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Dynamics of electron density in a medium revealed by Mo¨ssbauer time-domain interferometry
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Nuclear resonant scattering of synchrotron radiation allows the detection of energy transfers in the sample in
the order ofDE/E'10213. This extreme energy resolution is used in Mo¨ssbauer time domain interferometry
to provide an inelastic scattering method similar or even superior to high resolution inelastic neutron scattering.
The interferometer consists of two nuclear targets as interferometer arms, and a nonresonant sample placed in
between, and detects slow dynamics of the electron density in a time range of nuclear response, typically from
10 ns to 200–500 ns. It has access to scattering vectors from 0.1 Å to beyond 10 Å. The general theory of the
interferometer is provided and it is evaluated how the Van Hove correlation function presenting the electron
density fluctuations of the sample in space and time can be measured. Exemplarily, it is shown how the
temporal behavior of diffusion can be studied with diffusivities in the range from 10216 to 10213 m2/s.

DOI: 10.1103/PhysRevB.63.144303 PACS number~s!: 61.10.Dp, 76.80.1y, 66.10.Cb
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I. INTRODUCTION

Experiments on scattering of Mo¨ssbauer radiation by mat
ter combine interesting features of x-ray and neutron sca
ing and those of Mo¨ssbauer spectroscopy. The intrinsica
high energy resolution of the latter offers unique possibilit
to reveal very low energy dynamics of atoms in conde
media.

The electronic Rayleigh scattering of Mo¨ssbauer radiation
is just like x-ray scattering with respect to the scatter
mechanism and the wavelength of radiation involved. T
difference lies in being able to detect by means of Mo¨ssbauer
radiation very small energy changes which can occur du
scattering. The energy resolution is approximately equa
the widthG of nuclear transition ranging from 1 to 100 neV

So to reveal such small energy transfers, the scatte
experiment should employ Mo¨ssbauer radiation incident o
the sample and Mo¨ssbauer absorber for the energy analy
of the scattered radiation. O’Connor and Butt1 had applied a
Mössbauer absorber just to distinguish Rayleigh recoill
and Rayleigh recoiled scattering of Mo¨ssbauer radiation with
the energy transfer due to creation and annihilation
phonons. Such scattering can be treated as inelastic.
small energy transfers, in the scale ofG, one can classify the
scattering event as quasi-elastic. Only the energy change
the order ofG can contribute to the structure of the ener
spectrum obtained with the help of Mo¨ssbauer analyzer. In
this way, one can study quasi-elastic scattering associ
with very soft lattice modes or spin dynamics or slow diff
sive motion of atoms. In experiments on liquids, glass
biological samples quasi-elastic line broadening was
tected with the help of Rayleigh Scattering of Mo¨ssbauer
Radiation called as RSMR technique; for reviews see Ref
and 3.

The analog of the RSMR technique in the time dom
was recently developed by Baronet al.4 The scattering
scheme includes two nuclear resonant targets and a
resonant sample placed in between them. An intense puls
0163-1829/2001/63~14!/144303~9!/$20.00 63 1443
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synchrotron radiation~SR! passes through the system of th
three scatterers and the coherently scattered radiation i
feres in the detector. The two scattering channels can
distinguished when the resonance frequencies in the
stream and the downstream nuclear targets are separ
The interference of the scattering channels leads to quan
beats of the scattered intensity with time at the freque
difference. So the device works as a time domain interf
ometer where the wave packet scattered sequentially by
upstream resonant target and non-resonant sample is pr
by the wave scattered by the downstream resonant targe
the presence of dynamics of electron density in the n
resonant sample the first wave packet can be perturbed
porally resulting in the perturbation of the interference p
tern. The dynamics characterized by times of the order of
beat period and nuclear excitation lifetime can be explo
by this method.

The time domain interferometry allows one to study d
fusive atomic motion in materials having very differe
structures. To demonstrate this method, the amorph
sample of glycerol was used.4 Besides that, as wa
indicated,4 the high directionality of SR is very suitable fo
studying quasi-elastic scattering in the neighborhood
Bragg peaks. Quasielasticity of radiation can be found
scattering from single crystals containing fast diffusing
oms. A detailed analysis of such possibility was perform
by Ruebenbauer and Wdowik5 and recently an experimen
was accomplished by Sepiolet al.6

In the present paper we develop the general theory
Mössbauer time domain interferometer in the presence
dynamics of electron density in a non-resonant sample.
time-dependent response of the sample given by the dyn
cal theory of diffraction is used for the first time. In particu
lar, this allows one to study jump diffusion in crystals. K
nematical approximation of the dynamical theory equival
to a first Born approximation is explicitly analyzed. Hen
the developed theory enables analysis of scattering from
samples of arbitrary perfection and shape.
©2001 The American Physical Society03-1
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Two regimes of the interferometer are considered: th
in absence and in presence of radiative coupling between
arms of nuclear interferometer. Radiative coupling~RC! oc-
curs when the delayed radiation from the upstream targe
in resonance with the nuclei in the downstream target. T
strongest RC takes place at zero separation of the resona
in the two nuclear targets. Throughout the paper this c
will be calledRC-regimeof the interferometer. In the case o
large separation of resonances, radiative coupling vanis
and one comes to a pure quantum beat solution, i.e.,
QB-regimeof the interferometer. It corresponds to the e
periment mentioned above4.

In Sec. II the response function of the non-reson
sample is presented whereRayleigh scattering in a dynami
systemoccurs. The most complicated mathematically case
dynamical diffraction is considered. In Sec. III the princip
of the Mössbauer time interferometer is considered and
time response of the two targets each having a single
resonance is analyzed for an arbitrary shift of the resonan
In Sec. IV the response of the Mo¨ssbauer time interferomete
including a dynamic non-resonant sample is calculated in
QB-regime as well as in the RC regime. For the kinemati
diffraction or scattering in a first Born approximation, i.e
for thin or poorly ordered sample, this response can be in
preted in terms of the intermediate scattering function in
presence of atomic motion. In Sec. V prospects of
method are considered.

II. THE RESPONSE FUNCTION OF A CRYSTALLINE
SAMPLE IN TIME

In general, the Bragg diffraction in large perfect crysta
is described by the dynamical theory accounting for the m
tiple scattering of radiation by atoms. In the dynamic
theory the shape of the sample is rather significant. We c
sider here a crystalline sample in the form of a platelet
thicknessZ ~see Fig. 1!. The Cartesian coordinate system
chosen so that the inward normal to the crystal entrance
face lies along thez-axis.

When the scattered wave is much less than the incid
wave and the interaction of the primary radiation with ato
is only essential, the kinematical scattering is realized. T
choice of the sample shape in the kinematical theory is u
ally the same as in the dynamical theory. The kinemat
scattering may be considered as a particular case of the

FIG. 1. Geometry of coherent scattering~Bragg diffraction! of
radiation in a crystalline platelet for both Bragg and Laue case
14430
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Born approximation of the scattering theory when the sh
of the sample appears to be not essential at all. In this sec
we begin with the general expressions of dynamical diffr
tion. The kinematical approximation is obtained then fro
the general formulas as a limit for a thin sample or for sc
tering far off Bragg angle. Finally, scattering from the sy
tems having poor periodicity~amorphous solids and liquids!
is considered.

We assume the case of the two-wave scattering~single
diffracted wave! with the transmitted and diffracted waves
be linearly polarized, so that the electric polarization vect
in the waves coincide and are perpendicular to the scatte
plane containing the vectorsk0 andk1. We shall consider the
case of reflection with change of the wave vector fromk0 to
k15k01q. In the case of diffraction from the platelet, th
two geometries are distinguished: Laue case, where the s
tered wave emerges from the back side of the platelet,
Bragg case, where the scattered wave is at the same sid
the platelet as the incident one, as is depicted in Fig. 1.

In the following we consider the response function of
crystalline sample in time. The time scale for the observat
of a scattering events in the Mo¨ssbauer time domain inter
ferometer is determined by the lifetime of the nuclear exci
state and the characteristic time of the dynamics of the e
tron density. Both exceed tremendously the period of
carrier oscillation of the electromagnetic field. Because
the weak interaction of the radiation field with the atoms
the target, the characteristic length of the interaction mu
exceeds the radiation wavelength. These two properties
low us to perfectly separate the fast space-time oscillati
of the field strength from the slow variation of their env
lopes in time and space.

The diffraction from the electronic sub-system of th
crystal occurs promptly at the instant state of the elect
density distribution. In a dynamical scattering system
electron density distribution is varying in time. Therefor
the electronic susceptibility of the system and the scatte
amplitude turn out to be time dependent.

The time response of the sampleGS(q,t2t8) to the short
pulse of radiation~in the considered time scale! can be ex-
pressed in terms of the field envelopes. In both Bragg
Laue cases we haveGS(q,t2t8)5d(t2t8)gS(q,t), where
d(t2t8) is the Dirac delta function, andgS(q,t)
5Ag1 /g0E1(Z,t)/E0(0,t) in the Laue case andgS(q,t)
5Ag1 /g0E1(0,t)/E0(0,t) in the Bragg case, whereg0,1
5k0z,1z /K ~with k0z,1z being projections ofk0,1 on the
z-axis!; magnitudeg1,0 for Bragg case andg1.0 for Laue
case.

The dynamical theory is well presented in the literatu
~see, for example, Ref. 7!; therefore, we write down only the
final expressions forgS(q,t) in a compact and symmetri
form. In the Laue case,

gS~q,t !5B1B2

X12X2

B12B2
; ~1!

and in the Bragg case,
3-2
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DYNAMICS OF ELECTRON DENSITY IN A MEDIUM . . . PHYSICAL REVIEW B63 144303
gS~q,t !5B1B2

X12X2

B1X12B2X2
. ~2!

Here the following notations are used

X1,25expH i
KZ

2g0
@x01x q̄b1/2B1,2#J ,

B152
b1/2xq

A1AA21bxqx q̄

,

B252
xq

x q̄B1

, A52
1

2 S aqb1x0

12b

b D ,

aq5
~kq

22K2!

K2
, b5

g0

g1
. ~3!

In Eq. ~3! the square root has positive imaginary part. T
parametersxq represent the Fourier coefficients in the expa
sion of the electronic susceptibility inq-space. These Fourie
coefficients are time dependent functions due to fluctuati
of the electron density. Obviously, the fluctuations do n
change the average electron density in the sample. There
both the scattering amplitude in the forward direction and
susceptibility coefficientx0 do not depend on time.

We note that in crystals the electron density is a spati
periodic function; therefore, the susceptibility coefficien
can be calculated by integration over the crystalline unit c
Nevertheless, for generality, we assume them to be i
grated~averaged! over the volume exceeding essentially t
unit cell volume that allows us to consider irregular syste
as well.

In a thin single crystal, as well as in a system having p
periodicity where the coherent scattering amplitude is sm
i.e., when the condition is fulfilledKZuxqu!1, the kinemati-
cal approximation of the dynamical theory works fairly we
In general, the kinematical approximation is valid when t
amplitude of the scattered wave is much less than that of
incident wave. Then the response function is reduced to
especially simple form

gS~q,t !56 ixq~ t !
KZ

2Ag0g1

expS i
KZ

2g0
x0

~161!

2 D
5CR~q,t !, ~4!

where the upper/lower sign refers to Laue/Bragg case.
formula ~4! becomes valid for the sample of arbitrary sha
and for q being not only the reciprocal lattice vector whe
the factorC is taken in an appropriate way.

Note, that in all cases of applicability the Eq.~4! the re-
sponse function is proportional to the Fourier coefficient
electron densityR(q,t), which is the only factor determining
the time dependence of the sample response. For the dyn
cal diffraction this is not the case. The time dependence
the sample response has a much more complicated form
14430
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III. MÖ SSBAUER TIME DOMAIN INTERFEROMETRY
USING SYNCHROTRON RADIATION

Let the SR pulse be passing through a system of spat
separated scatterers. We assume an external perturbatio
plied to a scatterer to be homogeneous in time. As it w
shown in Ref. 8~see also Ref. 9!, the time response of suc
a system to ad(t)-function excitation can be presented by
convolution of the time responses of individual scattere
We consider a system consisting of two nuclear reson
scatterersA andB, see Fig. 2. The time response of such
system can be found as convolution of the responses of
getsA andB

GAB~ t !5E
2`

1`

dt8GB~ t2t8!GA~ t8!. ~5!

The response functionsGA(t) and GB(t) in the case of
nuclear forward scattering of SR from a target having sin
line structure of its resonance is given in Ref. 8. In the c
of resonance broadening, with the line preserving a Lore
zian shape~e.g., the case of free diffusion in a liquid!, the
response function of a single target is as follows~see, e.g.,
Refs. 10 and 11!

G~ t !5exp~2mez0/2!exp~2 iv r t !

3H d~ t !2u~ t !
T

2tn
exp~2qt/2! s~Tt!J , ~6!

wherev r is the resonance frequency;t5t/tn , tn5\/G is the
lifetime of the excited nuclear state;T5m rz0 , m r andme are
nuclear resonance and electronic absorption coefficientsz0

is the thickness of nuclear scatterer;s(Tt)5J1(ATt)/ATt
with J1(x) being a Bessel function of the first order;u(t) is
a Heaviside step function equal to zero at negative ar
ments. Here we use symbolq for the dimensionless param
eter of resonance broadening to be consistent with the pr
ous works,10–12q>1. Do not confuse it with modulus of the
scattering vectorq.

As seen from Eq.~6!, the response function contains bo
the prompt and the delayed parts. The delayed part ha
carrier frequency coinciding with that of the nuclear res
nance. If targetsA andB are identical~in material and thick-
ness! and the resonance frequency in the first target is D
pler shifted with respect to that in the second target b

FIG. 2. Schematic presentation of the four scattering channe
a SR pulse through two subsequent nuclear resonant targets. Ar
symbolize quantum absorption events.
3-3
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value V, then the total time response obtained after sub
tution of Eq.~6! into Eq. ~5! is as follows:

GAB~ t !5exp~2mez0!Fd~ t !2exp~2 iv r t !

3H c~ t !exp~2 iVt !1c~ t !

2E
0

t

dt8c~ t2t8!c~ t8!exp~2 iVt8!J G , ~7!

where the following function is introduced:

c~ t !5
T

2tn
exp~2qt/2!s~Tt!. ~8!

The terms containingc(t) in Eq. ~7! represent the delayedg
ray emission~for the timet.0).

Equation~7! is the response function of the system co
taining the two resonant targets~see Ref. 13!. As seen from
Eq. ~7!, the scattering event can be represented by supe
sition of the four scattering channels~see also Fig. 2!: trans-
mission of the SR pulse without interaction with nucle
given by exp(2mez0)d(t); nuclear resonance scattering of t
SR by the upstream target, given by the first term of
delayed part,EA ; nuclear resonance scattering of the SR
the downstream target, given by the second term of the
layed part,EB ; and double nuclear resonance scattering
the SR first by the upstream and then by downstream tar
presented by the last integral term of the delayed part,EAB .
This last term actually presents the radiative coupling of
nuclear currents in the upstream target with those in
downstream target via the coherent field propagating in
forward direction.Thus the response of the system is de
mined by the sum of responses of the constituent parts an
the term presenting the radiative coupling of the parts.

When V@G/\ then the integral in Eq.~7! representing
the radiative coupling of the two targets is small, and can
neglected. So the time dependence of the delayed inten
takes a simple form

I AB5uGAB~ t !u2'2Y~ t !@11cos~Vt !# ~9!

with Y(t)5exp(22mez0)c
2(t). The interference of the two

scattering channels, presented by the second and third t
in Eq. ~7!, yields a quantum beat pattern of the scatter
intensity given by Eq.~9!. In the case of small electroni
absorption the intensity averaged over the quantum bea
riod turns out to be twice as large as the intensity scatte
by an individual target. Thus, in the averaged intensity,
two targets behave as independent scatterers. WhenV be-
comes comparable withG/\ the targets can no longer b
considered as independent scatterers~see Sec. IV B!.

The time structure of the quantum beating can be co
pared with the Moire pattern arising due to interference
light coming from two spatially separated coherent sourc
In our case, each target behaves as an independent coh
emitter. It is well known that Moire patterns are highly se
sitive to very little changes of the radiation phase, whe
14430
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phase shifter is inserted into one of the interfering bea
Obviously, the time domain interference should be also v
sensitive to a phase and amplitude change due to scatte
from a non-resonant sample placed in between two reso
targets, which can be regarded as the arms of an interfer
eter.

This fact was convincingly demonstrated in Ref. 4, whe
the sample of glycerol was placed between the two Mo¨ss-
bauer scatterers and the measurements of the beat pa
were performed at different temperatures of glycerol. In t
compound the electron density appears to be time depen
within the nuclear lifetime window and this results in th
time dependent perturbation of the amplitude and phas
the scattered radiation. We consider the scattering from s
a system in the next section.

IV. IMPACT OF RAYLEIGH SCATTERING
ON THE INTERFERENCE PATTERN

Let us now contemplate the system of three subsequ
scatterers depicted in Fig. 3. Between the two nuclear re
nant targetsA andB, which are the arms of the interferom
eter, a non-resonant electronic scatterer, targetS, is placed as
a sample. The radiation wave packet is transformed in p
sage through the system, as shown in Fig. 3. The nuc
forward scattering of SR pulse occurs in targetA and the
wave packetEA is formed. It contains the prompt and de
layed part, as described by Eq.~6!. This wave packet is in-
cident on a diffusive targetS, where electronic coherent sca
tering characterized by a scattering vectorq takes place. At
this stage, theEA wave packet is transformed into theEAS
wave packet that can be modulated due to a possible dyn
ics of the electronic density in the sample. Finally, theEAS
wave packet is scattered in the new forward direction
nuclei in targetB, which works as an analyzer of the radi
tion scattered by sample, i.e., of theEAS wave packet.

The scattering in the sample is prompt by its nature,
contrast to that in a resonant target. Since the flight ti
through the system can be neglected, the scattering in
sample occurs at the moment when radiation emerges f
targetA. So the response functions of targetA and sampleS
contain the same time argument, and the combined resp
function of the two targets is simply the product of functio
GA(t) andgS(t).

FIG. 3. Scheme of a Mo¨ssbauer time domain interferometer.A
and B: resonant targets; S: a nonresonant sample.EA , EAS, and
EASB present transformation of the field strength in passage of
diation through the system.
3-4
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Therefore, the response function of the entire system
be found using the relation similar to that given by Eq.~5!

GASB~ t !5E
2`

1`

dt8GB~ t2t8!gS~q,t8!GA~ t8!, ~10!

where t8 is the emission time from targetA, the scattering
time from targetSand the excitation time of targetB; t is the
deexcitation time of targetB. The time zero is set by the
arrival of the SR pulse at the detector.

Comparing Eqs.~10! and~5!, we see that the response
the scattering system can be decomposed again into the
parts presenting the scattering channels through the reso
targets~see the previous section!. However, the wave packet
formed in each channel are now perturbed by the scatte
in the sample due to a possible dynamics of the electro
density. We analyze effect of the perturbation separately
the two different regimes of the interferometer.

A. Quantum beat regime of the interferometer

Applying Eq. ~6! to Eq. ~10! and assuming a large differ
ence of resonance frequenciesV, we obtain for the delayed
part of the response function

GASB~ t !52exp~2mez0!gS~q,t !exp„2 i ~v r1V!t…c~ t !

2exp~2mez0!gS~q,0!exp~2 iv r t !c~ t !. ~11!

As seen, in this case, the response of the system is d
mined by the interference of two scattering channels. In
first channel the delayed part of radiation emerging fr
targetA is electronically scattered in sampleS at time t. In
the second channel the prompt part of radiation emerg
from targetA is first electronically scattered in the sample
time 0, immediately absorbed by nuclei in targetB and then
reemitted in the form of delayed nuclear radiation at timet.

The carrier frequencies of the scattered waves are sh
by V. Therefore, the interference of the waves yields a Q
pattern at frequencyV. However, the interference pattern
perturbed by a stochastic variation of the response func
of the non-resonant sample,gS(q,t). The time dependence o
this response function is provided by the dynamics of
electron density in the sample. Just this stochastic varia
of the sample response breaks partly~to lesser or larger ex
tent depending on the internal dynamics in the sample! the
phase correlation between the interfering waves and lead
general, to an attenuation of the interference contrast w
time.

Now we find the time dependence for the scattering int
sity at t.0

I ASB~ t !5uGASB~ t !u25Y~ t !@ ugS~q,t !u21ugS~q,0!u2

12ugS~q,t !gS~q,0!ucos„Vt1wS~0!2wS~ t !…#,

~12!

wherewS(t) is the phase of the complex functiongS(q,t).
In the limit of a weak scattered wave in accord with E

~4!, the functiongS(q,t) is proportional to the spatial Fourie
transform of the electron densityr(r ,t)
14430
n

ur
ant

g
ic
r

er-
e

g
t

ed
-

n

e
n

in
th

-

.

R~q,t !5E drr~r ,t !exp~2 iqr …. ~13!

Expression~12! represents the time dependence of t
delayed scattering intensity following a particular SR pul
It includes the time dependent response of the non-reso
target. Since the dynamics of the electron density in
sample is not correlated with the arrival of the SR pulses,
measured intensity is obtained as a result of averaging
single scattering event over many SR passages. The ave
ing of expression~12! is, in fact, adding of independent QB
patterns perturbed stochastically due to dynamics of elec
density.

1. Averaging in the case of weak scattering

As mentioned above, the Fourier transform of the elect
density @see Eq.~13!# can be used to find the intensity o
weak scattering. Therefore, in the expression for the inten
Eq. ~12!, the function gS(q,t)gS(q,t8) can be written in
terms of electron density C2*dr dr 8 exp@2iq(r
2r 8)#r(r ,t)r(r 8,t8). Under the conditions of the thermody
namic equilibrium the correlations referring to particul
times are identical and depend only on the scattering ve
q. They are determined by geometrical arrangement of
mean position of atoms~structure factors! and by the average
spatial distribution of atoms around their mean positio
~Debye Waller factors!. Therefore, to get the observed inte
sity, one has to calculate only the correlator containing d
ferent times@third term in Eq.~12!#. The result is expresse
via the intermediate scattering function which is the tim
Fourier transform of the dynamic structure factor of t
sample

S~q,t2t8!5E dr dr 8 exp@2 iq~r2r 8!#^r~r ,t !r~r 8,t8!&.

~14!

Here^•••& means averaging over the time of passage of
pulses.

If we suppose the correlator to be a real function—wh
is most frequently the case—then we arrive at the form
for the averaged intensity analogous to that used for inter
tation of the experimental results in Ref. 4,

Ī ASB~ t !'2Y~ t !C2@S~q,0!1S~q,t !cos~Vt !#. ~15!

2. Intermediate scattering function in the presence
of atomic diffusion

In a solid state medium a Fourier coefficient of the ele
tron density can be presented as follows:

R~q,t !5(
a

exp$2 iq@ra1ua~ t !#% f a~q!exp@2Wa~q!/2#,

~16!

wherera is the mean value of the coordinate of theath atom;
f a(q) is the atomic structure factor equal to the Fourier c
efficient of the electron density of an atom; exp@2Wa(q)/2#
is a square root of the Debye-Waller factor that is obtain
3-5
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while averaging over the fast thermal oscillations of atom
Finally, ua(t) is the displacement of an atom due to diffusi
motion of which the average velocity is small and leads t
little displacement~of the order of the wavelength of radia
tion! during the lifetime of the nuclear excited state.

Introducing a specific timet0 of the SR pulse passag
through the interferometer and performing averaging overt0,
we obtain for the intermediate scattering function@compare
with Eq. ~14!#

S~q,t !5
1

tm
E dt0R~q,t01t !R* ~q,t0!, ~17!

wheretm is the full measurement time including macroscop
number of SR pulses. The integration is performed over
full time. The expression for the Fourier coefficient of th
electronic density Eq.~16! can be re-written in the form
where the time independent term is isolated

R~q,t !5(
a

Aa~q!exp~2 iqra!

22i(
a

Aa~q!exp~2 iq@ra1ua~ t !/2# !

3sin@qua~ t !/2# ~18!

with Aa(q)5 f a(q)exp@2Wa(q)/2#. In this presentation the
Fourier coefficient is the sum of the static and dynamic c
tributions

R~q,t !5R̄~q!1dR~q,t !. ~19!

Substituting Eq.~18! into Eq. ~17!, we obtain for the inter-
mediate scattering function the following expression:

S~q,t !5uR̄~q!u21
1

tm
E dt0dR~q,t01t !dR* ~q,t0!.

~20!

The static term in the intermediate scattering function p
sents the elastic scattering of radiation by the time avera
crystalline lattice, whereas the dynamic term presents
quasielastic scattering caused by diffusion of atoms in a c
tal. For the elastic contribution we have

uR̄~q!u25(
a

(
b

Aa~q!Ab~q!exp~2 iq@ra2rb# !. ~21!

If a long range correlation in the atomic positions tak
place the Bragg scattering can happen. The intensity
Bragg direction is proportional toN2, whereN is number of
atoms in the unit volume. In the other limit case, i.e., in t
absence of atomic order, the scattering intensity is prop
tional toN. Thus the ratio between the elastic and quasie
tic scattering intensities is determined to a great extent
regularity of the scattering system. In the case of perf
crystals, the elastic contribution into the intermediate scat
ing function dominates at the Bragg angle. Since in this c
the intermediate scattering functionS(q,t) is nearly time in-
dependent, one cannot observe practically the decay of
14430
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pattern described by Eq.~15! and hence cannot see any effe
of diffusion. Recently such a result was obtain experime
tally by authors of Ref. 6. However, the elastic scatteri
contribution can be essentially weakened by shifting
crystal off a Bragg reflection far at its wings. Therein one c
find the effect of diffusive motion of atoms.

In the poorly ordered systems, like glassy and amorph
materials, the role of elastic scattering is largely decreas
Combining Eqs.~16! and ~17!, we obtain the following ex-
pression for the intermediate scattering function:

S~q,t !5(
a

(
b

Aa~q!Ab~q!exp@2 iq~ra2rb!#

3
1

tm
E dt0 exp$2 iq@ua~ t01t !2ub~ t0!#%.

~22!

Assuming the non-correlated motion of different atoms~like
in an amorphous or glassy sample!, we obtain forq not equal
to zero all terms withaÞb to be randomly phased and thu
canceling each other in average. Consequently, in the
dom phase approximation, we may neglect the contribut
from these terms. Furthermore, we take into account that
scattering system may consist of atoms of different kin
Then the atomic indexa has to be replaced by two indicesa,
j, where indexa indicates now the sort of atom and indexj
numbers the atoms of a given type. Equation~22! has to be
replaced approximately by

S~q,t !5(
a

Aa
2~q!

1

tm
E dt0

3(
j

exp$2 iq@ua j~ t1t0!2ua j~ t0!#%. ~23!

The sum overj in the right-hand part of this expression wa
analyzed in Ref. 10, where it was shown to be proportio
to the single particle Van Hove functionFsa(q,t) and does
not depend on timet0. Hence we obtain the expression

S~q,t !5(
a

NaAa
2~q!Fsa~q,t !, ~24!

whereNa is the number of atoms of the sorta in the unit
volume of the scattering media. The scattering in this cas
entirely quasielastic, and its intensity is proportional to t
number of atom in the unit volume. The Van Hove functio
Fsa(q,t) was investigated in detail in the original work,14 as
well as in Refs. 10, 12 and 15.

Since Fsa(q,t) is a decaying function of time, one ca
deduce from Eqs.~15! and ~24! that the main effect cause
by diffusion of atoms in a non-resonant sample is a reduc
with time of the quantum beat amplitude in the transmitt
intensity.

Figure 4 illustrates the impact of diffusion in the QB
regime of the Mo¨ssbauer time domain interferometer. Th
interferometer arms are supposed to be 1mm SS foils en-
riched by 57Fe up to 95%. It is assumed that the intermedi
scattering function decays exponentially~like in the case of
3-6
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free diffusion where the resonance broadening is given
the parameterq5112DK2tn with D as a diffusion coeffi-
cient! Fs(t)5exp„2(q21)t… having q51,2,5, t5t/tn . It
is well seen that the contrast in QB pattern decreases q
rapidly with the diffusion rate. Already atq55 correspond-
ing to a diffusion coefficientD'10214m2/s, quantum beats
are observed only in the initial stage of the decay. Thus
QB-regime of the Mo¨ssbauer interferometer is highly sens
tive to diffusion in the range 10216,D,10214m2/s. The
possibility of such experiments was demonstrated in Ref

The essential difference between Rayleigh electronic
resonant nuclear scatterers is that in the former case the
Hove function arises only at non-zero scattering vectorq,
while in the latter it may exist in the forward scattering.10 In
the case of forward scattering from the non-resonant sam
the Van Hove function equals unity, so that the diffusi
non-resonant scatterer makes no impact on the time ev
tion of the forward scattered intensity.

3. General correlation function

Obviously, the expression for scattering intensity in ge
eral case Eq.~12! should be also averaged over timet0 of the
SR pulse passage through the interferometer. Performing
eraging overt0, one has for the averaged intensity

Ī ASB~ t !'Y~ t !
1

tm
E dt0@ ugS~q,t01t !u21ugS~q,t0!u2

12ugS~q,t01t !gS~q,t0!u

3cos„Vt1wS~ t0!2wS~ t01t !…#. ~25!

The result of integration can be expressed in terms of a
function

B~q,t !5
1

tm
E dt0gS~q,t01t !gS* ~q,t0! ~26!

which will be called the general correlation function. Fi-
nally, in analogy with Eq.~15!, we arrive at the expression i
the general case

FIG. 4. Diffusion in a non-resonant sample revealed in quan
beat regime of the interferometer for different diffusion ratesq
51 corresponds to absence of diffusion.
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Ī ASB~ t !'2Y~ t !@B~q,0!1B~q,t !cos~Vt !#. ~27!

We find now the approximate expression for the gene
correlation function in the case where the atomic dynam
has a character of small perturbation. The response of
samplegS(q,t) can be splitted into static and dynamic pa
as well. If the dynamic correction to the electron density
small ~as supposed! compared to the time averaged densi
one can use the following approximate expression
gS(q,t):

gs~q,t !5ḡs~q!1Ds~q!dR~q,t !, Ds~q!5
]gs~q,t !

]R~q!
.

~28!

We substitute this expansion into Eq.~26! and obtain

B~q,t !5uḡs~q!u21uDs~q!u2

3
1

tm
E dt0dR~q,t01t !dR* ~q,t0!. ~29!

The integrals of typeḡs(q)Ds* (q)*dt0dR* (q,t0) containing
the first power ofdR(q,t) does not contribute because th
average value of the time dependent correction to the e
tron density equals zero. The static part of the general co
lation functionuḡs(q)u2 again is dominant in the presence
a strong Bragg scattering. As a result, the quantum beat
ibility in Eq. ~27! remains almost unchanged with time. Th
diffusive motion of atoms can hardly be observed und
these conditions.

B. Electron density dynamics observed in radiative coupling
regime

Now we consider the performance of the interferome
under conditions of very little or zero shift of the resonanc
in the interferometer armsV<G/\. In this case, the radiative
coupling between the resonant parts of the scattering sys
plays a significant role. Obviously, the perturbation of t
upstream wave packet,EA⇒EAS ~see Fig. 3!, due to quasi-
elastic scattering in the sample will effect the radiative co
pling between the interferometer arms. This effect can
revealed in the time dependence of the scattering intens

While calculating the response of the system in acc
with Eq. ~10!, one can no longer neglect the channel whe
the double resonance scattering of SR pulse first in targA
and then in targetB takes place.

The calculation of the response function given by E
~10!, with the account for the radiative coupling, leads to t
following expression:

GASB~ t !5exp~2mez0!exp~2 iv r t !H gS~q,0!d~ t !

2gS~q,t !exp~2 iVt !c~ t !2gS~q,0!c~ t !

1E
0

t

dt8gS~q,t8!c~ t2t8!exp~2 iVt8!c~ t8!J .

~30!
3-7
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This is theresponse function of the interferometer includi
a sample with an account for the radiative coupling betwe
the resonant targets. The four scattering channels are op
now and in all four channels the interaction with the sam
is involved. The first channel presents transmission of the
pulse through the system without interaction with nucle
targets. The next two channels are the same acting in
regime of the interferometer; see Eq.~11!. The last channel is
specific for the present case. It presents sequential scatt
of radiation by all three elements of the system. Here
convolution with the response of the sample at running ti
t8 is performed. In general, we see that the dynamics
electron density in the sample reveals itself in RC-regime
a more complicated way.

The delayed scattering intensity takes the following fo
†we assume in our calculation the functionc(t) @see Eq.~8!#
to be real‡

I ASB~ t !5Y~ t !$ugS~q,t !u21ugS~q,0!u2

12 Re@gS~q,t !gS* ~q,0!exp~2 iVt !#%

22M ReH c~ t !@gS* ~q,t !exp~ iVt !1gS* ~q,0!#

3E
0

t

dt8c~ t2t8!gS~q,t8!c~ t8!exp~2 iVt8!J
1MU E

0

t

dt8c~ t2t8!gS~q,t8!c~ t8!exp~2 iVt8!U2

,

~31!

whereM5exp(22mez0). This expression has to be averag
over many SR passages. While doing this, only the prod
of the response functions of the non-resonant sample re
ring to different times has to be averaged. The result of
eraging can be expressed again via the functionB(q,t) de-
termined by Eq.~26!. Performing the change of variable
t8⇒t2t8, where it is necessary we arrive to the followin
result:

Ī ASB~ t !52Y~ t !@B~q,0!1B~q,t !cos~Vt !#

24Mc~ t !E
0

t

dt8c~ t2t8!B~q,t8!c~ t8!cos~Vt8!

1ME
0

t

dt8E
0

t8
dt9c~ t2t8!c~ t8!B~q,t82t9!

3c~ t2t9!c~ t9!cos@V~ t82t9!#. ~32!

In the case where the two resonant targets have coinci
resonances,V50, Eq. ~32! takes the form
14430
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Ī ASB~ t !52Y~ t !@B~q,0!1B~q,t !#

24Mc~ t !E
0

t

dt8c~ t2t8!B~q,t8!c~ t8!

12ME
0

t

dt8E
0

t8
dt9c~ t2t8!c~ t8!B~q,t82t9!

3c~ t2t9!c~ t9!. ~33!

Although the quantum beats are absent in this case, the
evolution of the scattering intensity appears to be stron
dependent on the general correlation functionB(q,t).

In the limit of weak scattering the functionB(q,t) is sim-
ply proportional to the intermediate scattering functio
which in turn, in the case of random phase approximation
proportional to the Van Hove functionFs(q,t) ~we assume
here system consisting of one sort of atoms!. In the RC-
regime, this function influences the time dependence of
scattering intensity not in that simple fashion as in Q
regime; compare Eqs.~33! and~15! @with B(q,t) andS(q,t)
replaced byFs(q,t)#.

Figure 5 shows an example of the time evolution at d
ferent diffusion rates. For illustration we have used t
model of free diffusion, where the spectral density of t
self-correlation function is described by a Lorentzian dis
bution having the broadening parameterq. As interferometer
arms,57Fe enriched SS foils of 1mm thickness are used. Th
sensitivity of the time dependences to the diffusive motion
atoms in the sample is evident. The perturbation of the
stream wave packet due to quasi-elastic scattering in
sample disrupts the radiative coupling between the nuc
targets, which is revealed in a change of speed-up of thg
ray emission and in a change of its dynamical beating~for
general properties of nuclear forward scattering see, e
Ref. 13!. Namely, the diffusion causes the acceleration og
ray emission at the first stage, deacceleration of the emis
at a later stage, and a shift of the dynamical beating.

While the QB-regime is sensitive to diffusion in the ran
of resonance broadening 1,q,5, the RC-regime is sensi

FIG. 5. Diffusion in a non-resonant sample as seen in the ra
tive coupling regime of the interferometer. The lines of increas
thicknesses correspond to differentq.
3-8
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tive to diffusion in a broader range 1,q,100. Thus it es-
sentially extends the sensitivity of the method to higher d
fusion rates.

V. SUMMARY

The general theory of synchrotron radiation~SR! scatter-
ing in the Mössbauer time domain interferometer in the pr
ence of dynamics of electron density in a non-reson
sample is developed. The interferometer is a scattering
tem where the wave packet of SR scattered sequentially
the upstream resonant target and non-resonant sample is
lyzed by the downstream resonant target. The two reso
targets can be regarded as the arms of the interferomete
the presence of dynamics of electron density in the n
resonant sample, the wave packet arriving at the analyz
temporally perturbed resulting in the perturbation of the
terference pattern. Electron density dynamics can be
plored by this method in the scale of the nuclear excitat
lifetime.

Two regimes of the interferometer are analyzed: those
absence and in presence of radiative coupling between
arms of nuclear interferometer. These regimes are realize
a large and zero separation of resonances in the arms
quantum beat regime, and radiative coupling regime, res
tively.

The scattering intensity is expressed in terms of the
sponse function of the resonant targets and the general
relation function. In the limit of weak scattering~scattering
at the wings of Bragg reflection far off Bragg angle, or fro
a thin sample or a poorly ordered sample!, the general cor-
relation function is simply proportional to the intermedia
scattering function of the sample, which in the case of r
dom phase approximation, is proportional to the Van Ho
function Fs(q,t).

The essential difference between Rayleigh electronic
resonant nuclear scatterers is that in the former case, the
Hove function arises only at non-zero scattering vectorq,
while in the latter it may exist in the forward scattering.10 In
the case of forward scattering from the non-resonant sam
ta
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the Van Hove function equals unity, so that the diffusi
non-resonant scatterer makes no impact on the time ev
tion of the forward scattered intensity.

One is able to present the general correlation function
the sum of static and dynamics contributions. The static
represents the Rayleigh scattering from the time avera
crystalline lattice, while the dynamic one represents
quasielastic scattering from the time variable electron d
sity. In presence of a strong Bragg scattering, the static
dominates and makes the observation of atomic dynamic
means of the time domain interferometry almost impossib
The either way to diminish the elastic channel of scatter
~going far off Bragg angle in case of perfect crystals, us
thin samples, or poorly ordered samples like, e.g., gla
material! will help to extract and investigate the atomic di
fusion motion.

Since general correlation function and intermediate sc
tering function are decaying functions of time, the main
fect caused by the diffusion of atoms in a non-reson
sample in a QB-regime is a reduction with time of the qua
tum beat visibility in the interference pattern. The QB
regime of the Mo¨ssbauer interferometer is sensitive to diff
sion in the range 10216,D,10214m2/s.

In RC-regimeFs(q,t) is involved in the time dependenc
of scattering intensity in a more complicated way. Howev
the sensitivity of the time dependences to diffusive motion
atoms in the sample is quite strong. The diffusion cause
drastic transformation of the dynaimical beat structure. T
RC regime extends the sensitivity of the method to diffus
coefficient up toD,10213m2/s. This method may have
some advantages, for instance, the instrumental vibrat
which might be due to the resonator motion in QB-regim
are absent excluding a possible hide of low velocity diffusi
motion.
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