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Dynamics of electron density in a medium revealed by Mssbauer time-domain interferometry
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Nuclear resonant scattering of synchrotron radiation allows the detection of energy transfers in the sample in
the order ofAE/E~10 13 This extreme energy resolution is used inddbauer time domain interferometry
to provide an inelastic scattering method similar or even superior to high resolution inelastic neutron scattering.
The interferometer consists of two nuclear targets as interferometer arms, and a nonresonant sample placed in
between, and detects slow dynamics of the electron density in a time range of nuclear response, typically from
10 ns to 200-500 ns. It has access to scattering vectors from 0.1 A to beyond 10 A. The general theory of the
interferometer is provided and it is evaluated how the Van Hove correlation function presenting the electron
density fluctuations of the sample in space and time can be measured. Exemplarily, it is shown how the
temporal behavior of diffusion can be studied with diffusivities in the range from®® 10 *m?/s.
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[. INTRODUCTION synchrotron radiatiodSR) passes through the system of the
three scatterers and the coherently scattered radiation inter-
Experiments on scattering of Msbauer radiation by mat- feres in the detector. The two scattering channels can be
ter combine interesting features of x-ray and neutron scattedistinguished when the resonance frequencies in the up-
ing and those of Mssbauer spectroscopy. The intrinsically stream and the downstream nuclear targets are separated.
high energy resolution of the latter offers unique possibilitiesThe interference of the scattering channels leads to quantum
to reveal very low energy dynamics of atoms in condenséeats of the scattered intensity with time at the frequency
media. difference. So the device works as a time domain interfer-
The electronic Rayleigh scattering of &bauer radiation ometer where the wave packet scattered sequentially by the
is just like x-ray scattering with respect to the scatteringupstream resonant target and non-resonant sample is probed
mechanism and the wavelength of radiation involved. Theby the wave scattered by the downstream resonant target. In
difference lies in being able to detect by means ofsstmauer the presence of dynamics of electron density in the non-
radiation very small energy changes which can occur duringesonant sample the first wave packet can be perturbed tem-
scattering. The energy resolution is approximately equal t@orally resulting in the perturbation of the interference pat-
the widthI" of nuclear transition ranging from 1 to 100 neV. tern. The dynamics characterized by times of the order of the
So to reveal such small energy transfers, the scatteringeat period and nuclear excitation lifetime can be explored
experiment should employ Msbauer radiation incident on by this method.
the sample and Mssbauer absorber for the energy analysis The time domain interferometry allows one to study dif-
of the scattered radiation. O'Connor and Butad applied a fusive atomic motion in materials having very different
Mossbauer absorber just to distinguish Rayleigh recoillesstructures. To demonstrate this method, the amorphous
and Rayleigh recoiled scattering of B&bauer radiation with sample of glycerol was uséd.Besides that, as was
the energy transfer due to creation and annihilation ofindicated? the high directionality of SR is very suitable for
phonons. Such scattering can be treated as inelastic. Fetudying quasi-elastic scattering in the neighborhood of
small energy transfers, in the scalelafone can classify the Bragg peaks. Quasielasticity of radiation can be found in
scattering event as quasi-elastic. Only the energy changes s€attering from single crystals containing fast diffusing at-
the order ofl" can contribute to the structure of the energyoms. A detailed analysis of such possibility was performed
spectrum obtained with the help of sbauer analyzer. In by Ruebenbauer and Wdowiland recently an experiment
this way, one can study quasi-elastic scattering associataslas accomplished by Sepiet al®
with very soft lattice modes or spin dynamics or slow diffu- In the present paper we develop the general theory of
sive motion of atoms. In experiments on liquids, glassesMossbauer time domain interferometer in the presence of
biological samples quasi-elastic line broadening was dedynamics of electron density in a non-resonant sample. The
tected with the help of Rayleigh Scattering of ®bauer time-dependent response of the sample given by the dynami-
Radiation called as RSMR technique; for reviews see Refs. 2al theory of diffraction is used for the first time. In particu-
and 3. lar, this allows one to study jump diffusion in crystals. Ki-
The analog of the RSMR technique in the time domainnematical approximation of the dynamical theory equivalent
was recently developed by Baroet al* The scattering to a first Born approximation is explicitly analyzed. Hence
scheme includes two nuclear resonant targets and a nothe developed theory enables analysis of scattering from the
resonant sample placed in between them. An intense pulse emples of arbitrary perfection and shape.
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ko K, Born approximation of the scattering theory when the shape
) of the sample appears to be not essential at all. In this section
\\/ Bragg case we begin with the general expressions of dynamical diffrac-
tion. The kinematical approximation is obtained then from

the general formulas as a limit for a thin sample or for scat-
HHH‘ tering far off Bragg angle. Finally, scattering from the sys-

tems having poor periodicittamorphous solids and liquids
is considered.
Laue case We assume the case of the two-wave scatte(siggle
diffracted wave with the transmitted and diffracted waves to
Z kl ko - . B B .
be linearly polarized, so that the electric polarization vectors
in the waves coincide and are perpendicular to the scattering
plane containing the vectoky andk;. We shall consider the
case of reflection with change of the wave vector friggto
1=Kp+4g. In the case of diffraction from the platelet, the
in absence and in presence of radiative coupling between t o geometries are distinguished: Lau_e case, where the scat-
ered wave emerges from the back side of the platelet, and

arms of nuclear interferometer. Radiative coupl oc- ) .
pIRL) ragg case, where the scattered wave is at the same side of

curs when the delayed radiation from the upstream target ﬁe latelet as the incident one. as is depicted in Fia. 1
in resonance with the nuclei in the downstream target. Th P ne inct one, as | P! N F1g. L.
In the following we consider the response function of a

strongest RC takes place at zero separation of the resonances .- mole in time. The tim le for the observation
in the two nuclear targets. Throughout the paper this casglystaliine sampie €. 'he time scale for the observatio

will be calledRC-regimeof the interferometer. In the case of Gf a scattering events in the ldsbauer time domain inter-

large separation of resonances, radiative coupling vanishé‘%;?gqae:]%r ;ﬁgiﬁ;ﬂgﬁﬂg%?;gﬂ?@(gtgsn?ilcj:csli?rtﬁ;c:lgg_
and one comes to a pure quantum beat solution, i.e., to 2 y

QB-regimeof the interferometer. It corresponds to the ex_tron. density. BOth exceed tremendous!y t.he period of the
periment mentioned abotie carrier oscillation of the electromagnetic field. Because of
In Sec. Il the respoﬁse function of the non-resonanﬁhe weak interaction of the radiation field with the atoms in

sample is presented wheRayleigh scattering in a dynamic he target, the Characteristic length of the interaction _much
systenoccurs. The most complicated mathematically case o xceeds the radiation wavelength. These two properties al-
dynamical diffraction is considered. In Sec. Ill the principle ow us to perfectly separate the fast space-time o§C|IIat|ons
of the Mossbauer time interferometer is considered and th f the.f|el'd strength from the slow variation of their enve-
time response of the two targets each having a single lin opes in time a_nd space. .

resonance is analyzed for an arbitrary shift of the resonances, The difiraction from the ele_ctronlc sub-system of the
In Sec. IV the response of the lsbauer time interferometer crystal occurs promptly at the instant state of the electron

including a dynamic non-resonant sample is calculated in thgensny distribution. In a dynamical scattering system the

QB-regime as well as in the RC regime. For the kinematica lectron denSity distripgt.ion is varying in time. Thereforg,
diffraction or scattering in a first Born approximation, i.e., he e_Iectronlc susceptlbmt_y of the system and the scattering
for thin or poorly ordered sample, this response can be inter‘nftmpIItUde turn out to be time dependent.

preted in terms of the intermediate scattering function in the The time response of the samiiig(q,t—t') to the short

presence of atomic motion. In Sec. V prospects of thepulse of radiation(in the considered time scalean be ex-
method are considered ' ' pressed in terms of the field envelopes. In both Bragg and

Laue cases we haveg(q,t—t")=48(t—t")gs(q,t), where
o(t—t") is the Dirac delta function, andgg(q,t)
=71/ vE1(Z,1)/Ex(0t) in the Laue case andg(q,t)
=Vy1/voE1(0t)/Ep(Ot) in the Bragg case, whereqg,
In general, the Bragg diffraction in large perfect crystals=Ko,1,/K (with kg, 1, being projections ofkg, on the
is described by the dynamical theory accounting for the mulz-axis); magnitudey, <0 for Bragg case ang, >0 for Laue
tiple scattering of radiation by atoms. In the dynamicalcase.
theory the shape of the sample is rather significant. We con- The dynamical theory is well presented in the literature
sider here a crystalline sample in the form of a platelet of(see, for example, Ref);7therefore, we write down only the
thicknessZ (see Fig. 1L The Cartesian coordinate system is final expressions fogs(g,t) in a compact and symmetric
chosen so that the inward normal to the crystal entrance suferm. In the Laue case,
face lies along the-axis.
When the scattered wave is much less than the incident
wave and the interaction of the primary radiation with atoms X1—X5
is only essential, the kinematical scattering is realized. The gs(q,t)=Bleﬁ; @
choice of the sample shape in the kinematical theory is usu-
ally the same as in the dynamical theory. The kinematical
scattering may be considered as a particular case of the firand in the Bragg case,

\

FIG. 1. Geometry of coherent scatterif@ragg diffraction of
radiation in a crystalline platelet for both Bragg and Laue cases.

Two regimes of the interferometer are considered: thos

Il. THE RESPONSE FUNCTION OF A CRYSTALLINE
SAMPLE IN TIME
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O—B.B X1—X5 . A B
9s(9,t)=B; 2B,X,~B,X,’ 2
(1)
Here the following notations are used E
> A
KZ >
X1 xpl | 5[ xo+ X" Bl En
' 270 ’ o . E
> > AB
31/2)(
B,=— z—q, FIG. 2. Schematic presentation of the four scattering channels of
A+ VA + BxgXq a SR pulse through two subsequent nuclear resonant targets. Arrows
symbolize quantum absorption events.
Xq 1 1-8 .
B,=— , A=-— > agB+xo——7%| I1l. MO SSBAUER TIME DOMAIN INTERFEROMETRY
XqB1 B USING SYNCHROTRON RADIATION

2 2 Let the SR pulse be passing through a system of spatially
(kq_ K ) Yo i -
-9 - p== (3) separated scatterers. We assume an exte_rna[ perturba_ltlon ap
d K? Y1 plied to a scatterer to be homogeneous in time. As it was
shown in Ref. §see also Ref. )9 the time response of such
In Eq. (3) the square root has positive imaginary part. Thea system to aj(t)-function excitation can be presented by a
parameters, represent the Fourier coefficients in the expan-convolution of the time responses of individual scatterers.
sion of the electronic susceptibility srspace. These Fourier We consider a system consisting of two nuclear resonant
coefficients are time dependent functions due to fluctuationscatterersA and B, see Fig. 2. The time response of such a
of the electron density. Obviously, the fluctuations do notsystem can be found as convolution of the responses of tar-
change the average electron density in the sample. ThereforgetsA andB
both the scattering amplitude in the forward direction and the
susceptibility coefficien, do not depend on time.
We note that in crystals the electron density is a spatially Gag(t)= f
periodic function; therefore, the susceptibility coefficients -

can be calculated by integration over the crystalline unit cell,o response function§,(t) and Gg(t) in the case of

Nevertheless, for generality, we assume them to be int&;clear forward scattering of SR from a target having single
grated(averagetlover the volume exceeding essentially the |ine strycture of its resonance is given in Ref. 8. In the case

unit cell volume that allows us to consider irregular systemsy¢ rasonance broadening, with the line preserving a Lorent-
as well. zian shapee.g., the case of free diffusion in a liqujdhe

In a thin single crystal, as well as in a system having poOfegnonse function of a single target is as follosee, e.g.,
periodicity where the coherent scattering amplitude is smallgets 10 and n

i.e., when the condition is fulfilletZ| 4| <1, the kinemati-

cal approximation of the dynamical theory works fairly well. G(t) = exp — 12Yext —iw-t

In general, the kinematical approximation is valid when the (O =exp— nezof2)exp —lwt)

amplitude of the scattered wave is much less than that of the T

incident wave. Then the response function is reduced to an X) o)~ 05 —exp—ar2) o(Tr) [, ()
especially simple form "

+ o0

dt’' Gg(t—t')Ga(t'). (5)

wherew, is the resonance frequency=t/t,, t,=#/T is the
_ KZ Kz (1%x1) lifetime of the excited nuclear stat€= u,zq, u, andu, are
gs(a,t)= iqu(t)\/—— ex |2_XOT) nuclear resonance and electronic absorption coefficiegts;
2\Y071 o is the thickness of nuclear scatteref(T7)=J,(\T7)/\Tr
=CR(q,t), (4) with J;(x) being a Bessel function of the first ordei(t) is
a Heaviside step function equal to zero at negative argu-
where the upper/lower sign refers to Laue/Bragg case. Thments. Here we use symbaglfor the dimensionless param-
formula (4) becomes valid for the sample of arbitrary shapeeter of resonance broadening to be consistent with the previ-
and for q being not only the reciprocal lattice vector when ous works:®~*?q=1. Do not confuse it with modulus of the
the factorC is taken in an appropriate way. scattering vectoq.

Note, that in all cases of applicability the E@) the re- As seen from Eq(6), the response function contains both
sponse function is proportional to the Fourier coefficient ofthe prompt and the delayed parts. The delayed part has a
electron densityr(q,t), which is the only factor determining carrier frequency coinciding with that of the nuclear reso-
the time dependence of the sample response. For the dynammance. If target® andB are identicalin material and thick-
cal diffraction this is not the case. The time dependence ofies$ and the resonance frequency in the first target is Dop-
the sample response has a much more complicated form. pler shifted with respect to that in the second target by a
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value (), then the total time response obtained after substi- ERCY
tution of Eq.(6) into Eq.(5) is as follows:

Gag(t)=exp(— ueZo)| 8(t) —exp(—iwt)

x{ P(t)exp —i Q)+ y(t)

— ft dt’z,/f(t—t’):,//(t’)exp(—iﬂt’)]}, 7) FIG. 3. Scheme of a Mgsbauer time domain interferometér.
0 and B: resonant targets; S: a nonresonant samje. Exg, and
. L. Easg present transformation of the field strength in passage of ra-
where the following function is introduced: diation through the system.
T
H(t)= TGXF(—QT/Z)U(TT)- (8)  phase shifter is inserted into one of the interfering beams.
n

Obviously, the time domain interference should be also very

The terms containings(t) in Eq. (7) represent the delayeg  sensitive to a phase and amplitude change due to scattering
ray emission(for the timet>0). from a non-resonant sample placed in between two resonant

Equation(7) is the response function of the system con-targets, which can be regarded as the arms of an interferom-
taining the two resonant targefsee Ref. 13 As seen from  eter.
Eq. (7), the scattering event can be represented by superpo- This fact was convincingly demonstrated in Ref. 4, where
sition of the four scattering channelsee also Fig. 2 trans-  the sample of glycerol was placed between the twos$Ao
mission of the SR pulse without interaction with nuclei, bauer scatterers and the measurements of the beat patterns
given by expE ueZo) &(t); nuclear resonance scattering of the were performed at different temperatures of glycerol. In this
SR by the upstream target, given by the first term of thecompound the electron density appears to be time dependent
delayed partE, ; nuclear resonance scattering of the SR bywithin the nuclear lifetime window and this results in the
the downstream target, given by the second term of the ddime dependent perturbation of the amplitude and phase of
layed part,Eg; and double nuclear resonance scattering othe scattered radiation. We consider the scattering from such
the SR first by the upstream and then by downstream targe® System in the next section.
presented by the last integral term of the delayed [y,
This last term actually presents the radiative coupling of the
nuclear currents in the upstream target with those in the IV. IMPACT OF RAYLEIGH SCATTERING
downstream target via the coherent field propagating in the ON THE INTERFERENCE PATTERN
forward direction.Thus the response of the system is deter-

mined by the sum of responses of the constituent parts and g{) ala_t?etrgrss n doeWi((::toe rg??g!ategthgefxséfr:ntﬁg :\t‘vrg?]jé‘;g:fqrggg_t
the term presenting the radiative coupling of the parts. P 9. 2.

When Q>T/4 then the integral in Eq(7) representing nant targetsA and B, which are the arms of the interferom-

o . ; eter, a non-resonant electronic scatterer, ta®get placed as
the radiative coupling of the two targets is small, and can be o . .
sample. The radiation wave packet is transformed in pas-

neglecteq. So the time dependence of the delayed mtens@age through the system, as shown in Fig. 3. The nuclear
takes a simple form

forward scattering of SR pulse occurs in targetand the
_ 2. wave packetE, is formed. It contains the prompt and de-
a8 [Cag(D|"~2Y(D[1+cog QD] © layed part, as described by E@). This wave packet is in-
with Y(t) =exp(—2usZo)YA(t). The interference of the two cident on a diffusive targe$, where electronic coherent scat-
scattering channels, presented by the second and third terrtexing characterized by a scattering veaorakes place. At
in Eq. (7), yields a quantum beat pattern of the scatteringthis stage, thé&e, wave packet is transformed into tiig, g
intensity given by Eq(9). In the case of small electronic wave packet that can be modulated due to a possible dynam-
absorption the intensity averaged over the quantum beat pés of the electronic density in the sample. Finally, g
riod turns out to be twice as large as the intensity scatterediave packet is scattered in the new forward direction by
by an individual target. Thus, in the averaged intensity, thenuclei in targetB, which works as an analyzer of the radia-
two targets behave as independent scatterers. Whdre-  tion scattered by sample, i.e., of thg s wave packet.
comes comparable witl'/# the targets can no longer be  The scattering in the sample is prompt by its nature, in
considered as independent scattefeee Sec. IV B contrast to that in a resonant target. Since the flight time
The time structure of the quantum beating can be comthrough the system can be neglected, the scattering in the
pared with the Moire pattern arising due to interference ofsample occurs at the moment when radiation emerges from
light coming from two spatially separated coherent sourcestargetA. So the response functions of targeand samples
In our case, each target behaves as an independent cohereattain the same time argument, and the combined response
emitter. It is well known that Moire patterns are highly sen-function of the two targets is simply the product of functions
sitive to very little changes of the radiation phase, when &G(t) andgg(t).
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Therefore, the response function of the entire system can )
be found using the relation similar to that given by ). R(Q-t)=f drp(r,t)exp(—iqr). (13
+o ; ;
_ / 4 / / Expression(12) represents the time dependence of the
G t)= dt'Gg(t—t A GA(th), 10 7 . . .
asdl) f_x s(t=1)gs(a,t)GAM), (10 delayed scattering intensity following a particular SR pulse.

It includes the time dependent response of the non-resonant
target. Since the dynamics of the electron density in the
sample is not correlated with the arrival of the SR pulses, the
measured intensity is obtained as a result of averaging of a

arrival of the SR pulse at the detector. single scattering event over many SR passages. The averag-
Comparing Eqs(10) and(S), we see that the response of i, "ot expression(12) is, in fact, adding of independent QB-

the scattering system can be decomposed again into the fOybterns perturbed stochastically due to dynamics of electron
parts presenting the scattering channels through the resonadgnsity_

targets(see the previous sectipHowever, the wave packets
in the sample due to a possible dynamics of the electronic ) )
density. We analyze effect of the perturbation separately for As mentioned above, the Fourier transform of the electron

the two different regimes of the interferometer. density[see Eqg.(13)] can be used to find the intensity of
weak scattering. Therefore, in the expression for the intensity

Eq. (12), the functiongg(q,t)gs(q,t’) can be written in

terms of electron density C2fdrdr’ exg—iq(r
Applying Eq.(6) to Eq.(10) and assuming a large differ- —r’)]p(r,t)p(r’,t"). Under the conditions of the thermody-

ence of resonance frequenci@s we obtain for the delayed namic equilibrium the correlations referring to particular

wheret’ is the emission time from targeX, the scattering
time from targetSand the excitation time of targé t is the
deexcitation time of targeB. The time zero is set by the

A. Quantum beat regime of the interferometer

part of the response function times are identical and depend only on the scattering vector
. g. They are determined by geometrical arrangement of the
Gass(t) = — exp(— seZo)9s(d,t) eXp(—i (@, + Q) ) i(t) mean position of atom&tructure factorsand by the average

_ _ . spatial distribution of atoms around their mean positions
OXH(~ 1eZo)9s(A.0 e~ )i(D). (1D (Debye Waller factors Therefore, to get the observed inten-

As seen, in this case, the response of the system is detesity, one has to calculate only the correlator containing dif-

mined by the interference of two scattering channels. In thderent timegthird term in Eq.(12)]. The result is expressed

first channel the delayed part of radiation emerging fromvia the intermediate scattering function which is the time

targetA is electronically scattered in sampeat timet. In Fourier transform of the dynamic structure factor of the

the second channel the prompt part of radiation emergingample

from targetA is first electronically scattered in the sample at

time 0, immediately absorbed by nuclei in targeand then iy — / et r o

reemitted in the form of delayed nuclear radiation at time sat=t) fdrdr X —ia(r=r)Ke(r.bp(r',t)).

The carrier frequencies of the scattered waves are shifted (14)

by Q. Therefore, the interference of the waves yields a QB'Here(« ..} means averaging over the time of passage of SR

pattern at frequenc§). However, the interference pattern is pulses.

perturbed by a stochastic variation of the response function | ye suppose the correlator to be a real function—which

of the non-resonant sampigs(q,t). The time dependence of s most frequently the case—then we arrive at the formula

this response function is provided by the dynamics of thgq the averaged intensity analogous to that used for interpre-
electron density in the sample. Just this stochastic variatiogyion of the experimental results in Ref. 4

of the sample response breaks paftly lesser or larger ex-
tent depending on the internal dynamics in the saingie T t)~2Y(1)C2 0)+ tcog Q1. 15
phase correlation between the interfering waves and leads, in asdl) (OCTHa.0+S(q.heod D] 139

general, to an attenuation of the interference contrast with 2. Intermediate scattering function in the presence

time. ST
. . L of atomic diffusion
Now we find the time dependence for the scattering inten- _ _ ¢ dimu '_ o
sity att>0 In a solid state medium a Fourier coefficient of the elec-

tron density can be presented as follows:
lase ) =[GaseD[*=Y(D)[|gs(a,t)|*+|gs(a,0)|?

+2|95(a,1)g5(q,0)|cog Ot + ¢5(0) — og(1))], R(q,t)= Ea) exp{—ig[ra+ua(t)J}Ha(a)exd —Wa(aq)/2],
(12 (16)
where ¢g(t) is the phase of the complex functigry(q,t). wherer 4 is the mean value of the coordinate of il atom;

In the limit of a weak scattered wave in accord with Eq. f,(q) is the atomic structure factor equal to the Fourier co-
(4), the functiongs(q,t) is proportional to the spatial Fourier efficient of the electron density of an atom; £xpW,(q)/2]
transform of the electron densip(r,t) is a square root of the Debye-Waller factor that is obtained
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while averaging over the fast thermal oscillations of atomspattern described by E¢L5) and hence cannot see any effect
Finally, u,(t) is the displacement of an atom due to diffusive of diffusion. Recently such a result was obtain experimen-
motion of which the average velocity is small and leads to aally by authors of Ref. 6. However, the elastic scattering
little displacementof the order of the wavelength of radia- contribution can be essentially weakened by shifting the

tion) during the lifetime of the nuclear excited state. crystal off a Bragg reflection far at its wings. Therein one can
Introducing a specific timé, of the SR pulse passage find the effect of diffusive motion of atoms.

through the interferometer and performing averaging oyer In the poorly ordered systems, like glassy and amorphous

we obtain for the intermediate scattering functimompare materials, the role of elastic scattering is largely decreased.

with Eq. (14)] Combining Egs(16) and(17), we obtain the following ex-

pression for the intermediate scattering function:

1
S(q,t)=t_f dtoR(q,te+t)R*(q,to), (17 .
m S(A.0=20 2 Aa(@As(@exd —ig(ra=rp)]
wheret, is the full measurement time including macroscopic 2
number of SR pulses. The integration is performed over this 1 ]
full time. The expression for the Fourier coefficient of the Xt_f dtg exp{ —ig[ua(to+t) —up(to)]}-
electronic density Eq(16) can be re-written in the form m
where the time independent term is isolated (22

Assuming the non-correlated motion of different atoftilee
R(q,t)= > A (q)exp(—iqry) in an amorphous or glassy samplee obtain forq not equal
a to zero all terms witha# b to be randomly phased and thus
canceling each other in average. Consequently, in the ran-
—2i > Aj(@)exp—iq[ra+ ua(t)/2]) dom phase approximation, we may neglect the contribution
a from these terms. Furthermore, we take into account that the
. scattering system may consist of atoms of different kinds.
X sin qug(t)/2] (18) Then the atomic indea has to be replaced by two indicas
with A,(q) = f.(q)exd —W,(q)/2]. In this presentation the j, Where indexa indicates now the sort of atom and index

Fourier coefficient is the sum of the static and dynamic confhumbers the atoms of a given type. Equati@@) has to be
tributions replaced approximately by

R(a,t)=R(a)+ 5R(q,t). (19 san=3 Aq) ti J at,

Substituting Eq(18) into Eq. (17), we obtain for the inter-

mediate scattering function the following expression: ,
X2 e —ialUai(tHto) ~Uai(to) ]} (23

— 1
— 2
S(a,t)=[R(a)[*+ EJ dtodR(q,te+1) SR*(,to)- The sum ovej in the right-hand part of this expression was
(20) analyzed in Ref. 10, where it was shown to be proportional

. . , . ) ) to the single particle Van Hove functidhg,(qg,t) and does
The static term in the intermediate scattering function prey,q¢ depend on timé,. Hence we obtain the expression
sents the elastic scattering of radiation by the time averaged

crystalline lattice, whereas the dynamic term presents the )

quasielastic scattering caused by diffusion of atoms in a crys- S(a.1)= 2 N ASQFsa(a,t), (24)

tal. For the elastic contribution we have 2

whereN, is the number of atoms of the satin the unit

volume of the scattering media. The scattering in this case is

entirely quasielastic, and its intensity is proportional to the

number of atom in the unit volume. The Van Hove function
If a long range correlation in the atomic positions takesFs,(q,t) was investigated in detail in the original wotkas

place the Bragg scattering can happen. The intensity imvell as in Refs. 10, 12 and 15.

Bragg direction is proportional thi?, whereN is number of Since F¢4(q,t) is a decaying function of time, one can

atoms in the unit volume. In the other limit case, i.e., in thededuce from Eqgs(15) and(24) that the main effect caused

absence of atomic order, the scattering intensity is proporby diffusion of atoms in a non-resonant sample is a reduction

tional toN. Thus the ratio between the elastic and quasielaswith time of the quantum beat amplitude in the transmitted

tic scattering intensities is determined to a great extent byntensity.

regularity of the scattering system. In the case of perfect Figure 4 illustrates the impact of diffusion in the QB-

crystals, the elastic contribution into the intermediate scatterregime of the Mssbauer time domain interferometer. The

ing function dominates at the Bragg angle. Since in this casiterferometer arms are supposed to bgrh SS foils en-

the intermediate scattering functi®{q,t) is nearly time in-  riched by >’Fe up to 95%. It is assumed that the intermediate

dependent, one cannot observe practically the decay of QBcattering function decays exponentiallie in the case of

|ﬁ<q>|2=§ g AL AL(Q)exp(—iglra—rp]). (21)
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Tasd)=2Y(1)[B(q,0)+B(g,t)cog )], (27)

We find now the approximate expression for the general
correlation function in the case where the atomic dynamics
has a character of small perturbation. The response of the
samplegg(q,t) can be splitted into static and dynamic parts
as well. If the dynamic correction to the electron density is
small (as supposedcompared to the time averaged density,
one can use the following approximate expression for

gS(qit):

Intensity

— (9 S _’t
0s(a,1) =gs(a) +Ds(q)SR(q,t), Dy(q)= gR((Z)) '

(28)

Time (ns)

FIG. 4. Diffusion in a non-resonant sample revealed in quantum ) . L .
beat regime of the interferometer for different diffusion ratgs, We substitute this expansion into E@6) and obtain

=1 corresponds to absence of diffusion. —
B(q,t)=[gs(q)|*+[D(q)|?

free diffusion where the resonance broadening is given by 1

the parameteg=1+2DK?t, with D as a diffusion coeffi- Xt—f dtyoR(q,tp+1) SR*(q,tp). (29

cienh Fy(t)=exp(—(gq—1)7) havingq=1,2,5, r=t/t,. It m

is well seen that the contrast in QB pattern decreases quitehe integrals of tYPas(OI)D:(OI)fdtﬁR*(q,to) containing

rapidly with the diffusion rate. Already af=5 correspond-  the first power ofsR(q,t) does not contribute because the

ing to a diffusion coefficienD~10"**m?/s, quantum beats average value of the time dependent correction to the elec-

?grg obsgrvedf (t)r?lyl\iiln ”E)e initial tSt?ge of tthe _deﬁa)r/l-l Thus thgron density equals zero. The static part of the general corre-

2b-regime of tne Mesbauer interterometer IS Mghly SeNSI- 4161 function|gg(q)|? again is dominant in the presence of

tive to Q|ffu3|on in the range 10°<D<10 14m2/s._ The a strong Brag\l]g;gg)tlerir?g. As a result, the quar?tum beat vis-

possibility of such experiments was demonstrated in Ref. 4 ility in Eq. (27) remains almost unchanged with time. The

The essential difference between Rayleigh electronic an iffusive motion of atoms can hardly be observed under
resonant nuclear scatterers is that in the former case the VEL‘Hese conditions

Hove function arises only at non-zero scattering vector

while in the latter it may exist in the forward scatteritffgn . ) . - .
the case of forward scattering from the non-resonant sample,B' Electron density dynamncs_observed In radiative coupling
the Van Hove function equals unity, so that the diffusive regime
non-resonant scatterer makes no impact on the time evolu- Now we consider the performance of the interferometer

tion of the forward scattered intensity. under conditions of very little or zero shift of the resonances
in the interferometer arm@=<T'/%. In this case, the radiative
3. General correlation function coupling between the resonant parts of the scattering system

plays a significant role. Obviously, the perturbation of the

Obviously, the expression for scattering intensity in gen Upstream wave packeEa— E . (see Fig. 3 due to quasi-
eral case Eq(12) should be also averaged over titgeof the pstri € P A= Enas (S€E FIJ. ~
lastic scattering in the sample will effect the radiative cou-

SR pulse passage through the interferometer. Performing av: . )
eraging ovetto, one has for the averaged intensity pling between the interferometer arms. This effect can be

revealed in the time dependence of the scattering intensity.
1 While calculating the response of the system in accord
Taed ) ~Y(t _j dt tort)]24 t0)]2 with Eq. (10), one can no longer neglect the channel where
asd )~ )tm ol10s(G:to+ 7+ [0s(G: o) the double resonance scattering of SR pulse first in takget
and then in targeB takes place.
+2|gs(a,to+1)gs(a,to)| The calculation of the response function given by Eq.
X codOt+ @g(to) — @s(to+1))]. (25) (10), with the account for the radiative coupling, leads to the
following expression:
The result of integration can be expressed in terms of a real

function GASBm:exrx—ﬂezo)exrx—iwrt>[gs<q,o> (1)

1 .

B(Q.t):t—f dtogs(9,to+1)g5(a,to) (26) —gs(a,tyexp(—iQt) (1) —gs(a,0) #(t)
m
t

which will be calledthe general correlation functionFi- +f dt’gs(q,t’)dx(t—t’)exp(—iQt’)zp(t’)}.
nally, in analogy with Eq(15), we arrive at the expression in 0
the general case (30
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This is theresponse function of the interferometer including LT ' ' T

a sample with an account for the radiative coupling between — q=100
the resonant targetsThe four scattering channels are open ] _ g:;o
now and in all four channels the interaction with the sample 10° 4 — gq=2 1
is involved. The first channel presents transmission of the SR ] — g=1

pulse through the system without interaction with nuclear
targets. The next two channels are the same acting in QB-
regime of the interferometer; see Ed1). The last channel is ]
specific for the present case. It presents sequential scattering 10”5
of radiation by all three elements of the system. Here the 3
convolution with the response of the sample at running time . . .
t’ is performed. In general, we see that the dynamics of 0 50 100 150 200 250 300
electron density in the sample reveals itself in RC-regime in Time (ns)

a more complicated W‘:'_‘y' . . ) FIG. 5. Diffusion in a non-resonant sample as seen in the radia-
The delayed scattering intensity takes the following formye coupling regime of the interferometer. The lines of increasing

[we assume in our calculation the functigt) [see Eq(8)]  thicknesses correspond to differept
to be rea]

Intensity

Taset)=2Y(D[B(q,0+B(q,t)]
ase(D)=Y(t){|gs(a,t)|?+]9s(a,0)|?

+2 Rdgs(q,1)g5(q,00exp —iQt) ]}
t ’
—-2M Re[ H(H[gE(a,t)expiQt)+95(g,0)] +2Mf0dt’f; dt”yg(t—t")y(t")B(g,t" —t")

X(t=t") y(t"). (33

t
—4M l//(t)jodt'w(t—t')B(q,t')¢(t’)

t
XJ dt’tﬂ(t—t’)gs(q,t’)tﬂ(t’)eXp(—iQt’)]
0 Although the quantum beats are absent in this case, the time
2 evolution of the scattering intensity appears to be strongly
, dependent on the general correlation functig(ug,t).
In the limit of weak scattering the functidd(q,t) is sim-

(31 ply proportional to the intermediate scattering function,
which in turn, in the case of random phase approximation, is
proportional to the Van Hove functioR¢(q,t) (we assume

whereM = exp(—2uezo). This expression has to be averagednere system consisting of one sort of atpmis the RC-
over many SR passages. While doing this, only the produglegime, this function influences the time dependence of the
of the response functions of the non-resonant sample refegcattering intensity not in that simple fashion as in QB-
ring to different times has to be averaged. The result of avregime; compare Eq$33) and(15) [with B(g,t) andS(q,t)
eraging can be expressed again via the funcBgq,t) de-  replaced byF¢(q,t)].
termined by Eq.(26). Performing the change of variables  Figure 5 shows an example of the time evolution at dif-
t’=t—t’, where it is necessary we arrive to the following ferent diffusion rates. For illustration we have used the
result: model of free diffusion, where the spectral density of the
self-correlation function is described by a Lorentzian distri-
butionsglaving the broadening parameteAs interferometer
T _ arms,”‘Fe enriched SS foils of m thickness are used. The
lasg 1) =2Y(D[B(q.0+B(q,t)cos 11)] sensitivity of the time dependences to the diffusive motion of
t atoms in the sample is evident. The perturbation of the up-
—4M ¢(t)f0dt'tﬁ(t—t')B(q,t')l,b(t')COS{Qt') stream wave packet due to quasi-elastic scattering in the
sample disrupts the radiative coupling between the nuclear

t
+M fo dt’ ¢(t—t")gs(qg,t") (t")exp —iQt’)

t t targets, which is revealed in a change of speed-up ofythe
+M fodt'fo dt”"g(t—t")y(t")B(q,t" —t") ray emission and in a change of its dynamical beatiiog
general properties of nuclear forward scattering see, e.g.,
X (t—t")p(t")cog Q(t' —t")]. (320  Ref. 13. Namely, the diffusion causes the acceleratioryof

ray emission at the first stage, deacceleration of the emission
at a later stage, and a shift of the dynamical beating.
In the case where the two resonant targets have coincident While the QB-regime is sensitive to diffusion in the range
resonances) =0, Eq.(32) takes the form of resonance broadening<iq<5, the RC-regime is sensi-
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tive to diffusion in a broader range<lg<<100. Thus it es- the Van Hove function equals unity, so that the diffusive
sentially extends the sensitivity of the method to higher dif-non-resonant scatterer makes no impact on the time evolu-
fusion rates. tion of the forward scattered intensity.

One is able to present the general correlation function as

V. SUMMARY the sum of static and dynamics contributions. The static one
o represents the Rayleigh scattering from the time averaged

~ The general theory of synchrotron radiati®R) scatter-  cystalline lattice, while the dynamic one represents the
ing in the Massbauer time domain interferometer in the pres-quasielastic scattering from the time variable electron den-
ence of dynamics of electron density in a non-resonankjty |n presence of a strong Bragg scattering, the static part
sample is developed. The interferometer is a scattering sygfominates and makes the observation of atomic dynamics by
tem where the wave packet of SR scattered sequentially byeans of the time domain interferometry almost impossible.
the upstream resonant target and non-resonant sample is aRgye ejther way to diminish the elastic channel of scattering
targets can be regarded as the arms of the interferometer. JRjn, samples, or poorly ordered samples like, e.g., glassy

the presence of dynamics of electron density in the nonmateria) will help to extract and investigate the atomic dif-
resonant sample, the wave packet arriving at the analyzer {§sion motion.

temporally perturbed resulting in the perturbation of the in-  gjnce general correlation function and intermediate scat-
terference pattern. Electron density dynamics can be eXering function are decaying functions of time, the main ef-
plored by this method in the scale of the nuclear excitatiofect caused by the diffusion of atoms in a non-resonant
lifetime. _ “sample in a QB-regime is a reduction with time of the quan-
Two regimes of the interferometer are analyzed: those ifym peat visibility in the interference pattern. The QB-

absence and in presence of radiative coupling between th@gime of the Masbauer interferometer is sensitive to diffu-
arms of nuclear interferometer. These regimes are realized &{gn in the range 10<D <10 “m?s.

a large and zero .separation o_f resonances in the arms, the | RC-regimeF¢(q,t) is involved in the time dependence
quantum beat regime, and radiative coupling regime, respegss scattering intensity in a more complicated way. However,
tively. o o _ the sensitivity of the time dependences to diffusive motion of
The scattering intensity is expressed in terms of the reatoms in the sample is quite strong. The diffusion causes a
sponse function of the resonant targets and the general CQfrastic transformation of the dynaimical beat structure. The
relation function. In the limit of weak scatterirgcattering Rrc regime extends the sensitivity of the method to diffusion
at the wings of Bragg reflection far off Bragg angle, or from .qefficient up toD<10 '3m?/s. This method may have
a thin sample or a poorly ordered samplihe general cor-  some advantages, for instance, the instrumental vibrations
relation function is simply proportional to the intermediate \ynich might be due to the resonator motion in QB-regime

scattering function of the sample, which in the case of ranye apsent excluding a possible hide of low velocity diffusion
dom phase approximation, is proportional to the Van Hoveygtion.

function F4(q,t).

The essential difference between Rayleigh electronic and
resonant nuclear scatterers is that in the former case, the Van
Hove function arises only at non-zero scattering vector The support of this work was partially provided by
while in the latter it may exist in the forward scatteritfgn INTAS-RFBR under Contract No. 95-0586. GVS is grateful
the case of forward scattering from the non-resonant samplihat DAAD granted his stay in Germany.
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