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Linked cluster series expansions for two-particle bound states
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We develop strong-coupling series expansion methods to study two-particle spectra of quantum lattice
models. At the heart of the method lies the calculation of an effective Hamiltonian in the two-particle subspace.
We explicitly consider an orthogonality transformation to generate this block diagonalization, and find that
maintaining orthogonality is crucial for systems where the ground state and the two-particle subspace are
characterized by identical quantum numbers. We discuss the solution of the two-particldiSpirequation
by using a finite lattice approach in coordinate space or by an integral equation in momentum space. These
methods allow us to precisely determine the low-lying excitation spectra of the models at hand, including all
two-particle bound/antibound states. Further, we discuss how to generate series expansions for the dispersions
of the bound/antibound states. These allow us to employ series extrapolation techniques, whereby binding
energies can be determined even when the expansion parameters are not small. We apply the method to the
(1+1)-dimensional transverse Ising model and the two-leg éphheisenberg ladder. For the latter model, we
also calculate the coherence lengths and determine the critical properties where bound states merge with the
two-particle continuum.
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[. INTRODUCTION erties of the multiparticle spectra directly in the thermody-
namic limit. If these calculations can be done to high orders,

The study of bound states and multiparticle excitationsone can calculate multiparticle spectra in a systematic man-
remains a challenging problem in many-body physics. Exner using extrapolation techniques even in cases where the
perimentally, there are several probes for low-dimensionaperturbations are not weak. In principle, one can see that as
magnetic or strongly correlated electronic systems whichhe couplings are increased the number of bound states can
show spectral features associated with multiparticle conehange and states can come off or merge into the continuum.
tinuum and bound states. These include two-magnon Ramakhe resulting singularities should be amenable to series ex-
spectra, optical absorption, photoemission, and neutron scgeansion methods.
tering spectra. The multiparticle features often remain poorly In this paper, we show how to calculate multiparticle
understood. On the theoretical side, one example of the irspectral properties from high-order perturbation expansions,
triguing issues that may arise is the role that the increasingsing a linked cluster method. A brief outline and summary
number of bound states play in the confinement-of the work was given in a recent pape@ur method is quite
deconfinement transition in spin-Peierls systems. At the trandistinct from the flow equation approach of Wegfievhich
sition the spectrum switches from a soliton-antisoliton con-has also been used recently by Uhrig and collaborfdcs
tinuum to elementary triplet excitations, their bound stateshe study of multiparticle spectral properties in one and two
and continuunt. dimensions.

A controlled numerical framework for the calculation of  The linked cluster method is one of the most efficient
multiparticle spectral properties, which can also account foways to generate perturbation series expansions for quantum
various singularities as the coupling constants are varied, iglamiltonian lattice models. For the ground state energy and
currently missing. In one dimension, a variety of numericalrelated properties, a linked cluster approach was first dis-
methods including Lanczos, exact diagonalization and mostussed in unpublished work by Nickefollowed by work of
notably density matrix renormalization gropMRG) (Ref.  Marland® Irving and Hamer, and others, as reviewed by He
2) hold promise for such calculations. However, unlike et al!° The approach was later rediscovered and applied to a
ground state and single-particle properties, the calculation ofthole new range of problems in condensed matter physics
full dynamical properties like spectral functions still needsby Singh, Huse, and Gelfartd!?
more conceptual advances. In higher than one dimension, all For the energies of excited states, it is more difficult to
of these methods are restricted to small system sizes, whidermulate a true linked cluster expansion, although related
makes it difficult to study the thermodynamic limit. methods have been known for some tifrté It was only in

On the other hand in the limits of weak or strong cou-1996 that the key to a true linked cluster expansion for one-
plings, perturbation theory can be used to calculate all propparticle excited states was discovered by Gelf4h8ince
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then, many applications of this technique have been madayhere the unperturbed Hamiltonidt, is exactly solvable
calculating single-particle energies, dispersion relations, andnd\ is the perturbation parameter. In the lattice models of
spectral functions in models of interest in condensed matteihterest hereH, will typically consist of single-site opera-
physics. For a recent review, see Gelfand and Sifigh. tors, while interaction terms between different sites will be
The cluster expansion method allows that the calculationg,cluded in the perturbation operathir,. The aim is to cal-
can be carried out systematically and efficiently by fully au-cyjate perturbation series in for the eigenvalues dfi and

tomated computer programs. Furthermore, these methodginer quantities of interest. The calculation proceeds in three
work by breaking up the thermodynamic problem into Astages

purely combinatorial problem and a number of finite-cluster
problems. Thus, while they are technically harder in higher
than one dimension, the difficulty is not fundamental. In fact,
over the years, a number of workéts'®have independently  On any finite lattice or cluster of sites, the first step is to
developed efficient computer programs to generate theseock diagonalize” the Hamiltonian to form an “effective
clusters automatically, and the cluster data up to quite higiiyamiltonian,” where the ground state sits in a block by it-
number of vertices for most two-dimensional and threeself, the one-particle states form another block, the two-
dimensional lattices including the simple-cubic, bcc, and fccparticle states another block, and so on. Here a “particle”
lattices have been generatéd: these data can be applied to may refer to a lattice fermion, a spin-flip, or other excitation,
a wide range of models. depending on the model at hand. We assume that all the
At the heart of our new approach is a generalization ofynperturbed states in each block are degenerate Ugler
Gelfand's linked cluster expansion for single-particle excitedrpere is no unique way to block diagonalize the Hamil-
states to two-particle states. From a technical point of VieWtonian, but the eigenvalues and final results should be
our most notable achievement is the development of an Olinique, independent of the method used, as long as the clus-

thogonality transformation which leads to a linked cluster,, expansion works correctly. Gelfaiddused a similarity
theorem for multi-particle states even when their quantum,snsform for this purpose:

numbers are identical with the ground state. This approach is
similar to the flow equation method developped by Knetter Hef=0"HO. (2)
and Uhrig® using continuous unitary transformations to map_ . i
the original Hamiltonian onto a block diagonal effective 1hiS works correctly for most one-particle problems, and
Hamiltonian. We show how to calculate energies and disper@!S© for those two-particle states which have different quan-
sion relations for two-particle excitations, and coherencdU™M numbers to the ground state. However in general, espe-
lengths for the bound states. The further generalization t§'@lly for the excited states which have identical quantum
higher number of particle is then obvious in principle. numbers to the ground state, we need to be a little more
As a first check to ensure that the method is workingc"?‘rem than thls,_ln o_rder to preserve all the proper symme-
correctly, we apply it to the case of the transverse Isingt“es_ of _the _Hamlltonlan. Wg must ensure that the transfor-
model in one dimension, which can be solved exactly in ternfnation isunitary. Here we will only consider the case when
of free fermion<® We show that the series for the two- the Hamiltonian is real symmetric, and can be block diago-
particle state agree with the exact results up to 12th order. N@lizeéd by arorthogonaltransformation
Finally, we apply the method to a nontrivial model, the He"—OTHO 3)
two-leg spins Heisenberg ladder, which has been much dis-
cussed recentfy®® as a prime example of a one- or more conveniently
dimensional antiferromagnetic system with a gapped excita-
tion spectrum. The two-particle bound states have already OH®"=HO, (4)
been studied by Uhrig and Normafitl, Damle and
Sachde® and Sushkov and Kotd¥/:?¢ We perform a de-
tailed study of these bound states, exhibiting in particular the o'=0"1, (5)
characteristic features as each bound state emerges from the ) N
continuum. In a companion pap&we apply the same tech- The orthogonality of O can be ensured by writing
niques to a still more interesting case, the frustrated alternat-

A. Block diagonalization

where

— S
ing Heisenberg chain, which displays the confinement- O=e% ©)
deconfinement transition discussed by Affléck. where S is real, antisymmetric
The organization of the paper is as follows. Section Il of
the paper lays out the formalism and methods used to obtain S'=-s. (7)

the two-particle spectra. Section Il discusses the applica-
tions to the transverse Ising chain and the Heisenberg Iaddeb
Section IV summarizes our conclusions.

his transformation is constructed order-by-order in pertur-
ation theory. The matrix elements ff between different

blocks are zero, up to the given order in perturbation theory.
Il. FEORMALISM Each matrix is expanded in powers %f

We consider a Hamiltonian

0=, \"oM, 8
H=Hy+\Hy, (1) ngo ®
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H@= |10 0 ST = 0
0 0 0

FIG. 1. Block structure of the matricé&y andS(". Setting the
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upper right blocks oH({ to zero determines the corresponding fOr €lementsj in the off-diagonalshadedl blocks. Then

(shadedl blocks ofS("; the diagonal blocks o&™ are set to zero.

5= A", ©

Hefl= 33 \MHE,

(10
where at zeroth order we set
S9=0, 0©=|, H®=H,, (11)

where | is an unit matrix,Hy is a diagonal matrix, with
diagonal matrix elements? .
At higher ordersn+#0, we have

n

1
oN=sm+> 3 smshs,,

mil=1
1 n
+§m2k:1 SMSOSO S nt s (12

and

n

mIZO OMHYSms1 n=HoOM+H,0"D (13
and it is convenient to define
R(M =M — g (14)

If we demand that at any given order n the off-diagonal

n—-1
> o‘m’HS%5m+|,n] (17)
ij

(H&); =|Hlo<“‘1>—
m,l=1

for elements in the diagonal blocks. The right-hand sides of

Egs.(15—(17) can all be computed from the results at order

(n—1).

The key differences here from the similarity transforma-
tion are as follows. In the similarity transformation, the di-
agonal blocks 0D are undetermined, and so are chosen to
be zero, while the off-diagonal blocks & are antisym-
metric and can be determined by demanding the off-diagonal
blocks of H{}) to be zero. In the orthogonal transformation,
on the other hand, the diagonal blocks ®f™ cannot be
chosen to be zero. Instead the diagonal blocksS®f are
chosen to be zero, while the diagonal blocks@f" are
required to be nonzero by orthogonality, and are determined
by Eq.(12).

At the end of this process, the effective Hamiltonian has
been block diagonalized, up to a given order in perturbation
theory. The orthogonal transformation will transform the un-
perturbed two-particle states into “dressed” states contain-
ing admixtures of different particle numbers; and in particu-
lar, there will be no annihilation process for these “dressed”
states. The states will still be labeled by the positions of the
original unperturbed particles; but now they will contain ad-
mixtures of other particle states at nearby locations.

At any finite order in perturbation theory, we may assume
that the effective Hamiltonian will remain “local’{(that is,
interactions between states will not extend beyond a finite
rangg; and will have the same bulk symmetries as the origi-
nal Hamiltonian, such as translation symmetry. These prop-
erties are sufficient to admit a linked cluster approach to the
calculation of eigenvalues.

We note that the solution of the equations above is not
nearly as efficient as the similarity transformation of Gel-

blocks of H*" in (say the upper right triangle vanish, then tang:"in particular, the solution of Eq12) is expensive in
Egs. (13) determine the entries in the corresponding blockscpy time and memory. In the Appendix, we discuss an al-
of S™ (Fig. 1). The transposed blocks in the lower left tri- ternative “two-block” scheme which has the same effi-

angle are then determined by the antisymmetry cond{ion

ciency as Gelfand’s; but which does not always allow a suc-

and only the diagonal blocks & remain to be determined. cessful cluster expansion.
The simplest choice is to set the diagonal blocks to zero.

Thus S is completely determined:

1
R e
j o Hi
n-1

X HO0 D= 3 OMHE 5,
m,l= ..
1]

(19

or

B. Linked cluster expansions
Let us briefly summarize the linked cluster approach in
various sectors.
1. Ground-state energy

The ground-state enerdy, is a simple extensive quan-

tity, and obeys the “cluster addition property’*?if C is a

cluster (or set of sites and bonds on the latjiaghich is
composed of two disconnected subclust&rand B, then
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ES=ES+ES. (18) b 3 b)

Hence one finds*?that the ground-state energy per site for

the bulk lattice can be expressed purely in terms of contri- _
butions from connected subclusters + D
€0~ E Iaea ’ (19) i 1 i

wherel , is the “lattice constant,” or number of ways per FIG. 2. Decomposition of a one-particle matrix element into
site that cluster can be embedded in the bulk lattice. and irreducible components. The round box denotes the full matrix el-
e, is the “proper energy” or “cumulant energy” for the ement, the square boxes the irreducible matrix elements, and the
(23 . . .

clustera. In the language of Feynman diagrares,can be  Single line denotes a delta function.
thought of! as the sum of all connected diagrams spannin
the clustera. A similar formula holds for the ground-state
energy of any connected clusterwith open boundaries . P, .

Jyorany P AS(1.§) =A%)+ A%G), (26)

%r in general

Eg= 2 Cles, (20) whereA(i,]) vanishgsfor any cluster not go_ntainin'gandj.
B Note that a one-particle state cannot annihilate from one sub-

. . cluster and reappear on the other, after the initial block di-
whereCy is the embedding constant of the connected SUbégonalization PP
cluster _W'th'n Clustera. _ _ From the cluster addition propert26) it follows that the

.E.quatlons(lg) and (2.0) form the basis for a S'mP'e and_ elementsA4(i,j) can be expanded in terms of contributions
efficient recursive algorithm to generate a perturbation Seriefom connectectlusters alone. which are also “rooted.” or
for €. The steps are as follows. o connected to the positioisandj. Hence they can be calcu-

(i) Generate a list of clusters, with their lattice constants |5t efficiently by an algorithm similar to that of Sec. Il B 1.
|, and embedding constan®y;, appropriate to the problem
at hand'®~* 3. Two-particle states

(ii) For each clustet, the diagonal entry in the O-particle
sector ofH®" gives a perturbation series for the enefgfy.

(i) Now invert Egs.(20) to solve for the cumulant ener-
giese,, and substitute in Eq19) to obtain the desired per- E,(i,j:k,1) = (k, I|HEMi j) (27)
turbation series fok,. ’

The generalization to two-particle states is now not hard
to find. Let

be the matrix element between initial two-particle state
2. One-particle excited states and final statek,l). To obtain a quantity obeying the cluster
Gelfand® discovered how to generalize the approach2ddition property, we must subtract the ground-state energy
above to one-particle excited states. Let and one-particle contributions, to form the irreducible two-
particle matrix elementFig. 3):

E(i,))=(j|He"i) (21)

be the matrix element oH®" between initial one-particle
state|i) and final one-particle stat§), labeled according to —Ay(i,) 65 k= A1(j,K) 6, = A1(J,D Sj - (28)
their positions on the lattice. The excited state energy is nat,, . L .

extensive, and does not obey the cluster addition property,hIS quantity is eas_lly found to keerofor any clus_ter unless
but there is a related quantity which does. If clusteis L. K, andllz.are all included in that (_:Iuster, and it pbeys the
made up of disconnected subclust&randB, and statesi) cluster addition property. Once again, the block diagonaliza-

and|j) reside(say on clusterA, then

1 1 1 1
ET(i.j)=ER(ij)+Es. (22 _ . .
But if we define the “irreducible” one-particle matrix ele- ) o R I e
1 ] 1 ] i ] i

ment(Fig. 2

As(iysk, D) =Ea(i,j;K, 1) —Eo( 6 k)11 6i,10,6) —A1(i,K) 6

A4(i,J)=E4(i.j) —Eodi, (23

then

AT(i,))=A%(0)), (24)

whereas ifli) and|j) reside on cluster B, then

. . FIG. 3. Decomposition of two identical particle matrix element
AS(i,)) =A%) (25) o i entical par
1L))=Aa1(1) into irreducible components. Notation as in Fig. 2.
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tion ensures that two particles cannot “annihilate” from one Heff| ) =E| ) (35)
cluster and “reappear” on another disconnected one. Thus
the matrix elements ok, can be expanded in terms of con- and take the overlap witti,j|, then one obtains
nected clusters alone, which are rooted or connected to all
four positionsi,j,k,I. An analogous equation for the irreduc-
ible two-particle interaction has been found in the recently (E_Eo)fij_z Ai‘(k,i)fkj_z Ag(k,j)fik
formulated flow equation approach for two-triplet excitations K] ki
in the Shastry-Sutherland model.
=2 Ak LD (#)). (36)
C. Calculation of eigenvalues kil

For the ground state energy, a perturbation series for theompleting the sums on the left-hand side, one obtains
eigenvalue was already obtained at the end of Sec. 11 B 1.

For the excited state sectors, some further work is required.
1. One-particle states (E=Eo)fj ; [Az(k DTy + ATk ]
A perturbation series for the dispersion relation of the
one-particle states can be calculated by a Fourier transform. =2 AZP(K i) Fg— AL DT — ARG
Translation invariance implies that kil

. 3
A1) =24(5), 29 37
whereé'is the difference between positionandj; and that ~ The fictitious amplituded; are introduced to simplify the
the one-particle states are eigenstates of momentum calculations, and are taken to Befinedby these equation&.
Now define a center-of-mass position coordinate
1
[K)=—= 2 expiK-j)[j) (30)
- 1
NS R=Z(i+j+k+1), (39
(whereN is the number of sites in the latticewith energy
gap and relative coordinates
w1 (K)=> Ay(8)cogK - &). (31) 1
3 r=5(i+j—k=1), (39
Here we have assumed that(é) is inversion symmetric,
so that
o =i—|, (40)
Ay(=6)=A4(0). (32)
6,=k—1. (41

2. Two-particle states

The calculation of the eigenvalues in this case is a littleTranslation invariance then implies that
more involved than in the one-particle case. We follow the
procedure of Mattis?

Consider an unsymmetrized state of nonidentical par-
ticles, typesa andb. Then there aré&N(N—1) states on an
N-site lattice, labeled by positionsj), wherei,j refer to the Next, perform a Fourier transformation
positions of particlea andb, respectively. We have assumed
here that two particles may not reside at the same position 1 S
(the results are easily amended if this is not the caBeen f(K,q)= N > glkuithka D, (43
the irreducible two-particle matrix element is bl

Ao(iLj;k,DN=Ay(r,61,05). (42

AZ%(i,j;k,D=E3"(i,j;k,1) — Eo 8, — A%(i,k) 8 whereK ,q are the center-of-mass and relative momenta
—A3G.D ik (33 K= (ko ky), 4
Let the two-particle eigenstate be
9)=3 fyli). (D). (34 a=5(ki—ko) 49
substitute in the Schdinger equation then Eq.(37) leads to
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E— 50—25 [AZ(5)cogK - 8I2+q- &)
+A%(8)cogK- 82— q- 6)1f(K,q)

1
=N > f(K,q')[ > A3%(r,8.,68,)
q/ r,ﬁl,ﬁz
XcogK - r+q-6,—q'- 6,)— >, A%(S)
s

X cogK - dI2+q- &)+ AS(8)cogK - 5/2—q.5)H,
(46)
where we have again assumed inversion symmetry
ATP(8)=AT(- ), (47)
AS(r, 81,82 = A3°(—1,— 81, 8,). (48)

Finally, look for solutions with definitexchange symmetry
Symmetric states:

fij:+fji (49)
therefore
f(K,q)=+f(K,—Qq). (50)

“Averaging” over f(K,=q) (i.e., taking 3[f(K,q)+f(K,
—0q)]), we get

E—Eo—zﬁ [A3(6)+A%(6)]
X cogK - d2)cogq- 5)} f(K,q)

1
:Nz f(K,q’)[ > A(r,8,,8,)
qr I’,lsl,ﬁz
x cogK-r)cogq- 8,)codq’ - 8,)

—25 [A%(8)+A%(H)]cogK - dI2)cogq- 6)|.

(51)
Antisymmetric states:
fij=—fii (52
therefore
f(K.q)=—-f(K,~q). (53

“Averaging” over f(K,*q) (i.e., taking 3[f(K,q)—f(K,
—a)]), we get

PHYSICAL REVIEW B3 144410
E—EO—Zs [A3(8)+A%(6)]
X cogK-dl2)cogq- o) | f(K,q)

1
=5 2 fKa) X A3r.8,8,)
q' r,01,0,

X cogK-r)sin(q- 8,)sin(q’ - 85). (54

Identical particles:If the particlesa andb are identical,
the solution is the same as for symmetric states except the
labelsa and b must now be dropped, and to avoid double
counting it turns out that thA, term must be multiplied by
an extra factor of 1/2:

E—Eo—zzs Al(ﬁ)cos{K-5/2)cos{q-5)}f(K,q)

1 1
=5 2 fKa)|5 2 Ax(r.8,8,)
q' r,01,0,
X cogK-r)cogq- d;)cogq’ - 65)

_225 A,(8)cogK - 82)cogq- 8) |. (55)

The above integral equations can be solved, for a given
value ofK, using standard discretization techniques. Instead
of using continous momentuiyp, one can usé&\ discretized
and equally spaced values of momentum, so that instead of
solving the complicated integral equation, one only needs to
compute the eigenvalue and eigenvector oNaxN matrix
for the discretized system. Notice that the matrix is nonsym-
metric due to the unphysicd|; term we have introduced in
Eq. (37), but even so the eigenvalues obtained from this
matrix are real. The solutions we obtain also include an un-
physical one with eigenvalue equal to(ihis is also due to
the unphysicalf;; term). The results obtained from the cal-
culation with discretized momenta will converge to those
with continous momentum abl—oo. Actually for those
bound states with finite coherence length, the calculation will
normally be well converged for quite small valueshyfbut
for unbound states, we have an infinite coherence length, so
one may need to do finitBl extrapolations to get results at
N=o0,

There are two methods to compute the eigenvalues of the
matrix for the discretized system. Obviously one can get nu-
merical results for the eigenvalues, for a given value of cou-
pling A and momentumK, via standard numerical tech-
niques where we just perform a naive sum for the series in
A, andA,. The results presented in a preceding papee
based on this method; but then one cannot carry out a series
extrapolation, and so one may not be able to reach a region
of critical coupling. A better technique is to compute the
series in\ for the eigenvalues through degenerate perturba-
tion theory: that is, by explicit diagonalization of the matrix
within the degenerate subspace, order by order in perturba-
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tion theory, and then one can perform a series extrapolationists “localized” in the limit A—0. For those “extended”
The problem with this method is that the series does nobound states in the limik—0,%C one still needs to do de-
always exist, for example for those bound states appearing generate perturbation theory, just as in the case of the
some nonzero value of. momentum-space discretization solutions. Another advan-

The two particle continuum is delimited by the maximum tage of this method over the the momentum-space discreti-
(minimum) energy of two single particle excitations whose zation technique is that the matrix one deals with is always
combined momentum is the center of mass momentunsymmetric.
Apart from the unphysical eigenvalue, there may be multiple Furthermore, it gives us explicit real-space wave func-
solutions above or below the two-particle continuum. Thosedions, from which the coherence length and other properties
solutions with energy below the bottom edge of the con-can be deduced. The coherence lergik defined by
tinuum are the bound states, while the solutions with energy
higher than the upper edge of the continuum are the anti- 2r|r|fr2
bound states. The binding energy is defined as the energy L= s 2’ (56)
difference between the lower edge of the continuum and the rr
energy of the bound state, while the antibinding energy isvheref, is the amplitude(the eigenvectorfor two single-
defined as the energy difference between the upper edge particle excitations separated by distamce
continuum and the energy of an antibound state.

Note that the series fak, may depend on the transfor- IIl. RESULTS
mation used to block diagonalize the Hamiltonian. If we ) .
computeA, (and alsoA ;) to ordern, the resulting series for ~ We apply the new method to thél+1)-dimensional
the two-particle energy obtained from the above integrafransverse Ising model and a two-leg spitrieisenberg lad-
equation will have two parts: the part up to ordeis inde- der.
pendent of the transformation, while the higher order terms
are incomplete, and may depend on the transformation. The A. Transverse Ising model

numerical solution of the_integ_ral equation may alsq depend |4 order to verify that our new technique is giving the
partly on the transformation, since it contains the higher or,rect results, we firstly apply it to a simple model, ®e

der term. Also note that the series ftop need not have any =1 transverse Ising model ifl+1) dimensions, which is

singularities. The singularities, if they exist, arise in the S0-gy5 0ty solvable in terms of free fermions. The Hamiltonian

lution of the Schrdinger equation, so our method should be¢,, it feads

able to explore new bound states arising as we vary the mo-

mentumK. If we get a numerical solution, rather than a

series solution, to the Schiimger equation, we should also H :Ei (1_‘75)—)\2 oloiy (57)

be able to explore new bound states arising as we inctease

as long as the naive sum to the series converges. Here we take the first term as the unperturbed Hamiltonian
Ho, and the second term as the perturbatibn The ground
state ofH is the unique state with all spins pointing up. The

D. Finite lattice approach lowest excited stategone-particle excitationsfor Hy flip

Once the cluster expansions for the irreducible matrix elone of the spins from spin up to spin down. The exact
ementsA; and A, have been developed, the Sattirmer result® for the one-particle dispersion relation is
equation in the two-particle subspace can be solved by an
alternative method that works in coordinate space rather than E1(q) =21+\?—2) cosq. (58)
momentum space. By restricting to a finite but large system
with periodic boundary conditions, the two-particle Schro
dinger equation becomes a finite-dimensional matrix o
equations. The cluster expansion results provide the matr
elements of the effective Hamiltonian as a power series i i . . ;
the expansion parameter. The center-of-mass momentum ispgmcle dispersions, that is
conserved quantity, thus, for a given value of the center-of-
mass momentum, one is left with a Sctlimger equation in
the separation variable. One can truncate the perturbation (59)
theory at a given order and solve the Sclingier equation
numerically. One can then vary the size of the system, whickvhereq, andq, are the momenta of each particle. Note that
only increases the dimension of matrix to be diagonalizedhis is a nontrivial example for our method as the similarity
linearly, to study convergence. We have frequently used thisransformation does not even lead to a cluster expansion.
method to compare with and check the momentum-space We have implemented the algorithm described above for
discretization solutions. this model. For the one-particle excitation, we can easily

This “finite lattice approach” also allows us to obtain reproduce the exact results through the different block diago-
power series expansions for bound state energies, by a nonalization schemes mentioned before. For the two-particle
degenerate perturbation theory, provided the bound state erxcitations, although there are no bound states, the tAgms

For the two-particle excitations, the unperturbed states

1have two spins down. Since this model can be mapped into

:'E(ee fermions, there are no two-particle bound states, and the
wo-particle excitation energy is simply the sum of two one-

E»(Q1,02) =21+ A%—2\ cosq;+ 21+ \2— 2\ cosqp,

144410-7
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TABLE |. Series coefficients for ,(r,d;,8,) == A%(r,81,8,)x* in the (1+1)-dimensional transverse Ising model, obtained by the
two-block method. Nonzero coeﬁiciena‘.é;(r,él,éz) up to orderk=6 are listed.

(k,2r,8,,8,)  AK(r.8,,8,)/4 (k2. 8.,8,) AS(r,8,,58,)/4
2 2

(k,2r,81,8,)  AK(r,8,,8)14  (k2r,8,,8,)  AX(r,8,,8,)/4

(2,-2,1,1 5.0000010° (4,4,2,2 1.562500< 101

(5,-5, 3,2 1.09375<10° % (6,4,3,) —5.468750x10 2

(2,2,1,1 5.0000010°* (4,4,3,1 1.562500<10°! (5,5,3,2 1.09375x10° % (6,-6,1,5  8.203125¢ 102
(3-3,1,2 2.50000010°! (4,4,3,1 1.562500<10° ! (5,5, 4, ) 1.09375x10°* (6,6,1,5  8.203125€ 102
(3,3,1,2 2.5000010°* (5,-3,1,3 -—7.81250x10 2 (5,5,4,) 1.09375x10 ' (6,-6,2,4  8.20312510 2
(33,2, 1 2.5000010° % (5,3,1,3 —7.81250x10 %2 (6,-2,1,) —1.95312%10 2 (6,6,2,4 8.20312510 2
(3,3,2,1 2.5000010° % (5,-3,2,1 -—7.81250x10°%2 (6,2,1,) —1.95312%10 2 (6,-6,3,3  8.20312510 2
(4,-2,1,) —1.250000<10°* (5,3,2,) —7.812500<10°2 (6,-4,1,3 —5.46875x10°2 (6,6,3,3  8.20312510?
(4,2,1,) —1.25000010°* (5,-5,1,4  1.093750<10°' (6,4,1,3 —5.46875k10°2 (6,-6,4,2  8.20312510 2
(4,4,1,3 1.562500<10°* (5,5,1,4  1.09375x10°% (6,-4,2,3 —5.468750K10°2 (6,6,4,3  8.203125%10 2
(4,4,1,3 1.562500<10° ! (5,-5,2,3 1.093750<10° (6,4,2,3 —5.4687510%2 (6,-6,5,1)  8.20312510 2
(4,-4,2,2 1.562500 10" (5,5,2,3 1.093750<10°* (6,-4,3,) —5.46875k10°2 (6,6,5 1  8.20312510 2
are not zero. That is because we are using the spin represen- B. Heisenberg ladder

tation; in a fermion representation, the would be expected
to vanish. We have computed them to oraléf by using the
two-block method. The series coefficients up to ord®are

The second model we have investigated is the two-leg
spin4 Heisenberg ladder, where the Hamiltonian is

giverr® in Table I. With these series, one can solve the dis-

cretized version of the integral equation to get the binding

and antibinding energy for any given value of momentim
and couplingh. Our results show that for ak and\, the
binding/antibinding energy scales ad\#/ and approaches to

H=Z{Jls-sﬂ[s-sﬂw’-S’HJ}, (60)

zero asN—o: this is consistent with the absence of bound/WhereS (S') denotes the spin at siteof the first(second

antibound states in this model. The results fo£ 0.5 and

chain. J is the interaction between nearest-neighbor spins

k=0,m/2,7 are shown in Fig. 4. We have also checked tha2long the chain, and, is the interaction between nearest-

the resulting series fdE, agrees with Eq(59) for the lowest

neighbor spins along the rungs. In the present paper the in-

and highest energy of two-particle states up to 12th ordefrachain coupling is taken to be antiferromagnetitat is,

and the coherence length is infinity, as expected.

0002 ——T—T—T—g—T— T

0.0015 [~

A 0001 [
=] |

0.0005 [~

" 1 N " L " 1 N "
0 0.0001 0.0002 0.0003
1/N?

FIG. 4. The binding energgfull points) and antibinding energy
(open points E,, versus N2 (N is the size of the matrixfor the
transverse Ising model with coupling=0.5 and momenturk=0
(dotted line$, 7/2 (dashed lines 7 (solid lines.

J, >0) whereas the interchain couplidgcan be either anti-
ferromagnetic or ferromagnetic.

The antiferromagnetic Heisenberg ladder has attracted a
good deal of attention recentfy=2° It is of experimental
interest in that there are a number of quasi-one-dimensional
compounds which may be described by the mdédét. is
also a prime example of a one-dimensional antiferromagnetic
system with a gapped excitation spectrum. Uhrig and Nor-
mand, Damle and Sachdé&V,as well as Sushkov and
Kotov?’ have shown that the system exhibits two-particle
bound states, one singlet and one triplet. Our aim here is to
explore the properties of these bound states more closely.

In the dimer limitd/J, =0, the ground state is the product
state with the spins on each rung forming a spin singlet. The
first excited state consists of a spin triplet excitation on one
of the rungs. Asl/J, increases, this state evolves smoothly,
and the system has a gapped excitation spectfaffiThe
dimer expansions have been computed previously up to or-
der (3/3,)?2 for the ground-state energy and up to order
(J/13,)*2 for the one-particle triplet excitation spectri.
The occurrence of two-particle bound states in this model
has been shown by low order strong-coupling
expansion¥ 2°252635 well as a leading order calculation us-
ing the analytic Brueckner approath?®

Here we have calculated series for the dispersions of the
two-particle bound states up to ordel/J, )’ for the singlet
bound state $), and to order J/J,)*2 for the triplet bound

144410-8
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TABLE 1l. Series coefficients for the dispersi(Em(k)/Jl=2k’nak,nxk cospkK) for the singlet bound state of the Heisenberg ladder.
Nonzero coefficientsy , up to orderk=7 are listed. Note that the series are valid only Kerk, .

(k,n) A, (k,n) A n (k,n) A n (k,n) A,

(0,0 2.0000000 (2,1 1.250000x10°* (5,2  —3.9255371 (5,4 —1.5305176
(1,0 —1.5000000 (3,1) —3.984375x10°* (6,2 —1.042085% 10 (6,4  —5.0236816
(2,0 1.1875000 (4,1)  —1.9453125 (7,2  —2.869799x 10 (7,49  —1533511x10
(3,0 2.812500x10°! (5,1 —5.2039795 (3,3 —2.890625x10°! (5,5 —3.8916016¢10°*
(4,0 —1.2919922 (6,1) —1.282888% 10" (4,3 —1.0078125 (6,5  —2.3588257
(5,0 —3.4462891 (7,) —3.305057(x 10 (5,3 —2.7506104 (7,5 —9.1123085
(6,0 —7.1851196 (2,2 —3.125000x10° ' (6,3 —7.5901184 (6,60 —5.046234K10° !
(7,0 —1.679019% 10 (3,2 —6.562500x10°* (7,3 —2.210702%10 (7,6 —3.6886940
(1,9 —5.000000x10°* (4,2  —1.5449219 (4,4  —3.193359410 ' (7,7 —6.829490Kx10°*

state (T) and the quintet antibound stat®). The reason 3x  11x% 173 x2  9x3

why the singlet series is computed to only 7th order com- Ex/J =2— -+ T+1_6+( X 1_6) cogk)
pared to 12th order for the triplet and quintet states is that the

singlet has the same quantum numbers as the ground state. x* x3 5x° cog 3k) 4
Thus a much more elaborate orthogonalization method is + _E_i) cog2k) — 16 +O(x%),

required to implement the cluster expansion for the singlet.

For the triplet and quintet bound states, we can use the simi- (61b
Iarlty transf_ormatlon or the two-block orth_ogonal transfor- 3x 1DE 33 2 273
mation to implement the cluster expansion. Up to order Eo/d =2+ —+ —(— ——=+|x— —— ——|cogk)
(3/13,)3, the dispersion for the singlet bound stakgs(J, ), 2 8 16 4 16
triplet bound stateK+/J, ), quintet antibound statéeg /J,) x2  3x8 7x3 cog 3K)
are — ———|cog2k) + ————+0O(x%),
2 8 16
(610
2 3 2 3
Eg/d, =2— 3 + 19¢ +gi +| = f+ X g) cogK) where x=J/J, . The full dispersion series for the singlet
2 16 3 2 8 128 state, and the series for the energy gap-atr for singlet,
2 3 3 triplet, and quintet bound/antibound states and the lower
( 5X g) cog 2K) — 37x” cog3k) edge and upper edge of continuum are listed in Tables Il and
16 32 128 lIl; the other series are available upon requéstigures 5
+O(xY), 61a and 6 show the dispersion and the binding/antibinding en-

ergy atJ/J, =0.2 for the two-particle continuum as well as

TABLE lll. Series coefficients for dimer expansions of the energy §ah of singlet bound state, triplet bound state, quintet antibound
state, and the lower and upper edge of the continuuks=at for the the Heisenberg ladder. Coefficients &fJ, )" up to ordem=12 are
listed.

n Singlet bound state  Triplet bound state  Quintet antibound state ~ Lower edge of continuum  Upper edge of continuum

0 2.000000000 2.000000000 2.000000000 2.000000000 2.000000000
1 —1.000000000 —0.500000000 0.500000000 0.000000000 0.000000000
2 0.750000000 1.125000000 1.125000000 1.000000000 2.000000000
3 0.312500000 0.312500000 0.687500000 0.250000000 1.250000000
4 —0.203125000 —0.476562500 0.148437500 —0.625000000 —0.500000000
5 —0.558593750 —0.742187500 —0.242187500 —1.031250000 —1.843750000
6 —0.356445313 —0.399414063 —0.198242188 —0.595703125 —1.119140625
7 0.440856934 0.444519043 0.219665527 0.648925781 1.613769531
8 1.282394409 0.294692993 1.615997314 3.436676025
9 0.964994431 —0.865842819 1.012023926 1.011138916

10 —1.139695843 —3.052285552 —1.200890859 —4.719360987

11 —3.099767812 —3.914894695 —2.788565993 —6.971628388

12 —1.480682586 0.070329791 —0.814231584 0.478638977
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FIG. 5. The excitation spectrum for the Heisenberg spin ladder
at J/J,=0.2. In addition to the two-particle continuurfgray FIG. 6. The binding/antibinding enerds,/J, (upper window
shadeq] there are three massive quasiparticles: a singlet bound stafd the rescaled binding/antibinding enefgy/J, (k—kc)? (lower
(S), a triplet bound statéT) below the continuum, and a quintet Window) for the Heisenberg spin ladder &tJ, =0.2.
antibound stat€Q) above the continuum.

Ep/J=(k—Kk¢)?[5x/8+975¢%/128+ O(x3) ]+ (k—k,)®
the the two-particle bound/antibound states. Here we can see

2y1./10x RV
there is a singlet$=0) and a triplet 6=1) bound state of X[12+ 115+ O(x%) Jv10x/192+ O[ (k—Kc)"]

two elementary triplets below the two-particle continuum, (63
and a quintet $=2) antibound state above the continuum. .
From these graphs, we can also see that these bounf@ the singlet bound state, and
antibound states exist only when the momentkis larger B ) ) 3
than some “critical momentum’k.: the series in Eq(61) Ep/J=(k—Kk)[3/8—x/32+0.4531%“+ O(x*)]
and Table Il are valid only fok=k.. It is interesting to 1 \3
explore the behavior of the binding energies near this critical T lkko) [\/5/16_ 53(/(64\/5)
momentum. From the series for the one-particle and two- +0.192452+ 0O(x3) ]+ O[ (k—k¢)*] (64)

particle dispersions, one can get leading order result& for ) ) )
for the triplet bound state. For the quintet antibound state, the

as
antibinding energy is
VIk+0(x), S=0, E,/d=(k—k¢)2[ 3/8+ x/32— 0406252+ O(x%)]
=14 2m/3—5x/(2/3)— 10%?/(48\3)+ O(x3), S=1,

ke=1 2m/3-5x/(2y3) (483) +0(x) + (k—kg)3[ V3/16+53¢/(64\3)

273+ 5x/(2/3) +47x%/(48\3) + O(x3), S=2

+1.00886&2+ O(x3) ]+ O[ (k—k¢)*]. (65)
(62)  Here one can see that for all bound/antibound states the

“critical index” is 2, independent of the order of expansion,
and in the limitk— k., the behavior of the binding energy is so one expects that this é&xact

TABLE V. The critical point (pole) and critical index(residug obtained from[n/m] Dlog Padeapproximants to the series for the
binding energy ak=3#/5 for the triplet bound state of the Heisenberg ladder. An asterisk denotes a defective approximant.

n

[(n—2)/n]
pole (residug

[(n—1)/n]
pole (residue

[n/n]
pole (residue

[(n+1)/n]
pole (residue

[(n+2)/n]
pole (residug

5 3 3 5 3
Il
o0 WN

0.131691.999149
0.131712.000658
0.13170(1.999826)
0.131702.000016

0.133422.100484
0.131722.001628
0.1317@2.000143
0.1317@1.999969

0.13067(1.917138)
0.1317@2.000083
0.131702.000097
0.1317@1.999997

0.131631.993828
0.131702.000146
0.131701.999987

0.131732.002998
0.1317@1.99990%
0.1317@1.999999
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FIG. 7. The critical §,J, ). versusk for singlet (S), triplet (T), k/m

and quintet(Q) bound/antibound states of the Heisenberg ladder.
The solid lines with errorbars are the results obtained fidiim
Padeapproximants to the series for binding/antibinding endggy
for givenk, while the dotted lines are the results of E62).

FIG. 9. The coherence lengthversus momenturk for singlet
(S), triplet (T), and quintet(Q) bound/antibound states of the
Heisenberg ladder a/J, =0.2.

one can see that akJ, —», k; for the singlet and triplet
bound states approaches the same value, about Ovhile
k. for the quintet antibound state approachesTo demon-
strate thatE,, is proportional to k—k.)? neark., we also
Jlotin Fig. 5 the results foE,/J, (k—k.)? atJ/J, =0.2.

The binding/antibinding energy ak== for bound/
antibound states versudsJ, is plotted in Fig. 8. In the limit
J/J, —0, E,/J, is proportional tal/J, , so in the figure we
plot E,/J versusJ/J, . We can see that al¥J, increases,
Ep/J for the singlet bound state first increases, passes
S — through a maximum at aboul/J, =0.4, then decreases,

r 1 while E,,/J for the triplet bound state and the quintet anti-
bound state decreases monotonically JAt, =1/2, we find
the binding/antibinding energies lat 7 for the singlet, trip-
let, and quintet bound/antibound states BiggJ=1.033),
0.3851), and 0.0858), respectively. The binding energy
for the singlet bound state is substantially larger than the
value 0.70 obtained in Ref. 28.

We have also computed the coherence letgtbr these
bound/antibound states. The results 33, =0.2 are shown
in Fig. 9, where we find that diverges as 1K—k;) ask
approache&.. This is to be expected, as the state becomes
unbound at that point. The coherence lengthk=atr versus
J/J, is shown in Fig. 10, where we can see thatlatO,
L=1. This is as expected, as the formation of these bound
states is due to the attraction of two triplets on neighboring
sites. AsJ/J, increases, the coherence lengdthincreases
slowly. L for the quintet antibound state is larger than that
for the triplet bound state, which is larger than for the singlet
bound state.

A better way to locate the critical line in thel/J,)-k
plane is to calculate the Dlog Padpproximants to the series
for the binding/antibinding energy at a fixed momentim
For those critical points lying at.<0.2, the resulting criti-
cal point and critical index are very accurate, correct up t
five digits, and again one finds the critical index is exactly 2.
The results for the triplet bound statekat 377/5 are given in
Table IV. The results for the critical points are given in Fig.
7, together with the results from E¢62). From this figure,

FIG. 8. The binding/antibinding enerdy, atk= 7 versusl/J, IV. CONCLUSIONS
for singlet (S), triplet (T), and quintet Q) bound/antibound states
of the Heisenberg ladder. Several different integrated differential In conclusion, we have developed strong-coupling expan-
approximants to the series are shown. sion methods to study two-particle spectra of quantum lattice
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L L energies at the respective critical momenta are found to con-

/ tribute first in order k—k.)?, independent of the order of the
strong coupling expansion. We computed the coherence
length for these states and find that the coherence length
diverges as one approaches the critical momentum where
these states become unbound.

There are several possible direction for future research
along these lines. Of course there are many different models
to which these methods might be applied. In particular, it
remains to show that the linked cluster expansion works suc-
essfully for two or higher-dimensional models. One would
also like to know how to calculate other quantities associated
with multipartcle excitations, such as spectral weights, life-
times, and scatterin§ matrices. The latter would provide a
handle on some important dynamical properties of the sys-
tem.

1 L L L 1 L L N 1
0 0.2 04 0.6

3/,
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that one needs to define a two-particle irreducible matrix

element, for a cluster expansion to exist. Furthermore, one
r]eed§ to maintain explicit orthogonality in the transforma- APPENDIX: TWO-BLOCK APPROACH
tions in order to study the two-particle subspace character-
ized by identical quantum numbers to the ground state. An There is an alternative way to perform the block diago-
example of the latter is the two-particle singlet excitationnalization of Sec. Il A, which is almost as efficient as Gel-
sector in dimerized spin models. fand’s similarity transformation. The idea is to separate the
We have discussed the solution of the integral equatioffective Hamiltonian into onlytwo blocks, one containing
one obtains by a Fourier transformation of the two-particlethe states in the sector of inter¢stg., the one-particle states,
Schralinger equation and by a “finite-lattice approach.” or the two-particle stat¢sand the other containing all other
These allow us to precisely determine the low-lying excita-states. One can prove in this two-block approach iy 2\
tion spectra of the models at hand, including all two-particledetermined in this way is antisymmetric with respect to the
bound/antibound states. Furthermore, we have shown th&ff-diagonal blocks, andymmetricwith respect to the diag-
one can generate series expansions directly for the dispesnal blocks. Rather than use the complicated equdti@h
sions of the bound/antibound states, provided these bourghe can then determine the diagonal blocksQsf) in a
states exist in the limik— 0. These allow us to apply series much more efficient way by the orthogonality conditi(3)
extrapolation techniques such as Dlog Radad differential  which can be rewritten in the following form:
approximants to study binding energies even when the per-
turbation parameter is not small.

. . . -1
We applied the method to thd+1)-dimensional trans- - " T
verse Ising model and the two-leg sgirHeisenberg ladder. {o+o bij= _m§=:l {omolr=m Hi (A1)

While the first model does not include any bound states, we

find a singlet and a triplet bound state in the latter model as

well as a quintet antibound state. We generated explicit exfor elements in the diagonal blocks. Thus one can dispense
pressions for the dispersions of these states as series in théth the matrixS, and work withO only.

exchange couplings. Further, we have determined the critical Unfortunately, although it is more efficient, this approach
momentak,, where these additional massive quasiparticlegloes not always seem to allow a successful cluster expan-
merge with the two-particle continuum, which are non-zerosion. The reason for this is not understood at the present
for all three states. The explicit expressions of the bindingime.
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