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Self-trapping transition for nonlinear impurities embedded in a Cayley tree
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The self-trapping transition due to a single and a dimer nonlinear impurity embedded in a Cayley tree is
studied. In particular, the effect of a perfectly nonlinear Cayley tree is considered. A sharp self-trapping
transition is observed in each case. It is also observed that the transition is much sharper compared to the case
of one-dimensional lattices. For each system, the critical valugsfof the self-trapping transitions are found
to obey a power-law behavior as a function of the connectiityf the Cayley tree.
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[. INTRODUCTION metals’  fluorescence  depolarizatiSn, muon  spin
relaxation'® nonlinear optical response of superlatti¢®s,

The interaction of an electron or an exciton with the lat-etc. The self-trapging transition also occurs in the extended
tice vibrations is of fundamental importance in understandnonlinear systems:’ An interesting experimental example
ing the electric properties of solids. For example, the transin this context is the observation that trapped hydrogen at-
port of quasiparticles such as electrons or excitons in solid@MS in metals such as Nb move among the sites in the neigh-
is highly influenced by the electron-phonon interactions. Thé?0rhood of impurity atoms such as oxygérll these stud-
consequences have been investigated using differeiS nave been performed for finite number of nonlinear sites
methods: Recently, these systems have been studied bas&y assuming that the quasiparticle is localized within the
on the rigorous analytical treatments and numerical solsztiongorﬂgrt'gfrti'éefaﬁect of nonlinear sites embedded in a host
of simple mode.Is such as nonlmear Sc_mr[ge_r equat|on§'. lattice on the dynamics of quasiparticles has been studied
One of them with varieties of applications in different areas

t oci is th i ional di ¢ i ‘Sch because of its importance in real systems. Durgajl?!
of science 1S the one-dimensional dISCrete nonliinéar SChry gied the self-trapping transition due to a single nonlinear
dinger equation, given 4s'

impurity embedded in an infinite one-, two-, and three-
dimensional host lattices. Self-trapping transitions were
found aty/V=3.2, 6.72, and 9.24 for one-, two-, and three-
dimensional simple host lattices, respectively. Furthermore,
the effect of the presence of a nonlinear cluster on the self-
where €, is the static site energy at site and x,, is the trapping transition has also been considered in one-
nonlinearity parameter associated with thth grid point.  dimensional host lattice$.The study has also been extended
Since =,|C,|? is set to be unity by choosing appropriate to the case where the inertial effect of the lattice oscillators
initial conditions,|C,|? can be considered as a probability of has been taken into account and rich trapping-detrapping
finding a particle at theth grid point. One way to derive this ~ transitions depending on the masses of oscillators have been
set of equations is to couple in the adiabatic approximatioPbserved” All these studies have been made in one-
(in which the lattice oscillations are much faster than thedimensional host lattices. However, one needs to know
exciton motion the vibration of masses at lattice points of a Whether or not the self-trapping transition occurs in hosts of
lattice of N sites to the motion of a quasiparticle in the samedifferent geqmetrlcal structure. It would also be interesting to
lattice. The motion of a quasiparticle is described, however0te the differences compared to the results for one-
in the frame work of a tight binding HamiltoniafTBH). In dimensional systems.

other physical context, the set of equations are often called . The_ Cayley tree is one possible exa”.‘p'e of host '?““CGS
the discrete self-trapping equatiofBST) with different geometrical structure. An important variable

The analytical solutions of Eq(l) are, in general, not characterizing the geometry of the Cayley tree is the connec-

known. However, for nonlinear quantum dimers which arelivity K, which is the number one smaller than the coordina-

two-site systems with the nonlinearity either on both the sitelon number, i.e.K=2—1, Z being the co_orqutlon num- -
energies or in one of them can be solved analytically for an er. The Cayley tree reduces to a one-d!mensmnallchalr_] i
arbitrary initial condition. From the analytical solutions, a K=1. The styucture of the Cayley tree will be described in

self-tapping transition is found in this modi® The self- e next section.

trapping transition for the symmetric dimer is foundyay thelnctg;fe\;v(i;géwvatrs]u;dii;Zelesgg-tvrviﬁlpgg ;f d?r?‘neerxfri:gﬂrii?y
= 6 i i i -
4.” The trapping of hydrogen ions surrounding oxygen at mbedded in it. We also consider the fully nonlinear Cayley

oms in metal hydrides and the energy transport from th i
absorption center to the reaction center in photosynthetic unffee o observe the self-trapping effect.
have been modeled by the effective quantum nonlinear
dimer®-1012131"he nonlinear dimer analysis has also been
applied to several experimental situations such as neutron The structure of a Cayley tree with connectiviky=2 is
scattering of hydrogen atoms trapped at the impurity sites igshown in Fig. 1. ForK =1, the system reduces to a one-

dcC, ,
|W:V(Cn+1+cn—l)+(5n_)(n|cn| )Ch, (1)

Il. FORMALISM
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FIG. 2. The Cayley tree with the connectivitg¢=2. The
dimeric impurity is embedded at the sites marked by 0 and 1.

FIG. 1. The Cayley tree of the connectivity=2. The impurity

is embedded at the site marked by 0. The sites in the first shell are . dCq —7C,—y|C |2C

numbered as 1, the sites in the second shell as 2, and so on. : dt 17 XIol 0,

dimensional chain. In case of a single nonlinear impurity dc, )

embedded in the Cayley tree, the neighboring sites surround- It = KCnsat Cn-1—XICil*Cp, n=1 (4)

ing the impurity site are symmetric. We thus consider the
symmetric shells around the impurity site. The impurity sitebecause the system may be treated in a similar way as it is
is designated as the zeroth site, and e shell is denoted treated for the single impurity case.
by n, wheren takes the values of 1,2,3. ., as thesites are If there is a dimeric impurity in the system, the symmetry
away from the zeroth sitésee Fig. 1 about one of the impurity sites does not hold anymore. The
Thus, thenth shell containZ K"~ ! sites. All sites in the system, however, remains symmetric about the bond con-
lattice have three nearest neighbors. While all the nearestecting the two impurity sites. In this case, the Cayley tree
neighbor sites of the zeroth site fall in the first shell, two ofwith dimeric impurity may be transformed to a one-
the nearest-neighbor sites of any site in ik shell fall in ~ dimensional system which might be studied more conve-
the (n+1)th shell and the rest one falls in the{1)th  niently. The transformation has been reported in the earlier
shell. We further notice that all sites in the same shell havavork®”; however, for completeness, we briefly describe it in
an equal probability amplitude. Therefore, under the tightwhat follows.

binding formalism, the time evolution of a particlitially We pick a bond and assign the numbers 0 and 1 on its two
placed at the impurity sijeon the Cayley tree may be gov- ends. The neighboring sites of site 1 are numbered with an
erned by the following equations: increasing order and those of the site O are numbered with a

decreasing order, as shown in Fig. 2. Thus, all points with

.dGCy ) the same number are assumed to be in the same generation
i——=2C;— x|Cyq|*Cy,

dt and, accordingly, the number of points in thé generation
is K" 1if n=1 andK!" if n<0. We note that all sites in a
dc, given generation have the same probability amplitude.
gt~ KCn+1+Cpog, n=1, 2 We now consider the motion of a particle on a Cayley tree

of the connectivityK with a dimeric impurity embedded at
whereC, is the probability amplitude at the zeroth site andsites 0 and 1. In the tight-binding formalism with nearest-
C, for n=1 represents the probability amplitude at any siteneighbor hopping only, equations governing the motion of a
in the nth shell. They represents the nonlinear strength atparticle are
the zeroth site of the Cayley tree. Without loss of generality,

we take the nearest-neighbor hopping element to be unity. dC,
. I . ) . i =KCp;11tCh_1, n>1,
The normalization condition for the site amplitudes is given dt
by
= 9S_ke +C 0
! =KC_ -1+ C_jp+1, N<0,
ICol?+ X, ZKM e, 2= 1. 3 dt ) )
n=1
. - dC
Therefore, to observe the self-trapping transition due to a i_lch2+ Co+€,Cq,
single nonlinear impurity, Eq(1) should be solved. dt
For the perfectly nonlinear Cayley tree, the time evolution
for the site amplitudes on the Cayley tree of a partiahe i&: KC 4Cit el (5)
tially placed at the zeroth sjtenay be governed by dt -1 intom0
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where C,, denotes the probability amplitude at any point in 1 - ' - .
thenth generation. We assume that the matrix element of the
nearest-neighbor hopping is unity, and that all points in a
given generation arising due to a specific organization have
the same site energy. The normalization condition for the site
amplitudes gives

0 )

1
> KMC 2+ = > K C,|?=1. (6)
— o0 K n=1

Polt)

We now make the following transformationgi) 7
=JKt, (i) e=¢€o/VK and e=¢/JK, (i) C,
=K~ ("VZC for n=1 and C_j, =K I""ZC, for n<0.
Substituting these in Eq5) we obtain

dacC, - ~
i g n=Cn+l+Cn,1, forn>1 andn<0,
T FIG. 3. The probability of the particle to be at the impurity site
[Po(t)] as a function of time for various values of the nonlinear
de 1 parameter is shown. The long dashed curve, dashed curve, solid
|_1="C'2+ —Co+e,Cy, curve, dotted curve, and the dotted-dashed curve correspond, re-
dr JK spectively, toy=4.75, 4.76, 4.77, 4.8, and 5.0.
dao . 1. Ill. RESULTS AND DISCUSSIONS
i——=C_;+—=C1+¢€Co. 7 i i i
dr k! €oto ™ First of all, we discuss the results for the Cayley tree with

a single nonlinear impurity. The initial condition is set at the

From Eq. (7), the normalization condition reduces to impurity site(zeroth site in Fig. L

Efw|6n|2=1. Therefore, the motion of a particle on a Cay- The probability of finding a particle at the impurity site

ley tree is mapped to that on a one-dimensional chain. How(—imtiaIIy populated Sit@.is o.btained by sol\_/ing EC.(Z)' anq
ever, in this chain, the nearest-neighbor hopping matrix ele‘ghe results are plotted in Fig. 3 as a function of time. Differ-

ment between the zeroth and the first site is reduced frorﬁm curves correspond to the different values of the nonlinear

: ) . parametery. The long dashed, dashed, solid, dotted, and
unity to LK. It can be shown that the Gr_een s~fun£:t|on dotted-dashed curves correspond to the nonlinear strength of
Goo(E) calculated from Eq.(7) would vyield GoE

o C x=4.75, 4.76, 4.77, 4.8, and 5.0, respectively. The connec-
=E/K) for a Cayley tree of the connectivity. Here, in the

tivity for the Cayley tree considered hereKs=2.
dimeric impurity problem, the impurities are defined @s It is observed from Fig. 3 that, fop=4.75 and 4.76the
=X|Co|? ande;=X|C4|? with x=x K.

long-dashed and dashed curyethe probability of finding
Equations(2), (4), and (7) cannot be solved analytically the particle at the impurity site decreases rapidly and then
and, therefore, the numerical method, namely, the fourth orapproaches to zero as time increases. This implies that the
der Runge Kutta method is employed. Since there is a corParticle goes away from the impurity site, i.e., the particle
served quantity in each case, the normalization condition i§ecomes fully delocalized. However, the situation is drasti-
checked at every step of our numerical calculation. The timeally different for y=4.77 (solid curvg. The probability of
interval 5t=0.001 is used during the calculation. There arefinding the particle at the initially populated site decreases
two ways to observe the self-trapping transition. One way iglown to about 0.35, then increases up to 0.61, and oscillates
to look at the behavior dfC,|? as a function ot for various ~ afterward between 0.35 to 0.61. Thus, the average probabil-
values of the nonlinear strength, and another is to look at thly of finding the particle at the initially populated site is
time averaged probability of the particle at sites a func- approximately 0.48. For higher value f the probability of

tion of the nonlinear strength. The time averaged probabilityfinding the particle at the initially populated site increases as
of the exciton at site is defined as is obvious from the dotted and dotted-dashed curves in Fig.

3. Therefore, we observe that there is a distinct critical value
of x near(or below 4.77, below which the particle escapes
from the initially populated site and becomes fully delocal-
ized, while above which the particle is most likely trapped at
the initially populated site.

Therefore, we will look at the quantifyC,|? or (P,) or both The time averaged probability is also plotted in Fig. 4 as
of them for various situations to examine the occurrence oh function of the nonlinear parameter The sharp transition
the self-trapping transition. of the (Py) (the time averaged probability at the impurity

(P.)= lim HOT|cn|2dt. ®

T—oo
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FIG. 4. The time averaged probability of finding the particle at  FIG. 6. The time averaged probability of finding the paticle at
the impurity site O(i.e., (Po)) of the Cayley tree oK=2 plotted ~ the zeroth impurity site on a Cayley tree k=2 with a dimeric
againsty. Sharp transition ay=4.77 is found. nonlinear impurity plotted as a function of the nonlinearity param-

eter y. Sharp transition is observed gt4.95

site) at y=4.77 is also clear from the Fig. 4. ) .
The self-trapping transition for th=1 case, i.e., for a with @=3.41 andB=0.484. It should be noted that the criti-

single nonlinear impurity embedded in a one-dimensionaFal V""_“,Jexcfzs'd'l fork=1 s promlnently dlfferen_t f'rom_
lattice has been studied in detail by Duniapal,?* and the the critical value for a one—_dlmen5|onal system. This implies
transition is found ajy=3.205. However, we notice that the that the power law is valid only foK=2. We therefqre .
self-trapping transition for a single impurity embedded in theconcludg _that the geometry _of the host lattice results in dif-
Cayley tree withk =2 is sharper and clearer when compared!€'€nt critical values o for different values oK =2, obey-
with the case for the one-dimensional chain. ing the power-law behawolr In E(@)' . .

In order to observe the dependence of the critical value of We now cqn3|der the 'd!menc impurity e'mbe.d(je'd' in the
x as a function of the connectivity of the Cayley tree, we 2Y/ey trée with connectivitk =2. The particle is initially
plotted in Fig. 5y for various values oK=2 on a double p_op_ulated at one of the_lr_n_purlty sites. The_ p_robab|I|ty of
logarithmic scale. The data points lie surprisingly well on thef|nd|ng the particle at the initially populated site is calculated

; Co : o by solving the Eq(7) for various values ofy, and the time
straight line, implying that the critical value obeys the power X P e
law g pying y P averaged result is plotted in Fig. 6. The sharp transition is

found aty.=4.95. One interesting observation found from
Ya=a K&, (9) Fig. 6 is that there is no precurs@eak in the (Py) before
the permanent self-trapping transition occurgat4.95, un-
o5 , . i . i . i like the case in the one-dimensional system with two impu-
rities (Fig. 5 in Ref. 23 for which a peak is observed gt
=3.2 just before the permanent transition occurs yat
=4.22. Thus, the particle in the Cayley tree is always influ-
enced by both the impurities present in the host whereas the
particle does not feel the presence of the second impurity in
the one-dimensional system belgw=3.2. From Eq(7) we
note that the Cayley tree of connectivikywith dimeric im-
purity reduces to a one-dimensional chain with the hopping
element between the impurity sites reduced from unity to
V= 1/JK. For the Cayley tre& =2, the hopping element
between the impurity sites in the transformed one-
dimensional system becomes less than or equal {@.1/
Since the peak before the permanent transition disappears in
s s the case of Cayley tree, we suspect that there must be a
0.5 1 Ir:(i) 2 25 critical value for the hopping elemefgay,VS;) between the
dimeric impurity sites of a one-dimensional chain while
FIG. 5. The critical values of for self-trapping transition in a keeping the other hopping elements unity such that the peak
Cayley tree with a single nonlinear impurity is plotted as a functiondisappears foW.z<V¢g. In order to verify this, we perform
of the connectivity of the Cayley tree. the numerical calculation of the time averaged probability

In(x,,)
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0.4 . . values ofa and 8 mentioned above ang=1. This is again
due to the different geometry of the host lattice.

We now consider the perfectly nonlinear Cayley tree. The
particle is initially placed at any arbitrary site. The sharp
self-trapping transition is also observed in this case for vari-
ous values oK. The critical value of the nonlinear parameter
Xc for self-trapping transition again obeys the same power-
Xo2t - law behavior as in Eq.9) but with «=3.766 and g
=0.445. Here we find that the critical values are larger than
those for the case of a single and dimeric impurity; however,
the difference is not appreciably large. Therefore, it appears
that the self-trapping transition is influenced by only few
nonlinear neighbors around the initially populated impurity
site.

0 , . Finally it is worth mentioning that the formation of sta-
1 1.5 R 2 25 tionary localized state in the Cayley tree due to a single
WV, nonlinear impurity, dimeric nonlinear impurity and also in a
perfectly nonlinear Cayley tree has been studied by Gupta

FIG. 7. Plot of the gap x between the peak and the permanent, 4 \\n 43425 earlier and in the above three cases the bifur-

transition point in the time averaged probability of the particle at ations in the stationary states were observed which in turn

the.'n't"'."”y popmate.d Impurity site in a One'd'mens'onal chain with support the occurrence of the self-trapping transitions in the
a dimeric nonlinear impurity against the inverse of the square of the ork

hopping element between the impurity sites. Other hopping ele?VOr%:
ments are set to be unity.

03 | J

IV. SUMMARY
for the particle to be at the initially populated impurity site of
a one-dimensional chain with a dimeric nonlinear impurity
for various values oV (the hopping element between the
impurity siteg while keeping the other elements unity. We
interestingly observed that the gapy between the peak and
the permanent transition point reduces asWg decreases

The self-trapping transition due to a single and a dimeric
nonlinear impurity embedded in the Cayley tree is studied.
Furthermore, the self-trapping transition in a perfectly non-
linear Cayley tree is observed. Very sharp self-trapping tran-
sition is observed for all systems considered here. The ge-

. e = ometry of the host lattice is responsible for such a sharp
and eventually vanishes at a critical value\gf=1/\2 as transition. The critical value of the self-trapping transition

shown in Fig. 7, i.e., the peak before the permanent transitio creases as the number of nonlinear impurities in the host

dieappears when the system is equivalent to a Cayley U€Cttice increases. The critical value ®fis found to obey a

el connectivity equal to 2. This implies that the structure ower law against the connectivity of the Cayley tree for all
of Cayley tree is responsible for the absence of the peagases. Results are compared with those for the one-

before th(_a_permanent transition. dimensional system.

The critical value ofy for various values of the connec-
tivity of the Cayley tree is calculated and found to obey the
same power-law behavior as in E@®), but with different
values ofae and B, i.e., «=3.554 andB=0.465. We note This work was supported by the Postdoc program at
that the critical value oj for the self-trapping increases due Kyungpook National University in the year 2000. Work done
to the presence of one more impurity. For a one-dimensionady S.B.L. was partially supported by the Korea Science and
system the critical value is found to be 4.22 which deviatesEngineering Foundation under Grant No. KOSEF 981-0207-
prominently from the value estimated from E§) with the  029-2.
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