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Landau theory of second-order phase transitions in ferroelectric films
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A detailed discussion is given of the predictions of the Landau-Devonshire theory for the behavior of thin
ferroelectric films. It is assumed that the phase transition in the bulk is second order, and the theory is extended
by the inclusion in the free-energy density of a term proportion&Vie|? together with a boundary condition
involving an extrapolation length. Expressions for the polarization profi{z) are given in terms of Jacobi
elliptic functions; some of these are in a clearer and simpler form than has been available previously. Inter-
esting analytic results for the entropy in terms of elliptic integrals and elliptic functions are also presented.
Graphical illustrations of the main results are included. Careful consideration is given to the nature of the phase
transition, and it is concluded that it is second order in all cases.
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[. INTRODUCTION ization effects for the special case of a perfectly conducting
electrode. The implications of the LD model, without depo-
The way in which ferroelectric phase transitions may belarization, for a film, were studied by Tilley and zéfdor
modified by the presence of surfaces and interfaces has be#re case of materials in which the bulk transition is second
studied for many years and has recently become of great@rder. The extension to first-order materials has been given
urgency because of the application of ferroelectric films inby Scottet al® and by Tanet al!® In Ref. 14 it is shown
memory device$3 The most important early study was that that the polarization profil®(z), i.e., the variation of the
due to the IBM groufd=’ They considered a thin film be- polarization across the film, can be given explicitly in terms
tween semiconductor electrodes so that the electric field wasf Jacobi elliptic functions. Various important results, how-
transverse to the film and produced a depolarizating fieldever, and in particular the expression for the critical tempera-
They emphasized the point that the electrodes must be inure, can be given in terms of elementary functions. For first-
cluded as part of the thermodynamic system and their keprder materials the differential equation f& is more
result was that depolarization always tends to reduce theomplicated and in practice numerical methods are
critical temperature of the film. required*®>® The expression for the critical temperature de-
An alternative approach was initiated by the work ofrived in Ref. 14 shows a dependence on the film thickhess
Lubensky and Rubfhon mean-field theory for phase transi- and this possible size dependence continues to attract
tions in semi-infinite media. Their idea was that for variousattention:’ The formalism of Ref. 14 has recently been pre-
reasons the order parameter, for example, polarizd&tiona  sented aneW and some of the simpler results rederived. Qu
ferroelectric, might be a function of distance from the sur-et al® have numerically evaluated the LD free energy and
face. To include this, a term proportional [f6P|? is added  claim that even if the bulk transition is second order in some
to the Landau-Devonshir@.D) free-energy density. The in- circumstances the film transition can be first order. We are
clusion of this leads to a term 2P in the Euler-Lagrange not convinced by their argument, and we return to the point
equation and this in turn means that a boundary condition om Sec. Il A. The LD free-energy functional for first-order
P at the surface is required. Clearly ff is parallel to the material$®!® has been used by Ishikawa and Uerffbin
surface there is no depolarizing field and papers using purelheir analysis of surface relaxation in Pbgi@nd BaTiQ
the LD model often stipulate this restriction. A similar nanocrystals as determined by x-ray diffraction. Jiang and
method makes use of the Ising model in a transverse fieldBurskill?! use a variant of the LD method in which the ex-
(IMTF). The chain of reasoning used for the LD approachpansion coefficients are given an assumed thickness depen-
was already familiar in the continuum model of magnetfsm dence and they applied this formalism in a discussion of size
where it is found that the term iV M|? arises from the bulk effects in PbTiQ nanoparticles.
exchange interaction and the boundary condition reflects first Similar calculations to those described for films have been
a lower coordination number at the surface and second theresented for cylindefé and sphere&~2° with the size ef-
fact that the surface exchange constants may be differerfiéct on the critical temperature again the main focus of in-
from the bulk values. Similar results hold for the IMTF and terest. Some attention has also been given to calculation of
the relationships between the IMTF and LD parameters havthe dielectric susceptibility within the LD mod#&i:?’
been established for both second-ofdend first-ordet* A general framework for ferroelectric thin films with elec-
phase transitions. tric field normal to the interfaces should include both depo-
Many subsequent theoretical developments have pursuddrization effects and the possible intrinsic variatiorPofAn
one or more of these basic models and because the ideas ae&pression for the free energy of a film with metal electrodes
in a way, inescapable, the formalism has been reinventedombining the LD free energy with the depolarization energy
more than once. Kretschmer and Binder discussed the has been givefi?° but so far little has been done to explore
LD model for a semi-infinite medium and included depolar-the implications. It should be mentioned also that Vendik
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TABLE I. Size ranges in some recent work on ferroelectric nanoparticles. The first paper is concerned
with application of a modified Landau-DevonshiteD) theory to published data, and the remainder all report
experimental work. Where LD theory is applied in the analysis, this is noted.

Ref. (date Materials/analysis Size range
21 (1999 Theory (modified LD) applied to<50 nm
34 (1999 BaTiO; crystallites/LD 10 nm—2Jum
35(1997) BaTiO; crystallite films 1-8um film, 8—35-nm crystals
36 (1997 (Ba, SyTiO4 films/LD 24-160 nm

37 (1999 (Ba, SyTiO4 ceramics grains>100 nm
38(1988 PbTiO; particles 20-50 nm

39 (1993 PbTiO, particles 20-200 nm

40 (1996 PbTiO, films >70 nm
41-43(1999-2000 SrTiO; films 0.3—-2um

44 (1998 SBT-BTN films 80-500 nm

45 (1999 SBT films ~200 nm

46 (1999 SBT films 170 nm

47 (1999 Ph(Zr, Ti)O; films 100 nm—1um

49 (2000 LB polymers/LD 0.5-20 nm

and coworker®>! have used a formalism similar to the LD model has outlived its usefulness but in our view this is not
one with inclusion of a boundary condition ¢hin discuss- so and in fact it is timely to extend the known body of
ing the dielectric properties of SrTigdand BaSr _,TiO;  results. In support of this, we present in Talhla summary
films sandwiched between various electrodes. The work disaf thickness and size scales in a representative selection of
cussed so far is all based on a phenomenological treatment tfcent work on ferroelectric nanoparticles. It is seen that in
the ferroelectric. Mention should also be made of the morelmost all cases the size is upwards of 20 nm. The LD model
fundamental approach taken by Zhou and Nelwasd later would generally be regarded as applicable for sizes above
by Sheshadriet al3® In both of these papers, the starting about 20—50 nm and it is noteworthy that it is used in the
point is a Hamiltonian for the anisotropic lattice dynamicsanalysis of the experimental results for the thinnest fifhirs
that ultimately leads to the phase transition. the table. As far as applications go, Aucie#ibal? mention
Since the aim of this paper is theoretical, we do not givethicknesses of less than 200 nm as necessary for future
a critical review of the rapidly increasing body of experimen-nonvolatile ferroelectric random-access memof(V-
tal work on size effects in ferroelectric nanostructures. HowFRAM’s), while Scott® discusses the possibility of thick-
ever, we believe it is worthwhile to list some recent papershesses as low as 30 nm. The purpose of this paper is to
with no pretense at completeness, in the hope that these malarify the general analytic solution for a film of a second-
give a way into the literature. Studies of BaTi@nd order material, to give it in the most convenient form for
BaSr,_, TiO5 nanocrystals? films >3 and ceramic¥ have  subsequent generalization to multiple layers, and to give a
been reported. Work on PbTi@articles®*°and fim$°has  much fuller account of the basic thermodynamic functions
appeared. Measurements on the low-temperature phondhan has been done previously. We include a careful analysis
spectra of films of the near-ferroelectric SrEi@ave been of the order of the phase transition.
reported by Sirenko and co-work&ts** and these bear di-
rectty on the microscopic theorié$3®® Raman Il. FORMALISM AND POLARIZATION PROFILES
measurement§*®are interpreted in terms of microstructural

inhomogeneities in the film. The combination of far-infrared The free energy is written in the forth

ellipsometry?? low-frequency dielectric measuremefts, E 2 A B D [dP\2

and Raman spectroscdPyshows that the soft-mode fre- §=J dz 2—P2+—2P4+ Z—(d—)

guency is increased in these films relative to the bulk value wL2 &o 4eg €0\ 0z

and in agreement with the Lyddane-Sachs-Teller relation the

static dielectric constant(0) is reduced. Application of a + ﬂ(PEJrPi), (1)
static electric field further hardens the soft mode and reduces &o

&(0).** A number of studies on various ferroelectric thin-film where S is the area of the film with plane surfaces at
structures may also be citéd*’ and a general review of the ==*L/2 and P.=P(*L/2). The constant® and D are
whole topic is given in a recent monografsh. positive andA is taken in the formA=a(t—1) wheret

In view of the growing interest in the properties of ferro- =T/T, with T, the critical temperature of the bulk mate-
electric thin films, we believe it is worthwhile to reconsider rial. The D term inside the integral in Eq1), which repre-
the results that can be derived from the basic LD model. Isents the additional free energy due to spatial variatioR, of
might be said that with the trend to lower thicknesses the LDmay be regarded as well established since it is necessary in
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the theory of incommensurate structdfe¥ and in models K=K(\) is the complete elliptic integral, and the scale
of domain walls>® The final term involvings is symmetry  |ength ¢ is

allowed and leads to a necessary boundary condition. It can

also be derived from the continuum limit of the IMPF. é=(282D)Y%(BY?P,). (8)
Variation of Eq.(1) about the equilibrium fornPP(z) shows

that this satisfies the Euler-Lagrange equation Equation(6) is an alternative form of the much more cum-

bersome expression given previouthtp which it is related

d2p B by linear transformation into Legendre’s standard fafm.
D ?_AP_ —p3=0 2) The expressions in Eq95)—(7) depend on the one
d €o temperature-dependent paramé®ewhich is found from the
with boundary conditions ?ho%rlﬂgr); ckondti:]ior]\((S). Substituting from Eq(6) we find
at this takes the form
dpP
—+5P=0 atz=zxL/2. 3 € L L L
dz 53 K—2—§ —cn K_Z_g dn K—2—§ =0. 9

It follows from Eq. (3) that if the extrapolation lengti is Examples of polarization profileB(z) calculated from Egs.

positive, P(z) turns down near the surface, and if it is nega—(6) and(9) have been published previouthand will not be
tive, P(2) turns up. In consequence, the critical temperature

T of the film is reduced below oo for positive & and in emphasized here. In this study we concentrate on the tem-
C COo -
creased for negativé. A detailed study of the size depen- perature dependence of the parame@r#(L/2), andP,

dence ofT¢ in a film has been given recently. and related thermodynamic functions.

. > . : It is in the present case of positivethat Quet al** sug-
Equation (2) has a first integralenergy integral which gest that the phase transition may be of first order and we

|19

leads to now explore this possibility. We start by finding from E§)
dP B \V2/p4 oA 4G\ 12 the temperaturé& - for which P;— 0 and thereforé(z) for
— == ( —) (—2 +—P%+— , (4)  all ztends to zero. If the transition is first order, thEg: has
dz 2D g0 Beo B the significance of a critical superheating temperature for the

where G is the constant of integration. The extremum of €rroelectric phase. WheR, —0 then alsd5—0,A—0, and
P(2) is atz=0 so that the central valte(0) is a solution of K— /2. The elliptic functions then reduce to trigonometric

the quadratic equation correspondingd®/dz=0: functions and Eq(9) gives for T, which is less than the
bulk critical temperaturf ¢y:

(P2—P2)(P2-P2)=0, (5) tan(L/2¢1) = £, /5, (10
where

2g0A P2 48(2)6

4 =
P+B B

where the root®? and P3 have been introduced for later "
use; we order the roots &> P?2. It follows from Eq. (5) &1=(D/|A]) 11

that the producP;P3 has the same sign &and it will be s the usual temperature-dependent coherence length. Now

seen that whileP3 is always positive for both signs @ in  the point about Eq(10) is that it isidentical to the expres-

the case of5<<0 there is a temperature interval in whiGh  sjon for the critical supercooling temperature for the

and thereforeP? are negative. paraelectric phase. This was shown previotfshut it may
The P integral resulting from Eq4) can be expressed by be helpful to review the argument. To find the supercooling

inverse elliptic function¥ % so that ultimatelyP(z) is ex- temperature we imagine that the temperature is lowered from

pressed in terms of an elliptic function. The detailed formsaboveTy; the supercooling temperature is the one at which

depend on the sign af. the solutionP=0 of Eq. (2) becomes unstable for infinitesi-
mal perturbations. This can be found by solving the linear-
A >0 ized form of Eq.(2) subject to the boundary conditions. The
. . 2 ,  solution is
In this case it can be shown that@ < A“/4B so that,P]
andP3 are both positive. Since positivéleads to a decrease P(z)=Pycogz/&;) (12

of P(z) at the surface of the film we have the inequalities . . . T
0<P(2)<P,<P,. The central valu®(0) is the maximum with &; given by Eq.(11) and P arbitrary. Substitution into

value of P(2) and is in fact equal t®,. The expression for f[he boundary condltlpns_glves _the equation for the supercool-
P(2) is ing temperature, which is easily seen to be the same as Eq.

(10). Now the issue seems clear: for a first-order transition
P(2)=P,sn(K—2/¢\) 6) the the(modynamic criticall temperature lies between the su-
percooling and superheating temperatures. When these are
in standard notation for elliptic function The modulus\ is equal, as here, then there cannot be any hysteresis and the
given by transition must be second order.
The above argument may be seen as quite satisfactory.
AN=P,/P,, (7) However, the claim for a first-order transitidris based on a
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" FIG. 1. Temperature dependence of the sur-
face polarizatiorpg found from Eq.(6) and of the
free energyf = FB/a?S calculated by substitution

of Eqg. (6) in Eqg. (1) for §=3 and 10.
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statement that the free energy, given by the variational mini- )

mum of Eq. (1), is positive in some temperature interval P(2)= ———~—, (14
. cn(z/ ¢ \y)

below T¢r. For the sake of completeness therefore we dis-

cuss this possibility. First, it is not difficult to show that where the modulus is given by

when the solution12) is substituted into Eq(1l) the qua- 5 s o

dratic part ofF, including the surface term, vanishes because ANi=—Pi/(P3—P7) (15

of the boundary conditiofi10); the corresponding result for

negatived was pointed out previoushf. Now we consider and the scaling length by

some temperatur€ below T and apply a variational argu- 262D
ment. We use Eq(12) as the variational function with the 52:%_ (16)
value of¢; given by Eq.(11) with A as the value foflcf: B(P2—P1)

&= (D/|Ace))Y? with Acg=a(Tcg—Tco)/ Teo, Which is
negative becaus€-<T¢p. In view of Eq.(10) this func-
tion satisfies the boundary conditions. Note thag
=A(Tcg) —A(T) is positive becaus@ <T.g. Substitution

The temperature dependence@f and therefore of all the
parameters in Eq14), are derived from the boundary con-
dition (3), which gives

of Eqg. (12 into Eq. (1) produces a number of elementary L L i L
integrals which can be evaluated to yield sr(z—g dn(z—é) + Ecn 20 =0. a7
F 1 JL & L At lower temperaturesf <T,, the parameters satisfy the
5~ APy 5T 5 sin 2 inequalitiesG>0, 0<P3<P3<P?(z) and the polarization
profile is found to be
1 3L & (L & (2L
— 4 — — — — —
+48P0 s + 7 sin 2 +325|n &)l (13 bz P, 8
snK—z/&N)’

Since the coefficient oPj is negative and the coefficient of where\ and ¢ are given by the previous expressidids and

4 . s . . . . .
Po is positive, the minimum value of found within this () andK =K (\) as before. Equatiofi8) is an improvement
approximation is negative, and therefore the exact valugn the previous expressidh,and is related to it by linear
must also be negative. We have verified this proof th&  transformation into Legendre’s standard form. Application of

negative forT <Tcg by numerical evaluation using the exact the boundary conditiori3)—(15) gives the equation for the

solution(6) for a selection of values of the parameters and aremperature dependence @f etc.:

example is shown in Fig. 1. The forms of the graphs are

consistent with the functional dependendes (Tce—T)? (
cn

ol g+ S -
K_2_§ dn K_2_§ +SS K_2_§ =0. (19

At the temperaturél; which divides the regions where
B. 5<0 Egs.(14) and(18) apply, G=0. TheP integral in Eq.(4) is

elementary at this particular temperature and insertion of the

In this case the analytic work is more complicated be-so|ution into the boundary conditiof8) gives the equation
cause there is a temperature interfgi<sT<Tc in which  for T:14

G<0 and Pi<0<P5<P?(2). In the interval whereG is
negative,P(z) takes the form, as previously derivé&t, tan(L/2&,)=—&,16. (20)

and P,x (Tcg— T)*2 that might be expected from E(L3).
We now simplify the notation by identifyinGcr=T¢.

144109-4



LANDAU THEORY OF SECOND-ORDER PHASE. .. PHYSICAL REVIEW B 63 144109

12

— g
\ FIG. 2. Temperature dependence @f pg,
i;. 0 and p, for the two positive valuesl=3 and 10.
% The inset shows the polarization profiR(z),
calculated from Eq(6), for d=3 andt=0.5(sec-
. | tion marked.
2@ w)\
The film critical temperatur@ is found from Eqs(14) and S aéP3 [ L N2 sn(L/2¢)en(L/2¢E)
(17. AsT—T¢, A\;—1 so that the elliptic functions become ST eoTeo| 26 E(L/2¢)+ dan(L/28) ,
hyperbolic and Eq(17) simplifies to 07 co
23

It is accepted that for negativ@the film phase transition is WhereE(L/2£) is the incomplete elliptic integral of the sec-
second order. For the sake of completeness, we point out th&f'd kind, the modulus of the elliptic functionsis given by
Eqg. (21), which in principle gives the critical superheating E9- (7). and¢ is given by Eq.(8). For negatives the results
temperature of the ferroelectric phase, is identical to the ex2'®

pression previously derivédi for the critical supercooling

temperature of the paraelectric phase. This confirms that the = _ a§P§ L dn(L/2&)sn(L/2¢)
phase transition is second order. S goATcol28 E(L/26)+ cn(L/2§)
lIl. THERMODYNAMIC FUNCTIONS for 0<T<To (24)

We now turn to a more explicit discussion of the entropyand
and specific heat than has been given before. The expression
for the entropyZ is derived from Eq.(1) by means of% s alP3
= i —=———"—5|=—E(L2

(0F/dT)p, and this leads t§ S™  saTeo(1-0D) | 2¢ (L/2¢0)
L2
2 _LAA S (22 | UADsnoentizg]
S 2dT —L2 dr“_/zg) 0 (of

The integral in Eq.(22) can be evaluated explicitly for all (25)
three expressions in Eq), (14), and(18). First, for posi-
tive & substitution of Eq(6) gives The heat capacity is

14 T y— "

o . ég \'-’3/ 10

o T - \\\\?_3,0”:10 FIG. 3. Temperature dependence @f pg,
g T _\\\ and p, for the two negative valued=—3 and
ﬁ °e TP f\"f'“”':“ p—— —10. The inset shows profileB(z) for d=—3.

ot e These are calculated from Ed4) for t=0.5 and

’ N Z et from Eq. (18) for t=1.0 and 1.2.

0vooo 02 04 o:: YT T \14 16

-0.2
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M ,""}:a(dﬂo)
0.6

0.5 I/ PO(=3)

FIG. 4. Dependence on dimensionless thick-
/ nessl of g, pp, andpg at temperaturé=0.5 for
i surface parametes=3 and 10.

H Ps(d=3)

& Ps, P

0.4

03

0.0 0.5 1.0 1.5 2.0 25 3.0

dz Po=P(0)/Pge, (30)
C:Tﬁ. (26) . '
whereP(0) is the central £=0) value of P(z) and Py, is
The temperature dependence in E@8)—(26) is partly ex- the zero-temperature value for a bulk material, iRg,.
plicit, through the arguments of the elliptic functions, but in =(s0a/B)Y?
addition there is an implicit part arising from the temperature
dependence of the paramet@ras shown subsequently in
Figs. 2 and 3. For the illustrations in the next section w
have therefore evaluated E@®6) by numerical differentia-
tion of the entropy curves. d=6/¢,, (32)

P.=P(L/2)/Py.., (31)

eWhereP(L/Z) is the surface value; and finally

IV. NUMERICAL RESULTS where & is the surface extrapolation length of E¢$) and

3).

We present here a range of graphical results based on trge)lzigures 2 and 3 show the temperature dependence of pa-
formulas that have been derived. The graphs use a number pfmetersg, p,, and p; for two positive and two negative
dimensionless variables, defined as follows: values of 5. The variation with temperature of the energy

t=T/T 27 integral g is obtained from Eq(9) for positive § and from
co: Eqgs.(17) and(19) for negatives. For positives, g decreases
whereT¢g, as in Eq.(1), is the bulk critical temperature.  from a positive value at =0 to zero at the critical tempera-
ture T¢. For negatives there are two rgimes:g>0 for T
I=L/&o, (28 <Ty and g<O0 for To<T<T; whereT, is given by Eq.
whereL is the film thickness and, is the zero-temperature (20). It follows from the formulas of Sec. Il that the tempera-

value of the length¢, that is defined in Eq(11), namely ture dependence gf, comes partly from its dependence on
£o=(D/a)Y g. Because of Eq96), (14), and(18), P(0) at all tempera-

tures is equal td, (positive d) or P, (negatived), the quan-
g=GB/a?, (29  tities defined in Eq.(5). The surface polarizatior?(L/2)

=05

~ Ps(d=3)

09 S P0(d=-3)

FIG. 5. Dependence on dimensionless thick-

i nessl of g, py, andpg at temperaturé=0.5 for
surface parameters=—-3 and —10. For all
05 negatived, the values diverge fot—0 as pq
—, ps—, andg— —o; the graphs shown are
truncated at convenient points.

0.7

2 Ps, PO

03

[ g(d=-10)

-0.1

-0.3
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FIG. 6. Dependence on dimensionless thick-
nessl of the critical temperaturec=Tc/Tq for
d=5 (lowest curve, 10, 15, and 20(highest

0.2 I

curve.

0.0 HI]
0.0 0.5 LS 2.0 2.5

]

3.0

=P(—L/2) is calculated from the same equations. For both For positive § it is also of interest to define a critical

positive and negativé, a continuous change qf, and ps

thicknessL ¢ as the value for which the film critical tem-

with temperature is consistent with the fact that the phaseeratureT. given by Eq.(10) vanishes. WhenT-—0, it

transition in this model is second order.

There continues to be considerable interest in the study djives
the size effect on the phase transition properties of ferroelec-

tric particles and films$! We show in Figs. 4 and 5 some
results for the thickness dependencegpp,, andps. The
limiting behavior ofpy andpg whendis positive, Fig. 4, can
be deduced analytically from E@). First, suppose that the
temperaturet is fixed. When the thickness approaches th
critical valueL¢ at which pg and pg vanish for thist then
G—0 and T—Tc(<Tgp). Hence P(0)—0 [in this case
P(0) is P4] and in additionP(=L/2)=P,;snK—L/2¢)
—0. With this condition, from Eg.(100 we have
tan(Lo/28c) =Ec /S, Where &c=&,/\JAT and AT=Tc,
—T¢. Thus the critical thickness of the film is

Lo(t)=2é&ctant é) (33

5

As stated in the caption, in the case of negaivg, and pg
do not show a similar size effect; in fad,becomes more
negative as decreases with the consequence fhapandpg
ultimately diverge.

€,

follows from Eq.(11) that £&,— &,/\ T so that Eq.(10)
2&o £o

L,n=——tan l(
oo 5\Teo

which shows the dependence oérof the critical thickness

(34)

for which Tc—0. As §—x, L;c—0. Some results are
shown in Fig. 6.

In the case of negativé, the size dependence tof is
found from Eq.(20) and some results are plotted in Fig. 7.
As seen theret increases with decreasingand the effect
becomes more marked @s-0.

The analytic expressions for the thermodynamic functions
presented in Sec. lll are new, as far as we know, and we now
give some illustrations of the results. The analytic expres-
sions for the entropy in Eq$23)—(25) are plotted in Figs. 8
and 9 for typical positive and negativ@ values. For both
positive and negativeS the entropy is continuous for the
whole range of temperature with—0 (the paraelectric-
phase valugat T . Exactly the same graphs for the entropy
are obtained by numerical integration of E§2). As men-

FIG. 7. Dependence on dimensionless thick-
nessl of the critical temperaturez=T /T for
d=-5 (highest curvg —10, —15, and —20
(lowest curve.

25

3.0
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1.0

=20
08 C'(d=10)
0.6

0.4 C@d=3)

02 FIG. 8. Temperature dependence of the en-
Y o tropy S'=3/(a¢£,/ToB) and heat capacit€’
u oy 01 02 03 04 05 s o gy 09 ifo = C/(a2§0 /TCOB): whereC=TdX/dT for I=2

02 e - ) and d=3 (dashed curvgs d=10 (continuous

04 U o curves.

LT e /////W

-0.8 e

-1.0

tioned previously, the heat capacity is found from E2f)  the simple temperature dependendesa(T/Tc,—1) and

by means of numerical differentiation. As is to be expectedd=const. These cannot be expected to hold over the whole
for these second-order phase transitions, for both positiveemperature range in a real material but the analytic results of
and negatives there is a finite discontinuity in the heat ca- the paper in Secs. Il and Il hold for any temperature depen-
pacity at the film critical temperaturgc . dence of these parameters. In view of the increasing interest

We draw attention to the fact that on the curves for negain ferroelectric films we think it is worthwhile to present our

tive 6, Fig. 9, both2 andC are continuous through the bulk esyjts on this well studied model. First, we have corrected
critical temperaturdco (t=1). This is of some interest. For gome misconceptions in the literature. Second, the results

a sernl|2-|lr13f|n|te medium with6<0, it is a well-known g6 3 hasis for a number of possible extensions. Discussion
resulf***? that two phase transitions should be seen, they toroelectric superlattices is growitig®?and it should be
higher-temperature one dics> Tey for which the surface possible to extend the present work to find polarization pro-
grders, and tlhe second ﬁ&BlzT%O foirLﬂWE'Ch thebbulk O files and thermodynamic functions for superlattices. In de-
Iaer;Sé I?X :g;t?(?r?’t(\)/vtehesppehC;sztfrarfgtioiTZ;j‘T’L sr(]:c‘)‘ri?fs vices the elgctr.ic fie_ld is. transyerse to the film so_inclusion of
cipier’1t bulk transition,” marked by some Csopecific-heat the depolarization field is anllmp'ortant. matter. Since a rather
anomaly, should apper;lr o, Our numerical work now ge_nerz_;\I fre_e-energy exgressmn including the effects of depo-
! A%rlzatlon is availabl&?® and other approaches have ap-

shows that this is not so. The reason appears to be that t . . _ .
coherence lengté;, of Eq. (11) diverges asT—Tco. Thus peared in the literatuP@ it should be possible to extend the

the “surface phase” penetrates deep into the bulk for temPresent results to include depolarization. Likewise the exten-

peratures near B, and the limitL/¢,— is unattainable. sion to first-order n116aterials could be taken_beyond what is
known at presentl® Both of these generalizations would
V. DISCUSSION haye to be primarily numencgl anq we bellevg that our ana-
Iytic results would be useful in guiding numerical work.
We have given a detailed account of a range of analytic We have assumed that the LD parameters in (Epare
results that can be derived from the model summarized iindependent of the film thickness This is the conventional
Eq. (1). For the sake of illustration in Sec. IV we have usedview® and it is based on the fact that in the derivation of Eq.

15

1=2.0

C'(d=-10)

FIG. 9. Temperature dependence of the en-
tropy S'=3/(a¢,/ToB) and heat capacit€’

w - & =Cl/(a%£y/ToB), whereC=Td3/dT for =2
and d=—3 (dashed curves d=—10 (continu-
ous curves
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(1) as the continuum limit of the IMTKRefs. 9, 11, and 84  STiO; (Tc~0 K) with gold and highT superconductor

it is found that the coefficients are indeed independerit.of (YBCO) electrodes with the tentative conclusion tht 0

The derivation given in Ref. 9 and latéf*is for a semi-  for the Au electrodes and~ for YBCO. The first result,
infinite medium, but the proof goes through for a film pro- however, does not apply for Bar, _,TiO5 in contact with a
vided the integral for the free energy runs frenL/2toL/2  pt electrod€® Finally in this context, we should like to draw
rather than 0 tee. The basic condition for the derivation to attention to our own propogilthat far-infrared spectros-
hold is that the film is sufficiently thick for a continuum copy, as a dynamic probe' may be much more sensitive for
variable(S,) to be defined as an average over a volume someerroelectric size effects than quasistatic measurements like
lattice constants across. It is not necessary, for example, thaipacitance.

L should be large on the scale of the coherence length de- The implications of the free enerdjt) for a bulk mate-
fined in Eq.(11). It is the requirement fokL to be relatively  rial, that is, Eq.(1) without the final surface-related term,
large on the atomic scale that underlies the view, mentioneflave been extensively discussed in the literature on statistical
in Sec. |, that a thickness of somewhat greater than 20 nm ighysics, but since the emphasis here is specifically on ferro-
required for applicability of the LD theory. We mentioned in electric films it is not relevant to discuss this literature in
Sec. | that Jiang and Burskillhave proposed a model for detail. It is worth pointing out that for the bulk material a
ferroelectric thin films in which the parametefsandB are  soliton contribution to the specific heat has been
thickness as well as temperature dependent. This may bedscussed®®’ although as far as we are aware there is no
very useful approach for analyzing experimental results bugxperimental evidence for this contribution in bulk ferroelec-
one may ask where the thickness dependence comes frofifics, for which the LD result applies quite accurately. Our
One approach would be to take the present formalism angxpressions derived in Sec. Ill and illustrated in Sec. IV are
introduce the spatial average of the polarizatioh the generalization of the bulk LD result and could therefore
=2 P(z)dz. An expansion of the free energy in terms of serve as a starting point in the analysis of thin-film specific

P could be constructed with use of our expressionsPfr) heats. It is possible that a soliton contribution should appear

and the paramete and B in that expansion would auto- as a correction to the results derived in Sec. Ill. However, in
. P P order to estimate the magnitude of this term it would be
matically depend or.

. . : N n ry to extend th liton calculations to the finit -
The most uncertain parameter in this formulation is the ecessary to extend the soliton calculations to the @ ge

“extrapolation length” & that appears in the free ener(s) ometry described by Eql) with the final term included.

. e X This would be likely to lead to a lengthy analysis, partly
and therefore in th.e boundary condm(ﬁ): Slnce_the Eule(- because of the asymmetry in Ed) between the axis and
Lagrange Eq.(2) is a second-order differential equation

some boundary condition is necessarv and is usuallthe other axes. This analysis has not yet been attempted and
. 203031 y cc . ) ary ; ¥ince there is no compelling experimental evidence to show
invoked<"="=*A similar question arises in formulations us-

ing the IMTF where the different surface coordination num-that itis necessary we regard it as lying beyond the scope of

ber and possible different surface exchange constant lead totge present paper.

spatial variatiorP(z); as mentioned in Sec. | expressions for
6 in terms of the IMTF constants have been derivét.
Some discussion of the physical origin of the boundary con-
dition for perovskites is given by Ishikawa and Uemi®snd We are grateful to Professor B. Zeks, Professor W. L.
they suggest that the relaxation of t¥@ ration near surface Zhong, Dr. R. L. Stamps, and Khian-Hooi Chew for helpful
may play a major part. Vendik and ZubKanalyze capaci- discussion of this work. The work was supported by IRPA
tance measurements on films of the “incipient ferroelectric” (Malaysian GovernmepiGrant No. 09-02-05-6001.
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