
PHYSICAL REVIEW B, VOLUME 63, 144302
Self-trapping transition for nonlinear impurities embedded in a Cayley tree
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The self-trapping transition due to a single and a dimer nonlinear impurity embedded in a Cayley tree is
studied. In particular, the effect of a perfectly nonlinear Cayley tree is considered. A sharp self-trapping
transition is observed in each case. It is also observed that the transition is much sharper compared to the case
of one-dimensional lattices. For each system, the critical values ofx for the self-trapping transitions are found
to obey a power-law behavior as a function of the connectivityK of the Cayley tree.
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I. INTRODUCTION

The interaction of an electron or an exciton with the l
tice vibrations is of fundamental importance in understa
ing the electric properties of solids. For example, the tra
port of quasiparticles such as electrons or excitons in so
is highly influenced by the electron-phonon interactions. T
consequences have been investigated using diffe
methods.1 Recently, these systems have been studied ba
on the rigorous analytical treatments and numerical soluti
of simple models such as nonlinear Schro¨dinger equations.2,3

One of them with varieties of applications in different are
of science is the one-dimensional discrete nonlinear Sc¨-
dinger equation, given as4–18

i
dCn

dt
5V~Cn111Cn21!1~en2xnuCnu2!Cn , ~1!

where en is the static site energy at siten and xn is the
nonlinearity parameter associated with thenth grid point.
Since (nuCnu2 is set to be unity by choosing appropria
initial conditions,uCnu2 can be considered as a probability
finding a particle at thenth grid point. One way to derive this
set of equations is to couple in the adiabatic approxima
~in which the lattice oscillations are much faster than
exciton motion! the vibration of masses at lattice points of
lattice ofN sites to the motion of a quasiparticle in the sam
lattice. The motion of a quasiparticle is described, howev
in the frame work of a tight binding Hamiltonian~TBH!. In
other physical context, the set of equations are often ca
the discrete self-trapping equations~DST!.

The analytical solutions of Eq.~1! are, in general, no
known. However, for nonlinear quantum dimers which a
two-site systems with the nonlinearity either on both the s
energies or in one of them can be solved analytically for a
arbitrary initial condition. From the analytical solutions,
self-tapping transition is found in this model.6–10 The self-
trapping transition for the symmetric dimer is found atx/V
54.6 The trapping of hydrogen ions surrounding oxygen
oms in metal hydrides and the energy transport from
absorption center to the reaction center in photosynthetic
have been modeled by the effective quantum nonlin
dimer.6–10,12,13,17The nonlinear dimer analysis has also be
applied to several experimental situations such as neu
scattering of hydrogen atoms trapped at the impurity site
0163-1829/2001/63~14!/144302~6!/$20.00 63 1443
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metals,7 fluorescence depolarization,9 muon spin
relaxation,10 nonlinear optical response of superlattices19

etc. The self-trapping transition also occurs in the exten
nonlinear systems.5,17 An interesting experimental exampl
in this context is the observation that trapped hydrogen
oms in metals such as Nb move among the sites in the ne
borhood of impurity atoms such as oxygen.20 All these stud-
ies have been performed for finite number of nonlinear s
by assuming that the quasiparticle is localized within t
nonlinear sites.

Later, the effect of nonlinear sites embedded in a h
lattice on the dynamics of quasiparticles has been stud
because of its importance in real systems. Dunlapet al.21

studied the self-trapping transition due to a single nonlin
impurity embedded in an infinite one-, two-, and thre
dimensional host lattices. Self-trapping transitions we
found atx/V53.2, 6.72, and 9.24 for one-, two-, and thre
dimensional simple host lattices, respectively. Furthermo
the effect of the presence of a nonlinear cluster on the s
trapping transition has also been considered in o
dimensional host lattices.22 The study has also been extend
to the case where the inertial effect of the lattice oscillat
has been taken into account and rich trapping-detrapp
transitions depending on the masses of oscillators have b
observed.23 All these studies have been made in on
dimensional host lattices. However, one needs to kn
whether or not the self-trapping transition occurs in hosts
different geometrical structure. It would also be interesting
note the differences compared to the results for o
dimensional systems.

The Cayley tree is one possible example of host latti
with different geometrical structure. An important variab
characterizing the geometry of the Cayley tree is the conn
tivity K, which is the number one smaller than the coordin
tion number, i.e.,K5Z21, Z being the coordination num
ber. The Cayley tree reduces to a one-dimensional cha
K51. The structure of the Cayley tree will be described
the next section.

In this work, we study the self-trapping of an exciton
the Cayley tree with a single as well as a dimer impur
embedded in it. We also consider the fully nonlinear Cay
tree to observe the self-trapping effect.

II. FORMALISM

The structure of a Cayley tree with connectivityK52 is
shown in Fig. 1. ForK51, the system reduces to a on
©2001 The American Physical Society02-1
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dimensional chain. In case of a single nonlinear impur
embedded in the Cayley tree, the neighboring sites surrou
ing the impurity site are symmetric. We thus consider
symmetric shells around the impurity site. The impurity s
is designated as the zeroth site, and thenth shell is denoted
by n, wheren takes the values of 1,2,3, . . . , as thesites are
away from the zeroth site~see Fig. 1!.

Thus, thenth shell containsZKn21 sites. All sites in the
lattice have three nearest neighbors. While all the near
neighbor sites of the zeroth site fall in the first shell, two
the nearest-neighbor sites of any site in thenth shell fall in
the (n11)th shell and the rest one falls in the (n21)th
shell. We further notice that all sites in the same shell h
an equal probability amplitude. Therefore, under the tig
binding formalism, the time evolution of a particle~initially
placed at the impurity site! on the Cayley tree may be gov
erned by the following equations:

i
dC0

dt
5ZC12xuC0u2C0 ,

i
dCn

dt
5KCn111Cn21 , n>1, ~2!

whereC0 is the probability amplitude at the zeroth site a
Cn for n>1 represents the probability amplitude at any s
in the nth shell. Thex represents the nonlinear strength
the zeroth site of the Cayley tree. Without loss of general
we take the nearest-neighbor hopping element to be un
The normalization condition for the site amplitudes is giv
by

uCou21 (
n51

`

ZKn21uCnu251. ~3!

Therefore, to observe the self-trapping transition due t
single nonlinear impurity, Eq.~1! should be solved.

For the perfectly nonlinear Cayley tree, the time evoluti
for the site amplitudes on the Cayley tree of a particle~ini-
tially placed at the zeroth site! may be governed by

FIG. 1. The Cayley tree of the connectivityK52. The impurity
is embedded at the site marked by 0. The sites in the first shel
numbered as 1, the sites in the second shell as 2, and so on.
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i
dC0

dt
5ZC12xuC0u2C0 ,

i
dCn

dt
5KCn111Cn212xuCnu2Cn , n>1 ~4!

because the system may be treated in a similar way as
treated for the single impurity case.

If there is a dimeric impurity in the system, the symmet
about one of the impurity sites does not hold anymore. T
system, however, remains symmetric about the bond c
necting the two impurity sites. In this case, the Cayley t
with dimeric impurity may be transformed to a on
dimensional system which might be studied more con
niently. The transformation has been reported in the ear
work24; however, for completeness, we briefly describe it
what follows.

We pick a bond and assign the numbers 0 and 1 on its
ends. The neighboring sites of site 1 are numbered with
increasing order and those of the site 0 are numbered wi
decreasing order, as shown in Fig. 2. Thus, all points w
the same number are assumed to be in the same gener
and, accordingly, the number of points in thenth generation
is Kn21 if n>1 andK unu if n<0. We note that all sites in a
given generation have the same probability amplitude.

We now consider the motion of a particle on a Cayley tr
of the connectivityK with a dimeric impurity embedded a
sites 0 and 1. In the tight-binding formalism with neare
neighbor hopping only, equations governing the motion o
particle are

i
dCn

dt
5KCn111Cn21 , n.1,

i
dCn

dt
5KC2unu211C2unu11 , n,0,

i
dC1

dt
5KC21C01e1C1 ,

i
dC0

dt
5KC211C11e0C0 , ~5!

re

FIG. 2. The Cayley tree with the connectivityK52. The
dimeric impurity is embedded at the sites marked by 0 and 1.
2-2
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whereCn denotes the probability amplitude at any point
thenth generation. We assume that the matrix element of
nearest-neighbor hopping is unity, and that all points in
given generation arising due to a specific organization h
the same site energy. The normalization condition for the
amplitudes gives

(
2`

0

K unuuCnu21
1

K (
n51

`

KnuCnu251. ~6!

We now make the following transformations:~i! t

5AKt, ~ii ! e05 ẽ0 /AK and e15 ẽ1 /AK, ~iii ! Cn

5K2(n21)/2C̃n for n>1 and C2unu5K2unu/2C̃n for n<0.
Substituting these in Eq.~5! we obtain

i
dC̃n

dt
5C̃n111C̃n21 , for n.1 andn,0,

i
dC̃1

dt
5C̃21

1

AK
C̃01 ẽ1C̃1 ,

i
dC̃0

dt
5C̃211

1

AK
C̃11 ẽ0C̃0 . ~7!

From Eq. ~7!, the normalization condition reduces
(2`

` uC̃nu251. Therefore, the motion of a particle on a Ca
ley tree is mapped to that on a one-dimensional chain. H
ever, in this chain, the nearest-neighbor hopping matrix
ment between the zeroth and the first site is reduced f
unity to 1/AK. It can be shown that the Green’s functio
G0,0(E) calculated from Eq. ~7! would yield G̃0,0(Ẽ
5EAK) for a Cayley tree of the connectivityK. Here, in the
dimeric impurity problem, the impurities are defined asẽ0

5x̃uC0u2 and ẽ15x̃uC1u2 with x̃5xAK.
Equations~2!, ~4!, and ~7! cannot be solved analyticall

and, therefore, the numerical method, namely, the fourth
der Runge Kutta method is employed. Since there is a c
served quantity in each case, the normalization conditio
checked at every step of our numerical calculation. The t
interval dt50.001 is used during the calculation. There a
two ways to observe the self-trapping transition. One wa
to look at the behavior ofuCnu2 as a function oft for various
values of the nonlinear strength, and another is to look at
time averaged probability of the particle at siten as a func-
tion of the nonlinear strength. The time averaged probab
of the exciton at siten is defined as

^Pn&5 lim
T→`

1

T E
0

T

uCnu2dt. ~8!

Therefore, we will look at the quantityuCnu2 or ^Pn& or both
of them for various situations to examine the occurrence
the self-trapping transition.
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III. RESULTS AND DISCUSSIONS

First of all, we discuss the results for the Cayley tree w
a single nonlinear impurity. The initial condition is set at th
impurity site ~zeroth site in Fig. 1!.

The probability of finding a particle at the impurity sit
~initially populated site! is obtained by solving Eq.~2!, and
the results are plotted in Fig. 3 as a function of time. Diffe
ent curves correspond to the different values of the nonlin
parameterx. The long dashed, dashed, solid, dotted, a
dotted-dashed curves correspond to the nonlinear streng
x54.75, 4.76, 4.77, 4.8, and 5.0, respectively. The conn
tivity for the Cayley tree considered here isK52.

It is observed from Fig. 3 that, forx54.75 and 4.76~the
long-dashed and dashed curves!, the probability of finding
the particle at the impurity site decreases rapidly and t
approaches to zero as time increases. This implies that
particle goes away from the impurity site, i.e., the partic
becomes fully delocalized. However, the situation is dra
cally different forx54.77 ~solid curve!. The probability of
finding the particle at the initially populated site decreas
down to about 0.35, then increases up to 0.61, and oscill
afterward between 0.35 to 0.61. Thus, the average proba
ity of finding the particle at the initially populated site
approximately 0.48. For higher value ofx, the probability of
finding the particle at the initially populated site increases
is obvious from the dotted and dotted-dashed curves in
3. Therefore, we observe that there is a distinct critical va
of x near~or below! 4.77, below which the particle escape
from the initially populated site and becomes fully deloc
ized, while above which the particle is most likely trapped
the initially populated site.

The time averaged probability is also plotted in Fig. 4
a function of the nonlinear parameterx. The sharp transition
of the ^P0& ~the time averaged probability at the impuri

FIG. 3. The probability of the particle to be at the impurity si
@P0(t)# as a function of time for various values of the nonline
parameter is shown. The long dashed curve, dashed curve,
curve, dotted curve, and the dotted-dashed curve correspond
spectively, tox54.75, 4.76, 4.77, 4.8, and 5.0.
2-3
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site! at x.4.77 is also clear from the Fig. 4.
The self-trapping transition for theK51 case, i.e., for a

single nonlinear impurity embedded in a one-dimensio
lattice has been studied in detail by Dunlapet al.,21 and the
transition is found atx53.205. However, we notice that th
self-trapping transition for a single impurity embedded in t
Cayley tree withK52 is sharper and clearer when compar
with the case for the one-dimensional chain.

In order to observe the dependence of the critical value
x as a function of the connectivityK of the Cayley tree, we
plotted in Fig. 5xcr for various values ofK>2 on a double
logarithmic scale. The data points lie surprisingly well on t
straight line, implying that the critical value obeys the pow
law

xcr5a Kb, ~9!

FIG. 4. The time averaged probability of finding the particle
the impurity site 0~i.e., ^P0&) of the Cayley tree ofK52 plotted
againstx. Sharp transition atx54.77 is found.

FIG. 5. The critical values ofx for self-trapping transition in a
Cayley tree with a single nonlinear impurity is plotted as a funct
of the connectivity of the Cayley tree.
14430
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with a.3.41 andb.0.484. It should be noted that the crit
cal valuexcr.3.41 for K51 is prominently different from
the critical value for a one-dimensional system. This impl
that the power law is valid only forK>2. We therefore
conclude that the geometry of the host lattice results in
ferent critical values ofx for different values ofK>2, obey-
ing the power-law behavior in Eq.~9!.

We now consider the dimeric impurity embedded in t
Cayley tree with connectivityK52. The particle is initially
populated at one of the impurity sites. The probability
finding the particle at the initially populated site is calculat
by solving the Eq.~7! for various values ofx, and the time
averaged result is plotted in Fig. 6. The sharp transition
found atxcr54.95. One interesting observation found fro
Fig. 6 is that there is no precursor~peak! in the ^P0& before
the permanent self-trapping transition occurs atx.4.95, un-
like the case in the one-dimensional system with two imp
rities ~Fig. 5 in Ref. 23! for which a peak is observed atx
.3.2 just before the permanent transition occurs atx
.4.22. Thus, the particle in the Cayley tree is always infl
enced by both the impurities present in the host whereas
particle does not feel the presence of the second impurit
the one-dimensional system belowx.3.2. From Eq.~7! we
note that the Cayley tree of connectivityK with dimeric im-
purity reduces to a one-dimensional chain with the hopp
element between the impurity sites reduced from unity
Veff51/AK. For the Cayley treeK>2, the hopping elemen
between the impurity sites in the transformed on
dimensional system becomes less than or equal to 1A2.
Since the peak before the permanent transition disappea
the case of Cayley tree, we suspect that there must b
critical value for the hopping element~say,Veff

cr ) between the
dimeric impurity sites of a one-dimensional chain wh
keeping the other hopping elements unity such that the p
disappears forVeff<Veff

cr . In order to verify this, we perform
the numerical calculation of the time averaged probabi

t FIG. 6. The time averaged probability of finding the paticle
the zeroth impurity site on a Cayley tree ofK52 with a dimeric
nonlinear impurity plotted as a function of the nonlinearity para
eterx. Sharp transition is observed atx54.95
2-4
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SELF-TRAPPING TRANSITION FOR NONLINEAR . . . PHYSICAL REVIEW B 63 144302
for the particle to be at the initially populated impurity site
a one-dimensional chain with a dimeric nonlinear impur
for various values ofVeff ~the hopping element between th
impurity sites! while keeping the other elements unity. W
interestingly observed that the gapDx between the peak an
the permanent transition point reduces as theVeff decreases
and eventually vanishes at a critical value ofVeff51/A2 as
shown in Fig. 7, i.e., the peak before the permanent transi
dieappears when the system is equivalent to a Cayley
with connectivity equal to 2. This implies that the structu
of Cayley tree is responsible for the absence of the p
before the permanent transition.

The critical value ofx for various values of the connec
tivity of the Cayley tree is calculated and found to obey t
same power-law behavior as in Eq.~9!, but with different
values ofa and b, i.e., a.3.554 andb.0.465. We note
that the critical value ofx for the self-trapping increases du
to the presence of one more impurity. For a one-dimensio
system the critical value is found to be 4.22 which devia
prominently from the value estimated from Eq.~9! with the

FIG. 7. Plot of the gapDx between the peak and the permane
transition point in the time averaged probability of the particle
the initially populated impurity site in a one-dimensional chain w
a dimeric nonlinear impurity against the inverse of the square of
hopping element between the impurity sites. Other hopping
ments are set to be unity.
.
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values ofa andb mentioned above andK51. This is again
due to the different geometry of the host lattice.

We now consider the perfectly nonlinear Cayley tree. T
particle is initially placed at any arbitrary site. The sha
self-trapping transition is also observed in this case for v
ous values ofK. The critical value of the nonlinear paramet
xcr for self-trapping transition again obeys the same pow
law behavior as in Eq.~9! but with a.3.766 and b
.0.445. Here we find that the critical values are larger th
those for the case of a single and dimeric impurity; howev
the difference is not appreciably large. Therefore, it appe
that the self-trapping transition is influenced by only fe
nonlinear neighbors around the initially populated impur
site.

Finally it is worth mentioning that the formation of sta
tionary localized state in the Cayley tree due to a sin
nonlinear impurity, dimeric nonlinear impurity and also in
perfectly nonlinear Cayley tree has been studied by Gu
and Kundu24,25earlier and in the above three cases the bif
cations in the stationary states were observed which in
support the occurrence of the self-trapping transitions in
work.

IV. SUMMARY

The self-trapping transition due to a single and a dime
nonlinear impurity embedded in the Cayley tree is studi
Furthermore, the self-trapping transition in a perfectly no
linear Cayley tree is observed. Very sharp self-trapping tr
sition is observed for all systems considered here. The
ometry of the host lattice is responsible for such a sh
transition. The critical value of the self-trapping transitio
increases as the number of nonlinear impurities in the h
lattice increases. The critical value ofx is found to obey a
power law against the connectivity of the Cayley tree for
cases. Results are compared with those for the o
dimensional system.
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