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Mixing of magnetic and phononic excitations in incommensurate spin-Peierls systems
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We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken
as a microscopic model of a spin-Peierls material placed in a high magnetic field. We show, by using a
semiclassical approximation in the bosonized representation of the spins, that a trapped magnetic state obtained
in the adiabatic approximation is destroyed by dynamical phonons. Low-energy states are phonons trapped by
the soliton. When the magnetic gap is smaller than the phonon frequencies, the only low-energy state is a
mixed magnetophonon state with the energy of the gap. We emphasize that our results are relevant for the
Raman spectra of the inorganic spin-Peierls material CuGeO3.

DOI: 10.1103/PhysRevB.63.144404 PACS number~s!: 63.20.Ls, 75.10.Jm, 75.50.2y
nd
d
o
e
c

lie
a

et
a
ise

a
tu
es
te
s
o
ca
th

-
r
d

an
d
th
in
n
ob
t
g
o
th
ad

n
u
W

tic
let
ve
eir
in
x-

t as
by

nsu-

ig-
er-

p.
two
pec-
gy

spin
s re-

an
an
his
s is
on
atic

n

The discovery in 1993 by Hase, Terasaki, a
Uchinokura1 of the first inorganic spin-Peierls compoun
CuGeO3 has opened the possibility of study of the physics
this collective phenomena in a deep way. Several experim
tal proofs have given exhaustive information about the ex
tation spectra of this system and its evolution with an app
magnetic field. The effect of nonmagnetic impurities h
been investigated also.

Theoretical studies have focused on a simplified magn
model. The excitation spectra in the low-temperature ph
have been analyzed using a dimerized and frustrated He
berg chain as a minimal model for this material.3–5 The logic
underlying these studies are: the competition between m
netic and elastic energies resolves in the low-tempera
phase in the dimerization of the lattice. Once this proc
takes place, phononic and magnetic excitation comple
decouple, and the magnetic excitations are the same a
chemical dimerized system. This point of view is based
an adiabatic approximation supposing that the energy s
of the magnetic process is high enough with respect to
phononic ones. As it has been recently emphasized,6 this
relation is not fulfilled for CuGeO3 where the phonons rel
evant for the dimerization process are about one orde
magnitude more energetic than the magnetic gap. The a
batic approximation is questionable for this system. An
tiadiabatic approach has been developed. The frustrate
teraction arises, in this context, from the integration of
in-chain phonons and the explicit dimerization from the
terchain interaction treated in a mean-field approximatio7

The same frustrated-dimerized Hamiltonian is therefore
tained, but with a reinterpretation of the parameters. Wha
clearly missed in these studies is a general understandin
how spin and phonons mix as elementary excitation and h
the spectra of spin-Peierls systems is built as a result of
mixing. Some recent numerical results have partially
dressed this question.8

In this paper, we analyze the excitation spectra of a o
dimensional spin-phonon system by semiclassical techniq
on the bosonized representation of the spin subsystem.
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focus on the properties of this system in a high magne
field. In the dimerized phase, the system is in a sing
ground state. Coupling with a magnetic field is not effecti
up to a critical field value where some dimer break and th
spins are freed from their singlet. The lattice also relaxes
this process forming the so-called soliton lattice. This rela
ation is a first indication that spin and phonons do not ac
independent excitation. It has been experimentally shown
x-ray measurements that the lattice becomes incomme
rate following a soliton pattern.9 The magnetic profile of the
soliton has been analyzed by NMR measurement.10

More recently, optical proofs have shown the spectral s
nature of the incommensurate phase. In the uniform dim
ized phase, a low-energy resonance appears at 30 cm21,
which is a smaller energy than two times the magnon ga11

This peak has been adjudicated to a bound state of
triplet.5 When the incommensurate phase appears, the s
tral weight is transferred from this state to a lower-ener
peak at the position of the magnon gap.2 Direct magnon pro-
cess could not be seen in the optical response due to
conservation. Soliton-assisted one-magnon excitation wa
cently proposed as the origin of this peak,2 in similarity with
the situation in the presence of nonmagnetic impurities.12

This approach is based on the image of the soliton as
isolated spin in the externally dimerized chain so that
adiabatic approximation is supposed. We will show that t
state in fact disappears when the dynamics of the phonon
included. We will also show that a trapped magnetophon
state with the energy of the gap appears in the antiadab
regime, so explaining the optical data.

Let us proceed more formally. Our starting Hamiltonia
for a spin-Peierls compound is

H5Hph1Hmg , ~1!

Hph5(
i

Pi
2

2M
1

K

2
~ui 112ui !

2, ~2!
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Hmg5(
i

JF11
a

2
~ui 112ui !GSi•Si 11 . ~3!

Si are spin-1/2 operators of thei ion anda the magnetoelas
tic coupling. Hph represents our simplified model for th
phonons. It contains a scalar coordinateui and its conjugate
momentumPi that are supposed to be the relevant ion co
dinates for the dimerization process. As we will only reta
the phonons relevant for spin-Peierls~SP! transition, the spe-
cific dispersion of the phonons is not important in our a
proach. The tridimensional character of the phonons fiel
essential to account for the finite spin-Peierls tempera
and the excitations in the low-temperature dimerized phas13

We will discuss later its effect on the incommensurate pha
The low-energy spectrum could be studied by boson

tion. The spin variables are approximately represented by
bosonic fieldf(x) and its conjugated momentumP(x).14 In
addition, we retain only the phonon modes producing
smooth deviation of the dimerized pattern. So, we make
replacement (21)iui→u(x). The low-energy Hamiltonian
becomes:

Hph5E dxH aP~x!2

2M
1

2K

a
u~x!2J ,

Hbos5E dxH 1

2p Fvs

h
@]xf~x!#21vsh@pP~x!#2G

1
Jau~x!

pa0
sinf~x!J , ~4!

wherea is the lattice constant of the original chain anda0 a
short range cutoff introduced in the bosonization procedu
vs is the spin-wave velocity andh is related with the expo-
nent of the correlation functions. For the isotropic Heise
berg model withnn interaction we havevs5Jap/2 andh
52.

We use a semiclassical approach in the form of a s
consistent harmonic approximation~SHA! as it has been
originally proposed by Nakano and Fukuyama~NF!.15 In this
approach, the boson fieldf is split in a classical componen
fcl and the quantum fluctuationf̂. The last term of Eq.~4!
is developed up to second order aroundfcl and then treated
self-consistently by the following replacement:

sinf→e2^f̂2&/2Fsin~fcl!H 12
~f̂22^f̂2&!

2 J 1cos~fcl!f̂G .

~5!

^f̂2& is the ground-state expectation value.
In their original work, NF have fixed the displaceme

field u to its equilibrium classical value (ucl), so that an
adiabatic approximation was assumed. Let us summarize
main results of this study and its consequence for the spe

~i! The classical equations forf andu(x) have a soliton
solution of the form: sin(fcl)5tanh(x/j), ucl(x)5u0 tanh(x/j).
j, the soliton width, isvs /D andD is the gap over the ho
mogeneous dimerized state~the ‘‘magnon’’ gap! andu0 are
the displacements in this homogeneous dimerized state.
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soliton carriesSz51/2 spin. In the presence of an extern
magnetic field, these solitons will condense in the grou
state and accommodate in a soliton lattice structure.

~ii ! The creation energy of the soliton, as well as the e
citations over this solitonic vacuum, could be evaluated o
the eigenvalues of the fluctuation operator are known. T
eigenvalue problem corresponds to a one of a Schro¨dinger-
like equation that reads as

$2¹ x̂
2
1tanh2~ x̂!%cl5

V~l!2

D2
cl~ x̂!,

x̂[
x

j
. ~6!

V(l) are the frequency oscillations in the presence of

soliton. Eq.~6! has one bound state atVb /D5AA521/2
;0.786 and a continuum started atV5D. The excitation
spectra of the theory is spanned by the following state:

~iii ! The ground state of the quantum soliton build
aroundfcl . Their creation energy (Es) is given by its clas-
sical energy plus the difference between the sum of the z
point energies of the oscillators@V(l)# and the ones in ab
sence of the soliton. This creation energy measures the c
cal field for the commensurate-incommensurate transitio15

~iv! The excited state of the soliton with energyEs* 5Es

1Vb . It is related with the bound state of Eq.~6!.
~v! Labeling byq the continuum of level of Eq.~6!, they

areV(q)5vsAq211/j2. This is just the kinetic energy of a
particle in the soliton-free sector. In terms of the origin
spin chain, this is the low-energy dispersion of theSz50
component of a magnon. Therefore, this state correspond
the scattering of a magnon in the presence of the soli
Moreover, when one of the continuum modes is exci
once, we get a two-particle magnon-soliton state.

The two last adjudication of states have not been don
the original analysis of the NF work. As our formalism
breaks SU~2! symmetry at an intermediate stage, the to
spin of each state is not directly accessible and should
carefully reanalyzed. We have previously stated that
states below the continuum correspond to the emission
magnon in the presence of the soliton. Therefore they h
total spin 3/2. The bound state has the same total spin as
soliton. Then, it is an optical active mode and it is the an
logue in our formalism of the so-called soliton-assisted m
non process founded in the strong dimerization limit.12

Moreover, the previous predicted spectra could be tes
by numerical exact diagonalization on a finite chain. To t
end, we solve iteratively the adiabatic equations forui aris-
ing from Hamiltonian Eq.~1!. The ground state of the spi
system was recalculated at each iteration step by Lanc
diagonalization. We considered chains of an odd numbe
sites up toL523 sites with periodic boundary conditions an
look for the equilibrium positions in the subspaceSz51/2.
The numerical details of the method was given in Re
17,18.

Once the ionic coordinate converge, we diagonalize
spin Hamiltonian, with fixedui , to obtain the low-lying ex-
4-2
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citation in theSz51/2 andSz53/2 subspaces. The results a
shown in Fig. 1 as a function of the 1/L2. Parameter
K/(aJ)25 1

4 has been chosen in order to have a thin soli
and to reduce the finite-size effect. The bound state predi
by the bosonized theory is clearly seen. The higher-ene
states collapse in a continuum of total spin 3/2 in the th
modynamical limit. By linear extrapolation, we found forL
→` the ratio 0.84 between the bound state and the borde
the continuum. This value compares well with our previo
prediction of 0.786. We conclude that the method gives
least a qualitative feature of the low-energy spectra. T
states appearing in the border of the continuum in Fig. 1
an artifact of the strongly thin soliton we are considering. W
have checked that for bigger values ofK/(aJ)25 1

4 , these
states in fact disappear.

We discuss in the following, two effects that could chan
our estimated value of the bound state from the S
method:

~1! Going from Eq.~1! to Eq. ~4!, we have neglected, a
did NF in their original work, a term proportional to cos(2f)
in the bosonized theory. Even though this operator plays
important role in the case of Ising anisotropy, it is a marg
ally irrelevant operator in the Heisenberg case and there
it should not change the qualitative features previously d
cussed. Moreover, NF have studied in a furth
contribution16 the effect of this term. Unfortunately, the e
timation of the bound-state value is strongly dependent
the value of the cutoff in the bosonization procedure (a0) in
this situation. If we assume, as NF did, thatpa05a, the

bound state becomesVbD5AA3/2;0.93. We can conclude
as a general fact that the presence of this term tends to
crease the bound-state value.

~2! It has been recently noted19,20that a full self-consisten
treatment~where^f2& in Eq. ~5! is not fixed to its value in

FIG. 1. The excitation spectrum calculated by Lanczos dia
nalization in the presence of an adiabatic soliton. Circles are
states ofSz5

1
2 and crosses forSz5

3
2 . The zero of the energies i

chosen at the soliton ground state. Energies are in units ofJ.
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the ground state! changes the form of the soliton. Moreove
it has been shown in Ref. 20 that this treatment produce
smoother soliton than the one considered here. Therefore
conclude that this treatment will reduce the bound-st
value.

In the following, we analyze the evolution of the spect
when nonadiabatic effects are included. For simplicity,
do not introduce the two additional effects previously d
cussed. These effects will not affect the prediction of t
trapped magnetophonon state we will find.

Inclusion of nonadiabatic effects. To go beyond this static
adiabatic approximation in this semiclassical calculation i
necessary to include fluctuations in the displacement fi
u(x). Therefore, we splitu(x) asucl1û and replace it in Eq.
~4!. This approach was already used by Takano, Nakano,
Fukuyama~TNF!21 to study the translational mode of th
soliton lattice in a nearly half-filled Peierls system with i
teraction between the parallel spin electrons.

The classical equations are the same as before. The
tuation operator is now a 232 differential operator with a
component overu and f. The eigenvalue problem is now
given by:

D2@2¹ x̂
2
1tanh2~ x̂!#c11

u0

a
8pKvs sech~ x̂!c25V2c1 ,

v2u0 sech~ x̂!c11v2c25V2c2 . ~7!

c1 andc2 are the component of the fluctuation eigenvec
over f and u, respectively.v5A4K/M is the phonon fre-
quency atq5p. The eigenfrequency are as previously giv
by V.

Equation~7! is the same as Eqs.~4.13! and~4.14! of Ref.
21. However, as we work in the one soliton sector the ellip
functions of Ref. 21 become the hyperbolic functions of E
~7! and the relevant electronic degree of freedom that w
the charge fluctuation in Ref. 21 is the bosonized spin v
ablef in our purely magnetic spin-Peierls system.

We obtain from the second equation of Eq.~7!:

c25
u0v2 sech~ x̂!

V22v2
c1 . ~8!

Replacing in the first equation, we have a kind of Sch¨-
dinger equation where the potential depends on the ene
This equation reads:

$2¹ x̂
2
1tanh2~ x̂!%c11S v

D D 2 sech2~ x̂!

S V

D D 2

2S v

D D 2 c15S V

D D 2

c1 .

~9!

It is worthy to note that the only relevant parameter isv/D.
Then, we can follow the evolution of the spectra from t
adiabatic to the antiadiabatic limit by moving this paramet

We have numerically solved Eq.~9!. In Fig. 2, we show
the evolution of the excitation spectra as a function ofv/D.
The soliton creation energy has been taken as the zero o
energy.
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The main results are:
• There is a zero-energy solution that was not presen

the adiabatic calculation. This mode was originally found
TNF and it is a consequence of the translation invariance
the theory. It is nothing but the translational mode of t
soliton. In a realistic situation, solitons are not isolated, th
form a soliton lattice. This zero mode will acquire som
dispersion giving rise to the so-called phason modes of
soliton lattice. The dispersion of this mode was in fact stu
ied by TNF in Ref. 21. If the magnetic field is not muc
higher than the critical one, the solitons will be rather se
rate and we can neglect their interference.

• In the direction perpendicular to the magnetic chai
solitons will accommodate in a domain wall, i.e., they for
an array of parallel solitons. Their coherency is assured
the interchain elastic coupling. The zero mode, as well as
the states of the spectra, will have a transversal dispers
they will depend on the momentum perpendicular to
chains. The spectrum shown in Fig. 2 gives theq50 excita-
tions. We will analyze their dispersive character in a for
coming work.

• The upper branch corresponds to the excited state o
soliton previously found in the adiabatic approximation.
energy increases withv up to a critical valuev2/D25 1

2

where this state disappear. For thisv andV5D, the energy-
dependent potential vanishes. The lattice soliton produce
harmonic potential over the magnetic soliton where it os
lates. In the adiabatic approximation, the lattice soliton
frozen and the magnetic one oscillates. For finitev, the lat-
tice soliton can also move and vibrate with respect to
magnetic deformation. Finally, at the critical value ofv,
there is no more a localized vibration and the soliton
comes an unique entity both for the lattice and for the sp
This explains the disparition of the trapped state at a crit
phonon frequency.

• The straight line of slope one in Fig. 2 corresponds
V5v. The eigenstate with this energy corresponds to

FIG. 2. The excitation spectrum as a function of the phon
frequency. Both energy scales are given in units of the magnon
(D).
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excitation of a phonon in the presence of the soliton. T
eigenvalues near above are satellite phonons correspon
to phonons trapped by the soliton~i.e., particle vibrations
near the soliton!. They have only spectral weight on th
phonons as it can be seen putting in Eq.~8! V;v. For
increasing phonon frequency, most of these eigenvalues
but the lowest survives acquiring the energy of the magn
gap. This state is a mixing of a magnetic and a phono
excitation, as we show in the following.

• Four Peierls active phonons have been identified
CuGeO3.22 They have frequencies of 3.12, 6.53, 11.1, a
24.6 THz, i.e., the smaller one is about 150 K. The spin g
is rather small for this systemD524 K. As we previously
stated, the real parameter regime where this material live
v.D and the only survival bound state has the energy of
gap. This is a singlet state that we associate with the lo
energy peak seen in Raman scattering in the incommensu
phase.2 The c1 and c2 components of the correspondin
eigenfunction are different from zero for this state.

Their mixed character could be advocated by analyz
separately the magnetic and phononic spectral response
magnetic Raman operator of a dimerized chain is given
Rmg5( i@11gmg(21)iSi•Si 11# ~Ref. 23! gmg is a micro-
scopic parameter. In our bosonized formalism, the most
evant contribution comes from the staggered part and i
given by (gmg /pa0) sin(f). By using the SHA given by Eq
~5!, retaining the term linear inf̂ and developing in the basi
of the eigenvalues of the fluctuation operator the magn
spectral weight (Mn) of an state of energyVn is given by:

Mn5
gmg

2

2Vn
H 4K

Jaa

Vn2v2

v2 E c2dxJ 2

, ~10!

where we have used Eq.~8! to write c1 as a function ofc2.
Phonons contribution to Raman scattering is proportiona
the square of the transition elements of the normal coo
natesRph5gph*(dx/a)u(x), the phonons spectral weight o
the n state is given by:

Pn5
gph

2

2Vn
H E c2

dx

a J 2

. ~11!

The relation between the magnetic and phononic con
bution to thenth peak of the spectra is

Mn

Pn
5

gmg
2

gph
2 H 4K

Ja J 2H Vn2v2

v2 J 2

. ~12!

We take the first two factors as a measure of the sp
phonon coupling, we fix this parameter when movingv.
Equation~12! shows that the magnetic component of a giv
Raman peak increases when its position shifts from a pho
frequency. The lower-energy eigenvalue of Fig. 2 starts
ing a trapped phonons forv/D,1 and transmutes in a
magneto-phonon in the opposite limit where the real mate
lives. Its existence is a consequence of the quasi-o

n
ap
4-4
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dimensional character of our system because a o
dimensional well has always one bound state.

In summary, we have shown that nonadiabatic effects
relevant for an incommensurate spin-Peierls system. In
antiadiadatic limit applicable to CuGeO3, we show the appa
rition of a trapped mixed state with the energy of the magn
gap. It gives an alternative explanation of the Ram
at
t,

ev
,

.

G
el,
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induced peak found in the incommensurate phase
CuGeO3.
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