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The localized states within the Heisenberg model of magnetism should be represented by best localized
Wannier functions which form a unitary transformation of the Bloch functions of the narrowest partly filled
energy bands in the metals. However, as a consequence of degeneracies between the energy bands near the
Fermi level, in any metal these Wannier functions cannot be chosen symmetry adapted to the complete
paramagnetic group®. Therefore in previous papers the author has defined Wannier functions with the
reduced symmetry of a magnetic subgravdpof MP [case(a)] and spin dependent Wannier functidusse
(b)]. These functions cannot be constructed in any metal, but only in metals having Bloch functions of
appropriate symmetry in their band structure. The magnetic symmetry and spin dependence of these Wannier
functions can be physically interpreted within a nonadiabatic extension of the original Heisenberg model, the
nonadiabatic Heisenberg mod®&HM). Within this group-theoretical model, there is strong evidence that the
occurrence of these two typéa) and (b) of Wannier functions in the band structure of a metal is connected
with the occurrence of magnetism and superconductivity, respectively. In order to provide a solid and general
basis for an application of the NHM within the theory of magnetjgmcase(a)], superconductivity, and high-

T, superconductivityfin case(b)], the present paper gives a detailed physical substantiation of the NHM in
terms of exact Wannier functions and defines the NHM in any metal, i.e., in metals possessing any given
(symmorphic or nonsymmorphispace group and any given number of atoms per unit cell. The commutation
properties of the nonadiabatic Hamiltonill? are explicitly given for the two important casés and(b) and

are briefly interpreted.
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I. INTRODUCTION The Wannier functions are symmetry adapted@dpoint
(iii )] if they satisfy the equation
Within the Heisenberg model of magnetiénthe local-

ized states of the electrons should be represented by Wannier 1 -
functions wil (r—R—pi)]=§1 Dji(a)w;(r=R—p) (1.3

BZ u for the elementsxy of the point groupG, of G, where the
LE 2 e kR+A)g. (k) ora(r) matrices[Dj(«)] form a (reducible or irreduciblesingle-
IN K Gia(K) Pka valued representatioD, of Gy, see Eq.(1.8) of Ref. 2.
(1.2 [Note that in Eq(1.3) on the right-hand side there js and
not p; .|
The Wannier functions are as well localizable as possible
[point (iv)] if the Bloch-like functions

wi(r—R—pj)=
q=1

with the following properties:
(i) thew;(r —R— p;) are centered on the atomic positions

R+pi; u

(i) thew;(r—R— p;) are gained by anitary transforma- Dui(r)= (K r 1.4
tion from the Bloch functionsp,4(r) of the energy bands of #ulr) qzl 9ia() Prar) (9
interest;

vary (for fixed r) smoothly through the wholk spacé

It is one of the most important results of the group theory
of Wannier functions that Wannier functions complying with
all the four conditions given above exist onlyisolatedsets
of u energy bands which satisfy the group-theoretical com-
patibility relations throughout the Brillouin zorfe® [This
condition is necessary, but not sufficient: in addition, there
must exist unitary matrice§(K) defined in Eq.(4.16 of
Ref. 2 which satisfy Eqs4.17) and(4.28 of Ref. 2. These
matricesS(K) determine the positionp, of the Wannier
functions] In an “isolated” set of energy bands, each band
may be connected by degeneracies to the other bands of this
set, but must not be connected to bands not belonging to this
g 1(k)=g"(k). (1.2  set

(iii ) thew;(r—R—p;) are symmetry adapted to the space
group G of the considered metal; and

(iv) thew;(r—R—p;) are as well localized as possible.

The first sum in Eq(1.1) runs over theN vectorsk of the
first Brillouin zone (BZ), the second sum runs over the
bands of interestwith the band indicegj=1 to u), andR
and p; denote the vectors of the Bravais lattice and the cen
ters of symmetry of the Wannier functions within the unit
cell, respectively.

The transformation is unitafyoint (i )] if the coefficients
Jig(k) in Eq.(1.1) are the elements of a unitary matgik),
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The mentioned “energy bands of interest” are the partlyin rigid orbitals in theaveragepotential of the other elec-
filled energy bands in the band structures of the considerettons. The second postulate, however, requires a more real-
metal. Often, it is only one roughly half filled band which istic description of the electronic motion. In the tr(eona-
interests. However, the energy bands in tparamagnetic ~ diabati system a localized electron moves in a potential
band structures of the metals are degenerate at several poifitgpending on which of the adjacent localized states is occu-
and lines of symmetry of the Brillouin zone. Because ofPied and on the present motion of the electrons in these
these degeneracies, is not possible to separate narrow isg@tes. These modified orbitals
lated sets of energy bands which satisfy the compatibility
relations throughout the Brillouin zone. For this reason, T,m,v)

Wannier functions with all the properties demanded aboveye described by introducing a new quantum numbehich
do not exist in the metals labels different states of the nonadiabatic motion of the cen-

Therefore the localized states are often represented Qyr of mass of the localized statéqT denotes the positions
“approximated” Wannier functions which no longer form f the atoms, see E¢2.2).]

an exactly unitary transformation of the Bloch functions.  Nonadiabatic localized functions
These Wannier functions are constructed from slightly modi-
fied energy bands in which some of the Bloch functions at (r.t,qT,m,v)
points, lines, and planes of symmetry are replaced by Bloch
functions with a symmetry appropriate for the construction(as introduced in the next sectjowhich represent the nona-
of Wannier functions. Hence these approximated Wanniediabatic localized states are highly complicated. Hence it will
functions have lost all the information connected with thebe practically impossible to give these functions explicitly.
symmetry of the removed Bloch functions and carry theFortunately, one important feature of these functions is
wrong information of the new Bloch functions. known exactly: they have the same symmetry asekact
The nonadiabatic Heisenberg modBIHM) as proposed Wannier functions of the narrowest, roughly half filled en-
in previous papers® extends the original Heisenberg model ergy bands of the metal under consideration. Thus any appli-
on the basis of Wannier functions which form amactly cation of the NHM starts with a group-theoretical examina-
unitary transformation of the Bloch functions of the bands oftion of the symmetry of the best localizégpin-dependent
interest. Within this modelit is not allowedto replace any Wannier functions which is clearly determined by the sym-
Bloch function in the calculated band structure by functionsmetry of the Bloch functions in the band structure of the
with a new symmetry. Hence the NHM takes into accountgiven metaf—®*3
the completeinformation connected with the symmetry of = The NHM is a purely group-theoretical model. An ex-
the Bloch functions in the band structure of the considereglicit knowledge of the nonadiabatic localized functidgs-
metal. ing beyond of their symmetjydoes not provide new physi-
Clearly, the Wannier functions used within the NHM can- cal insight. Even in the nonadiabatic model, any calculation
not comply with all the propertie§)—(iv) given above. The of expectation values should be carried out within the adia-
development of the nonadiabatic model was suggested Hyatic approximation.
two observations: In my previous papers,® the NHM has been considered
1. An exactly unitary transformation of the Bloch func- in several metals with the simple bcc structure and one atom
tions of the partly filled bands into best localized Wannierper unit cell. The aim of the present paper is to provide a
functions becomes possible in many metals when the Warsolid and general basis for an application of the NHM within
nier functions are allowed to have theduced symmetrgf a  the theory of magnetism and superconductivity including
magnetic subgroup of the paramagnetic groujsee Ap- high-temperature superconductivity. In the following Sec.
pendix A, case(@)] or when they are allowed to bspin Il | shall give a more detailed physical substantiation of the
dependenisee Appendix A, casé)]. three postulates of the NHM in terms of “atomiclike elec-
2. The occurrence of these two typ@s and (b) of Wan-  trons” as described by Mdtt and Hubbar® and shall de-
nier functions in the band structure of a metal is connectedine this model in any metal, i.e., in metals with any given
with the occurrence of magnetism and superconductivity, respace grougs and any given numbeg of atoms per unit
spectively(see Sec. VR’ cell. The symmetry properties of the nonadiabatic Hamil-
The original Heisenberg model of magnetism is definedonian H" will be explicitly given in Sec. IV for the two
by the assumption that there is exactly one electron on eaatasesa) and (b).
atom of a metal. The NHM replaces this assumption by in- Within the NHM, the motion of the electrons may be
troducing three postulates which will be given in the follow- considered as the motion of quasiparticles that are labeled by
ing Sec. Il. These postulates combine in a new way thehe crystal spin quantum numbet. This picture of “stable
Heisenberg model with the band model. The fundamentatrystal electrons” will be declared in Sec. V A.

second postulate given in E€R.19 states that the probabil- Separately for the two casé¢a) and (b), in Appendix A
ity to find exactly one electron on an atom is lasge as the symmetry-adaptetspin dependentWannier functions
possiblein narrow energy bands. will be defined and their symmetry will be derived again for

The second postulate of the NHM cannot be satisfiecany metal. Further, in ApperndiA | shall give a simple
within the adiabatidor Born-Oppenheimerapproximation. equation[Eg. (A26)] to identify (in the calculated band
In the framework of this approximation the electrons movestructure of any metalsets of energy bands with spin-
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dependent Wannier functions as defined in ddseln Ap-

pendix A, case(b), | shall give a general definition of the Hep= 2 (T1.my;To,my[Hep TS, my TS, my)
symmetry operatord! («) of the crystal spin which is re- nm
quired for an understanding of the symmetrytbt in case xcl el i Crrm (2.6)
(b), and in Appendix B the symmetry of the adiabatic and et enz
nonadiabatic fermion operators will be given. represent the Hartree-Fock and Coulomb energy, respec-
tively. The fermion operators$m andct,, create and anni-
II. NONADIABATIC HEISENBERG MODEL hilate electrons Witr(nyStaD Spin m in the localized states
|T,m) represented by the Wannier functioms,,(r,t). Other
A. General contributions toH from the electrons not belonging to the
Consider a set ofu energy bands in a metal with the considered set of bands are neglected even as are spin-orbit
paramagnetic space gro@ the paramagnetic group effects.
Hcp may be written as
P_
MT=G+KG (2.2 Hop=Hot Hot H, 2.7
(with K denoting the operator of time inversiorand u at-\yith the operator of Coulomb repulsiéh, containing all the
oms at the positions matrix elements of ¢, with
T=R+g (2.2 T,=T; and T,=T,, (2.9

per unit cell, whereR ando; (i=1 to u) denote the vectors the exchange operatdt,, containing the matrix elements
of the Bravais lattice and the positions of i atom within ~ with
the unit cell, respectively. The energy bands of this set are ) ,
assumed to belong to the narrowest partly filled bands of this T1=T, and T,=T,, (2.9
metal (while it is not demanded thall the narrow, partly
filled bands belong to )it

Assume that the symmetry of the Bloch functions of the
considered set of energy bands allows the construction of P
either Wannier functions {T0Tob#{T2. Tal (2.19

and H, comprising the remaining matrix elements, i.e., the
matrix elements with

The interactionH, is of great importance within the

Wrm(r, ) =w;(r—R—p;)up(t) (2.3)  NHM. In order to discuss the effect dfi,, consider the
. P ) operator
symmetry adapted to a magnetic subgrddipf M™ or spin-
dependent Wannier functions H =Hyge+He+Hey (2.1)
Won(F, D) =Win(r —R—py 1) (2.4) gb(t)ained from the complete Hamiltonid# by putting H,

symmetry adapted t&P. The former functions are defined ~ Assume the considered energy bands to be sufficiently
in Appendix A, Case(a), their symmetry is given in Egs. narrow that the ground stat@’} of H' clearly has “atomi-
(A17) and (A]_g), the latter are defined in Appendix A, case clike” character. According to Hubbar’é,that means that in
(b), and their symmetry is given in Eq§A28) and (A29). |G’) the electronic motion is correlated in such a manner as
The functionsu,(t) are Pauli’s spin functions, see Bg.7),  t0 give properties characteristic of the atomic or Heisenberg
t is the spin coordinate, and tfferysta) spin labelm= = } picture. Within the atomic picture, two electrons occupying
distinguished between the two functions at the same positiofe two localized stateld, + 7) at the same positiofi pos-
T. In either case, the Wannier functions form a unitary transS€ss a higher energy of Coulomb repulsion than two elec-
formation of theexactBloch functions of the considered set trons occupying localized states at different positiths.
of u energy bands, are situated on the atgmish the posi- However, even in the narrowest half filled energy bands of
tions T), and are as well localized as possib|e_ As given inthe metals the electrons do not take the state of lowest Cou-
Egs.(2.3) and(2.4), they may be labeled by the positions of lomb repulsion, namely a state with exactly one electron at
the atomsT since all thep; are different. each positiorT, because their hopping motion produces con-
figurations in which, at some positiorg, both stategT,
+3) are occupied or unoccupied.
Nevertheless, in an atomiclike state the Coulomb repul-
Let sion will determine the electronic motion in such a manner
that the probability to find two electroriith different spin
H=Hur+Hcp (2.5  directiong at the same positiof is markedly smaller than in
case of a purely bandlike motion. In this context, | speak of
be the electronic Hamiltonian in the considered set of energy “purely bandlike” motion when the probability to find an
bands withH e and electron in the localized stat¢Tm) is independent of

B. The three postulates of the nonadiabatic Heisenberg model
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whether or not the other stat&,—m) is occupied. In this rowestbands of the metals. This supposition leads to the first

case, the ground state consists of configurations with nearlgostulate of the NHM.

random occupation. Postulate 1 In the narrowest, partly filled energy bands of
The balance between the atomic- and bandlike charactéhe metals the transitions generatedHby are energetically

depends on the mean time of stay#/A of the electrons at unfavorable, i.e., we have

the atoms and hence on the bandwidti~or A—0 we have it

7—; the metal becomes a Mott insulator representing a (GIH[G)>(G[H"[G"), (213

perfectly atomiclike state. Fak—c, on the other hand, we where|G) and|G’) denote theexactground states off and

haver— 0 and hence a purely bandlike character of the elecH’, respectively.

trons. Thus, as is well known, the electrons in partly filled The particular form of the matrix elements Bf, shows

energy bands tend to a more atomiclike behavior with dethat it represents a short-ranged interaction which crucially

creasing bandwidth and to a more bandlike behavior withrdepends on the exact form of the localized functions.

increasing bandwidtfr This fact suggests that only small changes of the localized
The matrix elements oH, satisfy neither Eq(2.8) nor  electronic orbitals are required to prevent the transitions

Eq. (2.9. Thus the interactiotd, annihilates two electrons generated byH,. However, such modified orbitals do

in localized states at the positioiy and T, and creates at not exist within the adiabatic approximation because such

least one of them at theew positionsT; or T,. Hence, modifications yield localized charge distributions which

unlike H. or He,, the operatoH, generates transitions be- are not symmetric at any moment. As a consequence, the

tween adjacent localized states which lead to configurationsuclei become accelerated in varying directions. Hence we

with a more random occupation. Consequently, the interacreplace the(adiabati¢ localized stategrepresented by the

tion H, shifts the balance bandlike and atomiclike behaviorWannier functions by more realistic nonadiabatic localized

towards the bandlike behavior. The probability to find two states

electrons at the same positidnwill be larger in the ground

state|G) of the complete Hamiltonian IT.m,v) (2.14

which take into account the motion of the nuclei. The new

H=H"+H, quantum number labels different states of the nonadiabatic
[given in Eq.(2.5] than in the ground stateG’) of H'. motion of the center of mass of the nucleus and the electron
Therefore the total energy of Coulomb repulsion|@) is  occupying the stath,m,y>.12
larger than in|G’), The nonadiabatic HamiltoniaH" may be written as
(G|H|G)Y>(G'|H|G"), (2.12 H'=Hy+HE,, (2.19

and we may assume that in sufficiently narrow bands thevhere the Coulomb interaction now has the form
ground-state energlg of H is greater than the ground-state
energyE’ of H'.

Still “sufficiently” narrow means that the Coulomb re-
pulsion between the localized states determines the elec-
tronic motion in|G'). It is difficult to decide how narrow X i i Gy (2.16
such sufficiently narrow bands should be. However, we et
know that there is strong theoretical and experimental eviThe new fermion operators]!, andc?,, create and annihi-
dence that, e.g., the electrons of the transition metals ex- late electrons with crystal spim [see Appendix A, cas@)]
hibit behavior of both the band and the Heisenberg m&tel. in the nonadiabatic localized statgsm,n). The matrix el-
Therefore we may suppose that-E’ is valid in thenar-  ements ofHg, are integrals

Hgb:TZm (T1,my,n;To,my,n|Hep|T1,mp,n;T5,my,n)

(T1,mq,n;To,my,N|Hep|T1,m7,n;T5,mj,n)

e2

tt’

(T1,mq,n|rt,q){To,my,n|r',t’,q’'}r,t,q/T;,m,n)r’,t",q'|T5,mj,n)

r=r’|

drdr’dqdq’

(2.17

over nonadiabatic localized functions of the form wherev=n labels the nonadiabatic states which satisfy the
following Eg. (2.19, and the new coordinate stands for
that part of the motion of the center of mass of the localized
(r,t,q|T,m,n), (2.19  state|T,m,n) which nonadiabatically follows the motion of
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the electron occupying this state. We may imagine that As a consequence of E(R.19, the commutation proper-

denotes theaccelerationof the nucleus(together with the ties of the operatoHg, depend on the symmetry of the

core electrons nonadiabatic localized states. Since only small modifications
Within the nonadiabatic localized staf@sm, v) the elec-  of the adiabatic electronic orbitals are required to prevent the

trons possess considerably more room to move than withiransitions generated biyl,, we can assume that the nona-

the adiabatic states. While in the adiabatic approximation theiabatic HamiltoniarH" has the same commutation proper-

symmetry operator®(a) act onr andt alone, in the nona- ties as the adiabatic Hamiltoni&t given in Eq.(2.11). This

diabatic system these operators actrpt andthe accelera- s the third(and last postulate of the NHM.

tion g of the nuclei, see EqB9). The nonadiabatic localized Postulate 31f relation (2.13 is true, the nonadiabatic Hamil-

functions have no definite transformation properties undetonianH" has the same commutation properties as the adia-

space-group operations actimgly on r andt. Hence the batic HamiltonianH’, i.e.,

symmetry of the adiabatic and nonadiabatic localized states

[given by Eqg.(B1) for the fermion operatoijsmay be inter- , = =

p%eted a)é focl1lows. P ’ [H ,P][;&]O:[H”,P]L&
Within the adiabatic system the electrons move on orbit-

als being symmetric with respect to the lattiageany mo- WhereP stands for any symmetry operator.

ment Within the nonadiabatic system, on the other hand thd\S & consequence, the nonadiabatic localized functions have
orbitals are still symmetric on the average of tirbat notat the same symmetry as th@diabati¢ Wannier functions

any moment. This statement is independent of the absolut¥tm(T)-
value|q| of the acceleration of the nuclei, i.e., it is indepen-
dent of whether or not the mass of the electrons is markedly lll. SYMMETRY OF THE OPERATOR  H'

smaller than the mass of the nuclei. According to its definition, the operatét’ arises from

Thus the introduction of.the new quantum ngmbeal— . the complete adiabatic Hamiltoni&hin Eq. (2.5 by putting
lows the electrons to move in a potential depending on which

of the adjacent localized states are occupied and on the H,=0. (3.
present positions of these electrons. Hence within the nona- _ )

diabatic system the electrons should be able to avoid th&his equation does not state th#f is neglectedbut thatH,
transitions generated by, by an appropriately modified IS Put equal to zeroBy this step, the commutation properties
motion, if these transitions are energetically unfavorable, i.e.9f the operatoH’ depend on the symmetry of the Wannier
if the relation(2.13) is true. Thus as a consequence of rela-functions, whereas the commutation properties of the com-

tion (2.13, all the matrix elements oHY, which neither Pléte adiabatic Hamiltoniahi are independent of the sym-
satisfy Eq.(2.8) nor Eq.(2.9) should vanish. metry of the used basis functions. Thenadiabaticmatrix

For this reason, we can suppose that the transitions gef§lements oH;, however, vanish within the NHM; see Eq.
erated byH, are artifacts of the adiabatic approximation and(2:19.

do not happen in thétrue) nonadiabatic system if relation
(2.13 is satisfied. This supposition leads to the second pos- Case(a): The Wannier functions are symmetry adapted

0, (2.20)

tulate of the NHM. to a magnetic group
Postulate 2 If relation (2.13 is true, the Coulomb interac- If the Wannier functions are symmetry adapted only to a
tion HZ,, does not generate transitions between adjacent '%agnetic subgroup of the paramagnetic group!®, the
calized states, i.e., symmetry of the operatdd’ is given by

<T1,ml,n;T2,mz,n|HCblTi,mi,n;Té,mé,n>=C22 0 [H',P(a)]=0 for aeM 3.2

A
and
for
[H',P(a)]#0 for ae(MP—M), (3.3

{T1, T} #{T1, T3}
where
and for special orthonormal nonadiabatic localized functions
MP=G+KG

(r,t,q/T,m,n) . .
stands for the paramagnetic groypand G is the space

labeled byv=n. group. The symmetry operatof3(a) are given in Eq(A3)
At the transition from the adiabatic to the nonadiabaticandK denotes the operator of time inversion. Especially, in
system, the total energy of the electron system decreases bhis case@ H’ does not commute witkK,

AE=(G|H|G)—(G'|H’|G") (2.20 [H',K]+#0, (3.9

if we neglect the energy of the nonadiabatic motion of thesinceK e (MP—M).
nuclei and the energy change caused by the slight modifica- The first Eq.(3.2) is valid since the complete Hamiltonian
tion of the electronic orbitals within the nonadiabatic statesH commutes with P(a) and also the operator
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P(a)H'P (a) complies with Egs.(2.8) and (2.9) if a
eM since the fermion operator@(a)c-TrmP‘l(a) and

PHYSICAL REVIEW B63 144403

However, in this caséb), the operatotH’ has matrix ele-
ments with

P(a)crmP~Y(a) are for all theae M linear combinations of
operators, .., andcy.,, , respectively, labeled by treame
positionT’; see the Eqs(B1) and(B2).

(3.11

because the coefficients,,(q,k) in Eqg. (A21) cannot be
Within the NHM it is important thatH’ does not com- chosen independent &f, see Appendix A, casé). There-
mute withP(a) for ae (M”—M). In the caséa) considered fore H' does not conserve the crystal spin and h&hdees
in this section, the Wannier functions cannot be chosen imot commute with the operatotd («) of the crystal spin
such a way that they are symmetry adapted to a grrﬁjup defined in Eq(A33),
containing the operatioa as well as all the elements M.
Consequently, forae (MP—M), the fermion operators
P(a)c}mPfl(a) do not comply with Eqs(B1) or (B2), but
are linear combinations

my+my#m;+m,

[H".M(a)]#0,

for at least onax e G, .’

(3.12

IV. SYMMETRY OF THE NONADIABATIC

P(a)ct P %)= 2 drmm(@)ch,, (35 HAMILTONIAN H"

om A. Magnetic and paramagnetic group
of at least two operators;m, with differentlabelsT; and

’ rp—1
T . We show that therefore the operaif@)H'P~"(a) has  (ation properties as the adiabatic operaidy see Eq(2.22).

matrix elements violating Eq2.8) or Eq. (2.9). However, the symmetry operatoP§a) now act onr,t, and

Consider a fermion operator combination belonging t0 thg, the new coordinatg of the nonadiabatic localized func-
Coulomb interaction o', say tions, see Eq(BY).

+ Hence we have

The nonadiabatic HamiltoniaH" has the same commu-

O=c{ ct Cr,Cr,, (3.6)
, b ) [H",P(a)]=0 for aeM, 4.7
and assume for a speciak (M"™—M) the sum in Eq(3.5
to consist of two summands, [H".P(a)]#0 for ae(MP—M), 4.2)
PciP~l=a.cl+b-cl, (3.7  and, especially,
labeled by the different positiond andV. In Eq. (3.7) we [H"K]#0 4.3
use the abbreviatioR=P(a) and drop the indexn since it )
does not matter here. With E¢8.7) we obtain in the casg@) of the preceding Sec. Ill, and
Popfl:PCT P*lPCT P*lPC P*lPC P*l [Hn,P(a)]:o fOI‘ aEMP, (44)
Ty T, T, T, al
especially,
= (ac51+ bc:r,l)(acLZJr bc:r,z)(a* cy,+b*cy,)
[H"K]=0 (4.9

X(a*cy, +b*cy.), k8 :
! ! in the caseb) of the preceding Sec. Ill.
wherea#0 andb# 0. For instance, the operator product

bt B. Crystal spin

Cu,Ov,Cu,Cu, Th ; : : :
e nonadiabatic fermion operators in Eg.15 are no
belonging toPOP~! and hence t?PH’'P 1, violates Eq. longer labeled by the spin quantum numbeHence, within
(2.8) since V,#U,. ConsequentlyH’ does not commute the nonadiabatic system, the exact Fermi excitations are no
with P as expressed by E¢3.3). In the same wayH’ does longer purely electronic states but localized states of well-

not commute withP when there are more than two sum- defined symmetry which are occupied by electroasying
mands on the right-hand side of EG.7). with them some nonadiabatic motion of the nuclei

Let be S(a) with

Case(b): The Wannier functions are spin dependent
and symmetry adapted to the paramagnetic group s(a)us(t)zus(a—lt)ZE do(a)ug(t) for aeO(3)
SV

If we consider spin-dependent Wannier functions symme-

try adapted to the paramagnetic grody’, then we have 49
the operators turning the electron spin, where the functions
[H',P(a)]=0 for aeMP (3.9
. Us(t) = I 4.7
and, especially,
are Pauli’'s spin functions with the spin quantum numser
[H',K]=0. (3.10 ==1% and the spin coordinaté=+3, and the matrices
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[des(@)] are the representatives of the two-dimensionalered bands. Hence the commutation properties of the adia-
double-valued representatidd,,, of the three-dimensional batic HamiltonianH are independent of the symmetry of the

rotation groupO(3). Wannier functions, since the symmetry of any adiabatic
The adiabatic Hamiltoniahl given in Eq.(2.5 commutes  Hamiltonian is independent of the symmetry of the used ba-
with the operatorsS(«), sis functions. The symmetry and localization of the Wannier
functions simplifies the calculation of the matrix elements of
[H.S()]=0 for a=O(3). 48 W but has no further physical meaning.
This equation expresses the conservation law of the spin an- The nonadiabatic Hamiltoniald", on the other hand, has
gular momentum within the adiabatic system. an important feature which distinguishes it from any adia-

The nonadiabatic Hamiltoniail", on the other hand, batic HamiltonianH: the commutation properties and the
does not commute with the operat@&x) (for a#E) since  spin dependence dfi" depend on the symmetry and spin
the nonadiabatic fermion operators are no longer labeled bjjependence of the nonadiabatic localized functions. This is
the spin quantum number Hence as a consequence of thepecause the nonadiabatic localized functions have a physical
(smal) shift of the Fermi character at the transition from the meaning going beyond the meaning of pure basis functions:
adiabatic to the nonadiabatic system, the electron spin angihey represent states that are realgupiedoy the electrons
Iar_ mome_ntum is_no longer a conserved qua_ntity. Now there, e way described by Mdtt and Hubbard?® the electrons
exists an interaction between the electron spins and the no”@écupy the nonadiabatic localized states as long as possible

diabatic motion of the nuclei. nd perform their band motion by hopping from one atom to

However, even in th? nonadiabatic system the're ShouIgnother. Such a band motion is generally referred to as
exist a conserved quantity related to the conservation law o

atomiclike motion.
angular momentum. Thus E@.8) should be replaced by an o . .
analogous equation Within the NHM we may extend this picture of the atomi-

clike electron. Here the whole localized stdem,n) be-

[H" M (a)]=0 for aeGy (4.9  haves like a movingarticle, say “crystal electron,” with

the local coordinatéel' and the crystal spim. The spatial

in the nonadiabatic system, whet¢" stands for the com- extend of the crystal electron is determined by the charge
plete nonadiabatic Hamiltonian. The groGy, and the op-  distribution of the localized state and the crystal spin is a
eratorsM («) are defined in EqSA32) and(A33). They act  conserved quantity
on the quantum numbem of the nonadiabatic localized  First consider the picture of the crystal electron within the
stategT,m,n) in the same manner as the operat8fa) act  adiabatic approximation. Both operatdtis and H,, [given
on the spin quantum numbes of Pauli’'s spin functions in Eq. (2.7)] represent interactiortsetweercrystal electrons
ug(t), cf. Eq.(B3). Therefore these operators may be calledand hence are in accordance with this picture. The interaction
the symmetry operators of the “crystal spin” animay be  H,, on the other hand, contradicts the picture of a moving
called the quantum number of the crystal spin. This is incrystal electron becausedestroyshese new particles. Since
analogy to the wave vectdrof the Bloch functions which is  H_ is a short-ranged interaction, we may say that within the
sometimes referred to as “crystal momentum” in order to adiabatic system “the crystal electrons become destroyed at
distinguish it from the momenturp. the slightest touch.”

In case(b), i.e., if we consider spin-dependent Wannier  within the NHM, on the other hand, E¢R.19 is valid.
functions symmetry adapted to the paramagnetic gi({ip  The crystal electrons argtablein the nonadiabatic system
the adiabatic operatorl’ does not commute with all the because the Coulomb interaction does not generate transi-
operatordM («); see Eq(3.12. Hence also the nonadiabatic tions between adjacent localized states. We may interpret Eq.
HamiltonianH" as defined in Eq(2.15 does not conserve (2.19 by stating that “the crystal electrons becomsieghtly
the crystal spin, deformedbut not destroyed at a touch.” The crystal elec-

N trons now have a certaielasticity protecting them from be-
[H",M(a)]#0, (4.10 ing destroyed at any collision. In this context, the stability of
for at least onaxe Gy, . It is one of the most interesting Crystal electrons increases with decreasing bandwidth.

problems of the NHM to interpret this equation, see Sec.
V B, case(b).
B. Outlook
V. DISCUSSION The commutation properties of the nonadiabatic Hamil-

tonianH" are given in Sec. IV for two interesting casgs
and(b). They are valid in metals with any given space group

The NHM has been developed in order to interpret theG and any given numbegr. of atoms per unit cell. Hence
symmetry and spin dependence of the Wannier functions ithese equation form a general basis for an interpretation of
metals. These Wannier functions form amactly unitary  the results of the NHM in magnetic and superconducting
transformation of the Bloch functions of a set of partly filled materials(also of high transition temperatyrevhich often
energy bands in the band structure of the metal of interest.have a complicated space group. In this section | shall sum-

In the framework of the adiabatic approximation, Wanniermarize interpretations of these equations as given so far in
functions form nothing but a unitary basis within the consid-several former papers.

A. Crystal electrons
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Case (a): The Wannier functions are symmetry adapted perconducting bands” cannot be found in those metlsh
to a magnetic group as Li, Na, K, Rb, Cs, E@a, Cu, Ag, and Awhich do not
: .. become superconductirig.
Sets of narrow, roughly half filled energy bands with : S .
) X . In case(b) considered in this section, the symmetry of the
Wannier fur_1ct|ons syr_nmetry-adapted to amagnetic gidup nonadiabea(ltiz: HamiltoniarH" is given by thg Eqs.(z/.4)
as def_med in Appendix A,.cas{a), have already been iden- (4.5, and (4.10. Equations(4.4) and (4.5 show that th’e
tified In tg]e paramagnetic pand structures of ?rcx{i‘nd ground state oH" has the correct symmetry of the paramag-
chromium? In both metals, this set consists of one “mag- netic groupMP. Especially,H" commutes with the operator

netic” band. In iron the related magnetic group K of time inversion. Thereforel" may have a paramagnetic
5 5 or a superconducting ground state, but has not a magnetic
M=14/mm'm’=Cj,+K{C,,|0}C3, (5.)  ground state.

Equation(4.10 shows thaH" does not conserve the crys-
is the group of the ferromagnetic state and in chromium  tal spin angular momentum. Hence the electrons of the con-
sidered bands may gain the enedyl [given in Eq.(2.20]
M =P, 4imnc=DS, + K{E|#DS, (5.2)  onlyif they couple to other excitations in such a way that the
conservation of the crystal spin angular momentum is satis-

is the group of the commensurate spin-density-wave state. fied in the nonadiabatic system. This fact may be interpreted

In case(a) considered in this section, the symmetry of the @S follows: ) N
nonadiabatic Hamiltonia" is given by the Eqs(4.1)— In the isotropic transition metals, the electrons of the con-
(4.3). Equation(4.3) shows thatH" does not commute with sidered bands couple to the phonons. This is possible since,
the operatoK of time inversion. Therefortl” cannot have a first, the symmetry of localized acoustic phonons shows that

. . . ey are able to carry crystal spin angular momentum, sec-
aramagnetic or superconducting ground state, since bom ; !
gtates a?e invariant vr\)/ith respect t% ?he time inversion. ohd, the electron spins are coupled to the phonons via the

nonadiabatic motion of the nuclei, and, third, the resulting

) . i . fonadiabatic Hamiltonian complies with the conservation
energyAE [given in Eq.(2.20] only if the electron spins g of crystal spin angular momentum.

form a structure with the magnetic growp. This fact may In the anisotropic materials of the high-superconduct-
be interpreted as follow' _ _ _ ors (consisting of one- or two-dimensional sublattices
The electrons of the magnetic barattivate a spin-  phonons are not able to transport crystal spin angular mo-
dependent exchange mechanism producing a spin structUfenta through the crystal. Here the electrons of the consid-
with the space groupd. This is possible since, first, the ered bands are forced to couple to energetically higher-lying
electrons can modify their orbitals in the nonadiabatic localy)ggon excitations.
ized states and, second, exchange integrals depend very sen-at zero temperature, this spin-boson interactioon-
sitively on the exact form of the electronic orbitals. Hencegtrainsthe electrons of the considered bands in a new way to
the electrons of the magnetic band modify their orbitals inform Cooper pairs because the conservation of spin angular
such a way that the exchange enekgy, is maximum for a  momentum would be violated in any normal conducting
spin structure with the groudl. _ state. Apart from this participation of the conservation of
The condensation ener_gi_s/f, i.e., the energy d|ﬁerenqe spin angular momentum, the mechanism of Cooper pair for-
between the paramagnetic and the magnetic state, is Ngation within the NHM is identical to the familiar mecha-

longer given by the exchange enerfgy, alone, but by nism presented within the Bardeen-Cooper-SchrigB&S)
theory?°
Ei=AE+Eg,. (5.3 The patrticipation of the conservation law of spin angular

N _ . o momentum may be interpreted in terms of quantum-
HenceE; may be _posmve even e, is negatl_v_e. Within the “mechanical constraining forces which constrain the electrons
NHM the magnetic bands in Fe and Cr stabilize the magnetigo form Cooper pairs. There is evidence that these constrain-

states in these metals. _ _ ~ing forces are required that the Hamiltonian possesigmn-
There is evidence that E(#.3) is required that the Hamil-  statesin which the electrons form Cooper pairs.
tonian possesseasgenstatesvhich are not invariant with re- If this is true, then the BCS theory of superconductivity is

spect to the time inversion, i.e., in which the spins are magenly applicable to superconducting bands as defined in Ap-
netically ordered. Hence the NHM may be the basis for gendix A, caséb). When it is applied to other bands, it does
better theoretical understanding of the material properties afiot yield theabsoluteenergy minimum in the Hilbert space.

magnetism. For this reason, the mechanism of Cooper pair formation
within the NHM may be the basis for a better theoretical
Case (b): The Wannier functions are spin dependent understanding of the material properties of

and symmetry adapted to the paramagnetic group superconductor%l.

Sets of narrow, roughly half filled energy bands with spin
dependent Wannier functions symmetry adapted to the para-
magnetic groupM ” as defined in Appendix A, cagb), have I am indebted to Alfred Seeger and Helmut Krorheu
already been identified in the band structures of a great nunfer their support of my work, and to Ernst Helmut Brandt for
ber of superconductors->* It is remarkable that such “su- stimulating discussions on the new model.
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NONADIABATIC EXTENSION OF THE HEISENBERG MODEL

APPENDIX A: SYMMETRY-ADAPTED WANNIER
FUNCTIONS

Consider a metal with the space groGpand the point
groupGy. The elements

a={alt} (A1)

of G consist of a point group operatiam and a translation
vector

t=7(a)+R (A2)

which is the sum of the nonprimitive translatiefi«) asso-
ciated with« and a translation vectdR of the Bravais lat-
tice.

The operator®(a) act on a wave functiofi(r,t) depend-
ing on the positiorr and the spin coordinateaccording to

Pa)f(r,t)=f(a rr—a t,a 1), (A3)
where the symbok 't is defined in Eq(4.6).
The effect ofK is given by the equatioRs
Kf(r)y=1*(r), (A4)
wheref(r) stands for any function of position, and
Kug(t)=gsu_g(t), (A5)
with??
Q=10= F1. (AB)

Case(a): Wannier functions symmetry adapted
to a magnetic group

Consider a set ofu energy bands in the paramagnetic

band structure of a metal witjp atoms per unit cell. The
positions of the atoms are still written as

T:R+Qi1

whereR andpg; (i=1 to u) denote the vectors of the Bravais

lattice and the positions of theh atom within the unit cell,
respectively.
Further, consider the magnetic group

M=H+K{y|7(y)}H,

whereH is a subgroup of,

(A7)

HCG,

K denotes the operator of time inversion, gnd+(y)} is a
space group element G—H.

PHYSICAL REVIEW B53 144403

(i) these degeneracies to be removed in the subgrbop
G (i.e., when the representations Gf are replaced by the
subduced representations tdf;

(i) the symmetry operatiot{y|#(y)} not to produce
extra degeneracies between the bands of the considered set
and bands outside of this set;

(iii ) unitary matricesS(K) [as defined in Eq(4.16) of
Ref. 2] to exist which satisfy Eqg4.17) and(4.28 of Ref. 2
and Eq.(7.1) of Ref. 13; and

(iv) the positionsp; of the Wannier function$which are
determined by these matric&K)] to be identical with the
positions of the atoms.

Then the coefficientg;q(k) in Eq.(1.1) may be chosen in
such a way that the Wannier functions comply with the four
conditions following Eq.(1.1) with the exception that they
are no longer symmetry adapted to the paramagnetic space
group G but only to the subgroupi of G. That means that
Eqg. (1.9 is satisfied only for the elementg of the point
groupH, of H. In addition to Eq.(1.3) we havé?

M
Kwily {(r—R—p)]1= 2 Dji(Ky)wj(r—R—py),
j=1
(A8)

where the matri{ D;i(Ky)] is the representative d{y in
the corepresentation of the point group

MO=H0+ K'yHO (Ag)

of M which is derived from the representati@y, of Hy in
Eqg. (1.3.
Since there is exactly one Wannier function at each atom,
the Wannier functions may be labeled by the positidbnsf
the atoms,
wr(r)=w;(r—R—pj), (A10)

and Egs(1.3) and (A8) may be considerably simplified.
Applying on both sides of Eq1.3) the operationx onr
—R—p, we obtain

y7
wi(r-R-p)=2, Dj(a)w[a(r-R-p)], (A1)
and the application of the operatB(a) [given in Eq.(A3)]
on both sides of this EqA11) yields the equation
)
P(a)wi(r=R=p)=2, Dji(a)W)(r ~t=aR—ap)

(A12)

which applies to all the elemengs= H.
As shown in Ref. 6, Eq{A12) may also be written in the

Assume degeneracies to exist between the bands of thgrm
considered set of. energy bands and the bands not belong-
ing to this set. This assumption is always true since, in any s
metal, there are degeneracies between the bands of any SeP(a)Wi(r_R_pi):jZl Dji(a)wj[r—aR—p;—Rj(a)]

lected set of energy bands and the bands outside of this set.
These degeneracies are caused by symmetry and may occur

(A13)

at points and lines of symmetry of the Brillouin zone. Fur- with R;(a) being translations of the Bravais lattitgepend-

ther, assume

ing onj and a), see Eq(2.13 of Ref. 6.
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Comparing Eqgs(A12) and (A13), we see that on the
right-hand side of Eq(A13) there are only Wannier func-
tions related to an atomic positigp within the unit cell for
which the translation

Rj(a@)=apj+t—p; (A14)

is a translation vector of the Bravais lattice. This cannot be

true for more than one vectgk since all thep; are different
and lie within the unit cell. It is true for exactly ong
becauser;(«) is a translation of the Bravais lattice if we put

pj=ap+t (A15)

and R+ ap;+t is the position of an atom since it can be

generated by the application of the space-group operation

{a|t} on the atomic positiomr R+ p; .

Consequently, on the right-hand side of E&12) there is
only one Wannier function, namely that function related to
the atom at positioryp;+t within the unit cell. Hence the
sum on the right-hand side of EgA12) and(analogously of

PHYSICAL REVIEW B63 144403

Case(b): Spin-dependent Wannier functions symmetry
adapted to the paramagnetic group

a. Symmetry operators

If in Eq. (1.1) we replace the Bloch functiong,4(r) by
Bloch functions

+1/2

> |, FamlGKOU(D) @ig(T)

Grgm(Tt) = (A21)

with k-dependent spin directions, we get “spin-dependent
Wannier functions”

1 z

JN

2
Winy(r —=R=p; t) = > e MRPIG(K) il 1),

q=1
(A22)

which are labeled by the additional quantum number

+1 of the crystal spin. The functionss(t) denote Pauli’s
spin functions as given in Eq4.7) and the coefficients
fsm(g,k) form (for eachk andq) a unitary two-dimensional

~M =

Eq. (A8) consists of one summand only. The matricesMatrixf(q,k),

[Dji(a)] in these equations have only one nonvanishing el-

ement, sayji(a), in each column which satisfies the equa-
tion

|dji(a)|=1 (A16)
since the matri{Dji(«)] is unitary.
Hence Eq(A12) may be written as
P(a)wy(r)=dt(a)wy,(r) for aeH (A17)
with
T'=aT+t (A18)
and Eq.(A8) yields
KP(g)w+(r)=dr(Ky)wy(r) (A19)

f=X(a,k)=f"(q,k). (A23)

If we have

fsm(d,K) = 6sm,

the two functionsgyqm(r,t) (with m= + 1) are usual Bloch
functions with the spins lying intz and — z direction, re-
spectively. Otherwise, the functiorfqm(r,t) still are usual
Bloch functions with antiparallel spins which, however, no
longer lie in = z direction.

As in the preceding cas@), consider a set oft energy
bands in the paramagnetic band structure of a metal with
atoms per unit cell.

The paramagnetic groud” of the metal may be written
as

(A24)

MP=G+KG,

whereK still denotes the operator of time inversion. Assume:

with (i) the symmetry degeneracies between the bands belong-
ing the considered set and bands not belonging to this set to
be removed when the single-valued representations of the
Bloch functions at the points of symmeti®y, of the Brillouin

zone are replaced by the correspondilogible-valuedepre-
sentationsR ;

(i) the time inversion symmetry not to produce extra de-
generacies between the bands of the considered set and
bands outside of this set;

(iii) unitary matricesS(K) to exist which satisfy Egs.
(4.16), (4.17), and(4.28 of Ref. 2 and Eq(7.1) of Ref. 13,
when the single-valued representations in these equations are
replaced by the corresponding double-valued representa-

It should be noted that the time inversi¢h does not tions; and
belong toM. Therefore it is not possible to choose the coef- (iv) the positionsp; of the Wannier functions to be iden-
ficients giq(k) in Eg. (1.1) in such a way that the Wannier tical with the positions of the atoms.
functions satisfy an equation analogous to &l9) by ap- Then the coefficient$s(q,k) andgiq(k) in Egs.(A21)
plication of the time inversion operatét alone and (A22) may be chosen in such a way that also the spin-

g={yl7(»)}

and

T'=yT+a(y),

where the coefficientd+(«) andd{(Kvy) have the absolute
value 1,

|dr(a)|=|dr(Ky)|=1. (A20)
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dependent Wannier functions comply with the four condi-the same way as we have derived the symmetry of the mag-
tions following Eq.(1.1). However, in any physical applica- netic Wannier functions in the preceding cdsg We now

tion of the NHM the labem of the spin-dependent Wannier get the equations
functions should be the crystal spin quantum number. That

means that the matricégsl,, ,(a)] in Eq. (A28) should be

the representatives of the two-dimensional double-valued P (@Wrm(r,t)=dr(a) 2 dovm(@) Wy (r,t)

+1/2

representatiorD 4, of the three-dimensional rotation group m'= -1 (A28)
0(3), and thematrix[d, »(K)] should have the form given
in Eq. (A30). Therefore assume additionally foraeG, and
(v) at eachP, the double-valued representatiﬂﬁ to be a +1/2
Kronecker product KWrn(1,0=07(K) 3 dyn(K)Worgy (1,0),
m'=-1/2
RI=D X Ry (A25) (A29)

. ) . where
of a single-valued representatioR®, with the (two-

dimensional double-valued representation,. Wrpmn(r, 1) =Wj,(r—R—pj ,t)
The coefficientsf,(q,k) cannot be chosen independent

of k since the considered set of energy bands is not ye"imd

isolatedbeforethe single-valued representations of the Bloch T =aT+t.

functions are replaced by the related double-valued represen-

tations.[If the f¢(q,k) are independent df, the Wannier The operatord?(a) now act onr andt, see Eq.(A3), the

functions in Eq.(A22) are usual Wannier functions which matrices[d(«)] are the representatives of thHewo-

may comply with the four conditions following Eq1.1)  dimensional double-valug¢depresentatioD,,, the matrix

only if the considered set of energy bands is already isolatefd,,,(K)] is given by

when the Bloch functions are labeled by the single-valued

representations db.] As an important consequence, the op- 1

eratorH’ does not conserve the crystal spin; see BdL2. [dm’m(K)]:( -1 o)’ (A30)
Sets of energy bands complying with all the conditions

given above may be identified by means of the following[S€e. €.g., Table 7.15 of Ref. RIand thec numbersdr(a)

simple Eq.(A26). The representationR? and R, in Eq. anddr(K) still have the absolute value 1,

(A25) form 2u and o dimensional representations, respec- _ _

tively, of the groupG, of the points of symmetr{, . They |dr(@)[=[dr(K)[=1. (A1)

are irreducible or a direct sum of irreducible representations.

The considered set oft energy bands complies with the

above conditionsii)—(iv) if and only if the matrix represen- Define the “group of the positionp;,” Gy to consist of

tativesD(a) of the (single-valuedirepresentatiolR, in Eq.  all the « e Gy which satisfy the equation

(A25) satisfy, at eaclP,, the equation

b. Operators of the crystal spin

api+da)=p+R (A32)
N

) . for eachp,, where R, denotes a translation vector of the
trace Dk(a)zd(oz)e*'“k'tél n;(a)e @i (k=ak) P '
<

Bravais lattice, and define for alle Gy, symmetry operators
of the “crystal spin”

for ae G, (A26)

M(a)=P({E|R=R})P[{a|na)}]P{E|-R})
whered(«) stands for the representatives of amal one- (A33)
dimensional single-valued representationGyf and which depend on the position

ni(a)= (A27) . : . .
0 else of the (spin-dependentWannier function on which they are
acting.
with R being a vector of the Bravais lattice. This E426) Frgm Eqs.(A33) and (A28) we obtain the equation
is derived from Eqgs(1.8) and(4.28 of Ref. 2(see also Sec.
3 of Ref. . It is satisfied for allae G, if it is satisfied for 12
one representative of each classGf. A list of all the sets M(@)Wrn(r,)=dr(@) 2 dprm(@Wr(1,1)
of energy bands complying with E¢A26) in the bcc, CsCl, m’=-1/2 (A34)
MoSi,, and hcp structure is given in Tables IV-VII of Ref.
11. for e Gy, showing that the operatoml(«) leave un-

The symmetry of the spin-dependent Wannier functionschanged the positions of the spin-dependent Wannier func-
may be derived from the equations in Refs. 2, 6, and 13 irtions.
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APPENDIX B: SYMMETRY OF THE FERMION In case(a) of the magnetic Wannier functions, E@®1) is
OPERATORS valid for all the elements in H,

1. Adiabatic fermion operators acH (B4)
The adiabatic fermion operatocgfm and ¢y, create and .
annihilate electrons in localized states represented by th%nd in Bq.(B2) we have
Wannier funcﬂ_onsz(r)um(t) [in case (@) of magnetic g={y|"y} (B5)
Wannier function$ or wr,(r,t) [in case (b) of spin- . _ _
dependent Wannier functiohsHence their symmetry is de- In case(b) of the spin-dependent Wannier functions Esl)
termined by Eqs(4.6), (Al7), (A19), (A28), and (A29). is valid for all the elementa in G,
From these equations we get

aeG, (B6)
+1/2 )
P(a)cgrnr%TP—l(a):dT(a) 2 dm,m(a)cfrr:)r:;, and in Eq(BZ) we have
m’'=-1/2
(B1) g={E[0}, (B7)
with whereE denotes the identity element @f. In the latter case
the matrix[d,m(K)] is given in Eq.(A30).
T [dm(K)1 s @ a.(A30)
and 2. Nonadiabatic fermion operators
+1/2 Within the NHM, the Wannier functions/(r)um(t) [in
KP(g)ciTKP(g)] t=d(Ky) > dm'm(K’)’)Cﬂrn/):q/ case(a) of magnetic Wannier function®r w,(r,t) [in case
m'=—1/2 (b) of spin-dependent Wannier functidnare replaced by
(B2)  nonadiabatic localized functions,
with
WT(r)Um(t)
/ —(r,t,q|T,m,n), B8
T'=yT42(y), wrg(r,t) | tAT M) (8

where the superscriggh) of the fermion operators should be having the same symmetry as the Wannier functions. How-
disregarded in this section. In addition, the operators of thever, in the case of the nonadiabatic localized states, the

crystal spin satisfy the equation symmetry operator®(a) act onr, t, and on the new coor-
12 dinateq according to
UVE — ()t
M(a)efi M~ (a) = dr(e) '21/2 A m( @) iy P(a)(r,t,q|T,mn)=(a r—a t,a t,a 1qT,mn),
for all the elementsr of the group of the position§,, ; see  Where the symbok~'t is defined in Eq(4.6), and the ap-
Egs.(A32) and (A33). plication ofK yields
The coefficientsl andd+(Ky) still have the absolute
value 1, rle) andar(€y K(r t.alT,mm)=gn(r.t.aT,~mn)*, (810
with g, being given in Eq(A6).
()| =|dr(Ky) | =1, O Being g 0(A8)

With these redefinitions of the symmetry operators, the
and the matricepd, ()] and[d,(Kv)] still are repre- symmetry of the nonadiabatic fermion operato%1 is also
sentatives of the two-dimensional double-valued representayiven by Eqgs.(B1)—(B3) of the preceding appendix. The
tion D4, of the three-dimensional rotation gro@(3) and  superscript(n) of the fermion operators in these equations
the corepresentation d(3)+KO(3) derived fromD 5, shall indicate that they are valid for both the adiabatic and

respectively. nonadiabatic fermion operators.
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