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Nonadiabatic extension of the Heisenberg model
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The localized states within the Heisenberg model of magnetism should be represented by best localized
Wannier functions which form a unitary transformation of the Bloch functions of the narrowest partly filled
energy bands in the metals. However, as a consequence of degeneracies between the energy bands near the
Fermi level, in any metal these Wannier functions cannot be chosen symmetry adapted to the complete
paramagnetic groupM P. Therefore in previous papers the author has defined Wannier functions with the
reduced symmetry of a magnetic subgroupM of M P @case~a!# and spin dependent Wannier functions@case
~b!#. These functions cannot be constructed in any metal, but only in metals having Bloch functions of
appropriate symmetry in their band structure. The magnetic symmetry and spin dependence of these Wannier
functions can be physically interpreted within a nonadiabatic extension of the original Heisenberg model, the
nonadiabatic Heisenberg model~NHM!. Within this group-theoretical model, there is strong evidence that the
occurrence of these two types~a! and ~b! of Wannier functions in the band structure of a metal is connected
with the occurrence of magnetism and superconductivity, respectively. In order to provide a solid and general
basis for an application of the NHM within the theory of magnetism@in case~a!#, superconductivity, and high-
Tc superconductivity@in case~b!#, the present paper gives a detailed physical substantiation of the NHM in
terms of exact Wannier functions and defines the NHM in any metal, i.e., in metals possessing any given
~symmorphic or nonsymmorphic! space group and any given number of atoms per unit cell. The commutation
properties of the nonadiabatic HamiltonianHn are explicitly given for the two important cases~a! and~b! and
are briefly interpreted.

DOI: 10.1103/PhysRevB.63.144403 PACS number~s!: 75.10.2b, 74.20.2z
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I. INTRODUCTION

Within the Heisenberg model of magnetism,1 the local-
ized states of the electrons should be represented by Wa
functions

wi~r2R2ri !5
1

AN
(

k

BZ

(
q51

m

e2 ik~R1ri !giq~k!wkq~r !

~1.1!

with the following properties:
~i! thewi(r2R2ri) are centered on the atomic positio

R1ri ;
~ii ! thewi(r2R2ri) are gained by aunitary transforma-

tion from the Bloch functionswkq(r ) of the energy bands o
interest;

~iii ! the wi(r2R2ri) are symmetry adapted to the spa
groupG of the considered metal; and

~iv! the wi(r2R2ri) are as well localized as possible.
The first sum in Eq.~1.1! runs over theN vectorsk of the

first Brillouin zone ~BZ!, the second sum runs over them
bands of interest~with the band indicesq51 to m!, andR
andri denote the vectors of the Bravais lattice and the c
ters of symmetry of the Wannier functions within the un
cell, respectively.

The transformation is unitary@point ~ii !# if the coefficients
giq(k) in Eq. ~1.1! are the elements of a unitary matrixg(k),

g21~k!5g†~k!. ~1.2!
0163-1829/2001/63~14!/144403~13!/$20.00 63 1444
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The Wannier functions are symmetry adapted toG @point
~iii !# if they satisfy the equation

wi@a21~r2R2ri !#5(
j 51

m

D ji ~a!wj~r2R2ri ! ~1.3!

for the elementsa of the point groupG0 of G, where the
matrices@D ji (a)# form a ~reducible or irreducible! single-
valued representationD0 of G0 , see Eq.~1.8! of Ref. 2.
@Note that in Eq.~1.3! on the right-hand side there isri and
not rj .#

The Wannier functions are as well localizable as poss
@point ~iv!# if the Bloch-like functions

w̃ki~r !5 (
q51

m

giq~k!wkq~r ! ~1.4!

vary ~for fixed r ! smoothly through the wholek space.2

It is one of the most important results of the group theo
of Wannier functions that Wannier functions complying wi
all the four conditions given above exist only inisolatedsets
of m energy bands which satisfy the group-theoretical co
patibility relations throughout the Brillouin zone.2–6 @This
condition is necessary, but not sufficient: in addition, the
must exist unitary matricesS(K ) defined in Eq.~4.16! of
Ref. 2 which satisfy Eqs.~4.17! and ~4.28! of Ref. 2. These
matricesS(K ) determine the positionsri of the Wannier
functions.# In an ‘‘isolated’’ set of energy bands, each ban
may be connected by degeneracies to the other bands o
set, but must not be connected to bands not belonging to
set.
©2001 The American Physical Society03-1
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The mentioned ‘‘energy bands of interest’’ are the par
filled energy bands in the band structures of the conside
metal. Often, it is only one roughly half filled band whic
interests. However, the energy bands in the~paramagnetic!
band structures of the metals are degenerate at several p
and lines of symmetry of the Brillouin zone. Because
these degeneracies, is not possible to separate narrow
lated sets of energy bands which satisfy the compatib
relations throughout the Brillouin zone. For this reaso
Wannier functions with all the properties demanded ab
do not exist in the metals.

Therefore the localized states are often represented
‘‘approximated’’ Wannier functions which no longer form
an exactly unitary transformation of the Bloch function
These Wannier functions are constructed from slightly mo
fied energy bands in which some of the Bloch functions
points, lines, and planes of symmetry are replaced by Bl
functions with a symmetry appropriate for the construct
of Wannier functions. Hence these approximated Wann
functions have lost all the information connected with t
symmetry of the removed Bloch functions and carry t
wrong information of the new Bloch functions.

The nonadiabatic Heisenberg model~NHM! as proposed
in previous papers7–9 extends the original Heisenberg mod
on the basis of Wannier functions which form anexactly
unitary transformation of the Bloch functions of the bands
interest. Within this model,it is not allowedto replace any
Bloch function in the calculated band structure by functio
with a new symmetry. Hence the NHM takes into accou
the completeinformation connected with the symmetry o
the Bloch functions in the band structure of the conside
metal.

Clearly, the Wannier functions used within the NHM ca
not comply with all the properties~i!–~iv! given above. The
development of the nonadiabatic model was suggested
two observations:

1. An exactly unitary transformation of the Bloch fun
tions of the partly filled bands into best localized Wann
functions becomes possible in many metals when the W
nier functions are allowed to have thereduced symmetryof a
magnetic subgroupM of the paramagnetic group@see Ap-
pendix A, case~a!# or when they are allowed to bespin
dependent@see Appendix A, case~b!#.

2. The occurrence of these two types~a! and~b! of Wan-
nier functions in the band structure of a metal is connec
with the occurrence of magnetism and superconductivity,
spectively~see Sec. V B!.7–11

The original Heisenberg model of magnetism is defin
by the assumption that there is exactly one electron on e
atom of a metal. The NHM replaces this assumption by
troducing three postulates which will be given in the follow
ing Sec. II. These postulates combine in a new way
Heisenberg model with the band model. The fundame
second postulate given in Eq.~2.19! states that the probabil
ity to find exactly one electron on an atom is aslarge as
possiblein narrow energy bands.

The second postulate of the NHM cannot be satisfi
within the adiabatic~or Born-Oppenheimer! approximation.
In the framework of this approximation the electrons mo
14440
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in rigid orbitals in theaveragepotential of the other elec
trons. The second postulate, however, requires a more
istic description of the electronic motion. In the true~nona-
diabatic! system a localized electron moves in a poten
depending on which of the adjacent localized states is oc
pied and on the present motion of the electrons in th
states. These modified orbitals

uT,m,n&

are described by introducing a new quantum numbern which
labels different states of the nonadiabatic motion of the c
ter of mass of the localized states.12 @T denotes the positions
of the atoms, see Eq.~2.2!.#

Nonadiabatic localized functions

^r ,t,quT,m,n&

~as introduced in the next section! which represent the nona
diabatic localized states are highly complicated. Hence it w
be practically impossible to give these functions explicit
Fortunately, one important feature of these functions
known exactly: they have the same symmetry as theexact
Wannier functions of the narrowest, roughly half filled e
ergy bands of the metal under consideration. Thus any ap
cation of the NHM starts with a group-theoretical examin
tion of the symmetry of the best localized~spin-dependent!
Wannier functions which is clearly determined by the sy
metry of the Bloch functions in the band structure of t
given metal.2–6,13

The NHM is a purely group-theoretical model. An e
plicit knowledge of the nonadiabatic localized functions~go-
ing beyond of their symmetry! does not provide new physi
cal insight. Even in the nonadiabatic model, any calculat
of expectation values should be carried out within the ad
batic approximation.

In my previous papers,7–9 the NHM has been considere
in several metals with the simple bcc structure and one a
per unit cell. The aim of the present paper is to provide
solid and general basis for an application of the NHM with
the theory of magnetism and superconductivity includi
high-temperature superconductivity. In the following Se
II I shall give a more detailed physical substantiation of t
three postulates of the NHM in terms of ‘‘atomiclike ele
trons’’ as described by Mott14 and Hubbard15 and shall de-
fine this model in any metal, i.e., in metals with any giv
space groupG and any given numberm of atoms per unit
cell. The symmetry properties of the nonadiabatic Ham
tonian Hn will be explicitly given in Sec. IV for the two
cases~a! and ~b!.

Within the NHM, the motion of the electrons may b
considered as the motion of quasiparticles that are labele
the crystal spin quantum numberm. This picture of ‘‘stable
crystal electrons’’ will be declared in Sec. V A.

Separately for the two cases~a! and ~b!, in Appendix A
the symmetry-adapted~spin dependent! Wannier functions
will be defined and their symmetry will be derived again f
any metal. Further, in Appendix A I shall give a simple
equation @Eq. ~A26!# to identify ~in the calculated band
structure of any metal! sets of energy bands with spin
3-2
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NONADIABATIC EXTENSION OF THE HEISENBERG MODEL PHYSICAL REVIEW B63 144403
dependent Wannier functions as defined in case~b!. In Ap-
pendix A, case~b!, I shall give a general definition of th
symmetry operatorsM (a) of the crystal spin which is re
quired for an understanding of the symmetry ofHn in case
~b!, and in Appendix B the symmetry of the adiabatic a
nonadiabatic fermion operators will be given.

II. NONADIABATIC HEISENBERG MODEL

A. General

Consider a set ofm energy bands in a metal with th
paramagnetic space groupG, the paramagnetic group

M P5G1KG ~2.1!

~with K denoting the operator of time inversion!, andm at-
oms at the positions

T5R1%i ~2.2!

per unit cell, whereR and%i ( i 51 to m! denote the vectors
of the Bravais lattice and the positions of thei th atom within
the unit cell, respectively. The energy bands of this set
assumed to belong to the narrowest partly filled bands of
metal ~while it is not demanded thatall the narrow, partly
filled bands belong to it!.

Assume that the symmetry of the Bloch functions of t
considered set of energy bands allows the construction
either Wannier functions

wTm~r ,t ![wi~r2R2ri !um~ t ! ~2.3!

symmetry adapted to a magnetic subgroupM of M P or spin-
dependent Wannier functions

wTm~r ,t ![wim~r2R2ri ,t ! ~2.4!

symmetry adapted toM P. The former functions are define
in Appendix A, case~a!, their symmetry is given in Eqs
~A17! and ~A19!, the latter are defined in Appendix A, cas
~b!, and their symmetry is given in Eqs.~A28! and ~A29!.
The functionsum(t) are Pauli’s spin functions, see Eq.~4.7!,
t is the spin coordinate, and the~crystal! spin labelm56 1

2

distinguished between the two functions at the same pos
T. In either case, the Wannier functions form a unitary tra
formation of theexactBloch functions of the considered s
of m energy bands, are situated on the atoms~with the posi-
tions T!, and are as well localized as possible. As given
Eqs.~2.3! and~2.4!, they may be labeled by the positions
the atomsT since all the%i are different.

B. The three postulates of the nonadiabatic Heisenberg mode

Let

H5HHF1HCb ~2.5!

be the electronic Hamiltonian in the considered set of ene
bands withHHF and
14440
re
is

of

n
-

y

HCb5(
T,m

^T1 ,m1 ;T2 ,m2uHCbuT18 ,m18 ;T28 ,m28&

3cT1m1

† cT2m2

† cT
28m

28
cT

18m
18

~2.6!

represent the Hartree-Fock and Coulomb energy, res
tively. The fermion operatorscTm

† andcTm create and anni-
hilate electrons with~crystal! spin m in the localized states
uT,m& represented by the Wannier functionswTm(r ,t). Other
contributions toH from the electrons not belonging to th
considered set of bands are neglected even as are spin
effects.

HCb may be written as

HCb5Hc1Hex1Hz , ~2.7!

with the operator of Coulomb repulsionHc containing all the
matrix elements ofHCb with

T15T18 and T25T28 , ~2.8!

the exchange operatorHex containing the matrix element
with

T15T28 and T25T18 , ~2.9!

and Hz comprising the remaining matrix elements, i.e., t
matrix elements with

$T1 ,T2%Þ$T18 ,T28%. ~2.10!

The interactionHz is of great importance within the
NHM. In order to discuss the effect ofHz , consider the
operator

H85HHF1Hc1Hex ~2.11!

obtained from the complete HamiltonianH by putting Hz
50.

Assume the considered energy bands to be sufficie
narrow that the ground stateuG8& of H8 clearly has ‘‘atomi-
clike’’ character. According to Hubbard,15 that means that in
uG8& the electronic motion is correlated in such a manner
to give properties characteristic of the atomic or Heisenb
picture. Within the atomic picture, two electrons occupyi
the two localized statesuT,6 1

2 & at the same positionT pos-
sess a higher energy of Coulomb repulsion than two e
trons occupying localized states at different positions14

However, even in the narrowest half filled energy bands
the metals the electrons do not take the state of lowest C
lomb repulsion, namely a state with exactly one electron
each positionT, because their hopping motion produces co
figurations in which, at some positionsT, both statesuT,
6 1

2 & are occupied or unoccupied.14

Nevertheless, in an atomiclike state the Coulomb rep
sion will determine the electronic motion in such a mann
that the probability to find two electrons~with different spin
directions! at the same positionT is markedly smaller than in
case of a purely bandlike motion. In this context, I speak
a ‘‘purely bandlike’’ motion when the probability to find a
electron in the localized stateuTm& is independent of
3-3
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EKKEHARD KRÜGER PHYSICAL REVIEW B63 144403
whether or not the other stateuT,2m& is occupied. In this
case, the ground state consists of configurations with ne
random occupation.

The balance between the atomic- and bandlike chara
depends on the mean time of stayt'\/D of the electrons at
the atoms and hence on the bandwidthD. ForD→0 we have
t→`; the metal becomes a Mott insulator representin
perfectly atomiclike state. ForD→`, on the other hand, we
havet→0 and hence a purely bandlike character of the e
trons. Thus, as is well known, the electrons in partly fill
energy bands tend to a more atomiclike behavior with
creasing bandwidth and to a more bandlike behavior w
increasing bandwidth.15

The matrix elements ofHz satisfy neither Eq.~2.8! nor
Eq. ~2.9!. Thus the interactionHz annihilates two electrons
in localized states at the positionsT18 andT28 and creates a
least one of them at thenew positionsT1 or T2 . Hence,
unlike Hc or Hex , the operatorHz generates transitions be
tween adjacent localized states which lead to configurat
with a more random occupation. Consequently, the inte
tion Hz shifts the balance bandlike and atomiclike behav
towards the bandlike behavior. The probability to find tw
electrons at the same positionT will be larger in the ground
stateuG& of the complete Hamiltonian

H5H81Hz

@given in Eq. ~2.5!# than in the ground stateuG8& of H8.
Therefore the total energy of Coulomb repulsion inuG& is
larger than inuG8&,

^GuHcuG&.^G8uHcuG8&, ~2.12!

and we may assume that in sufficiently narrow bands
ground-state energyE of H is greater than the ground-sta
energyE8 of H8.

Still ‘‘sufficiently’’ narrow means that the Coulomb re
pulsion between the localized states determines the e
tronic motion in uG8&. It is difficult to decide how narrow
such sufficiently narrow bands should be. However,
know that there is strong theoretical and experimental e
dence that, e.g., thed electrons of the transition metals e
hibit behavior of both the band and the Heisenberg mode15

Therefore we may suppose thatE.E8 is valid in thenar-
14440
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rowestbands of the metals. This supposition leads to the fi
postulate of the NHM.
Postulate 1. In the narrowest, partly filled energy bands
the metals the transitions generated byHz are energetically
unfavorable, i.e., we have

^GuHuG&.^G8uH8uG8&, ~2.13!

whereuG& and uG8& denote theexactground states ofH and
H8, respectively.

The particular form of the matrix elements ofHz shows
that it represents a short-ranged interaction which cruci
depends on the exact form of the localized functio
This fact suggests that only small changes of the locali
electronic orbitals are required to prevent the transitio
generated byHz . However, such modified orbitals d
not exist within the adiabatic approximation because s
modifications yield localized charge distributions whic
are not symmetric at any moment. As a consequence,
nuclei become accelerated in varying directions. Hence
replace the~adiabatic! localized states~represented by the
Wannier functions! by more realistic nonadiabatic localize
states

uT,m,n& ~2.14!

which take into account the motion of the nuclei. The ne
quantum numbern labels different states of the nonadiaba
motion of the center of mass of the nucleus and the elec
occupying the stateuT,m,n&.12

The nonadiabatic HamiltonianHn may be written as

Hn5HHF1HCb
n , ~2.15!

where the Coulomb interaction now has the form

HCb
n 5(

T,m
^T1 ,m1 ,n;T2 ,m2 ,nuHCbuT18 ,m18 ,n;T28 ,m28 ,n&

3cT1m1

n† cT2m2

n† cT
28m

28
n

cT
18m

18
n

. ~2.16!

The new fermion operatorscTm
n† and cTm

n create and annihi-
late electrons with crystal spinm @see Appendix A, case~b!#
in the nonadiabatic localized statesuT,m,n&. The matrix el-
ements ofHCb

n are integrals
^T1 ,m1 ,n;T2 ,m2 ,nuHCbuT18 ,m18 ,n;T28 ,m28 ,n&

5
e2

2 (
tt8

E ^T1 ,m1 ,nur ,t,q&^T2 ,m2 ,nur 8,t8,q8&^r ,t,quT18 ,m18 ,n&^r 8,t8,q8uT28 ,m28 ,n&
ur2r 8u

drdr 8dqdq8

~2.17!
the

ed
f

over nonadiabatic localized functions of the form

^r ,t,quT,m,n&, ~2.18!
wheren5n labels the nonadiabatic states which satisfy
following Eq. ~2.19!, and the new coordinateq stands for
that part of the motion of the center of mass of the localiz
stateuT,m,n& which nonadiabatically follows the motion o
3-4
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NONADIABATIC EXTENSION OF THE HEISENBERG MODEL PHYSICAL REVIEW B63 144403
the electron occupying this state. We may imagine thaq
denotes theaccelerationof the nucleus~together with the
core electrons!.

Within the nonadiabatic localized statesuT,m,n& the elec-
trons possess considerably more room to move than wi
the adiabatic states. While in the adiabatic approximation
symmetry operatorsP(a) act onr and t alone, in the nona-
diabatic system these operators act onr , t, and the accelera-
tion q of the nuclei, see Eq.~B9!. The nonadiabatic localized
functions have no definite transformation properties un
space-group operations actingonly on r and t. Hence the
symmetry of the adiabatic and nonadiabatic localized st
@given by Eq.~B1! for the fermion operators# may be inter-
preted as follows.

Within the adiabatic system the electrons move on or
als being symmetric with respect to the latticeat any mo-
ment. Within the nonadiabatic system, on the other hand,
orbitals are still symmetric on the average of time,but notat
any moment. This statement is independent of the abso
value uqu of the acceleration of the nuclei, i.e., it is indepe
dent of whether or not the mass of the electrons is marke
smaller than the mass of the nuclei.

Thus the introduction of the new quantum numbern al-
lows the electrons to move in a potential depending on wh
of the adjacent localized states are occupied and on
present positions of these electrons. Hence within the no
diabatic system the electrons should be able to avoid
transitions generated byHz by an appropriately modified
motion, if these transitions are energetically unfavorable,
if the relation~2.13! is true. Thus as a consequence of re
tion ~2.13!, all the matrix elements ofHCb

n which neither
satisfy Eq.~2.8! nor Eq.~2.9! should vanish.

For this reason, we can suppose that the transitions
erated byHz are artifacts of the adiabatic approximation a
do not happen in the~true! nonadiabatic system if relatio
~2.13! is satisfied. This supposition leads to the second p
tulate of the NHM.
Postulate 2. If relation ~2.13! is true, the Coulomb interac
tion HCb

n does not generate transitions between adjacen
calized states, i.e.,

^T1 ,m1 ,n;T2 ,m2 ,nuHCbuT18 ,m18 ,n;T28 ,m28 ,n&50
~2.19!

for

$T1 ,T2%Þ$T18 ,T28%

and for special orthonormal nonadiabatic localized functio

^r ,t,quT,m,n&

labeled byn5n.
At the transition from the adiabatic to the nonadiaba

system, the total energy of the electron system decrease

DE5^GuHuG&2^G8uH8uG8& ~2.20!

if we neglect the energy of the nonadiabatic motion of
nuclei and the energy change caused by the slight modi
tion of the electronic orbitals within the nonadiabatic stat
14440
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As a consequence of Eq.~2.19!, the commutation proper
ties of the operatorHCb

n depend on the symmetry of th
nonadiabatic localized states. Since only small modificati
of the adiabatic electronic orbitals are required to prevent
transitions generated byHz , we can assume that the non
diabatic HamiltonianHn has the same commutation prope
ties as the adiabatic HamiltonianH8 given in Eq.~2.11!. This
is the third~and last! postulate of the NHM.
Postulate 3. If relation ~2.13! is true, the nonadiabatic Hamil
tonianHn has the same commutation properties as the a
batic HamiltonianH8, i.e.,

@H8,P#H 5

ÞJ 0⇒@Hn,P#H 5

ÞJ 0, ~2.21!

whereP stands for any symmetry operator.
As a consequence, the nonadiabatic localized functions h
the same symmetry as the~adiabatic! Wannier functions
wTm(r ,t).

III. SYMMETRY OF THE OPERATOR H 8

According to its definition, the operatorH8 arises from
the complete adiabatic HamiltonianH in Eq. ~2.5! by putting

Hz50. ~3.1!

This equation does not state thatHz is neglected, but thatHz
is put equal to zero. By this step, the commutation propertie
of the operatorH8 depend on the symmetry of the Wanni
functions, whereas the commutation properties of the co
plete adiabatic HamiltonianH are independent of the sym
metry of the used basis functions. Thenonadiabaticmatrix
elements ofHz , however, vanish within the NHM; see Eq
~2.19!.

Case„a…: The Wannier functions are symmetry adapted
to a magnetic group

If the Wannier functions are symmetry adapted only to
magnetic subgroupM of the paramagnetic groupM P, the
symmetry of the operatorH8 is given by

@H8,P~a!#50 for aPM ~3.2!

and

@H8,P~a!#Þ0 for aP~M P2M !, ~3.3!

where

M P5G1KG

stands for the paramagnetic group~and G is the space
group!. The symmetry operatorsP(a) are given in Eq.~A3!
andK denotes the operator of time inversion. Especially,
this case~a! H8 does not commute withK,

@H8,K#Þ0, ~3.4!

sinceKP(M P2M ).
The first Eq.~3.2! is valid since the complete Hamiltonia

H commutes with P(a) and also the operato
3-5
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EKKEHARD KRÜGER PHYSICAL REVIEW B63 144403
P(a)H8P21(a) complies with Eqs.~2.8! and ~2.9! if a
PM since the fermion operatorsP(a)cTm

† P21(a) and
P(a)cTmP21(a) are for all theaPM linear combinations of
operatorscT8m8

† andcT8m8 , respectively, labeled by thesame
positionT8; see the Eqs.~B1! and ~B2!.

Within the NHM it is important thatH8 does not com-
mute withP(a) for aP(M P2M ). In the case~a! considered
in this section, the Wannier functions cannot be chosen
such a way that they are symmetry adapted to a groupM̂
containing the operationa as well as all the elements ofM.
Consequently, foraP(M P2M ), the fermion operators
P(a)cTm

† P21(a) do not comply with Eqs.~B1! or ~B2!, but
are linear combinations

P~a!cTm
† P21~a!5 (

T8m8
dT8m8,Tm~a!cT8m8

† ~3.5!

of at least two operatorscT8m8
† with different labelsT18 and

T28 . We show that therefore the operatorP(a)H8P21(a) has
matrix elements violating Eq.~2.8! or Eq. ~2.9!.

Consider a fermion operator combination belonging to
Coulomb interaction ofH8, say

O5cT1

† cT2

† cT2
cT1

, ~3.6!

and assume for a specialaP(M P2M ) the sum in Eq.~3.5!
to consist of two summands,

PcT
†P215a•cU

† 1b•cV
† , ~3.7!

labeled by the different positionsU and V. In Eq. ~3.7! we
use the abbreviationP[P(a) and drop the indexm since it
does not matter here. With Eq.~3.7! we obtain

POP215PcT1

† P21PcT2

† P21PcT2
P21PcT1

P21

5~acU1

† 1bcV1

† !~acU2

† 1bcV2

† !~a* cU2
1b* cV2

!

3~a* cU1
1b* cV1

!, ~3.8!

whereaÞ0 andbÞ0. For instance, the operator product

cU1

† cV2

† cU2
cU1

belonging toPOP21 and hence toPH8P21, violates Eq.
~2.8! since V2ÞU2 . Consequently,H8 does not commute
with P as expressed by Eq.~3.3!. In the same way,H8 does
not commute withP when there are more than two sum
mands on the right-hand side of Eq.~3.7!.

Case„b…: The Wannier functions are spin dependent
and symmetry adapted to the paramagnetic group

If we consider spin-dependent Wannier functions symm
try adapted to the paramagnetic groupM P, then we have

@H8,P~a!#50 for aPM P ~3.9!

and, especially,

@H8,K#50. ~3.10!
14440
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However, in this case~b!, the operatorH8 has matrix ele-
ments with

m11m2Þm181m28 ~3.11!

because the coefficientsf sm(q,k) in Eq. ~A21! cannot be
chosen independent ofk, see Appendix A, case~b!. There-
fore H8 does not conserve the crystal spin and hence16 does
not commute with the operatorsM (a) of the crystal spin
defined in Eq.~A33!,

@H8,M ~a!#Þ0, ~3.12!

for at least oneaPGM .17

IV. SYMMETRY OF THE NONADIABATIC
HAMILTONIAN H n

A. Magnetic and paramagnetic group

The nonadiabatic HamiltonianHn has the same commu
tation properties as the adiabatic operatorH8; see Eq.~2.21!.
However, the symmetry operatorsP(a) now act onr ,t, and
on the new coordinateq of the nonadiabatic localized func
tions, see Eq.~B9!.

Hence we have

@Hn,P~a!#50 for aPM , ~4.1!

@Hn,P~a!#Þ0 for aP~M P2M !, ~4.2!

and, especially,

@Hn,K#Þ0 ~4.3!

in the case~a! of the preceding Sec. III, and

@Hn,P~a!#50 for aPM P, ~4.4!

especially,

@Hn,K#50 ~4.5!

in the case~b! of the preceding Sec. III.

B. Crystal spin

The nonadiabatic fermion operators in Eq.~2.15! are no
longer labeled by the spin quantum numbers. Hence, within
the nonadiabatic system, the exact Fermi excitations are
longer purely electronic states but localized states of w
defined symmetry which are occupied by electronscarrying
with them some nonadiabatic motion of the nuclei.

Let beS(a) with

S~a!us~ t ![us~a21t !5(
s8

ds8s~a!us8~ t ! for aPO~3!

~4.6!

the operators turning the electron spin, where the functio

us~ t !5dst ~4.7!

are Pauli’s spin functions with the spin quantum numbes
56 1

2 and the spin coordinatet56 1
2 , and the matrices
3-6
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@ds8s(a)# are the representatives of the two-dimensio
double-valued representationD1/2 of the three-dimensiona
rotation groupO(3).

The adiabatic HamiltonianH given in Eq.~2.5! commutes
with the operatorsS(a),

@H,S~a!#50 for aPO~3!. ~4.8!

This equation expresses the conservation law of the spin
gular momentum within the adiabatic system.

The nonadiabatic HamiltonianHn, on the other hand
does not commute with the operatorsS(a) ~for aÞE) since
the nonadiabatic fermion operators are no longer labeled
the spin quantum numbers. Hence as a consequence of t
~small! shift of the Fermi character at the transition from t
adiabatic to the nonadiabatic system, the electron spin a
lar momentum is no longer a conserved quantity. Now th
exists an interaction between the electron spins and the n
diabatic motion of the nuclei.

However, even in the nonadiabatic system there sho
exist a conserved quantity related to the conservation law
angular momentum. Thus Eq.~4.8! should be replaced by a
analogous equation

@Hn,M ~a!#50 for aPGM ~4.9!

in the nonadiabatic system, whereHn stands for the com-
plete nonadiabatic Hamiltonian. The groupGM and the op-
eratorsM (a) are defined in Eqs.~A32! and~A33!. They act
on the quantum numberm of the nonadiabatic localized
statesuT,m,n& in the same manner as the operatorsS(a) act
on the spin quantum numbers of Pauli’s spin functions
us(t), cf. Eq. ~B3!. Therefore these operators may be cal
the symmetry operators of the ‘‘crystal spin’’ andm may be
called the quantum number of the crystal spin. This is
analogy to the wave vectork of the Bloch functions which is
sometimes referred to as ‘‘crystal momentum’’ in order
distinguish it from the momentump.

In case~b!, i.e., if we consider spin-dependent Wann
functions symmetry adapted to the paramagnetic groupM P,
the adiabatic operatorH8 does not commute with all the
operatorsM (a); see Eq.~3.12!. Hence also the nonadiabat
HamiltonianHn as defined in Eq.~2.15! does not conserve
the crystal spin,

@Hn,M ~a!#Þ0, ~4.10!

for at least oneaPGM .17 It is one of the most interesting
problems of the NHM to interpret this equation, see S
V B, case~b!.

V. DISCUSSION

A. Crystal electrons

The NHM has been developed in order to interpret
symmetry and spin dependence of the Wannier function
metals. These Wannier functions form anexactly unitary
transformation of the Bloch functions of a set of partly fille
energy bands in the band structure of the metal of intere

In the framework of the adiabatic approximation, Wann
functions form nothing but a unitary basis within the cons
14440
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ered bands. Hence the commutation properties of the a
batic HamiltonianH are independent of the symmetry of th
Wannier functions, since the symmetry of any adiaba
Hamiltonian is independent of the symmetry of the used
sis functions. The symmetry and localization of the Wann
functions simplifies the calculation of the matrix elements
H, but has no further physical meaning.

The nonadiabatic HamiltonianHn, on the other hand, ha
an important feature which distinguishes it from any ad
batic HamiltonianH: the commutation properties and th
spin dependence ofHn depend on the symmetry and sp
dependence of the nonadiabatic localized functions. Thi
because the nonadiabatic localized functions have a phy
meaning going beyond the meaning of pure basis functio
they represent states that are reallyoccupiedby the electrons
in the way described by Mott14 and Hubbard:15 the electrons
occupy the nonadiabatic localized states as long as pos
and perform their band motion by hopping from one atom
another. Such a band motion is generally referred to
atomiclike motion.

Within the NHM we may extend this picture of the atom
clike electron. Here the whole localized stateuT,m,n& be-
haves like a movingparticle, say ‘‘crystal electron,’’ with
the local coordinateT and the crystal spinm. The spatial
extend of the crystal electron is determined by the cha
distribution of the localized state and the crystal spin is
conserved quantity.

First consider the picture of the crystal electron within t
adiabatic approximation. Both operatorsHc andHex @given
in Eq. ~2.7!# represent interactionsbetweencrystal electrons
and hence are in accordance with this picture. The interac
Hz , on the other hand, contradicts the picture of a mov
crystal electron because itdestroysthese new particles. Sinc
Hz is a short-ranged interaction, we may say that within
adiabatic system ‘‘the crystal electrons become destroye
the slightest touch.’’

Within the NHM, on the other hand, Eq.~2.19! is valid.
The crystal electrons arestable in the nonadiabatic system
because the Coulomb interaction does not generate tra
tions between adjacent localized states. We may interpret
~2.19! by stating that ‘‘the crystal electrons becomeslightly
deformedbut not destroyed at a touch.’’ The crystal ele
trons now have a certainelasticityprotecting them from be-
ing destroyed at any collision. In this context, the stability
crystal electrons increases with decreasing bandwidth.

B. Outlook

The commutation properties of the nonadiabatic Ham
tonianHn are given in Sec. IV for two interesting cases~a!
and~b!. They are valid in metals with any given space gro
G and any given numberm of atoms per unit cell. Hence
these equation form a general basis for an interpretation
the results of the NHM in magnetic and superconduct
materials~also of high transition temperature! which often
have a complicated space group. In this section I shall s
marize interpretations of these equations as given so fa
several former papers.
3-7
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Case (a): The Wannier functions are symmetry adapted
to a magnetic group

Sets of narrow, roughly half filled energy bands wi
Wannier functions symmetry-adapted to a magnetic grouM
as defined in Appendix A, case~a!, have already been iden
tified in the paramagnetic band structures of iron9 and
chromium.8 In both metals, this set consists of one ‘‘ma
netic’’ band. In iron the related magnetic group

M5I4/mm8m85C4h
5 1K$C2xu0%C4h

5 ~5.1!

is the group of the ferromagnetic state and in chromium

M5PI4/mnc5D4h
6 1K$Eut%D4h

6 ~5.2!

is the group of the commensurate spin-density-wave sta
In case~a! considered in this section, the symmetry of t

nonadiabatic HamiltonianHn is given by the Eqs.~4.1!–
~4.3!. Equation~4.3! shows thatHn does not commute with
the operatorK of time inversion. ThereforeHn cannot have a
paramagnetic or superconducting ground state, since
states are invariant with respect to the time inversion.

Thus the electrons of the magnetic band may gain
energyDE @given in Eq. ~2.20!# only if the electron spins
form a structure with the magnetic groupM. This fact may
be interpreted as follows.8,9

The electrons of the magnetic bandactivate a spin-
dependent exchange mechanism producing a spin stru
with the space groupM. This is possible since, first, th
electrons can modify their orbitals in the nonadiabatic loc
ized states and, second, exchange integrals depend very
sitively on the exact form of the electronic orbitals. Hen
the electrons of the magnetic band modify their orbitals
such a way that the exchange energyEex is maximum for a
spin structure with the groupM.

The condensation energyEf , i.e., the energy difference
between the paramagnetic and the magnetic state, is
longer given by the exchange energyEex alone, but by

Ef5DE1Eex . ~5.3!

HenceEf may be positive even ifEex is negative. Within the
NHM the magnetic bands in Fe and Cr stabilize the magn
states in these metals.

There is evidence that Eq.~4.3! is required that the Hamil-
tonian possesseseigenstateswhich are not invariant with re-
spect to the time inversion, i.e., in which the spins are m
netically ordered. Hence the NHM may be the basis fo
better theoretical understanding of the material propertie
magnetism.

Case (b): The Wannier functions are spin dependent
and symmetry adapted to the paramagnetic group

Sets of narrow, roughly half filled energy bands with sp
dependent Wannier functions symmetry adapted to the p
magnetic groupM P as defined in Appendix A, case~b!, have
already been identified in the band structures of a great n
ber of superconductors.7,10,11It is remarkable that such ‘‘su
14440
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perconducting bands’’ cannot be found in those metals~such
as Li, Na, K, Rb, Cs, Ca, Cu, Ag, and Au! which do not
become superconducting.10

In case~b! considered in this section, the symmetry of t
nonadiabatic HamiltonianHn is given by the Eqs.~4.4!,
~4.5!, and ~4.10!. Equations~4.4! and ~4.5! show that the
ground state ofHn has the correct symmetry of the parama
netic groupM P. Especially,Hn commutes with the operato
K of time inversion. ThereforeHn may have a paramagneti
or a superconducting ground state, but has not a magn
ground state.

Equation~4.10! shows thatHn does not conserve the crys
tal spin angular momentum. Hence the electrons of the c
sidered bands may gain the energyDE @given in Eq.~2.20!#
only if they couple to other excitations in such a way that t
conservation of the crystal spin angular momentum is sa
fied in the nonadiabatic system. This fact may be interpre
as follows.7,18,19

In the isotropic transition metals, the electrons of the co
sidered bands couple to the phonons. This is possible si
first, the symmetry of localized acoustic phonons shows t
they are able to carry crystal spin angular momentum, s
ond, the electron spins are coupled to the phonons via
nonadiabatic motion of the nuclei, and, third, the resulti
nonadiabatic Hamiltonian complies with the conservat
law of crystal spin angular momentum.

In the anisotropic materials of the high-Tc superconduct-
ors ~consisting of one- or two-dimensional sublattice!,
phonons are not able to transport crystal spin angular
menta through the crystal. Here the electrons of the con
ered bands are forced to couple to energetically higher-ly
boson excitations.

At zero temperature, this spin-boson interactioncon-
strainsthe electrons of the considered bands in a new wa
form Cooper pairs because the conservation of spin ang
momentum would be violated in any normal conducti
state. Apart from this participation of the conservation
spin angular momentum, the mechanism of Cooper pair
mation within the NHM is identical to the familiar mecha
nism presented within the Bardeen-Cooper-Schrieffer~BCS!
theory.20

The participation of the conservation law of spin angu
momentum may be interpreted in terms of quantu
mechanical constraining forces which constrain the electr
to form Cooper pairs. There is evidence that these constr
ing forces are required that the Hamiltonian possesseseigen-
statesin which the electrons form Cooper pairs.

If this is true, then the BCS theory of superconductivity
only applicable to superconducting bands as defined in
pendix A, case~b!. When it is applied to other bands, it doe
not yield theabsoluteenergy minimum in the Hilbert space
For this reason, the mechanism of Cooper pair format
within the NHM may be the basis for a better theoretic
understanding of the material properties
superconductors.11
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APPENDIX A: SYMMETRY-ADAPTED WANNIER
FUNCTIONS

Consider a metal with the space groupG and the point
groupG0 . The elements

a5$aut% ~A1!

of G consist of a point group operationa and a translation
vector

t5t~a!1R ~A2!

which is the sum of the nonprimitive translationt(a) asso-
ciated witha and a translation vectorR of the Bravais lat-
tice.

The operatorsP(a) act on a wave functionf (r ,t) depend-
ing on the positionr and the spin coordinatet according to

P~a! f ~r ,t !5 f ~a21r2a21t,a21t !, ~A3!

where the symbola21t is defined in Eq.~4.6!.
The effect ofK is given by the equations21

K f ~r !5 f * ~r !, ~A4!

where f (r ) stands for any function of position, and

Kus~ t !5gsu2s~ t !, ~A5!

with22

g61/257 i . ~A6!

Case„a…: Wannier functions symmetry adapted
to a magnetic group

Consider a set ofm energy bands in the paramagne
band structure of a metal withm atoms per unit cell. The
positions of the atoms are still written as

T5R1%i ,

whereR and%i ( i 51 to m! denote the vectors of the Brava
lattice and the positions of thei th atom within the unit cell,
respectively.

Further, consider the magnetic group

M5H1K$gut~g!%H, ~A7!

whereH is a subgroup ofG,

H,G,

K denotes the operator of time inversion, and$gut(g)% is a
space group element ofG2H.

Assume degeneracies to exist between the bands o
considered set ofm energy bands and the bands not belon
ing to this set. This assumption is always true since, in
metal, there are degeneracies between the bands of an
lected set of energy bands and the bands outside of this
These degeneracies are caused by symmetry and may
at points and lines of symmetry of the Brillouin zone. Fu
ther, assume
14440
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~i! these degeneracies to be removed in the subgroupH of
G ~i.e., when the representations ofG are replaced by the
subduced representations ofH!;

~ii ! the symmetry operationK$gut(g)% not to produce
extra degeneracies between the bands of the considere
and bands outside of this set;

~iii ! unitary matricesS(K ) @as defined in Eq.~4.16! of
Ref. 2# to exist which satisfy Eqs.~4.17! and~4.28! of Ref. 2
and Eq.~7.1! of Ref. 13; and

~iv! the positionsri of the Wannier functions@which are
determined by these matricesS(K )# to be identical with the
positions of the atoms.

Then the coefficientsgiq(k) in Eq. ~1.1! may be chosen in
such a way that the Wannier functions comply with the fo
conditions following Eq.~1.1! with the exception that they
are no longer symmetry adapted to the paramagnetic s
groupG but only to the subgroupH of G. That means that
Eq. ~1.3! is satisfied only for the elementsa of the point
groupH0 of H. In addition to Eq.~1.3! we have13

Kwi@g21~r2R2ri !#5(
j 51

m

D ji ~Kg!wj~r2R2ri !,

~A8!

where the matrix@D ji (Kg)# is the representative ofKg in
the corepresentation of the point group

M05H01KgH0 ~A9!

of M which is derived from the representationD0 of H0 in
Eq. ~1.3!.

Since there is exactly one Wannier function at each ato
the Wannier functions may be labeled by the positionsT of
the atoms,

wT~r ![wi~r2R2ri !, ~A10!

and Eqs.~1.3! and ~A8! may be considerably simplified.
Applying on both sides of Eq.~1.3! the operationa on r

2R2ri we obtain

wi~r2R2ri !5(
j 51

m

D ji ~a!wj@a~r2R2ri !#, ~A11!

and the application of the operatorP(a) @given in Eq.~A3!#
on both sides of this Eq.~A11! yields the equation

P~a!wi~r2R2ri !5(
j 51

m

D ji ~a!wj~r2t2aR2ari !

~A12!

which applies to all the elementsaPH.
As shown in Ref. 6, Eq.~A12! may also be written in the

form

P~a!wi~r2R2ri !5(
j 51

m

D ji ~a!wj@r2aR2rj2Rj~a!#

~A13!

with Rj (a) being translations of the Bravais lattice~depend-
ing on j anda!, see Eq.~2.13! of Ref. 6.
3-9
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Comparing Eqs.~A12! and ~A13!, we see that on the
right-hand side of Eq.~A13! there are only Wannier func
tions related to an atomic positionrj within the unit cell for
which the translation

Rj~a!5ari1t2rj ~A14!

is a translation vector of the Bravais lattice. This cannot
true for more than one vectorrj since all therj are different
and lie within the unit cell. It is true for exactly onerj
becauseRj (a) is a translation of the Bravais lattice if we pu

rj5ari1t ~A15!

and R1ari1t is the position of an atom since it can b
generated by the application of the space-group opera
$aut% on the atomic positiona21R1ri .

Consequently, on the right-hand side of Eq.~A12! there is
only one Wannier function, namely that function related
the atom at positionari1t within the unit cell. Hence the
sum on the right-hand side of Eq.~A12! and~analogously! of
Eq. ~A8! consists of one summand only. The matric
@D ji (a)# in these equations have only one nonvanishing
ement, saydji (a), in each column which satisfies the equ
tion

udji ~a!u51 ~A16!

since the matrix@D ji (a)# is unitary.
Hence Eq.~A12! may be written as

P~a!wT~r !5dT~a!wT8~r ! for aPH ~A17!

with

T85aT1t ~A18!

and Eq.~A8! yields

KP~g!wT~r !5dT~Kg!wT8~r ! ~A19!

with

g5$gut~g!%

and

T85gT1t~g!,

where the coefficientsdT(a) anddT(Kg) have the absolute
value 1,

udT~a!u5udT~Kg!u51. ~A20!

It should be noted that the time inversionK does not
belong toM. Therefore it is not possible to choose the co
ficients giq(k) in Eq. ~1.1! in such a way that the Wannie
functions satisfy an equation analogous to Eq.~A19! by ap-
plication of the time inversion operatorK alone.
14440
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Case„b…: Spin-dependent Wannier functions symmetry
adapted to the paramagnetic group

a. Symmetry operators

If in Eq. ~1.1! we replace the Bloch functionswkq(r ) by
Bloch functions

fkqm~r ,t !5 (
s521/2

11/2

f sm~q,k!us~ t !wkq~r ! ~A21!

with k-dependent spin directions, we get ‘‘spin-depend
Wannier functions’’

wim~r2R2ri ,t !5
1

AN
(

k

BZ

(
q51

m

e2 ik~R1ri !giq~k!fkqm~r ,t !,

~A22!

which are labeled by the additional quantum numberm5
6 1

2 of the crystal spin. The functionsus(t) denote Pauli’s
spin functions as given in Eq.~4.7! and the coefficients
f sm(q,k) form ~for eachk andq! a unitary two-dimensiona
matrix f(q,k),

f21~q,k!5f†~q,k!. ~A23!

If we have

f sm~q,k!5dsm, ~A24!

the two functionsfkqm(r ,t) ~with m56 1
2 ) are usual Bloch

functions with the spins lying in1z and 2z direction, re-
spectively. Otherwise, the functionsfkqm(r ,t) still are usual
Bloch functions with antiparallel spins which, however, n
longer lie in6z direction.

As in the preceding case~a!, consider a set ofm energy
bands in the paramagnetic band structure of a metal witm
atoms per unit cell.

The paramagnetic groupM P of the metal may be written
as

M P5G1KG,

whereK still denotes the operator of time inversion. Assum
~i! the symmetry degeneracies between the bands bel

ing the considered set and bands not belonging to this se
be removed when the single-valued representations of
Bloch functions at the points of symmetryPk of the Brillouin
zone are replaced by the correspondingdouble-valuedrepre-
sentationsRk

d ;
~ii ! the time inversion symmetry not to produce extra d

generacies between the bands of the considered set
bands outside of this set;

~iii ! unitary matricesS(K ) to exist which satisfy Eqs.
~4.16!, ~4.17!, and~4.28! of Ref. 2 and Eq.~7.1! of Ref. 13,
when the single-valued representations in these equation
replaced by the corresponding double-valued represe
tions; and

~iv! the positionsri of the Wannier functions to be iden
tical with the positions of the atoms.

Then the coefficientsf sm(q,k) andgiq(k) in Eqs. ~A21!
and ~A22! may be chosen in such a way that also the sp
3-10



di
-
r
h

ue
p

nt
y
ch
se

h

te
e
p

ns
ng

c

n
e
-

.

f.

n

ag-

e

nc-

NONADIABATIC EXTENSION OF THE HEISENBERG MODEL PHYSICAL REVIEW B63 144403
dependent Wannier functions comply with the four con
tions following Eq.~1.1!. However, in any physical applica
tion of the NHM the labelm of the spin-dependent Wannie
functions should be the crystal spin quantum number. T
means that the matrices@dm8m(a)# in Eq. ~A28! should be
the representatives of the two-dimensional double-val
representationD1/2 of the three-dimensional rotation grou
O(3), and thematrix @dm8m(K)# should have the form given
in Eq. ~A30!. Therefore assume additionally

~v! at eachPk the double-valued representationRk
d to be a

Kronecker product

Rk
d5D1/23Rk ~A25!

of a single-valued representationRk with the ~two-
dimensional double-valued representation! D1/2.

The coefficientsf sm(q,k) cannot be chosen independe
of k since the considered set of energy bands is not
isolatedbeforethe single-valued representations of the Blo
functions are replaced by the related double-valued repre
tations.@If the f sm(q,k) are independent ofk, the Wannier
functions in Eq.~A22! are usual Wannier functions whic
may comply with the four conditions following Eq.~1.1!
only if the considered set of energy bands is already isola
when the Bloch functions are labeled by the single-valu
representations ofG.# As an important consequence, the o
eratorH8 does not conserve the crystal spin; see Eq.~3.12!.

Sets of energy bands complying with all the conditio
given above may be identified by means of the followi
simple Eq. ~A26!. The representationsRk

d and Rk in Eq.
~A25! form 2m and m dimensional representations, respe
tively, of the groupGk of the points of symmetryPk . They
are irreducible or a direct sum of irreducible representatio
The considered set ofm energy bands complies with th
above conditions~ii !–~iv! if and only if the matrix represen
tativesDk(a) of the ~single-valued! representationRk in Eq.
~A25! satisfy, at eachPk , the equation

trace Dk~a!5d~a!e2 iak•t(
i 51

m

ni~a!e2 i%i•~k2ak!

for aPGk , ~A26!

whered(a) stands for the representatives of anyreal one-
dimensional single-valued representation ofG0 and

ni~a!5H 1 if a%i1t5%i1R

0 else
~A27!

with R being a vector of the Bravais lattice. This Eq.~A26!
is derived from Eqs.~1.8! and~4.28! of Ref. 2~see also Sec
3 of Ref. 6!. It is satisfied for allaPGk if it is satisfied for
one representative of each class ofGk . A list of all the sets
of energy bands complying with Eq.~A26! in the bcc, CsCl,
MoSi2, and hcp structure is given in Tables IV–VII of Re
11.

The symmetry of the spin-dependent Wannier functio
may be derived from the equations in Refs. 2, 6, and 13
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the same way as we have derived the symmetry of the m
netic Wannier functions in the preceding case~a!. We now
get the equations

P~a!wTm~r ,t !5dT~a! (
m8521/2

11/2

dm8m~a!wT8m8~r ,t !

~A28!

for aPG, and

KwTm~r ,t !5dT~K ! (
m8521/2

11/2

dm8m~K !wTm8~r ,t !,

~A29!

where

wTm~r ,t ![wim~r2R2ri ,t !

and

T85aT1t.

The operatorsP(a) now act onr and t, see Eq.~A3!, the
matrices @dm8m(a)# are the representatives of the~two-
dimensional double-valued! representationD1/2, the matrix
@dm8m(K)# is given by

@dm8m~K !#5S 0 1

21 0D , ~A30!

@see, e.g., Table 7.15 of Ref. 21#, and thec numbersdT(a)
anddT(K) still have the absolute value 1,

udT~a!u5udT~K !u51. ~A31!

b. Operators of the crystal spin

Define the ‘‘group of the positionsri ’’ GM to consist of
all the aPG0 which satisfy the equation

ari1t~a!5ri1Ri ~A32!

for eachri , where Ri denotes a translation vector of th
Bravais lattice, and define for allaPGM symmetry operators
of the ‘‘crystal spin’’

M ~a!5P~$EuR2Ri%!P@$aut~a!%#P~$Eu2R%!
~A33!

which depend on the position

T5R1ri

of the ~spin-dependent! Wannier function on which they are
acting.

From Eqs.~A33! and ~A28! we obtain the equation

M ~a!wTm~r ,t !5dT~a! (
m8521/2

11/2

dm8m~a!wTm8~r ,t !

~A34!

for aPGM , showing that the operatorsM (a) leave un-
changed the positions of the spin-dependent Wannier fu
tions.
3-11
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APPENDIX B: SYMMETRY OF THE FERMION
OPERATORS

1. Adiabatic fermion operators

The adiabatic fermion operatorscTm
† and cTm create and

annihilate electrons in localized states represented by
Wannier functionswT(r )um(t) @in case ~a! of magnetic
Wannier functions# or wTm(r ,t) @in case ~b! of spin-
dependent Wannier functions#. Hence their symmetry is de
termined by Eqs.~4.6!, ~A17!, ~A19!, ~A28!, and ~A29!.
From these equations we get

P~a!cTm
~n!†P21~a!5dT~a! (

m8521/2

11/2

dm8m~a!cT8m8
~n!†

~B1!

with

T85aT1t

and

KP~g!cTm
~n!†@KP~g!#215dT~Kg! (

m8521/2

11/2

dm8m~Kg!cT8m8
~n!†

~B2!

with

T85gT1t~g!,

where the superscript~n! of the fermion operators should b
disregarded in this section. In addition, the operators of
crystal spin satisfy the equation

M ~a!cTm
~n!†M 21~a!5dT~a! (

m8521/2

11/2

dm8m~a!cTm8
~n!†

~B3!

for all the elementsa of the group of the positionsGM ; see
Eqs.~A32! and ~A33!.

The coefficientsdT(a) anddT(Kg) still have the absolute
value 1,

udT~a!u5udT~Kg!u51,

and the matrices@dm8m(a)# and@dm8m(Kg)# still are repre-
sentatives of the two-dimensional double-valued represe
tion D1/2 of the three-dimensional rotation groupO(3) and
the corepresentation ofO(3)1KO(3) derived fromD1/2,
respectively.
14440
he

e
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In case~a! of the magnetic Wannier functions, Eq.~B1! is
valid for all the elementsa in H,

aPH, ~B4!

and in Eq.~B2! we have

g5$gut~g!%. ~B5!

In case~b! of the spin-dependent Wannier functions Eq.~B1!
is valid for all the elementsa in G,

aPG, ~B6!

and in Eq.~B2! we have

g5$Eu0%, ~B7!

whereE denotes the identity element ofG0 . In the latter case
the matrix@dm8m(K)# is given in Eq.~A30!.

2. Nonadiabatic fermion operators

Within the NHM, the Wannier functionswT(r )um(t) @in
case~a! of magnetic Wannier functions# or wTm(r ,t) @in case
~b! of spin-dependent Wannier functions# are replaced by
nonadiabatic localized functions,

wT~r !um~ t !
wTm~r ,t ! J→^r ,t,quT,m,n&, ~B8!

having the same symmetry as the Wannier functions. Ho
ever, in the case of the nonadiabatic localized states,
symmetry operatorsP(a) act onr , t, and on the new coor-
dinateq according to

P~a!^r ,t,quT,m,n&5^a21r2a21t,a21t,a21quT,m,n&,
~B9!

where the symbola21t is defined in Eq.~4.6!, and the ap-
plication of K yields

K^r ,t,quT,m,n&5gm^r ,t,quT,2m,n&* , ~B10!

with gm being given in Eq.~A6!.
With these redefinitions of the symmetry operators,

symmetry of the nonadiabatic fermion operatorscTm
n† is also

given by Eqs.~B1!–~B3! of the preceding appendix. Th
superscript~n! of the fermion operators in these equatio
shall indicate that they are valid for both the adiabatic a
nonadiabatic fermion operators.
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19E. Krüger, Phys. Status Solidi B156, 345 ~1989!.
20J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.108,
14440
1175 ~1957!.
21C. Bradley and A. P. Cracknell,The Mathematical Theory o

Symmetry in Solids~Claredon, Oxford, 1972!.
22H.-W. Streitwolf,Gruppentheorie in der Festko¨rperphysik~Aka-

demische Verlagsgesellschaft Geest & Portig KG, Leipz
1967!.
3-13


