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Mixing of magnetic and phononic excitations in incommensurate spin-Peierls systems
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We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken
as a microscopic model of a spin-Peierls material placed in a high magnetic field. We show, by using a
semiclassical approximation in the bosonized representation of the spins, that a trapped magnetic state obtained
in the adiabatic approximation is destroyed by dynamical phonons. Low-energy states are phonons trapped by
the soliton. When the magnetic gap is smaller than the phonon frequencies, the only low-energy state is a
mixed magnetophonon state with the energy of the gap. We emphasize that our results are relevant for the
Raman spectra of the inorganic spin-Peierls material CuGeO
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The discovery in 1993 by Hase, Terasaki, andfocus on the properties of this system in a high magnetic
Uchinokura of the first inorganic spin-Peierls compound field. In the dimerized phase, the system is in a singlet
CuGeQ has opened the possibility of study of the physics ofground state. Coupling with a magnetic field is not effective
this collective phenomena in a deep way. Several experimeryp to a critical field value where some dimer break and their
tal proofs have given exhaustive information about the exciSPins are freed from their singlet. The lattice also relaxes in
tation spectra of this system and its evolution with an appliedhis process forming the so-called soliton lattice. This relax-
magnetic field. The effect of nonmagnetic impurities hasation is a first indication that spin and phonons do not act as
been investigated also. independent excitation. It has been experimentally shown by

Theoretical studies have focused on a simplified magnetig-ray measurements that the lattice becomes incommensu-
model. The excitation spectra in the low-temperature phastate following a soliton patterhThe magnetic profile of the
have been analyzed using a dimerized and frustrated Heisefoliton has been analyzed by NMR measuremgnt. _
berg chain as a minimal model for this matefial.The logic More recently, optical proofs have shown the spectral sig-
underlying these studies are: the competition between magdpature of the incommensurate phase. In the uniform dimer-
netic and elastic energies resolves in the low-temperatur@ed phase, a low-energy resonance appears at 36,cm
phase in the dimerization of the lattice. Once this proces¥hich is a smaller energy than two times the magnon‘gap.
takes place, phononic and magnetic excitation completelyhis peak has been adjudicated to a bound state of two
decouple, and the magnetic excitations are the same as th#let® When the incommensurate phase appears, the spec-
chemical dimerized system. This point of view is based orfral weight is transferred from this state to a lower-energy
an adiabatic approximation supposing that the energy scakeak at the position of the magnon dabirect magnon pro-
of the magnetic process is high enough with respect to thé€ss could not be seen in the optical response due to spin
phononic ones. As it has been recently emphadizthis ~ conservation. Soliton-assisted one-magnon excitation was re-
relation is not fulfilled for CuGeQwhere the phonons rel- cently proposed as the origin of this peaik, similarity with
evant for the dimerization process are about one order dhe situation in the presence of nonmagnetic impuritfes.
magnitude more energetic than the magnetic gap. The adia- This approach is based on the image of the soliton as an
batic approximation is questionable for this system. An anisolated spin in the externally dimerized chain so that an
tiadiabatic approach has been developed. The frustrated iRdiabatic approximation is supposed. We will show that this
teraction arises, in this context, from the integration of theState in fact disappears when the dynamics of the phonons is
in-chain phonons and the explicit dimerization from the in-included. We will also show that a trapped magnetophonon
terchain interaction treated in a mean-field approximation. State with the energy of the gap appears in the antiadabatic
The same frustrated-dimerized Hamiltonian is therefore obr€gime, so explaining the optical data. . o
tained, but with a reinterpretation of the parameters. What is L€t us proceed more formally. Our starting Hamiltonian
clearly missed in these studies is a general understanding d@r @ spin-Peierls compound is
how spin and phonons mix as elementary excitation and how
the spectra of spin-Peierls systems is built as a result of this

mixing. Some recent numerical results have partially ad- H=Hpn*Hmg, (2)
dressed this questich.

In this paper, we analyze the excitation spectra of a one- P2 K
dimensional spin-phonon system by semiclassical techniques Hop= 2 L — (U 1—uj)? )
on the bosonized representation of the spin subsystem. We P4 om - 20t T
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a soliton carriesS,=1/2 spin. In the presence of an external
Hmg= 2 J| 1+ 5 (U1~ U) |5 S (3 magnetic field, these solitons will condense in the ground
' state and accommodate in a soliton lattice structure.
S are spin-1/2 operators of théon anda the magnetoelas- (i) The creation energy of the soliton, as well as the ex-

tic coupling. H,, represents our simplified model for the citations over this solitonic vacuum, could be evaluated once
phonons. It contains a scalar coordinateand its conjugate the eigenvalues of the fluctuation operator are known. This
momentumP; that are supposed to be the relevant ion coor-eigenvalue problem corresponds to a one of a Sthger-
dinates for the dimerization process. As we will only retainlike equation that reads as

the phonons relevant for spin-Peief&P transition, the spe-

cific dispersion of the phonons is not important in our ap- 2 - QN)? .

proach. The tridimensional character of the phonons field is {—V;(thanr?(x)}%:?%(x),

essential to account for the finite spin-Peierls temperature

and the excitations in the low-temperature dimerized ph&se.

We will discuss later its effect on the incommensurate phase. X= f (6)

The low-energy spectrum could be studied by bosoniza- 3
tion. The spin variables are approximately represented by thg \) are the frequency oscillations in the presence of the
bosonic field#(x) and its conjugated momentui(x).1* In () a y P

addition, we retain only the phonon modes producing &80liton. Eq.(6) has one bound state &l,/A= \/\/E.— 172
smooth deviation of the dimerized pattern. So, we make the-0.786 and a continuum started @t=A. The excitation
replacement € 1)'u;—u(x). The low-energy Hamiltonian spectra of the theory is spanned by the following state:

becomes: (i) The ground state of the quantum soliton builded
aroundde,. Their creation energyH) is given by its clas-
aP(x)? 2K ) sical energy plus the difference between the sum of the zero
th:J dx{ oM T g U } point energies of the oscillatof§2(\)] and the ones in ab-

sence of the soliton. This creation energy measures the criti-

cal field for the commensurate-incommensurate transtfion.
(iv) The excited state of the soliton with energ§ =Eg

+Qyp. Itis related with the bound state of E@).

N Jau(x) . } (v) Labeling byq the continuum of level of Eq6), they

1 |vs
Hyos= f dX[Z[%[axﬁb(X)]z-f— USW[WH(X)]Z

sing(x) @ areQ(q)=v.g?+ 1/E2. This is just the kinetic energy of a
particle in the soliton-free sector. In terms of the original
wherea is the lattice constant of the original chain aagla spin chain, this is the low-energy dispersion of t8g=0
short range cutoff introduced in the bosonization procedurezomponent of a magnon. Therefore, this state corresponds to
vs is the spin-wave velocity ang is related with the expo-  the scattering of a magnon in the presence of the soliton.
nent of the correlation functions. For the isotropic Heisen-\joreover, when one of the continuum modes is excited
berg model withnn interaction we haves=Jaw/2 andn  once, we get a two-particle magnon-soliton state.
=2. The two last adjudication of states have not been done in

We use a semiclassical approach in the form of a selfthe original analysis of the NF work. As our formalism
consistent harmonic approximatidiBHA) as it has been preaks Si2) symmetry at an intermediate stage, the total
originally proposed by Nakano and FukuyafiF).** Inthis  spin of each state is not directly accessible and should be
approach, the boson field is split in a classical component carefully reanalyzed. We have previously stated that the
¢ and the quantum fluctuatiopr. The last term of Eq(4) states below the continuum correspond to the emission of a
is developed up to second order aroupid and then treated magnon in the presence of the soliton. Therefore they have
self-consistently by the following replacement: total spin 3/2. The bound state has the same total spin as the

soliton. Then, it is an optical active mode and it is the ana-
. (d?— (%)) . logue in our formalism of the so-called soliton-assisted mag-
SiN(¢e)) 1————F——[+codde) ¢ |. non process founded in the strong dimerization litfit.
Moreover, the previous predicted spectra could be tested
R (5 by numerical exact diagonalization on a finite chain. To this
(¢?) is the ground-state expectation value. end, we solve iteratively the adiabatic equationsuparis-

In their original work, NF have fixed the displacementing from Hamiltonian Eq(1). The ground state of the spin
field u to its equilibrium classical valueu(,), so that an system was recalculated at each iteration step by Lanczos
adiabatic approximation was assumed. Let us summarize ttdiagonalization. We considered chains of an odd number of
main results of this study and its consequence for the spectraites up td_ = 23 sites with periodic boundary conditions and

(i) The classical equations fef andu(x) have a soliton look for the equilibrium positions in the subspaSg=1/2.
solution of the form: sing.)=tanh{/¢), uy(X)=ugtanh&/¢).  The numerical details of the method was given in Refs.
¢, the soliton width, isvg/A and A is the gap over the ho- 17,18.
mogeneous dimerized stafihe “magnon” gap andu, are Once the ionic coordinate converge, we diagonalize the
the displacements in this homogeneous dimerized state. Thepin Hamiltonian, with fixedy; , to obtain the low-lying ex-

’7Tao

sing—e(#))72
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13 0 S-1/2states x S-3/2 states the ground stajechanges the form of the soliton. Moreover,
| ' ' ' ' it has been shown in Ref. 20 that this treatment produces a
sl 8 ] smoother soliton than the one considered here. Therefore, we
’ 8 conclude that this treatment will reduce the bound-state
L 8 | value. _ _
8 ® In the following, we analyze the evolution of the spectra
ol ® ® | when nonadiabatic effects are included. For simplicity, we
: o ® 8 do not introduce the two additional effects previously dis-
0o | 5 ® ® 8 cussed. These effects will not affect the prediction of the
’ g g trapped magnetophonon state we will find.
0s | g g Inclusion of nonadiabatic effect$o go beyond this static
’ adiabatic approximation in this semiclassical calculation it is
o7 | necessary to include fluctuations in the displacement field
' u(x). Therefore, we spliti(x) asug+ U and replace it in Eq.
06 | ©00 o o o (4). This approach was already used by Takano, Nakano, and
o Fukuyama(TNF)?! to study the translational mode of the
soliton lattice in a nearly half-filled Peierls system with in-

*3.000 0.002 0004 = 0.006 0.008 0.010 teraction between the parallel spin electrons.
" The classical equations are the same as before. The fluc-
FIG. 1. The excitation spectrum calculated by Lanczos diagotuation operator is now a’22 differential operator with a
nalization in the presence of an adiabatic soliton. Circles are focomponent oveu and ¢. The eigenvalue problem is now
states ofS,= 3 and crosses fos,=3. The zero of the energies is given by:
chosen at the soliton ground state. Energies are in unifs of

AZ[—V§+tanr?(§<)]zpl+@ 87Kuvgsechix) gn,= 0%y,
citation in theS,=1/2 andS,= 3/2 subspaces. The results are a
shown in Fig. 1 as a function of the L. Parameter ) - ) )
K/(aJd)?=% has been chosen in order to have a thin soliton ®°Ug SechiX) 1+ 0 =05 . @)

and to reduce_ the finite-siz_e effect. The bound state predicteg1 and ¢, are the component of the fluctuation eigenvector
by the bosonized theory is clearly seen. The h|gher—energ¥ver # andu, respectively.o=4K/M is the phonon fre-

states collapse in a continuum of total spin 3/2 in the ther- _ ; ; ;
. - : . uency afg= . The eigenfrequency are as previously given
modynamical limit. By linear extrapolation, we found for g yaq ¢ a y P 9

. Q.
— o the ratio 0.84 between the bound state and the border ofy Equation(7) is the same as Eqé4.13 and(4.14 of Ref.
the continuum. This value compares well with our previous,; yoever, as we work in the one soliton sector the elliptic

prediction of 0.786. We conclude that the method gives a}nctions of Ref. 21 become the hyperbolic functions of Eq.
least a qualitative feature of the low-energy spectra. Th??) and the relevant electronic degree of freedom that were

states appearing in the border of the continuum in Fig. 1 argye charge fluctuation in Ref. 21 is the bosonized spin vari-
an artifact of the strongly thin soliton we are considering. We,

have checked that for bigger values Kf(«J)?=%, these abl\?v(g :)nbgijrz ?r%rril){hrga;%rzﬂlcdSg&z;?gﬁr:; E%Fem'

states in fact disappear. '
We discuss in the following, two effects that could change Ugw? sechiX)

our estimated value of the bound state from the SHA 2:(’—

method: 0%~ w?

(1) Going from Eq.(1) to Eq. (4), we have neglected, as Replacing in the first equation, we have a kind of Sehro

did NF in their original work, a term proportional to cog{2 : . :
in the bosonized theory. Even though this operator plays a$|kr]1igeéqicg:gtrllorr1e;vdh§re the potential depends on the energy.

important role in the case of Ising anisotropy, it is a margin-

. (8

ally irrelevant operator in the Heisenberg case and therefore w\? secR(X) 02

it should not change the qualitative features previously dis- {—V?thanr?(f()}(//ﬁ(— ﬁ%:(_> .
cussed. Moreover, NF have studied in a further X A (9) B (2) A
contributiort® the effect of this term. Unfortunately, the es- A A

timation of the bound-state value is strongly dependent on 9
the value of the cutoff in the bosonization proceduag)(in

this situation. If we assume, as NF did, thagig=a, the It is worthy to note that the only relevant parametewis\.

Then, we can follow the evolution of the spectra from the
bound state becomé¥,A =V \/5/2~0.93. We can conclude adiabatic to the antiadiabatic limit by moving this parameter.
as a general fact that the presence of this term tends to in- We have numerically solved E¢). In Fig. 2, we show
crease the bound-state value. the evolution of the excitation spectra as a functiornwoh .

(2) It has been recently not&tf°that a full self-consistent The soliton creation energy has been taken as the zero of the
treatment(where({¢?) in Eq. (5) is not fixed to its value in  energy.
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1.0 - ‘ ‘ excitation of a phonon in the presence of the soliton. The
eigenvalues near above are satellite phonons corresponding
to phonons trapped by the solitdne., particle vibrations
08 ¢ 1 near the soliton They have only spectral weight on the
phonons as it can be seen putting in E§) Q~w. For
increasing phonon frequency, most of these eigenvalues lose,
06 1 but the lowest survives acquiring the energy of the magnetic
gap. This state is a mixing of a magnetic and a phononic
excitation, as we show in the following.
04 . e Four Peierls active phonons have been identified for
CuGeQ.?? They have frequencies of 3.12, 6.53, 11.1, and
24.6 THz, i.e., the smaller one is about 150 K. The spin gap
02| 1 is rather small for this system =24 K. As we previously
stated, the real parameter regime where this material lives is
»>A and the only survival bound state has the energy of the
0.0 - \ \ - \ gap. This is a singlet state that we associate with the low-
* o . WA 20 28 80 energy peak seen in Raman scattering in the incommensurate
phasé€ The ¢, and ¢, components of the corresponding
FIG. 2. The excitation spectrum as a function of the phononeigenfunction are different from zero for this state.
frequency. Both energy scales are given in units of the magnon gap Their mixed character could be advocated by analyzing

Q/A

(4). separately the magnetic and phononic spectral response. The
magnetic Raman operator of a dimerized chain is given by
The main results are: Rmg=Zi[1+ ¥mg(—1)'Si-S11] (Ref. 23 ypq is a micro-

 There is a zero-energy solution that was not present igcopic parameter. In our bosonized formalism, the most rel-
the adiabatic calculation. This mode was originally found byevant contribution comes from the staggered part and it is
TNF and it is a consequence of the translation invariance ofiven by (ymq/may) sin(¢). By using the SHA given by Eq.
the theory. It is nothing but the translational mode of the(s), retaining the term linear isb and developing in the basis
soliton. In a realistic situation, solitons are not isolated, theyof the eigenvalues of the fluctuation operator the magnetic

form a soliton lattice. This zero mode will acquire some spectral weight ¥1,,) of an state of energ{}, is given by:
dispersion giving rise to the so-called phason modes of the

soliton lattice. The dispersion of this mode was in fact stud- 2 AK O — o2 2
ied by TNF in Ref. 21. If the magnetic field is not much M,= Ymg n_ @ f Podx) (10)
higher than the critical one, the solitons will be rather sepa- 20, | Jea 2

rate and we can neglect their interference.
* In the direction perpendicular to the magnetic chainswhere we have used E(B) to write ¢, as a function ofy,.
solitons will accommodate in a domain wall, i.e., they form Phonons contribution to Raman scattering is proportional to
an array of parallel solitons. Their coherency is assured byhe square of the transition elements of the normal coordi-
the interchain elastic coupling. The zero mode, as well as athatesR,,= y,nf (dX/a)u(x), the phonons spectral weight of
the states of the spectra, will have a transversal dispersiothe n state is given by:
they will depend on the momentum perpendicular to the
c_hains. The .spectrum shO\_Nn !n Fig..2 gives tjre0 gxcita- %Zjh dx) 2
tions. We will analyze their dispersive character in a forth- P“:ﬁ[f > }
coming work. n
e The upper branch corresponds to the excited state of the
soliton previously found in the adiabatic approximation. Its ~ The relation between the magnetic and phononic contri-
energy increases witlb up to a critical valuew?/A2=%  bution to thenth peak of the spectra is
where this state disappear. For thisandQ)=A, the energy-
dependent potential vanishes. The lattice soliton produces an M, )’ﬁ]g( 4Kj 2[ Q- wz} 2

harmonic potential over the magnetic soliton where it oscil- N Ja
n

"y (11

= (12)

lates. In the adiabatic approximation, the lattice soliton is 7;2)h
frozen and the magnetic one oscillates. For fimitethe lat-
tice soliton can also move and vibrate with respect to the We take the first two factors as a measure of the spin-
magnetic deformation. Finally, at the critical value @f  phonon coupling, we fix this parameter when moviag
there is no more a localized vibration and the soliton beEquation(12) shows that the magnetic component of a given
comes an unique entity both for the lattice and for the spinsRaman peak increases when its position shifts from a phonon
This explains the disparition of the trapped state at a criticafrequency. The lower-energy eigenvalue of Fig. 2 starts be-
phonon frequency. ing a trapped phonons fow/A<1 and transmutes in a

* The straight line of slope one in Fig. 2 corresponds tomagneto-phonon in the opposite limit where the real material

Q) =w. The eigenstate with this energy corresponds to thdives. Its existence is a consequence of the quasi-one-
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dimensional character of our system because a onenduced peak found in the incommensurate phase of
dimensional well has always one bound state. CuGeQ.

In summary, we have shown that nonadiabatic effects are . .
relevant for an incommensurate spin-Peierls system. In the A-D-acknowledges G. Uhrig and A. Greco for useful dis-
antiadiadatic limit applicable to CuGgQwe show the appa- CUSSions. We_are grateful to J. Riera for useful discussions
rition of a trapped mixed state with the energy of the magnor@d computational help. We are grateful to P. Lemmens for
gap. It gives an alternative explanation of the Ramandiscussions and for pointing out Ref. 2.
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