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Landau theory of second-order phase transitions in ferroelectric films
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A detailed discussion is given of the predictions of the Landau-Devonshire theory for the behavior of thin
ferroelectric films. It is assumed that the phase transition in the bulk is second order, and the theory is extended
by the inclusion in the free-energy density of a term proportional tou¹Pu2 together with a boundary condition
involving an extrapolation lengthd. Expressions for the polarization profileP(z) are given in terms of Jacobi
elliptic functions; some of these are in a clearer and simpler form than has been available previously. Inter-
esting analytic results for the entropy in terms of elliptic integrals and elliptic functions are also presented.
Graphical illustrations of the main results are included. Careful consideration is given to the nature of the phase
transition, and it is concluded that it is second order in all cases.
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I. INTRODUCTION

The way in which ferroelectric phase transitions may
modified by the presence of surfaces and interfaces has
studied for many years and has recently become of gre
urgency because of the application of ferroelectric films
memory devices.1–3 The most important early study was th
due to the IBM group.4–7 They considered a thin film be
tween semiconductor electrodes so that the electric field
transverse to the film and produced a depolarizating fi
They emphasized the point that the electrodes must be
cluded as part of the thermodynamic system and their
result was that depolarization always tends to reduce
critical temperature of the film.

An alternative approach was initiated by the work
Lubensky and Rubin8 on mean-field theory for phase trans
tions in semi-infinite media. Their idea was that for vario
reasons the order parameter, for example, polarizationP in a
ferroelectric, might be a function of distance from the s
face. To include this, a term proportional tou¹Pu2 is added
to the Landau-Devonshire~LD! free-energy density. The in
clusion of this leads to a term in¹2P in the Euler-Lagrange
equation and this in turn means that a boundary condition
P at the surface is required. Clearly ifP is parallel to the
surface there is no depolarizing field and papers using pu
the LD model often stipulate this restriction. A simila
method9 makes use of the Ising model in a transverse fi
~IMTF!. The chain of reasoning used for the LD approa
was already familiar in the continuum model of magnetism10

where it is found that the term inu¹M u2 arises from the bulk
exchange interaction and the boundary condition reflects
a lower coordination number at the surface and second
fact that the surface exchange constants may be diffe
from the bulk values. Similar results hold for the IMTF an
the relationships between the IMTF and LD parameters h
been established for both second-order9 and first-order11

phase transitions.
Many subsequent theoretical developments have purs

one or more of these basic models and because the idea
in a way, inescapable, the formalism has been reinven
more than once. Kretschmer and Binder12,13 discussed the
LD model for a semi-infinite medium and included depola
0163-1829/2001/63~14!/144109~10!/$20.00 63 1441
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ization effects for the special case of a perfectly conduct
electrode. The implications of the LD model, without dep
larization, for a film, were studied by Tilley and Zeks14 for
the case of materials in which the bulk transition is seco
order. The extension to first-order materials has been gi
by Scottet al.15 and by Tanet al.16 In Ref. 14 it is shown
that the polarization profileP(z), i.e., the variation of the
polarization across the film, can be given explicitly in term
of Jacobi elliptic functions. Various important results, ho
ever, and in particular the expression for the critical tempe
ture, can be given in terms of elementary functions. For fi
order materials the differential equation forP is more
complicated and in practice numerical methods
required.15,16 The expression for the critical temperature d
rived in Ref. 14 shows a dependence on the film thicknesL
and this possible size dependence continues to at
attention.17 The formalism of Ref. 14 has recently been pr
sented anew18 and some of the simpler results rederived. Q
et al.19 have numerically evaluated the LD free energy a
claim that even if the bulk transition is second order in so
circumstances the film transition can be first order. We
not convinced by their argument, and we return to the po
in Sec. II A. The LD free-energy functional for first-orde
materials15,16 has been used by Ishikawa and Uemori20 in
their analysis of surface relaxation in PbTiO3 and BaTiO3
nanocrystals as determined by x-ray diffraction. Jiang a
Burskill21 use a variant of the LD method in which the e
pansion coefficients are given an assumed thickness de
dence and they applied this formalism in a discussion of s
effects in PbTiO3 nanoparticles.

Similar calculations to those described for films have be
presented for cylinders22 and spheres,23–25 with the size ef-
fect on the critical temperature again the main focus of
terest. Some attention has also been given to calculatio
the dielectric susceptibility within the LD model.26,27

A general framework for ferroelectric thin films with elec
tric field normal to the interfaces should include both dep
larization effects and the possible intrinsic variation ofP. An
expression for the free energy of a film with metal electrod
combining the LD free energy with the depolarization ener
has been given28,29 but so far little has been done to explo
the implications. It should be mentioned also that Vend
©2001 The American Physical Society09-1
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TABLE I. Size ranges in some recent work on ferroelectric nanoparticles. The first paper is conc
with application of a modified Landau-Devonshire~LD! theory to published data, and the remainder all rep
experimental work. Where LD theory is applied in the analysis, this is noted.

Ref. ~date! Materials/analysis Size range

21 ~1999! Theory ~modified LD! applied to,50 nm
34 ~1994! BaTiO3 crystallites/LD 10 nm–1mm
35 ~1997! BaTiO3 crystallite films 1–8mm film, 8–35-nm crystals
36 ~1997! ~Ba, Sr!TiO3 films/LD 24–160 nm
37 ~1999! ~Ba, Sr!TiO3 ceramics grains.100 nm
38 ~1988! PbTiO3 particles 20–50 nm
39 ~1993! PbTiO3 particles 20–200 nm
40 ~1996! PbTiO3 films .70 nm
41–43~1999–2000! SrTiO3 films 0.3–2mm
44 ~1998! SBT-BTN films 80–500 nm
45 ~1999! SBT films ;200 nm
46 ~1999! SBT films 170 nm
47 ~1999! Pb~Zr, Ti!O3 films 100 nm–1mm
49 ~2000! LB polymers/LD 0.5–20 nm
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and coworkers30,31 have used a formalism similar to the L
one with inclusion of a boundary condition onP in discuss-
ing the dielectric properties of SrTiO3 and BaxSr12xTiO3
films sandwiched between various electrodes. The work
cussed so far is all based on a phenomenological treatme
the ferroelectric. Mention should also be made of the m
fundamental approach taken by Zhou and Newns32 and later
by Sheshadriet al.33 In both of these papers, the startin
point is a Hamiltonian for the anisotropic lattice dynami
that ultimately leads to the phase transition.

Since the aim of this paper is theoretical, we do not g
a critical review of the rapidly increasing body of experime
tal work on size effects in ferroelectric nanostructures. Ho
ever, we believe it is worthwhile to list some recent pape
with no pretense at completeness, in the hope that these
give a way into the literature. Studies of BaTiO3 and
BaxSr12xTiO3 nanocrystals,34 films,35,36 and ceramics37 have
been reported. Work on PbTiO3 particles38,39 and films40 has
appeared. Measurements on the low-temperature pho
spectra of films of the near-ferroelectric SrTiO3 have been
reported by Sirenko and co-workers41–43 and these bear di
rectly on the microscopic theories.32,33 Raman
measurements41,43 are interpreted in terms of microstructur
inhomogeneities in the film. The combination of far-infrar
ellipsometry,42 low-frequency dielectric measurements42

and Raman spectroscopy43 shows that the soft-mode fre
quency is increased in these films relative to the bulk va
and in agreement with the Lyddane-Sachs-Teller relation
static dielectric constant«~0! is reduced. Application of a
static electric field further hardens the soft mode and redu
«~0!.43 A number of studies on various ferroelectric thin-fil
structures may also be cited44–47and a general review of th
whole topic is given in a recent monograph.48

In view of the growing interest in the properties of ferr
electric thin films, we believe it is worthwhile to reconsid
the results that can be derived from the basic LD mode
might be said that with the trend to lower thicknesses the
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model has outlived its usefulness but in our view this is n
so and in fact it is timely to extend the known body
results. In support of this, we present in Table I a summary
of thickness and size scales in a representative selectio
recent work on ferroelectric nanoparticles. It is seen tha
almost all cases the size is upwards of 20 nm. The LD mo
would generally be regarded as applicable for sizes ab
about 20–50 nm and it is noteworthy that it is used in t
analysis of the experimental results for the thinnest films49 in
the table. As far as applications go, Aucielloet al.2 mention
thicknesses of less than 200 nm as necessary for fu
nonvolatile ferroelectric random-access memory~NV-
FRAM’s!, while Scott50 discusses the possibility of thick
nesses as low as 30 nm. The purpose of this paper i
clarify the general analytic solution for a film of a secon
order material, to give it in the most convenient form f
subsequent generalization to multiple layers, and to giv
much fuller account of the basic thermodynamic functio
than has been done previously. We include a careful anal
of the order of the phase transition.

II. FORMALISM AND POLARIZATION PROFILES

The free energy is written in the form14

F

S
5E

2L/2

L/2

dzF A

2«0
P21

B

4«0
2 P41

D

2«0
S dP

dzD 2G
1

D

2«0d
~P2

2 1P1
2 !, ~1!

where S is the area of the film with plane surfaces atz
56L/2 and P65P(6L/2). The constantsB and D are
positive andA is taken in the formA5a(t21) where t
5T/TC0 with TC0 the critical temperature of the bulk mate
rial. The D term inside the integral in Eq.~1!, which repre-
sents the additional free energy due to spatial variation oP,
may be regarded as well established since it is necessa
9-2
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the theory of incommensurate structures51,52 and in models
of domain walls.53 The final term involvingd is symmetry
allowed and leads to a necessary boundary condition. It
also be derived from the continuum limit of the IMTF9

Variation of Eq.~1! about the equilibrium formP(z) shows
that this satisfies the Euler-Lagrange equation

D
d2P

dz2 2AP2
B

«0
P350 ~2!

with boundary conditions

dP

dz
6d21P50 at z56L/2. ~3!

It follows from Eq. ~3! that if the extrapolation lengthd is
positive,P(z) turns down near the surface, and if it is neg
tive, P(z) turns up. In consequence, the critical temperat
TC of the film is reduced belowTC0 for positive d and in-
creased for negatived. A detailed study of the size depen
dence ofTC in a film has been given recently.17

Equation~2! has a first integral~energy integral! which
leads to

dP

dz
56S B

2D D 1/2S P4

«0
2 1

2A

B«0
P21

4G

B D 1/2

, ~4!

where G is the constant of integration. The extremum
P(z) is atz50 so that the central valueP(0) is a solution of
the quadratic equation corresponding todP/dz50:

P41
2«0A

B
P21

4«0
2G

B
5~P22P1

2!~P22P2
2!50, ~5!

where the rootsP1
2 and P2

2 have been introduced for late
use; we order the roots asP2

2.P1
2. It follows from Eq. ~5!

that the productP1
2P2

2 has the same sign asG and it will be
seen that whileP2

2 is always positive for both signs ofd, in
the case ofd,0 there is a temperature interval in whichG
and thereforeP1

2 are negative.
TheP integral resulting from Eq.~4! can be expressed b

inverse elliptic functions54–56 so that ultimatelyP(z) is ex-
pressed in terms of an elliptic function. The detailed for
depend on the sign ofd.

A. dÌ0

In this case it can be shown that 0<G<A2/4B so that,P1
2

andP2
2 are both positive. Since positived leads to a decreas

of P(z) at the surface of the film we have the inequaliti
0<P(z)<P1<P2 . The central valueP(0) is the maximum
value ofP(z) and is in fact equal toP1 . The expression for
P(z) is

P~z!5P1 sn~K2z/j,l! ~6!

in standard notation for elliptic functions.54 The modulusl is
given by

l5P1 /P2 , ~7!
14410
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K[K(l) is the complete elliptic integral, and the sca
lengthj is

j5~2«0
2D !1/2/~B1/2P2!. ~8!

Equation~6! is an alternative form of the much more cum
bersome expression given previously,14 to which it is related
by linear transformation into Legendre’s standard form.54

The expressions in Eqs.~5!–~7! depend on the one
temperature-dependent parameterG, which is found from the
boundary condition~3!. Substituting from Eq.~6! we find
that this takes the form

j

d
snS K2

L

2j D2cnS K2
L

2j DdnS K2
L

2j D50. ~9!

Examples of polarization profilesP(z) calculated from Eqs.
~6! and~9! have been published previously14 and will not be
emphasized here. In this study we concentrate on the t
perature dependence of the parametersG, P(L/2), andP1 ,
and related thermodynamic functions.

It is in the present case of positived that Quet al.19 sug-
gest that the phase transition may be of first order and
now explore this possibility. We start by finding from Eq.~9!
the temperatureTCF for which P1→0 and thereforeP(z) for
all z tends to zero. If the transition is first order, thenTCF has
the significance of a critical superheating temperature for
ferroelectric phase. WhenP1→0 then alsoG→0, l→0, and
K→p/2. The elliptic functions then reduce to trigonometr
functions and Eq.~9! gives forTCF , which is less than the
bulk critical temperatureTC0 :

tan~L/2j1!5j1 /d, ~10!

where

j15~D/uAu!1/2 ~11!

is the usual temperature-dependent coherence length.
the point about Eq.~10! is that it is identical to the expres-
sion for the critical supercooling temperature for t
paraelectric phase. This was shown previously14 but it may
be helpful to review the argument. To find the supercool
temperature we imagine that the temperature is lowered f
aboveTC0 ; the supercooling temperature is the one at wh
the solutionP50 of Eq. ~2! becomes unstable for infinites
mal perturbations. This can be found by solving the line
ized form of Eq.~2! subject to the boundary conditions. Th
solution is

P~z!5P0 cos~z/j1! ~12!

with j1 given by Eq.~11! andP0 arbitrary. Substitution into
the boundary conditions gives the equation for the superc
ing temperature, which is easily seen to be the same as
~10!. Now the issue seems clear: for a first-order transit
the thermodynamic critical temperature lies between the
percooling and superheating temperatures. When these
equal, as here, then there cannot be any hysteresis an
transition must be second order.

The above argument may be seen as quite satisfac
However, the claim for a first-order transition19 is based on a
9-3
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FIG. 1. Temperature dependence of the s
face polarizationps found from Eq.~6! and of the
free energyf 5FB/a2S calculated by substitution
of Eq. ~6! in Eq. ~1! for d53 and 10.
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statement that the free energy, given by the variational m
mum of Eq. ~1!, is positive in some temperature interv
below TCF . For the sake of completeness therefore we d
cuss this possibility. First, it is not difficult to show tha
when the solution~12! is substituted into Eq.~1! the qua-
dratic part ofF, including the surface term, vanishes becau
of the boundary condition~10!; the corresponding result fo
negatived was pointed out previously.14 Now we consider
some temperatureT belowTCF and apply a variational argu
ment. We use Eq.~12! as the variational function with the
value ofj1 given by Eq.~11! with A as the value forTCF :
j15(D/uACFu)1/2 with ACF5a(TCF2TC0)/TC0 , which is
negative becauseTCF,TC0 . In view of Eq. ~10! this func-
tion satisfies the boundary conditions. Note thatAD
5A(TCF)2A(T) is positive becauseT,TCF . Substitution
of Eq. ~12! into Eq. ~1! produces a number of elementa
integrals which can be evaluated to yield

F

S
52

1

2
ADP0

2FL

2
1

j1

2
sinS L

j1
D G

1
1

4
BP0

4F3L

8
1

j1

4
sinS L

j1
D1

j1

32
sinS 2L

j1
D G . ~13!

Since the coefficient ofP0
2 is negative and the coefficient o

P0
4 is positive, the minimum value ofF found within this

approximation is negative, and therefore the exact va
must also be negative. We have verified this proof thatF is
negative forT,TCF by numerical evaluation using the exa
solution~6! for a selection of values of the parameters and
example is shown in Fig. 1. The forms of the graphs
consistent with the functional dependencesF}(TCF2T)2

and Ps}(TCF2T)1/2 that might be expected from Eq.~13!.
We now simplify the notation by identifyingTCF[TC .

B. dË0

In this case the analytic work is more complicated b
cause there is a temperature intervalT0<T<TC in which
G,0 and P1

2<0<P2
2<P2(z). In the interval whereG is

negative,P(z) takes the form, as previously derived,14
14410
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e
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P~z!5
P2

cn~z/z,l1!
, ~14!

where the modulus is given by

l1
252P1

2/~P2
22P1

2! ~15!

and the scaling length by

z25
2«0

2D

B~P2
22P1

2!
. ~16!

The temperature dependence ofG, and therefore of all the
parameters in Eq.~14!, are derived from the boundary con
dition ~3!, which gives

snS L

2z DdnS L

2z D1
z

d
cnS L

2z D50. ~17!

At lower temperatures,T,T0 , the parameters satisfy th
inequalitiesG.0, 0,P1

2,P2
2,P2(z) and the polarization

profile is found to be

P~z!5
P2

sn~K2z/j,l!
, ~18!

wherel andj are given by the previous expressions~7! and
~8! andK[K(l) as before. Equation~18! is an improvement
on the previous expression,14 and is related to it by linear
transformation into Legendre’s standard form. Application
the boundary condition~3!–~15! gives the equation for the
temperature dependence ofG, etc.:

cnS K2
L

2j DdnS K2
L

2j D1
j

d
snS K2

L

2j D50. ~19!

At the temperatureT0 which divides the regions wher
Eqs.~14! and ~18! apply,G50. TheP integral in Eq.~4! is
elementary at this particular temperature and insertion of
solution into the boundary condition~3! gives the equation
for T0 :14

tan~L/2j1!52j1 /d. ~20!
9-4
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FIG. 2. Temperature dependence ofg, p0 ,
and ps for the two positive valuesd53 and 10.
The inset shows the polarization profileP(z),
calculated from Eq.~6!, for d53 andt50.5 ~sec-
tion marked!.
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The film critical temperatureTC is found from Eqs.~14! and
~17!. As T→TC , l1→1 so that the elliptic functions becom
hyperbolic and Eq.~17! simplifies to

tanh~L/2j1!52j1 /d. ~21!

It is accepted that for negatived the film phase transition is
second order. For the sake of completeness, we point out
Eq. ~21!, which in principle gives the critical superheatin
temperature of the ferroelectric phase, is identical to the
pression previously derived14 for the critical supercooling
temperature of the paraelectric phase. This confirms tha
phase transition is second order.

III. THERMODYNAMIC FUNCTIONS

We now turn to a more explicit discussion of the entro
and specific heat than has been given before. The expres
for the entropyS is derived from Eq.~1! by means ofS
52(]F/]T)P , and this leads to14

S

S
5

1

2

dA

dT E
2L/2

L/2

P2dz. ~22!

The integral in Eq.~22! can be evaluated explicitly for al
three expressions in Eqs.~6!, ~14!, and~18!. First, for posi-
tive d substitution of Eq.~6! gives
14410
at
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S
52

ajP2
2

«0TC0
F L

2j
2E~L/2j!1

l2 sn~L/2j!cn~L/2j!

dn~L/2j! G ,
~23!

whereE(L/2j) is the incomplete elliptic integral of the sec
ond kind, the modulus of the elliptic functions isl, given by
Eq. ~7!, andj is given by Eq.~8!. For negatived the results
are

S

S
52

ajP2
2

«0lTC0
F L

2j
2E~L/2j!1

dn~L/2j!sn~L/2j!

cn~L/2j! G
for 0,T,T0 ~24!

and

S

S
52

azP2
2

«0TC0~12l1
2!

F L

2z
2E~L/2z!

1
~12l1

2!sn~L/2z!cn~L/2z!

dn~L/2z!
G for T0,T,TC.

~25!

The heat capacity is
FIG. 3. Temperature dependence ofg, p0 ,
and ps for the two negative valuesd523 and
210. The inset shows profilesP(z) for d523.
These are calculated from Eq.~14! for t50.5 and
from Eq. ~18! for t51.0 and 1.2.
9-5
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FIG. 4. Dependence on dimensionless thic
nessl of g, p0 , andps at temperaturet50.5 for
surface parametersd53 and 10.
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C5T
dS

dT
. ~26!

The temperature dependence in Eqs.~23!–~26! is partly ex-
plicit, through the arguments of the elliptic functions, but
addition there is an implicit part arising from the temperatu
dependence of the parameterG as shown subsequently i
Figs. 2 and 3. For the illustrations in the next section
have therefore evaluated Eq.~26! by numerical differentia-
tion of the entropy curves.

IV. NUMERICAL RESULTS

We present here a range of graphical results based on
formulas that have been derived. The graphs use a numb
dimensionless variables, defined as follows:

t5T/TC0 , ~27!

whereTC0 , as in Eq.~1!, is the bulk critical temperature.

l 5L/j0 , ~28!

whereL is the film thickness andj0 is the zero-temperatur
value of the lengthj1 that is defined in Eq.~11!, namely
j05(D/a)1/2;

g5GB/a2, ~29!
14410
e

e

he
of

P05P~0!/P0` , ~30!

whereP(0) is the central (z50) value ofP(z) and P0` is
the zero-temperature value for a bulk material, i.e.,P0`

5(«0a/B)1/2;

Ps5P~L/2!/P0` , ~31!

whereP(L/2) is the surface value; and finally

d5d/j0 , ~32!

whered is the surface extrapolation length of Eqs.~1! and
~3!.

Figures 2 and 3 show the temperature dependence o
rametersg, p0 , and ps for two positive and two negative
values ofd. The variation with temperature of the energ
integral g is obtained from Eq.~9! for positive d and from
Eqs.~17! and~19! for negatived. For positived, g decreases
from a positive value atT50 to zero at the critical tempera
ture TC . For negatived there are two re´gimes:g.0 for T
,T0 and g,0 for T0,T,TC where T0 is given by Eq.
~20!. It follows from the formulas of Sec. II that the temper
ture dependence ofp0 comes partly from its dependence o
g. Because of Eqs.~6!, ~14!, and~18!, P(0) at all tempera-
tures is equal toP1 ~positived! or P2 ~negatived!, the quan-
tities defined in Eq.~5!. The surface polarization,P(L/2)
k-
FIG. 5. Dependence on dimensionless thic
nessl of g, p0 , andps at temperaturet50.5 for
surface parametersd523 and 210. For all
negatived, the values diverge forl→0 as p0

→`, ps→`, andg→2`; the graphs shown are
truncated at convenient points.
9-6
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FIG. 6. Dependence on dimensionless thic
nessl of the critical temperaturetC5TC /TC0 for
d55 ~lowest curve!, 10, 15, and 20~highest
curve!.
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5P(2L/2) is calculated from the same equations. For b
positive and negatived, a continuous change ofp0 and ps
with temperature is consistent with the fact that the ph
transition in this model is second order.

There continues to be considerable interest in the stud
the size effect on the phase transition properties of ferroe
tric particles and films.17 We show in Figs. 4 and 5 som
results for the thickness dependence ofg, p0 , and ps . The
limiting behavior ofp0 andps whend is positive, Fig. 4, can
be deduced analytically from Eq.~6!. First, suppose that th
temperaturet is fixed. When the thickness approaches
critical valueLC at which p0 and ps vanish for thist then
G→0 and T→TC(,TC0). Hence P(0)→0 @in this case
P(0) is P1# and in addition P(6L/2)5P1 sn(K2L/2j)
→0. With this condition, from Eq. ~10! we have
tan(LC/2jC)5jC /d, where jC5j0 /ADT and DT5TC0
2TC . Thus the critical thickness of the film is

LC~ t !52jC tan21S jC

d D . ~33!

As stated in the caption, in the case of negatived p0 andps
do not show a similar size effect; in fact,g becomes more
negative asL decreases with the consequence thatp0 andps
ultimately diverge.
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For positive d it is also of interest to define a critica
thicknessL1C as the value for which the film critical tem
peratureTC given by Eq. ~10! vanishes. WhenTC→0, it
follows from Eq. ~11! that j1→j0 /ATC0 so that Eq.~10!
gives

L1C5
2j0

ATC0

tan21S j0

dATC0
D ~34!

which shows the dependence ond of the critical thickness
for which TC→0. As d→`, L1C→0. Some results are
shown in Fig. 6.

In the case of negatived, the size dependence oftC is
found from Eq.~20! and some results are plotted in Fig.
As seen there,tC increases with decreasingl and the effect
becomes more marked asd→0.

The analytic expressions for the thermodynamic functio
presented in Sec. III are new, as far as we know, and we n
give some illustrations of the results. The analytic expr
sions for the entropy in Eqs.~23!–~25! are plotted in Figs. 8
and 9 for typical positive and negatived values. For both
positive and negatived the entropy is continuous for th
whole range of temperature withS→0 ~the paraelectric-
phase value! at TC . Exactly the same graphs for the entrop
are obtained by numerical integration of Eq.~22!. As men-
k-
FIG. 7. Dependence on dimensionless thic
nessl of the critical temperaturetC5TC /TC0 for
d525 ~highest curve!, 210, 215, and 220
~lowest curve!.
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FIG. 8. Temperature dependence of the e
tropy S85S/(a2j0 /TC0B) and heat capacityC8
5C/(a2j0 /TC0B), whereC5TdS/dT for l 52
and d53 ~dashed curves!, d510 ~continuous
curves!.
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tioned previously, the heat capacity is found from Eq.~26!
by means of numerical differentiation. As is to be expec
for these second-order phase transitions, for both pos
and negatived there is a finite discontinuity in the heat c
pacity at the film critical temperatureTC .

We draw attention to the fact that on the curves for ne
tive d, Fig. 9, bothS andC are continuous through the bul
critical temperatureTC0 (t51). This is of some interest. Fo
a semi-infinite medium withd,0, it is a well-known
result8,12,13 that two phase transitions should be seen,
higher-temperature one atTCS.TC0 for which the surface
orders, and the second atTCB[TC0 for which the bulk or-
ders. By analogy, we speculated earlier14 that asL becomes
large, in addition to the phase transition atTC.TC0 an ‘‘in-
cipient bulk transition,’’ marked by some specific-he
anomaly, should appear atTC0 . Our numerical work now
shows that this is not so. The reason appears to be tha
coherence lengthj1 of Eq. ~11! diverges asT→TC0 . Thus
the ‘‘surface phase’’ penetrates deep into the bulk for te
peratures near toTC0 and the limitL/j1→` is unattainable.

V. DISCUSSION

We have given a detailed account of a range of anal
results that can be derived from the model summarized
Eq. ~1!. For the sake of illustration in Sec. IV we have us
14410
d
e

-

e

t

the

-

ic
in

the simple temperature dependencesA5a(T/TC021) and
B5const. These cannot be expected to hold over the wh
temperature range in a real material but the analytic result
the paper in Secs. II and III hold for any temperature dep
dence of these parameters. In view of the increasing inte
in ferroelectric films we think it is worthwhile to present ou
results on this well studied model. First, we have correc
some misconceptions in the literature. Second, the res
give a basis for a number of possible extensions. Discus
of ferroelectric superlattices is growing57–62and it should be
possible to extend the present work to find polarization p
files and thermodynamic functions for superlattices. In d
vices the electric field is transverse to the film so inclusion
the depolarization field is an important matter. Since a rat
general free-energy expression including the effects of de
larization is available27,28 and other approaches have a
peared in the literature63 it should be possible to extend th
present results to include depolarization. Likewise the ext
sion to first-order materials could be taken beyond wha
known at present.15,16 Both of these generalizations woul
have to be primarily numerical and we believe that our a
lytic results would be useful in guiding numerical work.

We have assumed that the LD parameters in Eq.~1! are
independent of the film thicknessL. This is the conventiona
view64 and it is based on the fact that in the derivation of E
n-
FIG. 9. Temperature dependence of the e
tropy S85S/(a2j0 /TC0B) and heat capacityC8
5C/(a2j0 /TC0B), whereC5TdS/dT for l 52
and d523 ~dashed curves!, d5210 ~continu-
ous curves!.
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~1! as the continuum limit of the IMTF~Refs. 9, 11, and 64!
it is found that the coefficients are indeed independent oL.
The derivation given in Ref. 9 and later11,64 is for a semi-
infinite medium, but the proof goes through for a film pr
vided the integral for the free energy runs from2L/2 to L/2
rather than 0 tò . The basic condition for the derivation t
hold is that the film is sufficiently thick for a continuum
variable^Sz& to be defined as an average over a volume so
lattice constants across. It is not necessary, for example,
L should be large on the scale of the coherence length
fined in Eq.~11!. It is the requirement forL to be relatively
large on the atomic scale that underlies the view, mentio
in Sec. I, that a thickness of somewhat greater than 20 n
required for applicability of the LD theory. We mentioned
Sec. I that Jiang and Burskill21 have proposed a model fo
ferroelectric thin films in which the parametersA andB are
thickness as well as temperature dependent. This may
very useful approach for analyzing experimental results
one may ask where the thickness dependence comes f
One approach would be to take the present formalism
introduce the spatial average of the polarizationP̄
5*2L/2

L/2 P(z)dz. An expansion of the free energy in terms

P̄ could be constructed with use of our expressions forP(z)
and the parametersĀ and B̄ in that expansion would auto
matically depend onL.

The most uncertain parameter in this formulation is
‘‘extrapolation length’’d that appears in the free energy~1!
and therefore in the boundary condition~3!. Since the Euler-
Lagrange Eq.~2! is a second-order differential equatio
some boundary condition is necessary and is usu
invoked.20,30,31A similar question arises in formulations u
ing the IMTF where the different surface coordination nu
ber and possible different surface exchange constant lead
spatial variationP(z); as mentioned in Sec. I expressions f
d in terms of the IMTF constants have been derived.9,11

Some discussion of the physical origin of the boundary c
dition for perovskites is given by Ishikawa and Uemori20 and
they suggest that the relaxation of thec/a ration near surface
may play a major part. Vendik and Zubko30 analyze capaci-
tance measurements on films of the ‘‘incipient ferroelectri
14410
-

e
hat
e-

ed
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ut
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nd
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e

lly

-
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SrTiO3 (TC'0 K) with gold and high-TC superconductor
~YBCO! electrodes with the tentative conclusion thatd'0
for the Au electrodes andd'` for YBCO. The first result,
however, does not apply for BaxSr12xTiO3 in contact with a
Pt electrode.31 Finally in this context, we should like to draw
attention to our own proposal65 that far-infrared spectros
copy, as a dynamic probe, may be much more sensitive
ferroelectric size effects than quasistatic measurements
capacitance.

The implications of the free energy~1! for a bulk mate-
rial, that is, Eq.~1! without the final surface-related term
have been extensively discussed in the literature on statis
physics, but since the emphasis here is specifically on fe
electric films it is not relevant to discuss this literature
detail. It is worth pointing out that for the bulk material
soliton contribution to the specific heat has be
discussed,66,67 although as far as we are aware there is
experimental evidence for this contribution in bulk ferroele
trics, for which the LD result applies quite accurately. O
expressions derived in Sec. III and illustrated in Sec. IV
the generalization of the bulk LD result and could therefo
serve as a starting point in the analysis of thin-film spec
heats. It is possible that a soliton contribution should app
as a correction to the results derived in Sec. III. However
order to estimate the magnitude of this term it would
necessary to extend the soliton calculations to the finite
ometry described by Eq.~1! with the final term included.
This would be likely to lead to a lengthy analysis, part
because of the asymmetry in Eq.~1! between thez axis and
the other axes. This analysis has not yet been attempted
since there is no compelling experimental evidence to sh
that it is necessary we regard it as lying beyond the scop
the present paper.

ACKNOWLEDGMENTS

We are grateful to Professor B. Zeks, Professor W.
Zhong, Dr. R. L. Stamps, and Khian-Hooi Chew for helpf
discussion of this work. The work was supported by IRP
~Malaysian Government! Grant No. 09-02-05-6001.
,

s.
*Corresponding author. FAX:160 4 229 5257. Email
address: drt@pd.jaring.my

1J. F. Scott, Ferroelectr. Rev.1, 1 ~1998!.
2O. Auciello, J. F. Scott, and R. Ramesh, Phys. Today51 ~7!, 22

~1998!.
3J. F. Scott,Ferroelectric Memories~Springer, Berlin, 2000!.
4I. P. Batra, P. Wurfel, and B. D. Silverman, Phys. Rev. Lett.30,

384 ~1973!.
5I. P. Batra, P. Wurfel, and B. D. Silverman, J. Vac. Sci. Techno

10, 687 ~1973!.
6R. R. Mehta, B. D. Silverman, and J. T. Jacobs, J. Appl. Phys.44,

3379 ~1973!.
7P. Wurfel and I. P. Batra, Phys. Rev. B8, 5126~1973!.
8T. C. Lubensky and M. H. Rubin, Phys. Rev. B12, 3885~1975!.
9M. G. Cottam, D. R. Tilley, and B. Zeks, J. Phys. C17, 1793

~1984!.
l.

10D. L. Mills, Phys. Rev. B3, 3887~1971!.
11Y. G. Wang, W. L. Zhong, and P. L. Zhang, Phys. Rev. B53,

11 439~1996!.
12R. Kretschmer and K. Binder, Phys. Rev. B20, 1065~1979!.
13K. Binder, Ferroelectrics35, 99 ~1981!.
14D. R. Tilley and B. Zeks, Solid State Commun.49, 823 ~1984!.
15J. F. Scott, H. M. Duiker, P. D. Beale, B. Pouligny, K. Dimmler

M. Parris, D. Butler, and S. Eaton, Physica B150, 160 ~1988!.
16E-K. Tan, J. Osman, and D. R. Tilley, Solid State Commun.116,

61 ~2000!.
17Y. Ishibashi, H. Orihara, and D. R. Tilley, J. Phys. Soc. Jpn.67,

3292 ~1998!.
18Y. Park, Solid State Commun.112, 167 ~1999!.
19B. D. Qu, W. L. Zhong, and P. L. Zhang, J. Phys.: Conden

Matter 6, 1207~1994!.
20K. Ishikawa and T. Uemori, Phys. Rev. B60, 11 841~1999!.
9-9



p,

ev

un

un

.

l.

ys

.

pl.

.

Z.

J

.

.

.

l

g,

F.

LYE-HOCK ONG, JUNAIDAH OSMAN, AND D. R. TILLEY PHYSICAL REVIEW B 63 144109
21B. Jiang and L. A. Burskill, Phys. Rev. B60, 9978~1999!.
22Y. G. Wang, P. L. Zhang, C. L. Wang, W. L. Zhong, N. Nap

and D. R. Tilley, Chin. Phys. Lett.12, 110 ~1995!.
23W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, Phys. R

B 50, 698 ~1994!.
24Y. G. Wang, W. L. Zhong, and P. L. Zhang, Solid State Comm

90, 329 ~1994!.
25Y. G. Wang, W. L. Zhong, and P. L. Zhang, Solid State Comm

92, 519 ~1994!.
26C. L. Wang and S. R. P. Smith, J. Phys.: Condens. Matter7, 7163

~1995!.
27C. L. Wang, S. R. P. Smith, and D. R. Tilley, Ferroelectrics186,

33 ~1996!.
28D. R. Tilley, Ferroelectric Ceramics, edited by N. Setter and E
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