituting series~38! into Eq. ~37! and grouping togethe
terms having the same powers ofb, the equations for the
regular seriesh̃wn(x) and h̃zn(x) are obtained. It turns ou
that the terms of the zero degree and of any (2n11)th de-
gree are equal to zero. The second-degree terms are f
from
4-7
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x2
]2h̃w2

]x2 1x
]h̃w2

]x
2h̃w252hexb3

2x2,

x2
]2h̃z2

]x2 1x
]h̃z2

]x
52h̄wb3

2x3,

h̃w2~1!50, h̃z2~1!50,

h̃w2~x!,`, h̃z2~x!,`. ~39!

Solving Eq.~39! gives

h̃w25
hexb3

2~x2x2!

3
, h̃z25

h̄wb3
2~12x3!

9
. ~40!

The equations for the fourth-degree terms are

x2
]2h̃w4

]x2 1x
]h̃w4

]x
2h̃w452hex

b2
2b3

2

4
x2~12x2!

2x2~b3
2h̃z21b1

2h̃w2!,

x2
]2h̃z4

]x2 1x
]h̃z4

]x
52h̄w

b1
2b3

2

8
x3~12x2!

2x2~b2
2h̃z21b3

2h̃w2!,

h̃w4~1!50, h̃z4~1!50,

h̃w4~x!,`, h̃z4~x!,`. ~41!

Substituting Eqs.~40! into ~41! gives

h̃w452h̄w

b3
4

9 S x2

3
2

x5

24
2

21

72
xD

2hex

b2
2b3

2

4 S x2

3
2

x4

15
2

12

45
xD

2hex

b1
2b3

2

3 S x3

8
2

x4

15
2

7

120
xD ,

h̃z452h̄w

b1
2b3

2

8 S x3

9
2

x5

25
2

16

225D
2h̄w

b3
2b2

2

9 S x2

4
2

x5

25
2

21

100D
2hex

b3
4

3 S x3

9
2

x4

16
2

7

144D . ~42!

Eqs. ~36!, ~40!, and ~42! give the asymptotic series for th
magnetic field, as far as theb4 terms
14442
hw5h̄w

J1~k1ax!

J1~k1a!
1b2h̃w2~x!1b4h̃w4~x!,

hz5hex

J0~k2ax!

J0~k2a!
1b2h̃z2~x!1b4h̃z4~x!. ~43!

Calculating the electric field from Eq.~12! and representing
it in the form linear inh̄w and hex, the components of the
surface impedance tensor are obtained.

§zz5
k1c

4ps

J0~k1a!

J1~k1a!
1

1

54S a

d D 4 cm3
2

psa
, ~44!

§ww52
k2c

4ps

J1~k2a!

J0~k2a!
1

1

36S a

d D 4 cm3
2

psa
, ~45!

§wz5§zw5 j
av

3c
m32S a

d D 4Fm1m3

60
1

m2m3

30 G c

psa
. ~46!

The second terms in Eqs.~44!–~46! depend on the corre
sponding magnetic parametersm i , demonstrating that the
actual expansion parameter involves a sort of magnetic
depth~but not exactlydm). For example, in Eq.~44! in the
case ofk1a@1 ~but a/d!1) the ratio of the second term t

the first becomes (154 )(k3a)4/k1a. The values ofki are of the
same order, as it follows from Eqs.~15! and ~19!. Yet, the
numerical analysis shows that the first terms in Eqs.~44!–
~46! can give the main contribution to the impedance even
the case of (ki /a)51, which is illustrated by a small numeri
cal factor 1

54 in the above example. This helps when joinin
the low-frequency asymptote with the high-frequency one
the next section, the asymptotic behavior will be discusse
more detail for different magnetic configurations.

VI. ANALYSIS OF THE IMPEDANCE BEHAVIOR
FOR TWO TYPES OF ANISOTROPY

Our approach can be applied to a wire having a circu
ferential or helical anisotropy. In general, the anisotropy a
nK has an angle 45°,a<90° with the wire axis~z axis!, as
shown in Fig. 1. The wire is assumed to be in a sing
domain state with the static magnetizationM0 directed in a
helical way having an angleu with the z axis. The radial
variation inu is neglected as explained in Sec. III. The ma
netic configuration changes under the application of the
ternal axial magnetic fieldHex and the dc bias currentI b ,
inducing the circular magnetic fieldHb . The stable direction
of M0 is found by minimizing the energyU.

]U/]u50,

U52K cos2~a2u!2M0Hexcosu2M0Hb sinu, ~47!

whereK is the anisotropy constant, andHb is the dc circular
field induced by the currentI b . Equation~47! describes the
rotational magnetization process demonstrated in Fig
where the magnetization plots for two types of anisotro
and different values of the dc biasHb are given. The domain
4-8
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FIELD-DEPENDENT SURFACE IMPEDANCE TENSOR IN . . . PHYSICAL REVIEW B63 144424
processes may not be essential for the reversal ofM0 , since
the magnetization vector during its rotation is held paralle
the surface without going through high-energy demagnet
tion states. In the case of a circumferential anisotropy@Fig.
3~a!#, a dc bias current~inducingHb larger than the coerciv
ity! eliminates the domain structure without changing
magnetic symmetry. The case of a helical anisotropy is m
complicated. The dc bias causes the transition from a s
metric hysteresis curve to an asymmetric anhysteretic o
which happens atHb /HK5cosa @see Fig. 3~b!#. Therefore,
in this case a much larger bias field is needed to realiz
single-domain state.

The permeability tensorm̂5114px̂ is found from a lin-
earized Landau-Lifshitz equation form5x̂h written in the
coordinate system (r ,w8,z8) with the axisz8 parallel toM0 .

2 j vm1~VH2 j tv!~m3nz8!1gM0@~N̂m!3nz8#

5gM0~h3nz8!, ~48!

wherevH5g(]U/]M0)z8 , g is the gyromagnetic constant,t

is the spin-relaxation parameter, andN̂ is the tensor of the
effective anisotropy factors in the (r ,w8,z8) system,

FIG. 3. Magnetization curvesM0z(Hex) for different magni-
tudes of the dc bias fieldHb . The cases related to a circumferent
(a590°) and helical (a550°) anisotropy are shown in~a! and~b!,
respectively.
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Nz8z852
2K

M0
2 cos2~u2a!, Nw8w852

2K

M0
2 sin2~u2a!,

Nz8w85Nw8z85
K

M0
2 sin 2~u2a!. ~49!

Solving Eq. ~48! determines the susceptibility tensorx̂,
which has the form of Eq.~17! with

x15vM~v12 j tv!/D, x25vM~v22 j tv!/D,

xa5vvM /D,

D5~v22 j tv!~v12 j tv!2v2,

v15g@Hexcosu1Hb sinu1HK cos 2~a2u!#,

HK52K/M0 ,

v25g@Hexcosu1Hb sinu1HK cos2~a2u!#,

vM5gM0 . ~50!

The impedance tensor is determined via the permeability
rametersm i ~low-frequency case! or the parametermef ~high-
frequency case!, all of them determined by the apparent su
ceptibility x in Eq. ~19!. Substituting Eq.~50! into Eq. ~19!
gives

x5
vM~v22 j tv!14pvM

2

~v12 j tv!~v214pvM2 j tv!2v2 . ~51!

Equation~51! shows that the resonance change inx can be
expected at rather high frequencies~the resonance frequenc
is roughly equal togAHK4pM0/2p;500 MHz for HK
55 Oe, 4pM056000 G. Then, the MI effects at frequencie
of 1–100 MHz are not related to the ferromagnetic re
nance. This statement is important since in a number of
cent works34–36 MI characteristics are explained exclusive
as a consequence of the resonance behavior of the perme
ity. Yet, a high sensitivity ofx with respect toHex is needed
to obtain large impedance changes. This can be realize
changing the direction ofM0 under the effect of the field. As
follows from Fig. 3, the magnetization angle changes
fields of the order of the anisotropy fieldHK , which is also
the region of the major change in the permeability and
impedance. For higher fields,x changes little, resulting in
insensitive impedance behavior. Therefore, the overall r
son for the MI effects is the redistribution of the high
frequency current density when the static magnetic struc
is changed.

Having specified the static magnetic configuration and
ac permeability tensor, we can proceed with the impeda
analysis, using Eq.~44!–~46! for the low-frequency case o
Eq. ~31! and ~35! for the opposite limit. Since both the ap
proximations involve as an actual expansion parameter a
tain magnetic skin depth, the choice between them depe
not only on the value of frequency, but also on the value
Hex for determining the permeability parameters. Figure
shows the components of the impedance tensor as func
4-9



-
s,
s
n

y
u
e
ce
b

d

p

i-

y,
e
th

D. P. MAKHNOVSKIY, L. V. PANINA, AND D. J. MAPPS PHYSICAL REVIEW B63 144424
of the expansion parametera/d ~or as functions of fre-
quency! for Hex50.25HK and two anisotropies: circumferen
tial (a590°) and helical (a560°). For these parameter
the values of the permeability are fairly large and the tran
tion from the low-frequency case to the high-frequency o
occurs ata/d50.04– 0.08. For§zw ,§ww components, the two
asymptotes have an intersection region~or even for a
590°, §ww monotonically transits to the high-frequenc
case!; for §zz there is a certain gap, actually rather small, b
a sort of interpolation is needed. Considering the field dep
dencies of the impedance tensor, a practical rule to repla
low-frequency asymptote by the high-frequency one may
the condition that the second term in expansions~44!–~46!
has grown up to 10% of the first one.

The field characteristics of the impedance tensor are
termined by the combined effect ofx(Hex) andu(Hex), and
are presented in Figs. 5–8 for the two types of anisotro
The case of the circumferential anisotropy (a590°) is given
in Fig. 5. For this case,Hex is a hard-axis field, then both
M0z(Hex) andx(Hex) do not exhibit a hysteresis. The pos
tions of maximums for§zz, §ww , and§zw (5§wz) are closely
related to those for cos2 u, sin2 u, and sin 2u, namely,uHexu
5HK , 0, andHK/2, respectively. With increasing frequenc
the peaks for§zz and§zw shift towards higher fields that ar
related to the permeability spectra. The application of

FIG. 4. Frequency spectra of the components of tensor§̂ calcu-
lated using the low- and high-frequency approximations fora
590° in ~a! anda560° in ~b!. Hex50.25HK , Hb50. Parameters
used: HK55 Oe, s51016 sec21, M05500 G, t50.2, g52
3107 rad/s Oe.
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FIG. 5. Field characteristics of the components of tensor§̂ for a
circumferential anisotropy. In~a!–~c! plots of magnitude of§zz,
§ww , and§zw vs Hex, respectively, are given forHb /HK50 and 1.
In ~d!, real and imaginary parts of§zw vs Hex are plotted forHb

50. 2a5120 mm, f 520 MHz.
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FIELD-DEPENDENT SURFACE IMPEDANCE TENSOR IN . . . PHYSICAL REVIEW B63 144424
circular biasHb makes the peaks smaller and broader,
does not lead to a characteristically different behavior. T
diagonal components§zz and §ww are symmetrical with re-
spect toHex, whereas the off-diagonal components§zw or
§wz are antisymmetrical, which is demonstrated in Fig. 5~d!
by plotting the real and imaginary parts of§zw .

The case of a helical anisotropy (a550°) is more com-
plicated involving hysteresis and considerable modificati
under the effect ofHb . Analyzing the behavior of§zz vs
Hex, shown in Fig. 6, we see that as the field decreases f
positive value,§zz exhibits a broad flat peak that occurs b
tween 0 andHK , depending on the anisotropy anglea. Upon
reversing the field direction, the impedance rapidly dro
down to its original low value, exhibiting the highest sen
tivity. With further increase inHex, it jumps back to the
level seen for positive fields that is associated with irreve
ible rotational flip inM0 . With increasing dc biasHb , con-
siderable asymmetry appears in the impedance plots. Fu
increase inHb results in a sudden shift of the hysteresis
negative fields with a simultaneous shrinkage of the hys
esis area, andHb.HK cosa results in the disappearance
the hysteresis. ForHb slightly larger thanHK cosa, the field
sensitivity of the impedance change is especially high:
negative fields the nominal change can be more than 10
whenHex is changed by only 0.1HK . The other component
of the impedance tensor show characteristically similar
havior under the effect ofHb , as demonstrated in Fig. 7 an

FIG. 6. Modification of the longitudinal impedance§zz vs Hex

under the effect of the dc bias 0<Hb /HK<1. a550°.
14442
t
e

s

m

s
-

-

er

r-

r
%

-

Fig. 8. Similar results have been obtained for the case of
in crossed-anisotropy multilayers.28,37

VII. EXPERIMENTAL RESULTS AND COMPARISON
WITH THE THEORY

An important next step is to compare the theoretical i
pedance characteristics with those obtained experiment
The experimental research on magnetoimpedance in am
phous wire, although rather wide, is mainly restricted
measurements of the voltage across the wire, which co
sponds to measuring§zz. A number of results reported b
different groups on§zz(Hex) seem to be in conflict. The field
characteristics for the same frequencies, obtained for sim
wire samples, can exhibit completely different behavior. T
is a consequence of different ac excitations used, resultin
different magnetization mechanisms involved in each ca
For example, in the case of a circular or a helical dom
structure, the ac current may cause irreversible dom
movement if its amplitude is larger than that correspond
to the circular coercivity. Such irreversible domain proces
take place even at frequencies of a few megahertz. This
cess will mainly determine the field behavior of the impe
ance:§zz(Hex) has a maximum atHex50 and decreases rap
idly with increasing the field.6–8 This is due to the
corresponding behavior of the differential domain permea
ity under the effect of a hard-axis field. If the current amp
tude is small and irreversible domain displacements are

FIG. 7. Modification of the circumferential impedance§ww vs
Hex under the effect of the dc bias 0<Hb /HK<1. a550°.
4-11
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possible, the longitudinal impedance has two symmetr
maximums atHex'HK , in agreement with that shown i
Fig. 5.37,38Regarding the other components of the impeda
tensor there are just few experimental works on field cha
teristics of §zw and §ww for a wire with circumferential

anisotropy.38,39

For the sake of accurate quantitative comparison, we h
carried out measurements of the full surface impedance
sor as a function ofHex, at conditions corresponding a
closely as possible to the theoretical model. Care has b
taken to realize a linear ac excitation~the amplitudes of ac
currents, magnetization, and fields are considerably sm
than such dc parameters as the coercivity, anisotropy, an
magnetization!. Another model restriction is considering
single-domain state. In the experiment, the domain struc
can be eliminated by a dc current, however, in the case
helical anisotropy, the field produced by this current has
be larger than the anisotropy field~not coercivity!. In the
cases where domain structure is inevitable, the effec
domain-wall dynamics on impedance behavior is less
higher frequencies due to damped wall motion.

Two kinds of wires have been used: an as-cast 120-mm
diameter CoFeSiB wire having a nearly zero magnetost
tive constant and a circumferential anisotropy~at least in the
outer region!, and a tension-annealed 30-mm diameter CoSiB
wire ~magnetostrictionl52331026) having a spontane

FIG. 8. Modification of the off-diagonal impedance§zw vs Hex

under the effect of the dc bias 0<Hb /HK<1. a550°.
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distribution.40,41

A. Experimental method

The surface impedance tensor§̂ is found via measuring
the S21 parameter by a Hewlett-Packard~4195A! two-
channel Network/Spectrum that is represented by the rati
the forward transmission signalVT to the excitation signal
VS . The frequency of the ac source is fixed, and the volta
of the dc source is used as a sweep parameter. The s
from the dc source is amplified with the dc power amplifi
that supplies power to the coil, inducing the external fie
Hex. The longitudinal diagonal component§zz is determined
by the usual way, measuring the wire voltageVw when it is
excited by the ac wire current@Fig. 2~a! with hex50]. In this
case, in Eq.~8! hex50, with the result thatS215Vw /VS

5§zz(Hex)(h̄wL/VS). The circumferential diagonal compo
nent§ww corresponds to the voltageVc in the secondary coil
mounted on the wire that is excited by the ac axial magn
field induced in the primary coil@Fig. 2~b! with i 50]. In this
case,

Vc5 j vn2Lhexp~a2
22a2!/c22pan2Lhex§ww . ~52!

Here a2 is the radius of the secondary coil andn2 is the
number of its turns per unit length. In Eq.~52!, the first term
represents the contribution from the flux between the w
and the secondary coil~the flux through the air gap!, and the
second term corresponds to the coil voltage defined by
~9! with h̄w50. For wires having sufficiently large diamete
~a few tens of microns! it is quite possible to wind the sec
ondary coil directly on the wire. In this case, the flux throu
the air gap is nearly zero and there is not a large disturba
constant signal. The off-diagonal components§zw and §wz
can be determined by measuring the coil voltageVc when
the wire is excited by the ac current, or by measuring
wire voltageVw in the presence of the ac axial magne
field. The latter is used here@Fig. 2~a! with i 50]. In this
case, in Eq.~8! hw50 with the result thatS215Vw /VS
52§zw(Hex)(hexL/VS).

The coil length in all the experiments is about 3 mm a
the wire length is about 6 mm. The secondary coil
mounted directly on the wire:a25a. The primary coil is
mounted on a glass tube with a diameter of 1 mm. The nu
ber of turns in both coils is 30. The amplitudes of the
excitation current~in the wire or in the coil! are chosen to be
less then 1 mA; then, the nonlinear ac magnetization p
cesses, like irreversible domain displacements, are not
sible. The experimental studies are made with the effec
the dc current that effectively governs the static magne
structure, as discussed.

B. Circumferential anisotropy

First we consider the impedance characteristics in a w
with a circumferential anisotropya590° and a circular do-
main structure in the outer region. Some of these results h
been reported in Ref. 38. The experimental field depend
cies for the§zz component and the comparison with th
4-12
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model calculations are shown in Fig. 9. The normalized
pedance corresponds to the ratioVw /VS . The real and imagi-
nary parts of this ratio are given in Fig. 9~a!, showing two
symmetrical peaks atHex nearly equal to the anisotropy fiel
HK'5 Oe ~the value of the anisotropy field has be
checked by measuring the dc magnetization loops!. When
the dc bias is applied, the impedance value at zero field
comes considerably smaller. The dc current eliminates
domain structure, resulting in a decrease in the overall p
meability. For not very highI b , the values of the impedanc
at the maximums are almost constant since they are d

FIG. 9. Experimental plots of the longitudinal impedan
§zz(Hex) for different values ofI b and comparison with the theory
In ~a!, real and imaginary parts of the voltage ratioVw /VS ~propor-
tional to §zz) are given. In~b! and ~c! the impedance magnitud
u§zzu vs Hex ~in values ofuVw /Vsu) is compared with the theoretica
dependence for a frequency of 20 MHz.
14442
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mined by the rotational processes only. However, ifI b is
further increased the value of the impedance at the m
mums becomes considerably smaller and the sensiti
drops, resulting from an increase in magnetic hardness
I b . Figs. 9~b! and 9~c! give the comparison of the exper
mental and theoretical results. The two curves are matche
positive~or negative! saturation, therefore the theoretical va
ues are given inS21 units. ForI b50, the main discrepancy
between the theory and experiment is for fieldsHex smaller
than the anisotropy fieldHK , which is due to the contribu-
tion of the domain-wall dynamics~which is essential even
for a frequency of 20 MHz! to the total permeability. The
theoretical model considering a single-domain state igno
the domain dynamics completely. Applying a sufficient
large currentI b5100 mA eliminates domains, and the the
retical curve becomes closer to the experimental one. Fig
10 presents the longitudinal impedance for a higher f
quency of 100 MHz, showing a much better agreement
tween the experiment and theory, since the domain walls
stronger damped and give considerably smaller contribu
to the total permeability.

Figure 11 is related to the analysis of the circumferen
diagonal impedance§ww . Figure 11~a! presents the normal
ized voltageVc /VS in the secondary coil mounted directl
on the wire that is excited by the ac axial magnetic fie
induced in the primary coil. This ratio is proportional to§ww ,
which has a maximum at zero field, and it decreases rap
near the anisotropy fieldHK'5 Oe, whereas there is an in

FIG. 10. Theoretical and experimental plots ofu§zzu vs Hex ~in
values ofuVw /Vsu) for a frequency of 100 MHz forI b50 in ~a! and
I b5100 mA in ~b!.
4-13
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sensitive wide region between6HK that is more pronounced
for I b50. It seems that this insensitive area is determined
the demagnetizing factor since the sample has a rather s
length ~6 mm! in comparison to the diameter~120 mm!.
However, we could not see this behavior, considering
field plots of §zz. More probably, it is related to the com
bined effect of the rotational permeability~which has a maxi-
mum at zero field and is decreasing with the field! and the
domain-wall permeability~which has a minimum at zero
field and is increasing with the field!. The theoretical curve

FIG. 11. Experimental plots of the circumferential impedan
§ww(Hex) for different values ofI b and comparison with the theory
In ~a!, real and imaginary parts of the voltage ratioVc /VS ~propor-
tional to §ww) are given. In~b! and ~c! the impedance magnitud
u§wwu vs Hex ~in values ofuVc /Vsu) is compared with the theoretica
dependence for a frequency of 68 MHz.
14442
y
all

e

does not have this flat portion, as shown in Fig. 11~b!. The
application of a relatively small currentI b55.57 mA in-
creases the sensitivity of the impedance characteristics
may be due to a better defined circumferential magnetiza
induced by this current whenu is equal almost exactly to 90
without the anisotropy dispersion. The insensitive region
comes smaller under the effect of a largerI b as the domain
contribution is less essential, and this case is in good ag
ment with the theoretical plot as demonstrated in Fig. 11~c!.

Figure 12 is related to the off-diagonal compone

FIG. 12. Experimental plots of the off-diagonal impedan
§zw(Hex) for different values ofI b . The result is presented in term
of the voltage ratioVw /VS ~proportional to§zw): real and imaginary
parts in~a!, and the magnitude in~b!. In ~c!, the impedance mag
nitude u§zwu vs Hex ~in values of uVw /Vsu) is compared with the
theoretical plots for a frequency of 20 MHz andI b5100 mA.
4-14
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§zw (5§wz). Figures 12~a! and 12~b! show the normalized
voltageVw /VS measured across the wire ends when the w
is excited by the external coil producing the longitudinal
magnetic field. Without the dc currentI b this characteristic is
very small ~it would be zero for an ideal circular domai
structure since the averaged value sinu cosu is zero! but it
increases substantially when the current is enough to el
nate circular domains~compare the characteristics withI b

50 andI b5100 mA). Therefore, in the case of a circumfe
ential anisotropy and a circular domain structure, the pr
ence ofI b is the necessary condition for the existence of
off-diagonal components of the impedance tensor. The
diagonal component is antisymmetrical with respect to
field Hex, which is demonstrated in Fig. 12~a! by presenting
both the real and imaginary parts. Such behavior is an ag
ment with the theory@compare with Fig. 5~d!#. A consider-
able increase inI b results in a decrease in sensitivity~see
Fig. 12~b!, I b5500 mA). In this case, the two opposite e
fects of I b are especially noticeable:~i! the transition to a
single-domain structure~that increases§zw and its field sen-
sitivity!, and~ii ! the increase in the magnetic hardness in
circular direction ~that decreases the sensitivity!. Figure
12~c! shows the comparison of the experimental depende
with the calculated one atI b5100 mA. The experimenta
plot exhibits a considerably faster decrease that may be
lated to some structural changes at the surface due to de
netizing effects, since this component is very sensitive to
domain formation.

Let us now suppose that a mixed excitation is used@Fig.
2~a!# when the wire is excited by both the ac current and
ac field hex that is produced by the primary coil connect
serially to the wire. The voltage measured across the wir
determined by Eq.~8! with hex54pnLi/c. In this case, the
voltage Vw involves both§zz and §zw components of the
impedance tensor, combining symmetric and antisymme
terms with respect toHex. As a result, the voltage exhibits a
asymmetric behavior, even if the dc magnetic configurat
does not have asymmetry, as shown in Fig. 13. In this c
comparison with the theoretical result is more complicat
The coil gives an additional source of emf that may cause
amplitude of the ac current to change during the experim
as well.22,23

FIG. 13. Asymmetrical voltage response in the presence of
ac bias field.I b5100 mA. Theory and experiment.
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C. Helical anisotropy

The case of helical anisotropy presents considerable in
est since the effect of the dc current results in a comple
different appearance of the field plots of the impedance
CoSiB amorphous wire has been studied, which has a r
tively large anisotropy field of 8 Oe. As it is known40,41it has
a spontaneous helical anisotropy with the averaged angl
about 60° that can be revealed by measuring the dc ma
tization loops in the presence of the dc current.41 Figure 14
presents the results for the longitudinal impedance§zz. In
this case the impedance exhibit a hysteresis. In Ref.
where the impedance of a wire with a twist-induced heli
anisotropy has been investigated, the hysteretic behavior
not seen. In this case, the impedance field behavior is rel
to domain-wall permeability averaged over the ac magn
zation cycle due to irreversible helical-wall movement. T
indication of irreversible nonlinear processes involved is
considerable deviation from a sine-wave form of the m
sured voltage. The amplitude of the ac current exciting
wire used in Ref. 14 is 15 mA, which is sufficient to induc
irreversible displacements of domain walls. In our expe
ment, such processes are not possible sincei 0,1 mA. For
I b50, the experimental plot shows two sharp peaks at a v
small field corresponding to the coercitivity field of the d
magnetization process. The domain walls exist in this narr
field region and their linear dynamics give a main contrib
tion to the overall dynamic process. For fields larger than
coercivity when the domain structure disappears, the imp

FIG. 14. Theoretical and experimental plots ofu§zzu vs Hex ~in
values of uVw /VSu) for a helical anisotropy (a560°) for a fre-
quency of 20 MHz.I b50 in ~a! and I b550 mA in ~b!.
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ance behavior is determined by the ac magnetization r
tion. For these higher fields, there is a good agreement
tween the theory and the experiment. The theoretical jum
related to the irreversible rotational change inM0 are not
seen since in the experimental plot the dc magnetization
versal is due to the domain processes. The effect of the
current results in a gradual transition to nonhysteretic as
metrical behavior, shown in Fig. 14~b!. The theoretical plot
is in reasonable agreement with the experimental one. C
tain discrepancies may be related to anisotropy dispers
which is quite considerable in CoSiB amorphous wire.

Figures 15 and 16 present the field characteristics of§ww

and§zw components that change with the dc bias current
characteristically similar manner. Note that a§zw vs Hex plot
is very sensitive to the anisotropy angle. The theoret
curves describe two experimental maximums very well
a560°. This value of the anisotropy angle agrees with t
found from the shift in the dc magnetization loops.41

We can conclude that the theoretical model based on
single-domain magnetic structure agrees well with numer
experimental data as far as the ac rotational magnetiza
processes are responsible for the impedance change.

VIII. CONCLUSION

The surface impedance tensor approach has been us
study various types of MI characteristics in amorphous wi

FIG. 15. Theoretical and experimental plots ofu§wwu vs Hex ~in
values of uVc /VSu) for a helical anisotropy (a560°) for a fre-
quency of 30 MHz.I b50 in ~a! and I b5100 mA in ~b!.
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with a helical ~circumferential! anisotropy. Regarding con
ceptual aspects of the MI effect, it has been demonstra
that a high sensitivity to the external field is caused by
dependence of the current-density distribution on the st
magnetic structure. Therefore, the characteristic field of
major impedance change is the anisotropy field, and the
spectra are very broad~from a few to hundreds of megaher
for a 30-mm diameter Co-based amorphous wire!. Modifying
the static magnetic structure, various types of the MI char
teristics can be obtained: symmetrical or asymmetrical w
respect toHex, and without a hysteresis or exhibiting a hy
teresis including a bistable type. An interesting example
the change in MI characteristics in wires with a helical ma
netic anisotropy under the effect of the dc current. Consid
ing the tensor nature of the impedance, the use of the
diagonal components results in asymmetrical MI in t
presence of the ac bias, which is especially important
linear magnetic sensing.

The theory is based on the asymptotic-series expansio
the Maxwell equations. As far as the electrodynamic pro
lems ~such as the impedance analysis! are concerned, this
method has been used here. It yields the analytical solu
for the impedance tensor that is valid in the entire freque
and magnetic field range~1 MHz–1 GHz! of practical inter-
est. The method has no restriction to a specific geometr
can be expanded to consider practically important case
two-dimensional magnetic/metallic multilayers. The ma
limitation of the theory is considering a uniform magnetiz

FIG. 16. Theoretical and experimental plots ofu§wzu vs Hex ~in
values of uVw /VSu) for a helical anisotropy (a560°) for a fre-
quency of 20 MHz.I b50 in ~a! and I b583.34 mA in~b!.
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tion ignoring completely a radial distribution of permeabili
and the domain structure. Considering MI effects, the va
tion in permeability may not be important since the surfa
magnetization gives the predominant contribution. Rega
ing domain-wall dynamics, they can be taken into accoun
modifying the permeability tensor on the basis of an eff
tive medium approximation for small field perturbatio
~Refs. 5 and 42!. By this, the eddy currents due to the loc
wall displacements are averaged on the domain scale.
a,

s.

y
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other restriction is ignoring exchange effects. This is ac
rate if the exchange length is smaller than the skin dep
which is typically valid for frequencies under gigaher
range.

The theoretical model has been tested comparing the
sults with the experimental data. In the case of helical anis
ropy, the surface impedance tensor has been measured
The theory agrees well with numerical experimental data
far as the ac rotational magnetization processes are res
sible for the impedance change.
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